
Spatiotemporal Modeling using Recurrent
Neural Processes

Sumit Kumar

CMU-RI-TR-19-67

July 2019

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Katia Sycara, Chair

George Kantor
Wenhao Luo

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright c© 2019 Sumit Kumar

For my parents and sisters

iv

Abstract
Spatiotemporal processes, such as temperature in an area, motion of a vehicle,

etc., depend on the spatial features of the underlying phenomena as well as time.
Developing models that can estimate both mean and uncertainty associated with
the prediction is important for building robust systems capable of performing such
tasks. Although, Gaussian Process [27] models can estimate predictive distributions
over the target data points, they are not scalable to large data regimes due to their
non-parametric nature. Moreover, the explicit functional form of kernels limits the
modeling capabilities to only smoothing and interpolation of data. In this work, we
propose a deep neural network model, called Recurrent Neural Processes, adept for
modeling spatiotemporal data. Being parametric, our model easily scales to large
data regimes. Additionally, the use of neural networks enables the model to over-
come functional design restrictions and learn implicit kernels from the data directly.
Our proposed model is a latent variable model, i.e., the predicted output for a given
input depends on sample drawn from a learned latent distribution. The model’s pre-
dictive distribution is empirically estimated from the multiple output values obtained
as a result of drawing different samples from the latent distribution. We compare our
proposed model with the existent ones in the literature and show that our model can
make accurate future time step predictions and can also provide meaningful struc-
tured uncertainty estimates for spatiotemporal data.

vi

Acknowledgments
I would like to express my sincerest gratitude towards my research advisor, Prof.

Katia Sycara for her continuous support and guidance over the last two years. This
work would not have been possible without her invaluable technical assistance and
moral support. Her expertise in the subject matter, immense patience and trust in
students, and friendliness make her an ideal mentor. I would also like to thank my
committee members, George Kantor and Wenhao Luo, for their consistent guidance
and feedback which have proved to be of immense help in this research. Their
encouragements and constructive criticisms have helped me in becoming a better
researcher and in successful completion of this project.

I would also like to thank my wonderful labmates and friends for helping me
out whenever I felt stranded in my work. I am especially grateful towards Akshat
Agarwal and Swaminathan Gurumurthy, for their collaboration on various projects
and numerous insightful discussions that have kept the projects running and have
personally helped in improving my research skills. Special thanks to my dear friend,
Ishika Soni, for always supporting me and cheering me up especially in times of
need.

Finally, I am deeply grateful towards my incredible family for motivating me to
pursue an academic career, supporting me in all my decisions and always being there
for me.

Contents

1 Introduction 1

2 Problem Formulation 4

3 Related Works 6
3.1 Gaussian Process . 6
3.2 Deep Neural Networks . 8

3.2.1 Neural Processes . 8

4 Method 11
4.1 Modeling Temporal Dependencies . 11
4.2 Model . 12
4.3 Training . 13

5 Experiments 16
5.1 Datasets . 16
5.2 Implementation Details . 18
5.3 Baselines . 18
5.4 Results . 21

5.4.1 Comparison with Baselines . 21
5.4.2 Uncertainty prediction analysis . 26
5.4.3 Model’s performance against context set size 27

6 Conclusion and Future Work 29

Bibliography 30

viii

List of Figures

1.1 An autonomous vehicle in the rightmost lane predicts the motion of another ve-
hicle in the middle lane. If its prediction (shown in red) has high uncertainty, the
vehicle becomes extra careful in its approach as shown on the left. Otherwise,
the vehicle can continue on its trajectory as shown on the right. 2

1.2 The utility distribution for a scalar field such as temperature over a 2D field is
shown. The utility of collecting data/readings from any point is proportional
to the model’s uncertainty over the true value. An agent can select places with
high uncertainty or equivalently with high utility, to collect samples and gain
information regarding the distribution of the scalar field. 2

1.3 In a collaborate human-AI setup, the decision making can be shared between the
human and the agent. If the agent has low confidence or high uncertainty in its
prediction, it can handover the control to the human, otherwise, it can execute
the appropriate actions. 2

2.1 The figure displays the motion of a rigid body (MNIST digit) in a box as a spa-
tiotemporal process. The context set consists of input-outputs pair where input
is the 2D location of each of the non-blue pixels in the first 3 time steps and the
output is its corresponding intensity value. The target input consists of all the
grid cells at t = 4. 5

3.1 The figure shows the schematic of Neural Process model. Left: The encoder
computes the latent distribution q (z | xC, yC) from the context set (xC, yC). Right:
The decoder makes different predictions for the target input xT by drawing dif-
ferent zk from the latent distribution. The predictive mean and covariance are
then empirically estimated from the multiple predictions. 8

3.2 The figure shows the Neural Process model. Encoder h computes a representa-
tion vector ri for each context data pair (xi, yi). The aggregator module a then
combines them all into a state representation r. The latent distribution encoder
l then transforms this into a latent distribution N (µz, σzI). Finally, the decoder
g takes as input the target data point x and a latent sample zk and outputs a
predicted value ŷk. 9

4.1 For static spatial processes, a single state representation vector r summarizes all
the contextual information. 11

ix

4.2 Spatiotemporal process can be considered a sequence of static spatial processes.
Here, state representation rt summarizes the contextual information for time step t. 12

4.3 The figure shows the schematic of Recurrent Neural Process model. Left: The
latent distribution q

(
zT
′ | xC, yC

)
corresponding to the target time step T ′ is com-

puted from the context set (xC, yC). Right: The decoder makes predictions for
the target input xT by drawing zT ′k from the latent distribution. The predictive
mean and covariance are then empirically estimated from the multiple predictions. 13

4.4 The figure describes our model architecture. The encoder h forms a representa-
tion vector for each context input-output pair. The aggregator a then combines
representation vectors belonging to the same time step to form a state represen-
tation for each time step. The forecaster module f computes the representation
vector for the next time step T ′. The latent distribution encoder l takes as input
the forecasted state representation and outputs the mean and variance vectors for
a factorized normal latent distribution. Finally, the decoder g takes as input a
random vector sampled from the latent distribution and the target data point and
predicts an output value for that data point. 14

5.1 The figure shows 10 consecutive time steps of one sequence from Moving El-
lipses dataset. 16

5.2 The figure shows 10 consecutive time steps of one sequence from Moving MNIST
dataset. 17

5.3 The figure shows 10 consecutive time steps of one sequence from Temperature
dataset. The colorbar on the right shows the temperature in degree Celsius. Here,
one time step represents one month as each image shows the average temperature
for a month. 17

5.4 In the first 10 images, the coordinates of non-blue pixels and their corresponding
intensity values form the context set. This set consists of N = 128 input-output
pairs for 1 ≤ t ≤ 10. The target set consists of the entire grid at t = 11.
The model’s predicted mean and variance plots are generated from 20 outputs,
each obtained as a result of sampling different random vector z from the latent
distribution. 19

5.5 Mean and standard deviation of predictions made by RNP model for different
values of N on a sequence from Moving Ellipse dataset. 22

5.6 Mean and standard deviation of predictions made by RNP model for different
values of N on a sequence from Moving Ellipse dataset. 23

5.7 Mean and standard deviation of predictions made by RNP model for different
values of N on a sequence from Moving MNIST dataset. 24

5.8 Mean and standard deviation of predictions made by RNP model for different
values of N on a sequence from Moving MNIST dataset. 25

5.9 With increase in N , the number of grid locations with uncertainty greater than
any threshold decreases. 26

5.10 The plot of MAE of model’s prediction against N averaged over 20 test se-
quences from Moving Ellipses dataset. 27

x

5.11 The plot of MAE of model’s prediction against N averaged over 20 test se-
quences from Moving MNIST dataset. 28

5.12 The plot of MAE of model’s prediction against N averaged over 20 test se-
quences from Temperature dataset. 28

xi

Chapter 1

Introduction

Spatiotemporal processes depend on both the spatial features of the underlying phenomena and
time. They are encountered in numerous domains such as video prediction [7], active monitor-
ing [18], self-driving [6], etc. For instance, the motion of any vehicle on the road depends on
various spatial and temporal factors like presence of other vehicles, its past motion or trajectory,
road connectivity network, etc. A self-driving vehicle needs to model the complex dependencies
among these factors in order to accurately forecast the motion of all other vehicles in its vicinity.
Hence, for building robust artificial intelligence (AI) systems that can perform such tasks, it is
important to develop machine learning models capable of making accurate predictions for such
spatiotemporal phenomena.

Additionally, AI systems should be able to express their model’s uncertainty along with the
predicted value. In other words, instead of just producing an output from a black box, the model
should also quantity its confidence in that prediction. This is important because such uncertainty
estimates can serve as a safety mechanism enforcing the system’s behavior to be more cautious,
safe and conservative especially when its confidence levels are low. On the contrary, in the ab-
sence of such confidence estimates, the system may take certain undesirable or harmful decisions,
for instance, an over-confident but incorrect prediction made by a self-driving car regarding the
motion of other vehicle can have catastrophic outcomes. An example demonstrating the benefit
of predicting uncertainty in autonomous driving is shown in fig. 1.1. The uncertainty estimates
can also be useful in active exploration or adaptive sampling tasks where a robot or a team of
robots monitoring an area can sample locations where they have high uncertainty regarding the
target distribution in order to gain more information about the underlying environmental process
as shown in fig. 1.2. Similarly, in the human-robot collaborative tasks or imitation learning
setup, where an AI agent is trying to learn an optimal policy from the behavior of an expert hu-
man, the agent can select to query the expert for only those data points or experiences on which
it is most uncertain about the optimal behavior, instead of querying on each and every sample,
thus reducing the input from the human and increasing the speed of learning (see fig. 1.3).

Gaussian Process (GP) [27] is one of the most popular machine learning models that can
express uncertainty along with its predictions. A GP defines a prior distribution over functions,
which can be updated to a posterior on observing some data. However, being non-parametric
models, GPs are not scalable to large datasets. We review Gaussian Processes and some of the
recent advancements in this field in section 3.1.

1

Figure 1.1: An autonomous vehicle in the rightmost lane
predicts the motion of another vehicle in the middle lane.
If its prediction (shown in red) has high uncertainty, the
vehicle becomes extra careful in its approach as shown
on the left. Otherwise, the vehicle can continue on its
trajectory as shown on the right.

Figure 1.2: The utility distribution for a scalar field such
as temperature over a 2D field is shown. The utility of
collecting data/readings from any point is proportional
to the model’s uncertainty over the true value. An agent
can select places with high uncertainty or equivalently
with high utility, to collect samples and gain informa-
tion regarding the distribution of the scalar field.

Figure 1.3: In a collaborate human-AI setup, the decision making can be shared between the human and the agent.
If the agent has low confidence or high uncertainty in its prediction, it can handover the control to the human,
otherwise, it can execute the appropriate actions.

Neural Network (NN) models have been highly successful in automatically capturing the
underlying complex patterns of the data and have achieved state-of-the-art performance in nu-
merous applications [12, 19, 31]. Given enough data, these models can learn the complex de-
pendencies between features and have achieved human level or even superhuman performance
results in various fields [23, 29]. Being parametric models, they do not suffer from scalability
issues in the large data regime, unlike GPs. Their powerful representation capability have made
them most popular model in many fields these days. However, deep networks, in their original
formulation, do not provide any uncertainty estimate. In other words, they output a point estimate
rather than a distribution. Recently, some neural networks models that can provide uncertainty
estimates too have been proposed. We discuss these in section 3.2.

In this work, we propose a deep neural network model, called Recurrent Neural Processes,
that, like Gaussian Processes, can estimate both mean and uncertainty of its predictions of a
spatiotemporal process. Being parametric, our proposed model easily scales to large datasets.

Spatiotemporal modeling of data that exists in the form of images is a well-studied topic in the

2

research community and popular deep Convolutional Recurrent Neural Network models [21, 28]
have achieved impressive results on many datasets. Similarly, if the data is in the form of a fixed
graph, then Graph Recurrent Neural Network models [14] can be used. In this work, however,
we are interested in developing models for data that do not necessarily have any such pre-defined
structure (images/graphs). Such cases are prevalent, for instance, a robot equipped with the
task of environment monitoring takes readings of a physical phenomenon of interest such as
temperature from a subset of all possible locations at each time step, instead of exhaustively
sampling the entire area, thus the accumulated data is a set of locations and the corresponding
readings for each time step. Similarly, in motion prediction task, the input for the model is a set
of detected objects, extracted from the camera image, and their corresponding state at discrete
time steps. Hence, it is important to develop models that can make accurate predictions of a
spatiotemporal process given only individual samples from different time steps instead of images
or graphs.

The rest of the document is organized as follows:
• We formally describe the problem we are addressing in this work in Chapter 2.
• We review popular models widely used for estimating predictive distributions in Chapter

3.
• We describe our proposed model in Chapter 4.
• The datasets used in this work, experimental setup and results are described in Chapter 5.
• We finally conclude and discuss future directions in Chapter 6.

3

Chapter 2

Problem Formulation

In simple words, the objective of this work is:

Given some observations of a spatiotemporal process for t = 1, . . . , T ; predict mean
and uncertainty values for T ′ > T .

We now give a mathematical formulation of this problem. Let, (xti, y
t
i) denote an input-output

pair where xti ∈ X is a data point in the input space X and yti ∈ Y be the corresponding output
value at time t. Additionally, let F : X → Y be the mapping from the input space to the output
space.

We are given a context set C = {{x, y}11:N1
, . . . , {x, y}T1:NT

} comprising of some input-
output pairs where {x, y}t1:Nt

= {(xt1, yt1) , . . . ,
(
xtNt

, ytNt

)
}. We will use short hand notations

xC and yC for input and output of context set C respectively, i.e., xC = {x11:N1
, . . . , xT1:NT

}
and yC = {y11:N1

, . . . , yT1:NT
}. Additionally, we are provided with a target input set xT ≡

xT
′

1:M = {xT ′1 , xT
′

2 , . . . , x
T ′
M} belonging to time step T ′ > T . We want to estimate a conditional

probability distribution P (yT | xT , xC, yC) over the corresponding output value yT ≡ yT
′

1:M =
{yT ′1 , yT

′
2 , . . . , y

T ′
M} of the target input set xT . Note that the context data points span from t = 1

to t = T whereas the target data points belong to t = T ′ > T time step.
Figure 2.1 shows a spatiotemporal process - the motion of a rigid body (MNIST digit) in an

area. In the first row, the individual time steps from this process are shown. For each of the first
3 time steps, we know the intensity value of some pixels or cells which are shown in non-blue
color in the bottom row. The context input xC is the 2D coordinate of all of these non-blue pixels.
The context output yC is the corresponding intensity value of all the input pixels at that time step.
The target input xT is the set of all the cells/pixels at t = 4.

The target distribution P (yT | xT , xC, yC) is a Normal distribution:

P (yT | xT , xC, yC) = N
(
µT |C,ΣT |C

)
where the mean µT |C is a vector of size M and the covariance matrix ΣT |C is an M ×M matrix.

Estimating model’s uncertainty along with modeling both spatial and temporal patterns in the
data is a challenging task. We will first discuss some models that can estimate both mean and
the associated uncertainty with their predictions for static spatial processes in Chap. 3. Then, we

4

Figure 2.1: The figure displays the motion of a rigid body (MNIST digit) in a box as a spatiotemporal process. The
context set consists of input-outputs pair where input is the 2D location of each of the non-blue pixels in the first 3
time steps and the output is its corresponding intensity value. The target input consists of all the grid cells at t = 4.

will describe our proposed model that can model temporal patterns too and estimate predictive
distribution over the target data conditioned on the context data in Chap. 4.

5

Chapter 3

Related Works

We discuss two different classes of models that can estimate both mean and the associated un-
certainty with their predictions for static spatial processes.

3.1 Gaussian Process
Gaussian Process (GP) [27] is a widely used probabilistic model that defines distributions over
functions. This is different from other popular models, such as linear regression models, polyno-
mial regression models, support vector machines [4], etc. that parameterise a single function and
try to optimize the parameters in order to maximize the likelihood of training data or minimize
some loss function on the training dataset. Gaussian Process is a stochastic process, which is a
collection of random variables, such that every finite collection of those random variables has a
multivariate normal distribution. The joint probability distribution over the output value of a set
of points x1, . . . , xn can be written as:f(x1)

...
f(xn)

 ∼ N

m(x1)

...
m(xn)

 ,
k(x1, x1) . . . k(x1, xn)

...
k(xn, x1) . . . k(xn, xn)

f(X) ∼ N (µX , KXX)

where,

X =

x1...
xn

µX =

m(x1)
...

m(xn)

KXX =

k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)

A GP is fully defined by a mean function m and a covariance function k:

f(·) ∼ GP (m(·), k(·, ·))

The mean function m is typically assumed to be zero without any loss of generality. The co-
variance function k, also known as kernel, encodes assumptions about the structure of the latent

6

function f . It describes the relation between two data points and typically has some free hyper-
parameters to control this relation. A popular choice of kernel function is radial basis function
or squared exponential kernel defined as:

kRBF (x, x′) = σ2 exp

(
−‖x− x

′‖2

l2

)
where l is the lengthscale hyperparameter and σ is the scale hyperparameter. If l is large, then
two data points x and x′ which are far from each other in the input space are also correlated,
implying that the true function f is smooth. On the other hand, if l is small then f is likely to be
a non-smooth function with rapid variations.

Given a training dataset of size N with input X and output Y , the log marginal likelihood of
the data can be written as:

L = −N
2

log (2π)− 1

2
log det (KXX)− 1

2
Y >K−1XXY (3.1)

where KXX is the pairwise covariance matrix whose (i, j)th element is given by k (Xi, Xj) with
Xi and Xj being the ith and jth elements in X respectively. The hyperparameters of the GP
model (σ and l for RBF kernel) can be estimated by maximizing the log marginal likelihood L
in eq. 3.1. In other words, the prior distribution is updated, by maximizing the likelihood of the
observed training data with respect to the model’s hyperparameters, into a posterior distribution.

After optimizing the model’s hyperparameters, the posterior target distribution of a target set
of samples X∗ conditioned on the training set (X, Y) can be computed as a normal distribution:

f(X∗) | X∗, X, Y ∼ N (µX∗ , KX∗)

µX∗ = KX∗XK
−1
XXY

KX∗ = KX∗X∗ −KX∗XK
−1
XXK

>
X∗X

where KX∗X is the cross-covariance matrix between X∗ and X .
GPs are non-parametric models, i.e., the number of parameters grow with the data. They are

computationally very intensive as they incur O(N2) storage cost and O(N3) inference cost for
a dataset of size N . Although, state-of-the-art approximations [25, 26, 34] reduce the inference
cost to O(N2), the non-parametric nature of the model makes it ill-suited for large datasets.
Especially, in processes with temporal variations, where the amount of observed data increases
with time, these models become computationally intractable. Furthermore, identifying the most
suitable kernel k for the model requires domain knowledge regarding the nature and distribution
of data, thus limiting the applicability of the model to small datasets only.

Gaussian processes model distributions over functions providing a Bayesian non-parametric
approach to smoothing and interpolation of data. Wilson and Nickisch [34] proposed Spectral
Mixture Kernels suitable for pattern discovery and achieving long range extrapolation behaviors.
These kernels are derived by modelling a spectral density, which is the Fourier transform of a
kernel, with a Gaussian mixture.

Recently, many approaches have tried to combine the rich representation power of deep
neural networks with the probabilistic non-probabilistic modeling capabilities of Gaussian Pro-
cesses. Damianou and Lawrence [5] proposed Deep GPs which are a deep belief network based

7

on Gaussian process mappings. They model the observed data as the output of a multivariate
GP and the inputs to that Gaussian process are then governed by another GP. Wilson et al. [35]
proposed Deep Kernel GPs where the input data is first transformed into a representation space
by using neural networks. The obtained representation are then fed into standard GP kernels.

3.2 Deep Neural Networks
Uncertainty estimation with deep neural network models is an active area of research. In their
original formulation, neural networks define a single deterministic function parameterised by
weights and biases and hence are not capable of expressing uncertainty associated with their
predictions. Considered to be one of the pioneer works, Blundell et al. [3] proposed a backprop-
agation compatible algorithm, called Bayes by Backprop, for learning normal distributions over
the parameters of a neural network. By assigning distribution over the parameters, the model’s
output for a given input is also a distribution instead of just a single point estimate. Fortunato
et al. [8] extended this model for Recurrent Neural Networks by using an adapted version of
truncated backpropagation through time. Due to the large number of parameters of the deep
network model, closed form posterior analysis becomes computationally intractable. As a result,
Monte Carlo samples are drawn from the parameter distribution to approximate the posterior
distribution over the target value.

3.2.1 Neural Processes

Recently, Garnelo et al. [10] proposed Neural Process (NP) - a deep neural network model
that, like GP model, can estimate distribution over the output value of a target set of points
conditioned on some input or context set of points. However, unlike GP, NP is a parametric
model with architecture similar to that of Variational Autoencoder [17].

Figure 3.1: The figure shows the schematic of Neural Process model. Left: The encoder computes the latent
distribution q (z | xC , yC) from the context set (xC , yC). Right: The decoder makes different predictions for the
target input xT by drawing different zk from the latent distribution. The predictive mean and covariance are then
empirically estimated from the multiple predictions.

8

Figure 3.1 shows the overall functionality of the model. An encoder module first computes a
latent distribution q (z | xC, yC) from the context set (xC, yC) of input-output pairs. The decoder
then takes as input the target input xT and a sample zk drawn from the latent distribution to make
prediction ŷk. By drawing K different latent samples z1, . . . , zK , the model predicts K different
values ŷ1, . . . , ŷK , from which it can then estimate the predictive mean µT |C as:

µT |C =
1

K

K∑
k=1

ŷk

Similarly, the predictive covariance matrix ΣT |C can be computed as:

ΣT |C =
1

K − 1

K∑
k=1

(
ŷk − µT |C

) (
ŷk − µT |C

)>

Figure 3.2: The figure shows the Neural Process model. Encoder h computes a representation vector ri for each
context data pair (xi, yi). The aggregator module a then combines them all into a state representation r. The latent
distribution encoder l then transforms this into a latent distribution N (µz, σzI). Finally, the decoder g takes as
input the target data point x and a latent sample zk and outputs a predicted value ŷk.

The Neural Processes model is shown in fig. 3.2. It consists of the following modules:
• An encoder h computes representation vector ri = h (xi, yi) for each input-output pair

(xi, yi) in the context set. The encoder is parameterised as a neural network.
• The aggregator module a then combines all the representation vectors {ri}Ni=1 into a state

representation vector r, i.e., r = a
(
{ri}Ni=1

)
. The aggregator a(·) needs to be invariant to

the number and order of context data points. The simplest choice is the mean aggregation
function, i.e. r = a

(
{ri}Ni=1

)
= 1

N

∑N
i=1 ri.

9

• A latent distribution encoder module l then transforms the state representation r into a la-
tent distribution q (z | xC, yC), which is a factorized Normal distributionN (µz, σzI) where
µz, σz = l (r). This module is also a neural network with two output heads, one for mean
and one for variance.

• The decoder takes as input the target input xT and zk ∼ N (µz, σzI) and outputs a pre-
dicted value ŷk. The decoder is also parameterised as a neural network.

Like GPs, NPs model distribution over functions and can estimate conditional target distri-
bution. However, unlike GPs, where closed-from posterior analysis is carried out to compute the
predictive distribution, NPs draw Monte Carlo samples from the latent distribution to empirically
estimate the target distribution. The inference cost per target data point for this model is O(N)
where N is the size of the context set.

However, NP model does not take into account any temporal dependencies present in the
data and hence, is not applicable for spatiotemporal datasets. In this work, we build on top
of this model and propose Recurrent Neural Processes which can estimate conditional target
distribution for spatiotemporal datasets while inheriting all the favorable properties of the former.

10

Chapter 4

Method

4.1 Modeling Temporal Dependencies

We saw in section 3.2.1 that Neural Process is a promising framework for modeling static spatial
processes with favorable properties like linear inference time per target data point and the ability
to learn implicit kernel from the data directly, however, the model is incapable of capturing
temporal dependencies. We now describe our proposed approach for incorporating temporal
dependencies too in the framework.

Figure 4.1: For static spatial processes, a single state rep-
resentation vector r summarizes all the contextual infor-
mation.

In the Neural Processes model for static
spatial processes, the state representation r
summarizes all the contextual information in a
fixed size embedding as shown in fig. 4.1. The
latent distribution q

(
zT
′ | xC, yC

)
captures the

important information while filtering out the
noise.

An spatiotemporal process can be consid-
ered as a related sequence of static spatial pro-
cesses. At each time step, we have a unique
spatial process, however, these are not independent of each other but form a temporally corre-
lated sequence of spatial processes as shown in fig. 4.2. We propose to compute time-dependent
state representation rt which summarizes all the context information for time step t. Effectively,
this rt summarizes the spatial process at time step t.

To make predictions for time step T ′, we need to compute the corresponding latent dis-
tribution q

(
zT
′ | xC, yC

)
. Note that this latent distribution q

(
zT
′ | xC, yC

)
corresponds to the

spatial process at time step T ′ for which we do not have any context data pairs. To estimate
q
(
zT
′ | xC, yC

)
, we need to determine the state representation for time step T ′, i.e., rT ′ . We

propose to estimate the desired target state representation rT ′ from all the contextual state rep-
resentations r1, r2, . . . , rT using a forecaster module f , i.e., rT ′ = f

(
r1, r2, . . . , rT

)
. This fore-

caster module is an auto-regressive model that takes as input the contextual state representations
r1, r2, . . . , rT and predicts rT ′ . If T ′ is the immediate next time step, i.e., T ′ = T +1, the module
outputs rT+1 directly, otherwise, it first computes rT+1, then rT+2 which depends on the pre-

11

Figure 4.2: Spatiotemporal process can be considered a sequence of static spatial processes. Here, state representa-
tion rt summarizes the contextual information for time step t.

dicted rT+1 along with all the contextual state representations. This process is repeated until the
desired time step T ′ and finally this module estimates rT ′ .

4.2 Model
Figure 4.3 shows the overall functionality of our proposed model, Recurrent Neural Process.
First, the latent distribution q

(
zT
′ | xC, yC

)
corresponding to the target time step T ′ is computed

from the context set. This involves forecasting the state representation for target time step from
all the context time steps. After this, a decoder module makes predictions for the target input after
drawing samples from the latent distribution and finally we empirically estimate the predictive
mean and covariance.

We now describe our model that given context data (xC, yC) which spans from t = 1 to t = T
and a target set xT with t = T ′ > T , computes the conditional distribution P (yT | xT , xC, yC).
Our proposed model is shown in fig. 4.4 and consists of the following modules:
• Encoder: An encoder h transforms each context pair (xti, y

t
i) ∀ t ∈ {1, . . . , T} and

i ∈ {1, . . . , Nt} into a context representation rti = h (xti, y
t
i). We parameterise h as a

feedforward neural network. This encoder module is shared across all the time steps, how-
ever, one can have a different module for each time step too.

• Aggregator: After computing representation rti for each context pair, we combine all the

12

Figure 4.3: The figure shows the schematic of Recurrent Neural Process model. Left: The latent distribution
q
(
zT

′ | xC , yC
)

corresponding to the target time step T ′ is computed from the context set (xC , yC). Right: The

decoder makes predictions for the target input xT by drawing zT
′

k from the latent distribution. The predictive mean
and covariance are then empirically estimated from the multiple predictions.

context representations for the same t together into a state representation rt = a
(
{rti}

Ni
i=1

)
.

This rt essentially summarises the state of the environment at time t as can be determined
from the corresponding context data pairs. This module is a simple mean aggregation
function, i.e., rt = a

(
{rti}

Ni
i=1

)
= 1

Ni

∑Ni

i=1 r
t
i .

• Forecaster: Given state representations rt for t = 1, . . . , T , a forecaster module predicts
the state representation for the target time step T ′ as rT ′ = f

(
r1, r2, . . . , rT

)
. We parame-

terise f as a recurrent neural network.
• Latent distribution encoder: The state representation rT

′ computed by the forecaster
module is used to parameterise the latent distribution q

(
zT
′ | xC, yC

)
= N

(
µT
′
, σT

′
I
)
.

The mean and standard deviation of this factorized Normal distribution are computed as
learnable transformations of rT ′ . Specifically, µT ′ = lµ

(
rT
′) and σT ′ = lσ

(
rT
′) where

both lµ and lσ are parameterised as feedforward neural networks.
• Decoder: The decoder g takes an input the latent variable zT ′ ∼ q

(
zT
′ | xC, yC

)
and the

target data point x ∈ xT and outputs y = g
(
x, zT

′). The latent distribution and the
target data belongs to the same time step T ′. It is also represented as a feedforward neural
network.

4.3 Training

Our entire model comprises of some neural network modules and can be trained in an end-to-
end manner. The model parameters are optimized to maximize the likelihood of target data

13

Figure 4.4: The figure describes our model architecture. The encoder h forms a representation vector for each
context input-output pair. The aggregator a then combines representation vectors belonging to the same time step to
form a state representation for each time step. The forecaster module f computes the representation vector for the
next time step T ′. The latent distribution encoder l takes as input the forecasted state representation and outputs the
mean and variance vectors for a factorized normal latent distribution. Finally, the decoder g takes as input a random
vector sampled from the latent distribution and the target data point and predicts an output value for that data point.

conditioned on the context data set. We can write the conditional likelihood as:

P (yT | xT , xC, yC) =

∫
zT ′

P
(
yT | xT , xC, yC, zT

′
)
P
(
zT
′ | xT , xC, yC

)
dzT

′

= EzT ′∼P(zT ′ |xT ,xC ,yC)

[
P
(
yT | xT , xC, yC, zT

′
)]

Since P
(
zT
′ | xT , xC, yC

)
is an intractable probability distribution, we used variational infer-

ence [2] to optimize the model parameters. We introduce a proposal distribution q
(
zT
′ | xC, yC

)
which depends only on the target set. This proposal distribution is a simple normal distribution
with diagonal covariance matrix. The mean and variance of this distribution can be computed as
a differentiable non-linear function of the context data pairs by using a neural network.

Now, instead of drawing samples from P
(
zT
′ | xT , xC, yC

)
, we perform importance sampling

with q
(
zT
′ | xC, yC

)
as shown:

14

P (yT | xT , xC, yC) = EzT ′∼q(zT ′ |xC ,yC)

[
P
(
zT
′ | xT , xC, yC

)
q (zT ′ | xC, yC)

P
(
yT | xT , xC, yC, zT

′
)]

Using Jensen’s inequality, we can write:

logP (yT | xT , xC, yC) ≥ EzT ′∼q(zT ′ |xC ,yC)

[
logP

(
yT | xT , xC, yC, zT

′
)

+ log
P
(
zT
′ | xT , xC, yC

)
q (zT ′ | xC, yC)

]

Even though we avoided sampling from P
(
zT
′ | xT , xC, yC

)
by introducing a proposal dis-

tribution and performing importance sampling, the computation of second term in the above
equation is still infeasible. Since the conditional prior P

(
zT
′ | xT , xC, yC

)
is intractable, we

approximate it with a variational posterior q
(
zT
′ | xT , yT

)
as shown:

logP (yT | xT , xC, yC) ≥ EzT ′∼q(zT ′ |xC ,yC)

[
logP

(
yT | xT , xC, yC, zT

′
)

+ log
q
(
zT
′ | xT , yT

)
q (zT ′ | xC, yC)

]

Hence, the objective function J can be written as:

J = Eq(zT ′ |xC ,yC)

[
M∑
i=1

logP
(
yT
′

i | xT
′

i , z
T ′
)

+ log
q
(
zT
′ | xT , yT

)
q (zT ′ | xC, yC)

]

= Eq(zT ′ |xC ,yC)

[
M∑
i=1

logP
(
yT
′

i | xT
′

i , z
T ′
)]
−DKL

[
q
(
zT
′ | xC, yC

)
‖ q
(
zT
′ | xT , yT

)]
(4.1)

For computing the variational posterior q
(
zT
′ | xT , yT

)
, the encoder first computes the repre-

sentation for each data pair (xT
′

i , y
T ′
i) where 1 ≤ i ≤ N . The aggregator module then combines

these together into a state representation for time T ′. Finally, the latent distribution encoder
computes the mean and variance of the variational posterior distribution.

Note that the first term in eq. 4.1 is the expected likelihood of target data given context data
pairs and latent distribution sample zT ′ whereas the second term is the kl-divergence between the
forecasted latent distribution computed from the context set and the latent distribution obtained
from the target set. During training, the model tries to maximize the conditional likelihood while
minimizing the divergence between the two latent distributions.

15

Chapter 5

Experiments

5.1 Datasets

We use three spatiotemporal datasets to evaluate the performance of our model:
• Moving Ellipses: An ellipse in a bounding box of size 20× 20 moves in a window of size

32×32. The dimensions and brightness intensity of ellipse are randomly selected and kept
same throughout the motion sequence. The ellipse is given a random direction at the start
and it bounces off the walls on colliding. An example sequence of 10 time steps is shown
in figure 5.1.

Figure 5.1: The figure shows 10 consecutive time steps of one sequence from Moving Ellipses dataset.

• Moving MNIST: This dataset is similar to the last one except that instead of an ellipse,
we have handwritten images from the MNIST [20] dataset. Unlike the originally proposed
Moving MNIST dataset [30], here we have only one digit in a 32 × 32 image. We show
one sequence from the dataset in figure 5.2.

16

Figure 5.2: The figure shows 10 consecutive time steps of one sequence from Moving MNIST dataset.

• Temperature Dataset 1: This dataset contains monthly average temperature readings
across the whole world recorded since 1948. The data has an spatial coverage of 2.5◦

latitude ×2.5◦ longitude. For this work, we selected the area between 10◦S - 70◦N and 60◦

W - 140◦ W (North America region) forming a square grid of size 32× 32. We show one
sequence from this dataset in figure 5.3.

Figure 5.3: The figure shows 10 consecutive time steps of one sequence from Temperature dataset. The colorbar on
the right shows the temperature in degree Celsius. Here, one time step represents one month as each image shows
the average temperature for a month.

1https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.
surface.html

17

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html

The first two datasets are synthetic and consists of an object moving around in an area. The
Moving Ellipses dataset has a simple regular shape (ellipses) whereas the Moving MNIST one
consists of complex shapes (handwritten digits). In order to make accurate predictions, the model
needs to learn both the spatial and temporal dependencies from the observed data.

For the Moving Ellipses and Moving MNIST datasets, we generated 20000 sequences of
20 time steps each. We used 15000 sequences for training and the rest for evaluation. For the
temperature dataset, we used the first three quarters of the data for training and the rest for
evaluation purposes. We also normalized this dataset in the range of 0 to 1.

5.2 Implementation Details

We now describe the architecture of our model. The encoder h is a 3 layer fully connected (FC)
neural network with 256 neurons in each layer. The forecaster module f is a single LSTM [13]
cell with 256 neurons. The latent distribution encoder networks, lµ and lσ, are single FC layers
with 256 neurons. The decoder g is a 2 layer FC network with 256 neurons in each layer. All the
networks use leaky ReLU non-linear activation function with a negative slope of 0.01. All the
model parameters follow Xavier [11] normal initialization. We used Adam [16] optimizer with
a learning rate of 0.001. Our entire model is built in PyTorch [24]. We train the model for 200
epochs and after 100 epochs, we reduce the learning rate to 0.0001.

The model is trained for T = 10 time steps to maximize the objective function in eq. 4.1 with
a batch of 64 sequences. For each sequence, we select N cells from the grid for each 1 ≤ t ≤ T
as the context set and the entire 32× 32 grid, i.e., 1024 data points at time T + 1 as the target set,
i.e., T ′ = T + 1. For each data pair, the input is the 2D coordinates of the pixel/location and the
output is the intensity value at that location.

We illustrate the context set and the target set for an example sequence from Moving MNIST
dataset in figure 5.4. The non-blue pixels’ coordinates with their corresponding intensity values
in the first 10 frames form the context set whereas the entire grid at 11th time step is the target
set. Note that the context set locations are selected randomly from the entire grid. The blue cells
mean that the model is oblivious regarding the true value at those locations for that time step.
We kept Nt = N ∀ t just to facilitate batch-wise parallel matrix operations on GPU, however,
the model can also be trained with different number of samples at each time step. The mean and
standard deviation plots are computed from 20 outputs obtained from sampling different latent
variable zT ′k ∼ q

(
zT
′ | xC, yC

)
and then feeding to the decoder.

5.3 Baselines

We compare our proposed model, Recurrent Neural Processes (RNP), against the following base-
line methods:
• RBF Kernel GP (GP): This is a simple GP model with radial basis function (RBF) ker-

nel. We use Automatic Relevance Determination (ARD) for the kernel, i.e., each data

18

Figure 5.4: In the first 10 images, the coordinates of non-blue pixels and their corresponding intensity values form
the context set. This set consists of N = 128 input-output pairs for 1 ≤ t ≤ 10. The target set consists of the entire
grid at t = 11. The model’s predicted mean and variance plots are generated from 20 outputs, each obtained as a
result of sampling different random vector z from the latent distribution.

19

dimension has a separate lengthscale as shown:

kRBF (τ) = exp

(
−

D∑
d=1

(τd
l(d)

)2)
where τd is the dth component of D dimensional vector τ = x − x′ and the lengthscale
l =

(
l(1), . . . , l(D)

)
is a vector of size as input x ∈ RD.

• Spectral Mixture Kernel GP (SMGP): This kernel was proposed in [33] to be suitable for
spatiotemporal data as it can discover patterns and achieve extrapolation behavior. The
functional form of the kernel can be written as:

kSM(τ) =

Q∑
q=1

wq

D∏
d=1

exp
(
−2π2τ 2d v

(d)
q

)
cos
(
2πτdµ

(d)
q

)
Essentially, the kernel is defined as a mixture of Q Gaussians on RD. Each component
has a mean µq =

(
µ
(1)
q , . . . , µ

(D)
q

)
and diagonal covariance vq =

(
v
(1)
q , . . . , v

(D)
q

)
. The

weightswq specify the relative contribution of each mixture component. We set the number
of mixture components Q to be 4.

• Deep RBF Kernel GP (DKGP): An input data point x ∈ RD is transformed into a rep-
resentation space RP by using a non-linear function g : RD → RP . This function is
parameterised as a 2 layer FC neural network with 16 neurons in each layer. As before,
we use leaky ReLU activation function with a negative slope of 0.01. The 16 dimensional
representation vectors are then fed into a standard RBF kernel with ARD.

kDRBF (x, x′) = kRBF (g(x), g(x′)) = exp

(
−

P∑
p=1

(γp
l(p)

)2)
where, γ = g(x)− g(x′) and γ ∈ RP .

• Deep GP (DGP): This model was proposed by [5] to incorporate the rich representation
power of neural networks in Gaussian Processes. We used a single hidden layer with the
number of latent dimensions as 12. Here also, we used RBF kernel with ARD.

Since, the data is not a sequence of inputs but rather samples from a 3D spatio-temporal pro-
cess, recurrent GP models [1, 22], that take an input sequence, are not applicable for comparison.
The design specifications of all the GP models are determined by the memory requirements of
storing all the data and parameters on a GPU. We used publicly available implementation of
Deep GPs2 and the other GP models are build using the open-source GPyTorch3 [9] library. For
all the GP methods, the input is a set of 3D (2D grid coordinates and time t) vectors.

Our model RNP has been trained on the entire training set and then evaluated on a held-out
test set. On the other hand, the parameters of GP models have been optimized to maximize the
likelihood of the context set of points from a given data sequence. The learned model is then
evaluated on the target set of points from that sequence only. This means that the GP models
learn a different set of parameters for each example sequence.

2https://github.com/SheffieldML/PyDeepGP
3https://github.com/cornellius-gp/gpytorch

20

https://github.com/SheffieldML/PyDeepGP
https://github.com/cornellius-gp/gpytorch

5.4 Results

5.4.1 Comparison with Baselines

To compare all the models, we compute the mean absolute error (MAE) between model’s pre-
diction and the ground truth on 20 sequences. The corresponding results are shown in Table
5.1.

Table 5.1: Mean Absolute Error between ground truth and predictions obtained by different models evaluated on a
batch of 20 sequences. The number reported is the average MAE obtained across the batch whereas the associated
standard deviation is mentioned in the parentheses.

DATASET N GP SMGP DKGP DGP RNP

ELLIPSES 64 0.22 0.15 0.16 0.17 0.04
ELLIPSES 128 0.21 0.18 0.15 0.18 0.03
ELLIPSES 256 0.86 0.18 0.63 0.13 0.03
ELLIPSES 512 1.51 0.17 1.20 0.29 0.02

MOVING MNIST 64 0.18 0.15 0.21 0.16 0.10
MOVING MNIST 128 0.26 0.15 0.24 0.16 0.08
MOVING MNIST 256 0.23 0.18 0.19 0.24 0.07
MOVING MNIST 512 0.29 0.16 0.19 0.34 0.06

TEMPERATURE 64 0.79 0.31 1.06 0.10 0.025
TEMPERATURE 128 0.95 0.80 0.92 0.16 0.024
TEMPERATURE 256 1.37 1.06 1.16 0.20 0.024
TEMPERATURE 512 2.00 1.57 1.42 0.20 0.024

All the GP models showed poor results in general and their predictive performance varied a
lot across different sequences as evident from the high standard deviation in their error metric.
This stems from the limited functional form of the covariance function which is incapable of
modelling the complex spatial and temporal dependencies together. With deep kernels, some im-
provement in MAE is seen, however even that is comparatively quite high than the ones obtained
by our model.

Our model, RNP, achieved the lowest MAE across all the three datasets and for all the values
of N . Our model learns implicit kernel or covariance function from the training data itself and
hence are able to capture the complex spatial and temporal dependencies.

As stated before, the aim of this work is to build model that, in addition to a mean estimate,
can also provide meaningful uncertainty estimates. We show some graphic results of predictions
made by RNP on sequences from Moving Ellipses dataset in figures 5.5 and 5.6. Similarly,
a couple of plots of predictions made by the two models on sequences from Moving MNIST
dataset are shown in figures 5.7 and 5.8. The mean and standard deviation plots for RNP are
computed from 20 outputs, each obtained by sampling different latent variable.

21

(a) N = 64

(b) N = 128

(c) N = 256

(d) N = 512

Figure 5.5: Mean and standard deviation of predictions made by RNP model for different values ofN on a sequence
from Moving Ellipse dataset.

22

(a) N = 64

(b) N = 128

(c) N = 256

(d) N = 512

Figure 5.6: Mean and standard deviation of predictions made by RNP model for different values ofN on a sequence
from Moving Ellipse dataset.

23

(a) N = 64

(b) N = 128

(c) N = 256

(d) N = 512

Figure 5.7: Mean and standard deviation of predictions made by RNP model for different values ofN on a sequence
from Moving MNIST dataset.

24

(a) N = 64

(b) N = 128

(c) N = 256

(d) N = 512

Figure 5.8: Mean and standard deviation of predictions made by RNP model for different values ofN on a sequence
from Moving MNIST dataset.

25

As can be seen from the plots, the mean value of RNP predictions closely resembles the
ground truth. Furthermore, RNP model gives coherent structured uncertainty estimates which
improves (decreases) with the increase in the number of context data points (N). The model’s
uncertainty is concentrated in regions with sharp change in brightness, i.e., near the edges. In
regions far from the object (digit/ellipse), the model is confident of its predictions and does not
show any uncertainty. Also, the model is also confident of its predictions in the center areas of
the object.

5.4.2 Uncertainty prediction analysis

We observed in the last section, that with increase in context set size, the model’s uncertainty
estimate gets better qualitatively. We now do a quantitative analysis of the same. For Moving
MNIST dataset, we computed the number of pixels with model’s uncertainty (standard deviation
of prediction) more than some threshold like 0.1, 0.2 and 0.3. The experimental setup remains
the same as before. For each of 10 context time steps, we randomly sample N locations from the
grid and form the context set. The model then predicts mean and uncertainty for all the locations
at t = 11. Note that we have a total of 1024 locations/pixels. The corresponding result is shown
in fig. 5.9.

Figure 5.9: With increase in N , the number of grid locations with uncertainty greater than any threshold decreases.

With increase in the context set size, the number of target inputs for which the model’s
uncertainty is greater than a threshold decreases. This indicates that the model becomes more
and more confident in its predictions and its uncertainty gets concentrated in regions near the
object as we saw previously.

26

5.4.3 Model’s performance against context set size
In the last section, we observed that the model’s prediction (both mean and uncertainty) improves
with increase in number of context set data points per time step, so a natural question to ask is
how much can the performance improve with increase in N ?

We evaluate the mean absolute error of the model’s prediction as a function of N . The
corresponding plot for the Moving Ellipses dataset can be found in figure 5.10. Similarly, the
plots for the Moving MNIST and the Temperature datasets are shown in figures 5.11 and 5.12
respectively. All of these plots are obtained from 20 test example sequences evaluated

On a grid with 1024 cells, the model’s performance seems to saturate after sampling about
half of all the cells for Moving Ellipses and Moving MNIST datasets. In contrast, for the Temper-
ature dataset, the peak performance is achieved bit earlier, only with 400 samples per time step.
This is due to the simplicity of this dataset compared to the two synthetic ones as the average
monthly temperature distribution will not show as many variations as differently shaped objects
moving in an area, thus making it easier for the deep network to capture all the dependencies.

Figure 5.10: The plot of MAE of model’s prediction against N averaged over 20 test sequences from Moving
Ellipses dataset.

27

Figure 5.11: The plot of MAE of model’s prediction against N averaged over 20 test sequences from Moving
MNIST dataset.

Figure 5.12: The plot of MAE of model’s prediction against N averaged over 20 test sequences from Temperature
dataset.

28

Chapter 6

Conclusion and Future Work

We proposed a deep latent variable model, Recurrent Neural Processes, suitable for modeling
spatiotemporal data where we only have access to individual samples from some time steps in-
stead of complete images or feature maps for each time step. Our proposed model outperformed
GP-based models and dropout-based deep network models by achieving low absolute errors in
predictions on all three datasets. Additionally, our model produced meaningful structured uncer-
tainty estimates.

Recently, Kim et al. [15] proposed Attentive Neural Processes where the state representation
is computed by using self-attention [32], instead of simple averaging, among the context rep-
resentations. Furthermore, the decoder module used cross-attention between target and context
set to allow each target data point to attend to relevant context points for making predictions.
However, since in our case, context set and target set belong to different time steps, simple cross-
attention mechanism can not be used. Our attempts to use only self-attention for computing state
representations did not yield any benefits. Applying cross-attention over time (spatiotemporal
cross-attention) where context points from different time steps can attend to the target set is an
interesting future direction in our work.

We also tested our model on the original Moving MNIST dataset [30] where there are 2 digits
in a 64 × 64 frame. Due to the presence of large empty spaces and the use of mean aggregation
function for computing state representations, which acts as a representational bottleneck, the
model produced blurred outputs. Although, the locations of two digits were correctly identified
as blobs, the fine features were missing. Extending the model to large spatial state space is
another interesting research direction.

We also intend to utilize the uncertainty estimates in downstream tasks such as adaptive
sampling of a spatiotemporal phenomena where an autonomous agent will select the places to
gather data from in order to actively learn the underlying process.

29

Bibliography

[1] Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, and Eric P Xing.
Learning scalable deep kernels with recurrent structure. arXiv preprint arXiv:1610.08936,
2016. 5.3

[2] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017. 4.3

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural networks. arXiv preprint arXiv:1505.05424, 2015. 3.2

[4] Christopher JC Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2):121–167, 1998. 3.1

[5] Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence
and Statistics, pages 207–215, 2013. 3.1, 5.3

[6] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh Chou,
Tsung-Han Lin, and Jeff Schneider. Motion prediction of traffic actors for autonomous
driving using deep convolutional networks. arXiv preprint arXiv:1808.05819, 2018. 1

[7] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical
interaction through video prediction. In Advances in neural information processing systems,
pages 64–72, 2016. 1

[8] Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent neural networks.
arXiv preprint arXiv:1704.02798, 2017. 3.2

[9] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In
Advances in Neural Information Processing Systems, pages 7576–7586, 2018. 5.3

[10] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,
SM Eslami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.
3.2.1

[11] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010. 5.2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

30

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 5.2

[14] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep
learning on spatio-temporal graphs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5308–5317, 2016. 1

[15] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosen-
baum, Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint
arXiv:1901.05761, 2019. 6

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 5.2

[17] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 3.2.1

[18] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in gaus-
sian processes: Theory, efficient algorithms and empirical studies. Journal of Machine
Learning Research, 9(Feb):235–284, 2008. 1

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012. 1

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 5.1

[21] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for
video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016. 1

[22] César Lincoln C Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guil-
herme A Barreto, and Neil D Lawrence. Recurrent gaussian processes. arXiv preprint
arXiv:1511.06644, 2015. 5.3

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.
1

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017. 5.2

[25] Geoff Pleiss, Jacob R Gardner, Kilian Q Weinberger, and Andrew Gordon Wil-
son. Constant-time predictive distributions for gaussian processes. arXiv preprint
arXiv:1803.06058, 2018. 3.1

[26] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse ap-
proximate gaussian process regression. Journal of Machine Learning Research, 6(Dec):
1939–1959, 2005. 3.1

[27] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on
Machine Learning, pages 63–71. Springer, 2003. (document), 1, 3.1

31

[28] Xingjian SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, and Wai-kin Wong. W.-c. woo.
convolutional lstm network: A machine learning approach for precipitation nowcasting.
Advances in Neural Information Processing Systems, 28:802–810, 2015. 1

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016. 1

[30] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of
video representations using lstms. In International conference on machine learning, pages
843–852, 2015. 5.1, 6

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Computer Vision and Pattern Recognition (CVPR), 2015. URL
http://arxiv.org/abs/1409.4842. 1

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017. 6

[33] Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery and
extrapolation. In International Conference on Machine Learning, pages 1067–1075, 2013.
5.3

[34] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian
processes (kiss-gp). In International Conference on Machine Learning, pages 1775–1784,
2015. 3.1

[35] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pages 370–378, 2016. 3.1

32

http://arxiv.org/abs/1409.4842

	1 Introduction
	2 Problem Formulation
	3 Related Works
	3.1 Gaussian Process
	3.2 Deep Neural Networks
	3.2.1 Neural Processes

	4 Method
	4.1 Modeling Temporal Dependencies
	4.2 Model
	4.3 Training

	5 Experiments
	5.1 Datasets
	5.2 Implementation Details
	5.3 Baselines
	5.4 Results
	5.4.1 Comparison with Baselines
	5.4.2 Uncertainty prediction analysis
	5.4.3 Model's performance against context set size

	6 Conclusion and Future Work
	Bibliography

