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Abstract

Hundreds of billions of small screws are assembled in consumer electronics in-

dustry every year, yet reliable screwdriving automation remains one of the most

challenging tasks. Barriers that prevent further adoption of robotic threaded fasten-

ing systems are system cost and technical challenges, especially those pertinent to

small screws. Smaller screws require tighter tolerance and higher alignment accu-

racy, which increases the system cost and failure rate. A solution is to close the loop.

An affordable intelligent screwdriving system that can support online stage classi-

fication and failure prediction is the first step to automating the assembly of small

screws. However, existing failure prediction techniques are simple and they perform

poorly. In addition, most solutions are essentially data-driven, thereby requiring

lots of training data and laborious labeling. Moreover, they are not robust against

varying environment conditions and suffer from generalization issues. To this end,

we propose a stage and result prediction framework that combines knowledge-based

process models with a hidden Markov model. The novelty of this work is the incor-

poration of operation-invariant characteristics such as screwdriving mechanics and

a stage transition graph, enabling our system to generalize across a range of exper-

imental settings and largely reduce the requirements on data and labeling. In our

experiments, a system trained on M1.4x4 screws adapts with very little non-labeled

data to three other screw sizes (M1.2x3, M2.5x5, and M1.4x4) with varying tighten-

ing current, motor velocity, insertion force, and tightening force.

We also discuss the role of sensor reduction and compliance in screwdriving

automation. To that end, we present our preliminary work on sensor reduction. We

use statistical methods to select proper sensors and produce affordable intelligent

screwdrivers that can be deployed in industry. Our preliminary experiments also

show that compliance allows screws to be inserted with larger misalignment errors.
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Chapter 1

Introduction

Threaded fastening is one of the most commonly used methods in industrial assembly [3]. Over

a quarter of typical assembly operations can be classified as bolt or nut insertions [4] [5] [6].

Even then, screwdriving remains a difficult task to automate despite substantial research in this

field. Our incomplete understanding of the underlying process, particularly the initial mating

step [7] is one of the reasons. Our survey paper [3] summaries various open problems and

barriers that need to be conquered for automated screwdriving systems. First, fast and reliable

ways to feed screws with smaller length-to-diameter aspect ratios need to be developed. Second,

strategies for fast and reliable initial thread mating and early fault detection need to be developed.

Third, interactions of multiple objects (screw, driver bit, vacuum adapter, and target) need to be

investigated. Fourth, online failure prediction and fault recovery algorithms need to be developed

to improve the overall success rate.

Automated screwdriving becomes even more challenging when it comes to the consumer

electronics industry (for example laptops, tablets, and smartphones), where hundreds of billions

of small screws (≤ #4 or ≤ M3) are assembled every year [8]. In fact, it is one of the most

challenging operations that prevent manufacturing enterprises from further adopting automated

robotic systems [8]. Errors in screwdriving can cause serious consequences. For example, a

loose screw can damage the battery inside a laptop, causing overheating and posing a fire hazard

[9].

Small screws introduce additional challenges and design requirements [10] [3]:

• Tighter tolerances for screw feeding and acquisition;

1



• Higher positioning accuracy and improved locating strategies (e.g., visual servoing) to

correct position and angular misalignments;

• Fully functional (supporting online fault prediction and recovery), accurate yet affordable

screwdrivers.

Automated screw fastening involves multiple steps, often including screw feeding and acqui-

sition, alignment, screwdriving, and post-fastening steps [3]. Comprehensive reviews of threaded

fastening, including theoretical fundamentals, tools, control strategies, failure detection and in-

dustrial applications, can be found in [11], [12], and [3]. Among various steps, most works focus

on the screwdriving process, where a properly acquired screw is driven into the target hole. One

way to understand the screwdriving process is by plotting applied torque against the total rotation

angle. This torque-angle curve [3] is often used for ISO rotary tool evaluation standards [13],

control strategies, and failure detection [2].

Unlike most existing work which focus on big screws, our work focuses on the miniature

screwdriving process. As a summary of the above mentioned challenges, smaller screws require

tighter tolerance and higher alignment accuracy [7].

The screwdriving process can be further divided into three major sub-steps: initial thread

mating, rundown, and tightening with some variations or extra steps for self-tapping screws [3].

Moreover, compared to the well-studied peg-in-hole problem, screwdriving has more process

stages and failure modes with complex mechanics involving multiple discrete contact events [14].

A system capable of online process monitoring, failure prediction and recovery is necessary

for highly automated solutions [15]. However, existing work is still preliminary. Most of the

previous work can only perform result classification given known failure modes, which alone

cannot detect irreversible process failures [2] or unknown failures. Moreover, previous methods

are not guaranteed to work when experimental conditions (for example screw sizes) change.

Due to difficulties in screwdriving process modeling, most failure detection systems are es-

sentially data-driven. Learning from data directly yields good results. However, this approach

often needs lots of training data and laborious expert labeling [2]. Acquiring large amounts of

data is easy in industry. However, collecting a large dataset that covers various failure modes is

extremely time-consuming and requires extra engineering effort, mainly due to the “long tail”
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Figure 1.1: Our online stage estimation and result prediction pipeline.

effect [16]. Most failure rates are less than 1%− 2%. So how can we minimize human effort

needed for data labeling and avoid recollecting data when experiment setup changes?

To address these robustness and data-efficiency issues, we propose a system (Fig. 1.1) that

combines process knowledge with a learning method for stage and result classifications in an

unsupervised and data-adaptive manner. With sensor feedback, we construct knowledge-based

process models and feed them into a hidden Markov model (HMM), to estimate stages and re-

sults during the screwdriving process. We also show that the HMM can automatically adapt and

improve as it is fed more examples. This framework is built on the following facts: the mechanics

(Chapter 5.1) that dominate individual stages and the structure of stage transition graph (Fig. 5.1)

do not change over experiment conditions. Process models (Chapter 5.1) encapsulate local in-

variant characteristics (for example the mechanics for each stage) in their constraint equations,

while an HMM incorporates a globally invariant stage transition graph in its transition model.

For environment-dependence, process models treat them as identifiable model parameters, where

as an HMM adapts to these variations by updating its observation models during training.

Our system shows robustness and data-efficiency in the following ways. First, it performs

online stage classification and result prediction. Second, with simple and limited prior knowl-

edge, our system can automatically label a large amount of data, freeing people from tedious

labeling. As new data accumulates, the system adapts to minor changes without human inter-

vention. Third, our system can generalize and adapt to new experiment setups with little new

data. Fourth, our system can detect anomalies and unseen situations. To summarize, our main

contributions are:

• The first attempt of unsupervised learning and automatic labeling in screwdriving, to our

best knowledge.
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• A fast generalization framework for industrial problems.

• Significant reduction in data collection and labeling by taking full advantage of screwdriv-

ing mechanics.

Beside having accurate stage classification and failure prediction, a robotic screwdriving sys-

tem should also be affordable for industrial use. To reduce the system cost, we perform some

preliminary study on sensor reduction. The goal is to select the minimal set of sensors and pro-

duce a low-cost screwdriving system. The discussion and preliminary experiments are presented

in Chapter. 6.1.

We also discussed the role of compliance in screwdriving in Chapter. 6.2. In our preliminary

experiments, we show that certain degree of compliance enables screwdriving to be successfully

performed with larger misalignment.

The rest of this thesis is organized as follows: Chapter. 2 reviews existing work related to

screwdriving automation. Chapter. 3 describes our robotic screwdriving system and the dataset

we collected using this system. Chapter. 5 presents our stage classification and failure detection

system, as well as evaluation results on a subset of the dataset. Chapter. 6 discusses some of our

preliminary work: sensor reduction and compliant control for robotic screwdriving. Chapter. 7

concludes this thesis and brings up future work.

4



Chapter 2

Related Work

In the following, we briefly describe some work that are directly related to this thesis. A exhaus-

tive review of automated threaded fastening can be found in [3].

Analysis of the Screwdriving Process

A thorough understanding of screwdriving process is critical for reliable and accurate fault de-

tection. Typically, the process can be segmented into several stages through the torque-angle

curve [12]. A typical torque-angle curve is plotted in Figure 2.1. Recently, [2] presents a com-

prehensive stage transition graph, covering multiple process stages and result classes, as shown

in Figure 2.2 A standard operation often consists of approach, initial thread mating, rundown

and tightening, while other stages like hole finding or no screw spinning occur with alignment

error or pick-up failure. Each stage has different sensor signal signatures and process models. In

initial mating, contact models are studied by [17], [14] and [18]. A force spike can be used as an

indicator [18] [2]. In rundown, quasi-static analysis shows that the oscillation phenomenon is an

important signature [19]. In tightening, torque, rotation angle and torque-angle gradient [20] are

commonly used for failure detection. In Chapter 5.1, we combine these features with our own

analysis to develop screwdriving process models.

Fault Detection and Quality Monitoring

Reliable fault detection and error recovery are required by autonomous screwdriving, because

even well-engineering systems can be tripped up by factors like part tolerance issues, bad ma-

terials, and tool wearing. One of the most commonly used methods is the teaching method,
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Fig. 4. Examples of screw feeders [22], [23].

Fig. 5. Screw pickup. (a) Magnetic bits. (b) Vacuum adapter. (c) Vacuum
gripper designed for recessed locations [27].

greater than a certain threshold (generally, 1.3) [22]. Vibratory
feeders also have issues of heat generation and electromag-
netic interference [25]. Alternate excitation methods, such as
piezos [25], are also available and work better for ferrous
screws [26].

B. Pickup Strategies

A better feeding method is blow feeding (Fig. 4), in which
screws are blown through a tube after orienting (often by a
bowl feeder) and sent directly to the screwdriver tip. This
method eliminates the time-consuming screw pickup step
and thus improves throughput. Like vibratory feeding, blow
feeding has a minimum required aspect ratio, since screws with
small aspect ratios tumble in the tube. In addition, the blast
of air may carry contaminants to the work area. Specially
designed blow-feeding equipment is required for clean room
applications, such as hard drive assembly [28].

When blow feeding is not used, the screw must be grasped
using an alternate strategy, such as magnetic attraction, vac-
uum suction, or mechanical grasping [22]. These strategies
must be able to grasp a screw, maintain the grasp during
transit, and release the screw after the operation is complete.
Each method is appropriate in different circumstances.

Magnetizing the tip of the driver bit provides a simple way
to pick up screws, but it has several disadvantages. Magnetized
bits require ferrous screws. Also, as shown in Fig. 5(a),

Fig. 6. Torque versus angle curve during the screwdriving process [15], [16].

magnetized bits can have orientation and singulation problems,
which must be avoided in the automated operation.

Vacuum grippers provide good orientation control and work
across a variety of materials, and thus are usually preferred
for automated screwdriving [26]. This method requires acces-
sories, such as a vacuum pump, valve, tube, and vacuum
adapter. As shown in Fig. 5(b), the spring in the adapter
allows the mouthpiece and screw to travel axially, allowing
the screw to engage its mating threads and the bit to engage
the screw head. One problem with vacuum pickup is that the
bulky size [22] and large footprint of the vacuum adapter make
operating in cluttered spaces difficult. Alternate designs of
the vacuum gripper can mitigate the clutter problem in some
scenarios, such as the design shown in Fig. 5(c) [27].

C. Alignment

After acquisition, the screw must be aligned with the parts
that it will join. Both the alignment between the fixtured part
and the assembled part (part–part alignment) and between
the fixtured part and the screw (part–screw alignment to
avoid failures [29]) are necessary for successful screwdriving.
Fixtures, compliance devices, such as remote center of com-
pliance (RCC) [6], [30], and visual servoing techniques [31]
can assist in alignment, as validated by several stud-
ies [30], [32]–[34]. Vision also helps in localizing fasteners
and target holes in unstructured environment [35]. During
alignment and the subsequent screwdriving operation, grasping
devices are often used for workholding [33], [34].

IV. SCREWDRIVING PROCESS

Once the screw has been picked up and properly aligned,
screwdriving can begin. The driving operation can be divided
into several stages. One way to visualize the process is
by plotting applied torque against the total rotation angle
to produce the torque-angle curve; a typical curve appears

Figure 2.1: Torque-angle curve during the screwdriving process [1]

6 Data-driven Classification of Screwdriving Operations
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Fig. 3. State transition graph summarizing the stages and results of all data. Colors
and sizes are scaled logarithmically with the number of runs in each transition, stage,
or result.

appropriate method to use when the mode of failure is irrelevant. However, this
method works poorly when distinguishing among failure cases, especially those
that are not crossthread. The scatter plot indicates that this problem is not the
fault of the classifier choice; while success, crossthread, and to a lesser extent
noscrew are all linearly separable, the rest of the failure cases are all closely
grouped together in this feature space. In fact, the classifier has a 0% success
rate when classifying the more obscure result categories. In order to distinguish
between these failure cases, we must use more sophisticated features.

4.2 Multivariate Temporal Models for Failure Detection

We have also tested the utility of a more sophisticated machine learning approach
to identify and predict failures. For this, we relied on eight time series (3-axis
measurements of each of the force and torque, as well as 1D measurements of
motor current and motor speed), each sampled at 100Hz. We first preprocessed
the data using the Honey [13] tool. For each time series, we derived time series
of simple statistics including simple moving average (sma), moving standard
deviation (sd) and moving range of values (range) using time windows of aggre-
gation 0.1, 0.2, and 0.3 second wide. We also extracted “peak events” from each
of the raw series, as well as their corresponding moving averages, moving stan-
dard deviations, and moving ranges. A peak is defined as an instantaneous event
occurring when the first order time derivative of a signal (estimated with trian-

Figure 2.2: A stage transition graph summarizing possible stages and results in the screwdriving
dataset from [2]
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in which faults typically show up as major deviations from the correct torque-angle fastening

signature curve. Correct torque-angle fastening signatures are collected as reference, and then

compared with actual signals using limit check or trend check [21]. The teach method is easy to

implement, but it lacks flexibility and generality.

To overcome the inflexibility and generality issues of the teaching method, intelligent screw-

driving systems are developed, most of which fall into two categories: model-based and data-

driven. Model-based methods [22] require analytic models and accurate system parameters.

Model-based approaches are flexible, but accurate system models are hard to obtain. Data-driven

methods, such as Artificial Neural Networks [23], Support Vector Machines [19], Graph of Tem-

poral Constraint Decision Forests [2], Decision Trees [15], and Convolutional Neural Networks

[24], directly learn from labeled data. Data-driven methods do not require prior knowledge, but

they require a large amount of data.

Most methods mentioned above can achieve around 90% or better accuracy in detecting

failure modes. However, many things need to be improved before deploying to assembly lines.

Moreover, most of these are developed for hand-held screwdrivers, with no robot information

incorporated. However, as shown in Chapter. 5.1, robot signals are strong indicators of system

status.

Fault detection alone cannot satisfy the stringent requirements for high-volume production

[3] in the consumer electronics industry. To improve the overall success rate, fault prediction and

recovery algorithms that can detect preceding failures early and take proper corrective actions

upon predicted failure types are desired for future assembly lines [3] [2]; unfortunately, they are

still missing in the literature. Our stage classification algorithm developed in Chapter. 5 is the

first step to bridging the gap.

Discrete State Estimation in Manipulation

A typical robot task often includes a series of discrete states [25] which can be formulated by

Markov models or hybrid systems. Our approach is a combination of these two methods. Hybrid

models are incorporated to augment an HMM, while the HMM keeps learning and modifying

the hybrid model parameters.
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Markov model approaches are probabilistic. HMMs are used to perform automatic action

segmentation in [26] and [27]. In [28], which is very related to our work, contact states are

predicted by combining contact model estimation with HMM. Contact states are modeled with

unspecified parameters estimated from observations, while HMM acts as an acceptance test to

predict the most likely state. Its major difference to our work is that we use HMMs to refine

and adapt. The hybrid system approaches are more deterministic, which incorporates simplified

mechanical models to approximate complex robot behaviors, to reason about mechanisms and

to perform feedback control [29] [30]. A discrete state is identified when the state variables fall

into the corresponding domain [31].

Sensor Selection for Screwdriving Systems

In previous screwdriving work, sensor selection and control strategies are mainly empirical. For

example, many commercial off-the-shelf (COTS) screwdrivers [32] are equipped with sensors

to measure or estimate the fastening torque and rotational angle, because these two parameters

can provide valuable information for screwdriving, especially for fault detection. Many control

strategies also involve monitoring the torque and/or angle information. These strategies can be

divided into three broad categories: torque-only control, torque-angle monitoring and control,

and torque-rate control [12] [3].

However, one problem associated with COTS systems is that their sensor signals (torque

and angle) may not be rich enough for controls and fault detection in robotic screwdriving. For

example, robust detection of initial mating is critical for torque-angle control because it triggers

the clamping angle count — an important parameter for quality control. Many high end COTS

screwdrivers (for example [32]) compare the driving torque against a user-specified threshold to

detect the initial engagement. However, the driving torque (Tz) is not a robust feature because it

is almost constant during initial mating. In comparison, the insertion force (Fz) might be a much

better candidate. Another limitation is that fault detection algorithms based on torque-angle

signals alone cannot detect uncommon failure modes as shown in [2] [16].

There are some robotic screwdriving systems that can provide richer sensor readings. In [33],

the insertion force (Fz) can be calculated by measuring the spring displacement. In [19] and [2],
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6-axis force/torque (F/T) sensors are used to provide much richer information, at the expense of

significant increase in system cost. In fact, besides reliability issues, cost (especially the sensor

cost) is another factor that prevents further adoption of robotic screwdriving. For example, a

high-end screwdriver [32] can cost more than $10,000 while a typical 6-axis F/T sensor [34] cost

around $7,000 or even more. In this paper, starting from a screwdriving dataset, we follow a

systematic feature reduction approach to identify the optimal subset of sensord that are needed

for both online stage and result classifications (the building blocks for a fault prediction and

recovery system), while minimizing the system cost.
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Chapter 3

Robotic Screwdriving System

3.1 Robotic Screwdriving System

Our robotic screwdriving system is shown in Fig. 3.1. This robotic system is built on a 6 degree-

of-freedom industrial robot arm, FOXBOT A600. A screwdriver is installed as the end-effector

of the robot arm, as shown in Fig. 3.1 A high speed camera is attached to the screwdriver to

record videos during screwdriving operations. In the robot workspace, a shaker tray to hold

screws and a replaceable plate with threaded screw holes are installed on a table.

The screwdriver is shown in Fig. 3.1, which has a direct drive Maxon EC 45 motor and an

ATI mini-40 force-torque(F/T) sensor. The motor drives a screwdriver bit. The screwdriver bit

passes through the centered hole on the F/T sensor. The F/T sensor is attached to the screwdriver

bit with an independent structure so that it can sense force and torque exerted on the bit. By

using this ”floating structure“ design, forces and torques exerted on the screwdriver tip can be

measured by a 6-axis F/T sensor. The screwdriver is attached to the robot flange with linear

compliance through springs. A linear potentiometer is used to measure the deformation of the

linear springs. Combining robot position information and linear potentiometer readings, we can

infer the actual position of the screwdriver bit.

3.2 Robotic Screwdriving Operation Procedure

In each screwdriving operation, a screw from the shaker tray is first picked up by the screwdriver

using vacuum suction. Then the robot moves above the calibrated screw holes on a plate. The
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Figure 3.1: Intelligent robotic screwdriving system for data collection.

Figure 3.2: An example of collected raw sensor data. The yellow colored signals are from the z
axis; the blue colored signals are from the x axis; the red colored signals are from the y axis.
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screwdriver motor turns on and starts collecting data as the screw insertion starts. During the

insertion, the robot speed is coordinated with screwdriver motor speed so that the insertion force

(the force that the screwdriver exerts vertically on the screw) is roughly maintained to be con-

stant. Each run terminates when the motor current reaches a specified limit or the motor encoder

reading exceeds a large threshold.

The system records robot positions, 6-axis F/T data, motor current, motor encoder readings,

linear potentiometer values that measure the spring displacement (to trace the screwdriver tip),

and videos (as the ground truth) from a high-speed camera. A typical successful run is shown

Fig. 3.2.
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Chapter 4

Screwdriving Dataset

4.1 Overall Description

Using the procedure decribed in Section 3.2, we collected a large dataset of experiment data of

different sizes of small screws under different experiment setups.

For each screwdriving operation, we collect sensor data including: 6-axis forces and torques,

motor currents, motor speeds, motor encoder readings, robot positions, linear potentiometer read-

ings, and a video.

In this dataset, all the screws are Phillips-head screws. All the screw holes are threaded holes.

The screw sizes vary from M1.0x3 to M2.5x5. Screw head types include both pan-head and flat-

head. Some screws have a blue nylon material on the threads (NYLOK) for the purpose of thread

locking and sealing.

The screwdriving operation conditions also vary. A detailed description can be found in

Chapter. 4.2. For each operation condition, we collect data with both high precision alignment

(1/4 of total) and random alignment errors (3/4 of total). When collecting high precision align-

ment data, accurate positions of screw holes are given to the robot. To obtain more failure data,

we also add alignment errors of the screw central axis to the screw hole central axis, including

lateral errors and angular errors. The lateral errors are uniformly sampled in the range of 0% to

40% of screw diameters and the angular errors are uniformly sampled in the range of 0◦ to 6◦.

Compared to the industrial data, our data have much more unexpected and deviated patterns,

which largely increase the difficulty for prediction. The actual average rate of successful opera-

tions in our dataset is around 75%.
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Figure 4.1: Screwdriver bits, from left to right: PH#00-1.18, PH#00-1.38, and PH#1-1.95

Figure 4.2: Left: rigid-bit, right: flex-bit. The red circle points out the cut slot that makes the
screwdriver bit flexible when fixed with a small screw.

4.2 Screwdriving Operation Parameters

Please refer to Table. 4.1 for a description of operation parameters. For detailed information on

the operation parameters for each operation condition, please refer to this description form on

our dataset website.

Figure 4.1 shows the screwdriver bits. In the description form, “rigid-bit” means that the

screwdriver bit is tightly installed on the screwdriver. “flex-bit” means that the screwdriver bit is

loosely installed (has a cut slot at the fixing point) so that it has some flexibility to move vertically

(about ±0.2 mm). See Figure 4.2 for the comparison of “rigid-bit“ and “flex-bit”.
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Table 4.1: Description of Operation Parameters

Operation Parameter Description
Screwdriver Bit the size and type of the bit of the screwdriver
Tighting Current the current threshold for the screw to be tightened
Rundown RPM the screwdriver motor spinning speed during insertion
Insertion Force the force vertically exert on the screw at the start of insertion
Compression Force the force vertically exert on the screw at the end of insertion
Position Error whether lateral alignment errors are added
Angular Error whether angular alignment errors are added

Figure 4.3: A cover plate on a screw hole plate

“Notes” in the description form informs whether there are other added operation settings.

For some operations, we add metal cover plates on the screw plate aligned with the screw holes,

as shown in Figure 4.3. To simulate the case that the assembled parts are not well aligned with

the screw holes, for some operations we add alignment offsets of the cover plates and the screw

holes.

While most operations are performed with fixed screw plates, a small portion of operations

are completed with a compliant screw plate. This screw plate is installed on a two-axis variable

stiffness actuator plate (compliant x-y plate), see Figure. 4.4. This is also noted in “Notes”.
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Figure 4.4: a screw hole plate installed on our compliant x-y plate

4.3 Dataset Structure

For each operation, the data and video are stored in 5 files: *screwdriver.csv, *ft.csv,

*info.json, *foxbot.csv, and *.avi. For each operation, the symbol * is replaced with

its numbered file name.

*foxbot.csv: robot positions in Cartesian space, including positions and quaternions

*ft.csv: force and torque data from an ATI-mini 40

*screwdriver.csv: data from screwdriver, including: position (motor encoder read-

ing), velocity (motor velocity readings), current (motor current), and potentiometer (linear po-

tentiometer readings)

*info.json: basic information about this screwdriving operation, including operation

duration, screwdriver hole location and the value of the introduced alignment errors.

*.avi: a video recorded by a high speed camera.

4.4 Downloads

Please visit this site for download instructions.
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Chapter 5

Stage Classification and Result Prediction

An overview of our system is as follows. First, all possible stages during the screwdriving process

are specified and modeled as constraint equations. Second, model residuals of the constraint

equations are used as inputs of an HMM, which can be trained with or without labels. Once

the stages are predicted by the HMM, results (successes or failures) are inferred from stages

using constructed rules from the stage transition graph. Third, given new data from similar

experimental setups, a well-trained system generalizes to new data by parameter specification

and HMM learning — our system quickly adapts to new experiment setups. Fig. 1.1 shows the

pipeline of our online stage estimation and result classification.

5.1 Modeling of the Screwdriving Process

The screwdriving process can be modeled through mechanical knowledge and empirical obser-

vations. Our modeling includes building a stage transition graph, designing a feature set, and

modeling stages as constraint equations.

5.1.1 State Transition Graph

A screwdriving operation can be modeled as a sequence of discrete states, which are denoted as

stages. The stage transition graph (Fig. 5.1) describes all possible transitions among the stages

of our system. All operations begin at approach. A standard successful operation is followed

by initial mating, rundown, tightening and stop, while hole finding stage could appear when

there are alignment errors. Failures are indicated by stages, such as no screw spinning and
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1 approach

3 initial mating 2 hole finding

4 rundown

6 cross-tightening
8 stop

7 no screw spinning

5 tightening

Figure 5.1: The stage transition graph summarizes all possible stages in the screwdriving process.

cross-tightening correspond to results no screw and cross thread. All operations end at stop. A

well-defined graph enables us to clearly and separately model the screwdriving process, because

we assume each stage has only one dynamic model. Moreover, this graph is used as the state

transition model of the HMM. Note that this graph is modified based on [2]. Compared to

the previous graph in Figure. 2.2, by exerting proper insertion force, stages and results related

to stripped happen rarely, thus can be removed from the stage transition graph and treated as

anomalies.

5.1.2 Feature Extraction

Feature extraction pre-processes raw sensor data before stage modeling. We design a feature set

based on the previous work and our observations. These features enable complicated processes

to be modeled as linear equations of features and parameters, making parameter estimation and

generalization easier. At timestep t, a set of features is extracted from the signal data in a fixed-

size interval of time before t:

νx, νy, νz: frequencies of the maximum amplitude of forces computed by discrete Fourier

transform. The oscillation phenomenon of the forces on x axis and y axis is only found in the

rundown stage of the robotic screwdriving task [19]. With small alignment errors, the frequency

approximately equals the screwdriver motor rotational speed.

dtip: the distance from the screwdriver tip to the screw hole. It is a strong indicator of the
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process status. It is calculated as:

dtip = rz−hz− lz (5.1)

where rz is the screwdriver end position on the z axis, computed from the robot positions. lz is

the compression of linear potentiometer, and hz is the z-value of the calibrated hole location.

∆dtip: the change of screwdriver tip distance in the time window, we have

∆dtip = max(dtip)−min(dtip) (5.2)

ktip: the gradient of the screwdriver tip distance. It is computed by least square estimation for

dtip = ktipt (5.3)

The other gradients in the following are also computed in the same way.

kta: the torque-angle gradient. This feature is widely used in torque control threaded fastening

for indicating the status of tightening, whether in elastic zone or yield zone.

kt : the z axis torque-time gradient.

k f : the z axis force-time gradient.

kc: the motor current-time gradient. Our screwdriver employs a direct-drive motor; the motor

torque is proportional to the motor current. It is used as a redundant feature to provide more

robust information against relatively large noise on the torque sensor.

∆ f z: the change of force on the z axis, written as

∆ f z = max( fz)−min( fz) (5.4)

where fz is the z axis force in the time window. A drop of z axis force often indicates the

alignment or mating of screw threads [18].

µf, σf: the means and variances of forces.

5.1.3 Stage Models

Each stage is modeled as a set of constraint equations using physics or our process knowledge.

After stage models (constraint equations) are obtained as one large set of constraints, the model
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errors are used as the input to the HMM to perform stage estimation. Some stage model param-

eters can be specified from the experiment setup (setup parameters): Vm, H1, H2, C1kta, and C1kc.

Other parameters are learned from the labeled data before HMM training (learned parameters):

C1ktip , C1k f , C2ktip , C2k f , C2kta, and C2kc. The meanings of these parameters are explained later in

this part.

Our stage models are constructed as follows:

approach: no contact between the screw and target hole, thus zero forces are assumed:

µf = 0 (5.5)

σf = 0 (5.6)

hole finding: the screw moves around without insertion, while the change of the screwdriver

tip distance is zero:

∆ f z = 0 (5.7)

initial mating: We consider a smooth mating, where the screw is inserted at a constant

velocity C1ktip and a constant gradient of force C1k f :

k f −C1k f = 0 (5.8)

ktip−C1ktip = 0 (5.9)

rundown: the vibrations of forces on the x axis and y axis occur in this stage, indicating

the precession of the screw axis [19]. The vibration frequency can be approximated by motor

velocity Vm. At the same time, the screw goes down with a constant velocity C2ktip and a constant

gradient of force C2k f :

νx−Vm = 0 (5.10)

νy−Vm = 0 (5.11)

k f −C2k f = 0 (5.12)

ktip−C2ktip = 0 (5.13)

tightening: for the successful tightening, the torque-angle gradient must satisfy a preset

value C1kta to ensure that the screw is correctly preloaded. Since the motor current is proportional
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to the screwdriver torque, the gradient of current should also approximately equal a constant C1kc.

The distance of screwdriver tip to the screw hole surface is the thickness of screw head H1:

kta−C1kta = 0 (5.14)

kc−C1kc = 0 (5.15)

dtip−H1 = 0 (5.16)

cross tightening: the model is the same as that of tightening but with different model param-

eters C2kta, C2kc and H2. The torque-angle gradient is much smaller than that of tightening due

to angular errors. When cross threaded, only the first external thread is mated at the cross thread

angle [17], thus the screwdriver tip distance can be computed as

H2 = l · cos(θ) (5.17)

where l is the screw length and θ is the cross thread angle.

no screw spinning: the vibration of z axis force at the frequency of Vm occurs when the

spinning screwdriver tip contacts with the screw plate or the screw hole, and is periodically

pushed back:

νz−Vm = 0 (5.18)

stop: the screwdriver motor stops, thus the motor current mc and motor velocity mv are zeros:

mc = 0 (5.19)

mv = 0 (5.20)

5.2 Stage Prediction by Hidden Markov Model

Given data from a screwdriving operation, features are first extracted. For each stage, the resid-

uals of its constraint equations are computed. Then these stage model residuals are passed to a

Hidden Markov model to make stage prediction. Given a time series of observations, an HMM

can estimate the sequence of states which generate these observations.
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5.2.1 HMM Representation

An HMM λ is composed of states S, initial state distributions π , state transition distribution A,

and observation probability distributions B [35]. Given states, a compact notation of the HMM

parameters is λ = (A,B,π). In our system, the hidden states S = {S1,S2, . . . ,SN} are the stages

in Fig. 5.1. The state at time t is denoted as qt . The initial state distribution is the probability of

each state that appears at the start, denoted as π = {π1,π2, . . . ,πN}, where πi = P(q1 = Si).

The state transition probability matrix A= {ai j} represents the probability that state S j occurs

after Si, where ai j = P(qt+1 = S j|qt = Si),1≤ i, j ≤ N. If there is no edge going from Si to S j in

the stage transition graph, we have ai j = 0; otherwise ai j > 0.

The observation probability distribution P(Ot |qt = Si) provides the probability density that

the observation at time t (Ot) emitted by hidden state Si. Ot includes robot positions, 6-axis

F/T data, motor current, motor encoder readings, and linear potentiometer values as described in

Chapter 4. In our method, the P(Ot |qt = Si), written as bi(Ot), is represented in the form of a

multivariate Gaussian distribution:

bi(Ot) =
1√

(2π)k|Σ|
exp(−1

2
(xit−µi)

T
Σ
−1(xit−µi) (5.21)

where xt is the residuals of all constraint equations computed from Ot as in Section 5.1; µi

and Σi are the mean vector and covariance matrix of the model residuals for state Si.

5.2.2 Stage Classification

Stage classification is, at the latest timestep T , to find the state sequence that maximizes its

joint probability P(q1,q2 . . .qT ∧O1,O2 . . .OT |λ ) with the observation. The Viterbi algorithm, a

dynamic programming algorithm, can solve this problem efficiently [35]. The forward-backward

procedure is performed firstly. The forward variable is defined as αt(i) = P(O1,O2 . . .Ot ,qt =

Si|λ ). It can be solved inductively as:

α1(i) = πibi(O1) (5.22)

αt+1(i) =
N

∑
j=1

αt( j)a jibi(Ot+1) (5.23)
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Similarly, the backward variable βt(i) = P(Ot+1,Ot+2 . . .OT |qt = Si,λ ) can also be inductively

solved as:

βT (i) = 1 (5.24)

βt(i) =
N

∑
j=1

ai jb j(Ot+1)βt+1( j) (5.25)

We define the most probable state sequence ended with Si at timestep t as mppi(t), and its

probability as

δi(t) = max
q1...qt−1

P(q1,q2 . . .qt−1∧qt = Si∧O1 . . .Ot) (5.26)

The most probable path computation is:

δ1(i) = πibi(O1) (5.27)

δt+1( j) = δt(i∗)ai∗ jb j(Ot+1)) (5.28)

mpp j(t +1) = [mppi∗(t),Si∗] (5.29)

where

i∗ = arg max
i

δt(i)ai jb j(Ot+1) (5.30)

During the screwdriving process, at each timestep t, the current state sequence is predicted

as mmp∗j(t +1), where

j∗ = arg max
j

δt( j) (5.31)

5.2.3 Data Adaptation

An HMM can iteratively adjust to better models as data accumulate using the Expectation-

Maximization algorithm [35]. In our case, data adaptation is achieved by updating the mean

µ and variance Σ of the multivariate Gaussian observation model.

The probability of observing state Si for all i = 1, . . . ,N can be computed as follows:

γt(i) = P(qt = Si|O1 . . .Ot ,λ ) =
αt(i)βt(i)

∑
N
j=1 αt( j)βt( j)

(5.32)

Thus the mean and variance can be updated similar to the weighted sum:
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µ̂i =
∑

T
t=1 γt(i)xt

∑
T
t=1 γt(i)

, Σ̂i =
∑

T
t=1 γt(i)(xt− µ̂i)(xt− µ̂i)

T

∑
T
t=1 γt(i)

(5.33)

Since the starting states can only be S1, approach, we have π = {1,0,0,0,0,0,0,0}. The

state transition matrix A is empirically initialized through expert knowledge. If there exists an

edge from Si to S j, ai j should be constrained as nonzero during training. For the observation

probability bi(Ot), all the Gaussian means are initialized as zeros. The covariance matrix, as a

diagonal matrix, is the key to differentiate states. For state Si, the elements in Σi that correspond

to its own constraint equations in all equations are initialized to be small. The elements in Σi that

correspond to constraint equations of the states other than Si are set large.

5.2.4 Anomaly Detection

We detect anomalies for unknown stages or impossible state sequence. Unknown stages are

those with observation probabilities very close to zero for all the states. Impossible path patterns

signify no possible transition between the the possible states corresponding to the observations.

The two cases mean that the probability of all the observations is zero, written as

P(O1 . . .OT |λ ) =
N

∑
i=1

αT (i) = 0 (5.34)

5.3 Rule-Based Result Prediction

There are five types of results, which can be inferred from stage sequences [2]: success, cross

thread, no screw, no hole found and partial. The rules for result prediction are constructed as

follows:

1) If cross tightening or no screw spinning are detected, the corresponding failure types (cross

thread or no screw) are assigned.

2) If the time of hole finding or initial mating (with large forces) stage exceeds a predeter-

mined threshold, this indicates a large non-correctable alignment error that might damage the

screw plate. The system will predict no hole found.

3) If the operation follows the red path on Fig. 5.1, then the system will proceed to a condition

check, which will examine the final insertion length, tightening torque and tightening torque-
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Table 5.1: Data collection settings

dataset 1 2 3 4
screw size M1.4x4 M1.2x3 M2.5x5 M1.4x4

number of samples 396 386 196 35
tightening current (mA) 1600 1300 3200 2400

motor velocity (rpm) 80 96 80 320
insertion force (N) 10 6 18 10

tightening force (N) 20 14 30 20

angle gradient. The result is predicted as success if the condition check is passed, otherwise

partial.

5.4 Generalization

Previously trained HMM cannot be directly used when the operating conditions change. How-

ever, our system can quickly generalize to new experiment conditions. First, we change the setup

parameters to match the new experiment setup as in Section.2.3. Then, learned parameters are

estimated from previous data in the old setup. For example, in cross tightening and tightening,

we often have 5C2k f =C1k f . This relationship is estimated from old process models and can be

used as a good initialization for the new dataset to generalize. These estimated parameters do not

need to be accurate because we can always use data adaptation to refine. The new HMM keeps

improving as new experiment data feeds in.

5.5 Experiments

5.5.1 Dataset and Implementation

We evaluate our method on four datasets from the large datast mentioned in chapter 4 under

different operation conditions as in Table 5.1. The operation condition parameters are explained

in Chapter. 4.2, Table. 4.1. We uniformly sample all data at 100 Hz.

We implemented our algorithms in MATLAB. In the process modeling, the setup parameters

are manually modified according to our operation settings. The learned parameters are estimated

from the 10 labeled well-aligned operation samples from dataset 1. The parameter estimation
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is solved as a least square problem. We implement the HMM based on [35]. The proper initial

values of covariances corresponding to their state constraint equations can be set as 1/10 of

corresponding constant terms, if not available in parameter estimation. The other large error

variances are empirically initialized as 100 for small screws. From our experience, as long as

these values are set to be large, the system will be able to distinguish different states. During

training, to ensure convergence, the mean and covariance in observation models are constrained

within ±15% change of the initialization. The HMM is considered converged when the change

in the log-likelihood of observations is less than a set threshold of 30. Our HMM training often

converges after 8-10 batches in less than 3 minutes with 50 samples in each batch. Rules of result

prediction are constructed as a state machine.

5.5.2 Results

Some selected operations are firstly visualized. The actual performances of our method are then

evaluated by the failure prediction accuracy.

Stage and Result Classifications

Fig. 5.2 visualizes the stage classification of our HMM on high accuracy alignment data and

random alignment error data before and after training. The HMM before adaptation (HMM

before) is only initialized on 10 accurately aligned samples, while the HMM after adaptation

(HMM after) are trained on 50 unlabeled samples of both alignment types. All HMMs are

tested on new samples that have never been seen by our system. This comparison emulates the

HMM adapting to new data as the experiment conditions gradually change. HMM before makes

reasonable predictions on accurate alignment data for all types of failures. With data adaptation,

HMM after learns better stage models. For example, in Fig. 5.2 (a), HMM after predicts to extend

the period of initial mating to exactly where an expert label would be. In Fig. 5.2 (c) and (d), the

predictions for cross-tightening are narrowed down to the right period that cross thread occurs.

As errors are introduced, HMM before makes more mistakes because of the deviation of the

signal data. HMM after adjusts to errors while maintaining performance on accurate alignment

data.
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Figure 5.2: Illustrative samples of stage classification selected from our dataset. Comparison of
the stage predictions before and after data adaptation on high precision operation data and error
introduced operation data. Different color blocks correspond to different stages. Only the force
sensor data are plotted due to space limitations. The actual result for each operation is shown on
the top of the figure.

To show the above mentioned improvement, we visualize the cases that HMM before adap-

tation makes mistakes while HMM after adaptation improves. The performance of the HMM

before adaptation, evaluated in the latter part of this section, is actually better than shown in our

visualization.

Fig. 5.2 covers most of the result types. The operation partial has the same signal profiles as

success, it is the quality check based on actual assembly requirements that distinguishes them.

The profiles of no hole found vary largely; Fig. 5.2(h) visualizes one example: the screw tip fails

to match the screw hole during initial mating, when the screwdriver goes down, the screw is

pressed away and thus results in stage no screw spinning.
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Figure 5.3: Anomalies detected by our system. The first row: the force profiles. The second row:
the torque profiles. The yellow colored signals are from the z axis; the blue colored signals are
from the x axis; the red colored signals are from the y axis.

Anomaly Detection

Fig. 5.3 shows three anomaly cases our system detected. It is even hard for an expert to tell

what happened simply from the signals. By checking the videos, we found the reasons for

these anomalies: for anomaly 1, the screws failed matching the screw hole, and the screwdriver

was stuck by the head of the fallen screw. For anomaly 2, the screw was cross threaded and

accidentally stripped due to the misalignment. In anomaly 3, the data connection was lost for

two seconds.

Generalization

As shown in Fig. 5.4, without any label, our method generalizes to dataset 2, 3 and 4. In dataset

2, we use tiny screws (M1.2x2). The tightening torque is much smaller, making the noise-signal

ratio of the torque sensor as high as 50%. Our method can reduce the influence of noise by

exploiting known meaningful models. In dataset 3, the screw diameter (2.5 mm) is almost 2

times of that of our original dataset (1.4 mm). This verified that our model can be adapted to

much larger screw sizes and tightening torques. In dataset 4, the system generalizes to a motor

speed (320 rpm) four times faster than the original dataset (80 rpm). In real factory scenarios,

screwdriving motor speed varies and can be really fast (over 1,000 rpm).
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Table 5.2: Result Accuracy
dataset 1(accurate) 1(error) 2 3 4

HMM type original generalized

adapt
before 97.47% 77.27% 89.90% 91.33% 88.57%
after 98.48 % 84.85% 91.71% 94.38% 91.43%

Evaluation

We evaluate our method using the accuracy of result prediction (Table.5.2), the proportion of

correctly predicted results in all the samples. The correctness of stage classification can be told

through visualization. The classification visualization can be found in our GitHub repository.

We do not directly measure the performance of stage classification because manually labeling

the stages is extremely time consuming. The result prediction, inferred by predicted stages, can

indirectly show the effectiveness of stage classification.

Our models obtained over 97% result prediction accuracy for the original ones with parame-

ter estimation from labeled samples. The generalized HMMs, initialized with known experiment

setup parameters and trained on unlabeled data, still make reasonable predictions. By data adap-

tation, our model can automatically fit to the actual data and make more accurate predictions.

Note that we intentionally increase the difficulty for prediction, thus our result accuracy is not

comparable to the desired 99.9% for industry use. For example, for dataset 1, we introduce

alignment errors, producing many largely deviated signal patterns. The HMM is trained with

limited data that cannot cover these deviations. This is not a problem for industrial use, where

operations are highly accurate and repeatable.

5.5.3 Limitations

At data adaptation, we found one stage model might fit to another stage, because prediction errors

can accumulate and reinforce when training without labels. To prevent this, we add constraints

on the means and covariances. However, to actually solve this problem, we need observation

models with higher capacity, but complicated models require more data and labeling to train.

One possible solution to this trade-off is introducing human correction.
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Figure 5.4: The visualization of the generalization of our system on dataset 2 (force and torque
profiles), dataset 3 and dataset 4 (force profiles only). The yellow colored signals are from the z
axis; the blue colored signals are from the x axis; the red colored signals are from the y axis.
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Chapter 6

Discussion

6.1 Sensor Reduction

One factor that prevents further adoptions of automated screwdriving systems is cost. For exam-

ple, six-axis F/T sensors provide much richer information for failure detection, at the expense of

significant increase in system cost. Hence, one goal in the automation of screwdriving is to se-

lect proper sensor signals to produce affordable intelligent screwdrivers for consumer electronics

products.

In screwdriving literature, the sensor selection and control strategies are mainly empirical,

our preliminary study presents a systematic way to identify optimal sensor readings to produce

low-cost intelligent screwdriving systems. Please refer to our paper [15] for more detailed dis-

cussions.

6.1.1 Data for Sensor Reduction

The data we used for sensor reduction is slightly different from the dataset in chapter. 4. The

data is collected by our previous version of robotic screwdriving system in chapter. 3. Detailed

descriptions and discussions of the screwdriving dataset used for sensor reduction here can be

found in [2] [16].

A brief description about this screwdriving dataset is as follows. In [2], the authors collected

1862 screwdrving runs, each of which consists of 6-axis force and torque (see Fig. 6.1), motor

current and speed, and video data (see Fig. 6.2), all sampled at 100 Hz. After data analysis, [2]

empirically came up with a list of stages (through which the screwdriving operation progresses)
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Figure 6.1: The 6-axis force and torque signatures of (a) successful case with hole finding stage
and (b) an unsuccessful (crossthread) case.

and result classes, as shown in Fig. 6.2. A complete description of the stages and result classes

can be found in [2]. This dataset has also been hand-labeled with corresponding stage (see

Fig. 6.1) and result information for each run, forming the largest labeled screwdrving dataset we

know of [2]. In sensor reduction, we only use the result labels from this dataset.

6.1.2 Sensor Reduction based on Result Classification

Our sensor reduction is performed based on the accuracy of result classification. That is, we hope

to choose the best and minimal sensor set that can produce most accurate result classification.

Fast and accurate result classification is performed by linear discriminant analysis (LDA)

models [36]. A wrapper method for feature subset selection [37] is used to reduce the number of

required features and sensor signals. Reduced feature subsets (see Table 6.1 and Table 6.2) from

less sensor signals are selected to produce a highly accurate yet affordable robotic screwdriving

system.
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Figure 6.2: Left: The state transition graph summarizing all the stage and result classes. The
vertices represent stages through which the screwdriving passes, with the terminal stages corre-
sponding to the result classes. Colors and sizes are scaled logarithmically with the number of
runs in each transition, stage, or result (modified from [2]). Right: A successful screwdriving run
example including a hole finding stage.

Result Classification

First, from sensor signal data, global features are extracted. For each screwdriving run, 85 global

features are extracted from the whole length of time series data from full sensor signals (8 chan-

nels in total). The angle feature (θ ) is provided by the last motor encoder reading, which is

commonly used in industry as an important criterion for failure detection, as discussed in Chap-

ter. 2. The other 84 features are based on signals from the 6-axis F/T sensor and motor current,

i.e., 7 channels in total. For each channel, 12 statistic features are extracted, including the range,

mean and standard deviation of the following time series data: the original data, its first order

differences (∆), its second order differences (∆2), and its successive ratio (∆dd). Finally, each

feature is normalized to have a standard normal distribution.

Then, given 1862 labeled samples and 85 normalized features, a multi-class linear discrimi-

nant analysis (LDA) model is applied to predict the result classes shown in Fig. 6.2. Multi-class

LDA is a simple but powerful classification algorithm that can be used to separate multiple

classes. The LDA has the advantages of giving linear decision boundaries and requiring less
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Figure 6.3: Confusion matrix for the LDA model trained with 85 features.

computations. In this method, a set of observation x is classified as the class ŷ that has the largest

posterior probability P(Y = y|X = x) among all K classes. By Bayes’ theorem, this can be written

as

ŷ = argmax
y=1,2,...,K

P(X = x|Y = y)P(Y = y) (6.1)

where P(X = x|Y = y) is the probability density function of x and P(Y = y) is the prior proba-

bility of class y. For density functions of all the classes, LDA assumes that they are normally

distributed with the same covariance Σ but different means µ1, . . . ,µK , where µ1, . . . ,µK , and

Σ can be directly estimated from the training data. By maximizing the posterior probability, a

linear decision boundary can be found for each pair of the classes.

Wit 85 global features, this multi-class LDA method achieves an average classificaton ac-

curacy of 98.93% in 10-fold cross-validation. The confusion matrix of the LDA model of full

features is shown in Fig. 6.3.

Sensor Reduction through Feature Selection

Sensor reduction for a more economical screwdriving system is achieved by feature reduction.

We follow a standard feature selection approach to reduce the number of required features and

sensor signals. Feature selection requires a search algorithm to select candidate feature subsets
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and an objective function to evaluate these candidates [38]. In our study, the sequential backward

selection (SBS) [37] is chosen as the search algorithm. Starting from the full feature set, SBS

sequentially removes the feature that least reduces the value of the objective function. SBS

provides a systematic way to sort the original features according to their importance. Note that

alternatives such as bidirectional search might give better results; SBS is chosen here due to its

simplicity. For subset evaluation, we use the wrapper approach. In the wrapper approach, a

feature subset is evaluated by the performance of the chosen learning algorithm. In this paper,

for a given feature subset, a multi-class LDA model is trained. Based on the LDA model, the

average 10-fold cross-validation accuracy is used as the criterion for evaluation. The overall

feature reduction algorithm is as follows:

1. Start with the full feature set X0 = {x1,x2, ...,xN}.

2. For every feature xi ∈ Xk, train a LDA model on Xk−{xi}.

3. Remove the feature x̂ = argmax
x

J(Xk−{x}), where J is the 10-fold classification accuracy.

4. Update the feature set as Xk+1 = Xk−{x̂}.

5. Goto step 2 and repeat until meeting a certain stop condition (the accuracy and the number

of remaining features meet user-specified requirements).

This algorithm helps to determine the optimal feature subset and provides a sensor selection

guideline to reduce cost for the final implementation. In addition, fewer features result in reduced

complexity and faster algorithm.

To show the whole picture, we set the stopping condition to be k = N − 1, i.e., only one

feature is left in the final subset. Fig. 6.4 shows the 10-fold cross-validation accuracy of result

classification for each optimal subset. The curve is non-monotonic; the accuracy initially in-

creases when some features are removed and drops significantly when very few features are left.

Fig. 6.5 shows the variation of the optimal feature set (grouped according to the sensor signals)

during the reduction process. We see that most features from Fx and Fy are removed at the first

few steps, while features from Mc, Fz and Tz can still achieve quite good accuracy when most

features from other signals are removed. The angle feature θ remains during the entire reduction

process (not shown in the figure); this explains the importance of angle measurement.
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Figure 6.4: Prediction accuracy for optimal feature subsets of different sizes.

Figure 6.5: Stacked bar graph during the feature reduction process.

This feature selection process indicates that, instead of using all the signals, accurate result

type classification can be achieved with only four signals: Mc, Fz, Tz, and θ (angle). Note that we

do not need both Mc and Tz. In fact, we can further reduce required sensor signals and cost if the

system has lower gear ratio. For low gear ratios (5.8:1 in our system), Mc is almost proportional

to Tz, thus we can select Mc (motor current) because it costs less to measure. For high gear ratios,

it is necessary to measure Tz because the fastening torque cannot be estimated from Mc due to

high gear loss.

For our system, we can remove Tz and reduce the signals to {Mc, Fz, θ}. To evaluate the

performance, we train two LDA classifiers on the selected signals with and without Tz. We obtain

an optimal feature subset consisting of 20 features for {Tz, Mc, Fz, θ} signals and 18 features for

{Mc, Fz, θ} signals, as shown in Table 6.1 and Table 6.2, respectively. As shown in Fig. 6.6, even
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Figure 6.6: Confusion matrices for LDA models trained with 20 (left figure) and 18 (right figure)
global features, respectively. Result type numbering: 1.success; 2.no screw; 3.no hole found;
4.crossthread; 5.stripped; 6.stripped no engage; and 7.partial.

with fewer sensor signals and features, both classifiers achieve very high accuracy (99.03% and

98.66%, respectively). Their performance is quite similar to the baseline case shown in Fig. 6.3,

where 85 global features are used. Compared with the baseline, the reduced LDA models perform

better in predicting the partial and stripped no engage classes; they perform slightly worse for

the no hole found class.

We see that a linear classifier based on reduced sensor signals can successfully predict the

results of screwdriving tasks with very high accuracy. This method can be viewed as an extension

of the current industrial method, which only uses the maximum torque and angle to predict

success or failure.

6.2 The Role of Compliance in Screwdriving

Screws in most of the electronic devices are usually at very small scales. For example, the di-

mensions of the smallest screw in an Iphone are less than 1 mm. At such scale, even a tiny

misalignment between the screw and the screw hole can cause failure. Therefore, the automa-
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Table 6.1: Optimal features for {Tz, Mc, Fz, θ} signals

Order Feature Order Feature Order Feature
1 Tz std 8 ∆2Tz std 15 ∆Tz std
2 ∆Fz std 9 Mc std 16 Tz range
3 ∆2Fz range 10 ∆2Fz std 17 ∆Fz mean
4 Fz mean 11 Fz range 18 ∆2Mc mean
5 Fz std 12 ∆2Mc range 19 ∆2Tz mean
6 ∆Tz mean 13 Mc range 20 Tz mean
7 θ 14 ∆2Mc std

Table 6.2: Optimal features for {Mc, Fz, θ} signals

Order Feature Order Feature Order Feature
1 Fz std 7 ∆2Fz range 13 ∆Fz range
2 ∆2Mc range 8 Fz range 14 ∆Fz mean
3 Fz mean 9 ∆Mc range 15 ∆ddMc std
4 ∆2Fz std 10 ∆2Mc std 16 ∆ddMc range
5 ∆Fz std 11 θ 17 ∆Mc mean
6 Mc mean 11 Mc range 18 ∆ddMc mean

tion of the screwdriving process requires robustness and high accuracy to deal with all kinds of

exceptions and displacements. Human beings are good at such tasks, because we have dexterous

hands. Most importantly, we can rely on our sensing feedback so that when driving the screw,

we can adjust the insertion position and force. In this section, we seek to study the role of com-

pliance in the screwdriving process, which could help relax the requirement on the amount of

allowable misalignment between the screw and the hole. We use active compliance in x axis and

y axis, to help correct the misalignment of the screw and the hole, and thus decrease the error

rate in the mininature screwdriving process.

To achieve active compliance, we use a two-axis variable stiffness actuator plate (compliant

x-y plate), see Figure. 6.2. Our design idea is from the IBM fine positioner [39] [40], which has

lateral compliance in the x axis and y axis and angular compliance in the z axis, supported by

an air bearing. Hollis et al. [41] [42] also developed a more advanced compliant magnetically

levitated fine-motion wrist, which can provide 6D compliance.

We implemented two control schemes to achieve active compliance. The first one is PD

position control with a low stiffness. This system can be seen as a spring and a damper connected
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Figure 6.7: our two-axis variable stiffness actuator plate for active compliance control

to the plate on each axis. The videos for our experiments can be found at the following links:

video 1, and video 2.

Video 1 is our test for the PD position control. The upper left plot shows the encoder readings

from both motors, which are smooth and accurate. And the movement of the plate is compliant.

We have conducted experiments on a real screw driving system. As shown in video 2, the plate

can compensate for alignment errors by moving compliantly. In our experiments, it can eliminate

maximum 0.7 mm misalignment for a screw with the diameter of 1.4 mm. However, unwanted

forces still remain if the plate only moves passively.

So, there comes the second control scheme, hybrid force and position control. We aim at

minimizing the contact force as well as the position displacement. As shown in Figure. 6.2, we

have two parallel controllers, the PI force control and PD position control. The force control loop

dominates over the position control loop, thus the position error is allowed while eliminating the

contact force. This system can deal with larger misalignments than pure PD position control.

Our force estimation is based on current measurement. The videos for our experiments can

be found at the following links: video 3, and video 4.

As shown in video 3, the current reading can roughly reflect the force applied to it. However,

the reading is noisy even after filtering. With this kind of setting, the system is not robust enough.
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Figure 6.8: Parallel force and position control scheme

But even with this drawback, this system can still outperform the pure position control. As we

can clearly see from video 4, the robot can successfully drive a screw in with very large position

error.

To conclude, we propose and implement two control schemes to achieve compliance in the

autonomous screw driving task. We conduct the experiments on hardware and verified that these

two control schemes could fulfill their design goals to ensure successful screw insertions with

large misalignments. Comparing these two different control strategies, we found that position

control is more stable but less flexible, because of the contact force. On the other hand, current-

based force control is more flexible but less stable, because the current measurement is too noisy

to be taken as the force estimation.
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Chapter 7

Conclusion

We developed a failure detection system which performs stage and result prediction under lim-

ited data resources. This system combines known process models with an HMM. With a good

estimation of process models, our system can perform unsupervised learning as unlabeled data

accumulate, as well as generalize to similar but different screwdriving operations. We show that

even with simple prior process knowledge and very limited data, we can develop a robust failure

detection system. This method can be extended to processes similar to screwdriving (complex

underlying models but limited human knowledge).

Our future works for failure detection include accuracy improvement through human cor-

rection, alignment error estimation and recovery strategy development. Data adaptation can be

improved if an expert spends a little effort telling whether the predictions are correct. More-

over, predicting real-time stages is not enough. The system should also be able to specify the

magnitude of failures, such as alignment error values.

We discuss sensor reduction and compliance control for robotic screwdriving. Our prelim-

inary experiments show that: 1) we are able to use less sensors to achieve even better result

prediction than using the full sensor set; 2) compliance control is helpful to relax allowable

misalignment in mininature screwdriving.

In the future, towards a fully automated screwdriving system for mini-screws, a low-cost

screwdriver will be designed based on more mature sensor reduction analysis. An online stage

and result prediction system will be developed through faster and improved implementation of

our algorithms. Recovering strategies corresponding to different failure types and stages will
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also be designed to improve the overall success rate.
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