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Abstract

Effective plant breeding requires scientists to find correspondences between
genetic markers and desirable physical traits of the genotype. While the
cost for gene sequencing has gone down by several orders of magnitude
in the last two decades, measuring physical traits of a plant at scale
is still a labour intensive task making it borderline intractable. This
creates an opportunity for robotics to fill this gap in order to accelerate
the breeding pipeline. Aided by current progress in machine learning, in
this thesis we elucidate methods to perform high throughput non contact
and contact based plant phenotyping. We developed a general purpose
computer vision pipeline for plant physical trait detection and semantic
segmentation. We tested this pipeline for Sorghum stalk counting and
stalk width measurement from images. We discuss the shortcomings of
having separate perception and manipulation modules for contact based
phenotyping and propose an end to end reinforcement learning framework
for learning from RGBD observations. We propose a principled online
learning approach to weight different auxiliary losses in order to accelerate
reinforcement learning. Our approach gives a 3x speed up for reaching
and manipulation tasks in three simulated environments.
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Chapter 1

Introduction

Even with advent of modern mechanization, agriculture remains one of the most

labour intensive tasks in 21st century. World’s population is increasing at a rate higher

than ever before and is projected to reach 9.7 billion by year 2050. This will lead to a

50% increase in demand for agricultural produce [1]. Due to shrinking margins and

seasonal labour requirements, the number of people taking by agriculture in reducing.

Only 1% of current population of United States derive their livelihood solely from

agriculture (USDA-NASS, 2014). The need for efficient and sustainable solutions

is further exacerbated by growing concerns for land degradation, deforestation and

climate change.

Geneticists for decades have used their domain knowledge to cross plants with

desirable physical traits to breed better off springs. As shown in figure 1.1 their has

been a dramatic reduction in costs of gene sequencing over the past two decades.

Geneticists benefit from finding correlations between desirable physical traits of

a plant (plant phenotypes) and genetic markers in gene sequences to make more

informed decisions for ideal germplasms selection. Currently phenotypic data is

collected by manually measuring physical traits of a plants. When preformed at a

large scale, this process is labour intensive and prone to inaccuracies. The inability

to get large scale phenotypic data slows down the breeding process and is thus known

as the Phenotyping Bottleneck in scientific community.

We show that robotics aided by learning based approaches for perception and

manipulation can provide a solution for high throughput plant phenotyping and aid
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1. Introduction

Figure 1.1: Gene sequencing costs from 2001 to 2019

the acceleration of plant breeding.
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Chapter 2

Background

Background for this work can be broadly broken down into three sections, plant

phenotyping, robot manipulation in agriculture and reinforcement learning with visual

observation.

2.1 Plant Phenotyping

Depending on the physical structure of the object being detected, a wide variety of

techniques have been developed for detection in agricultural setting. Xu et al. used a

monocular camera and morphological image manipulation techniques to detect buds

in grape vines [95]. Other techniques, such as those deployed by Baweja et al. [8] and

Amean et al. [57] use Frangi filter [29] to detect tube like structures in the image to

detect vine shoots and branches respectively. Pothen et al. [68] and Mirbod et al. use

gradient of texture generated by flash light, to detect and size grapes [55] respectively.

Jenkins et al. [38] use multiple stereo images taken form a moving platform for point

cloud generation and exploit geometric structure of the stalks for detecting them.

The authors report a precision of 0.95. The disadvantage of hand crafted feature

based techniques is that, they require a sufficient amount of parameter tuning and do

not generalize across all environment conditions, variable lighting for instance.

Sodhi et al. [84] combine classical vision techniques with machine learning

techniques to segment Sorghum stalks from images. In this work, plants are imaged

from various view points and the 3D point clouds are reconstructed. Segmentation
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2. Background

is performed over these point clouds using Support Vector Machines (SVMs) with

Conditional Random Fields (CRFs). Accuracy of 80.2% is reported on field data.

Paulus et al. use SVMs for classification if histograms of point-clouds for plant organ

parametrization [63]. Reported Area Under the Curve (AUC) accuracy is 0.966.

Chen et al. [13] use deep learning based approach to count and detect fruits in

images. They use a 2 CNN based architecture, where the first CNN detects blobs

where the fruits might be present and the second CNN uses these blobs to estimate

the fruit count in those regions. A regressor network then regresses the total fruit

count in the image. Baweja et al. [9] use a CNN based architecture for Sorghum

stalk detection and width estimation. They use Faster RCNN [69] for stalk detection

and use a Fully Convolutional Network (FCN) [51] for segmentation of stalks in

the proposals generated by Faster-RCNN. Reported R squared correlation is 0.88

for stalk count and 2.77 mm of absolute error in width estimation. However [9]

suffers from poor quality segmentation masks. Parhar et al. [61] address this issue by

using a Conditional-Generative Adversarial Network (C-GAN) for generating images,

conditioned on the input image, such that the generated images have stalks painted

red, which are then used for robotic grasping. They report an F1 score of 0.903 and a

grasp accuracy of 74.16%. Owing to the generalizability of the architecture, we build

on the work in [9] for detecting and localizing vine buds in 3D, using Faster-RCNN

architecture.

2.2 Robotic Manipulation in Agriculture

Agricultural manipulation is a widely studied area of research, with a wide variety of

techniques focusing towards specialty crops like apples[83]. Scarfe et al.[73] developed

an arm and a custom end effector for handling of soft Kiwi fruit, along with a custom

lighting system for detection and localization of the fruit with an accuracy of 3.6mm.

Benton et al. used an industrial Panasonic VR600L along with a suction cup to pick

apples with an accuracy of 80% [6]. [58] and [61] use a 3 DOF manipulator(2 DOF

planar movements and 1 DOF in vertical movement along the mast of the robot)

to grasp sorghum stalks in field conditions. [61] reports a grasp accuracy of 74.16%

and [58] reports 25 out of 25 successful grasp attempts. None of the aforementioned

works tackle the task of obstacle avoidance. Tanigaki et al.[88] implemented heuristic

4



2. Background

based planning to avoid collision with the plant trunk for cherry harvesting.

Owing to the ability of neural networks to model complex non-linear functions

effectively, there has been a huge body of work focusing on using neural-networks

as controller for high DOF robotic manipulators. More recently, Reinforcement

Learning(RL) techniques are being used to train these neural network controllers.

Combining model free techniques with model based techniques like trajectory opti-

mization, Guided Policy Search methods, provide guarantee of robust performance,

under supervision from an optimal controller during training [46][47][41]. On the

other hand, model free Deep RL methods do not assume the model of the agent. [32]

uses model free Deep Q Networks with Normalized Advantage Functions (DQN-NAF)

to learn to open doors. And [4] uses Hindsight Experience Replay to learn various

tasks from scratch with sparse binary rewards.

Franceschetti et al. [28] preformed a detailed comparison of two model free

techniques, TRPO [78] and DQN-NAF for the task of learning jobs like pick and

place and goal reaching on a simulated UR5 robot. Owing to theoretic monotonic

improvement guarantees of TRPO, Parhar et. al. use an improvement over TRPO,

PPO [79] for training simulated UR5 arm to reach goals while avoiding an obstacle in

direct line of sight of the end-effector. They further use the trained model to control

the real arm to reach buds on a vine.

2.3 Reinforcement Learning with Visual

Observation

2.3.1 Obtaining ground truth state for training

Adding sensors: To compute rewards for reinforcement learning, most algorithms

assume access to the ground truth state. However, in most real world settings, the

ground truth state is not directly observed but must be estimated using a noisy state

estimator, which can lead to noisy rewards and poor learning. Attempts have been

made to avoid this issue by adding extra sensors during training to accurately record

the state. For example, in past work, one robot arm (covered with a cloth at training

time) is used to rigidly hold and move an object, while another robot arm learns
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2. Background

to manipulate the object [47]. In such a case, the object position can be inferred

directly from the position of the robot gripper that is holding it. In other work on

teaching a robot to open a door, an IMU sensor is placed on the door handle to

determine the rotation angle of the handle and whether or not the door has been

opened [32, 96]. One can also ensure that all relevant objects for a task are placed

on scales [74] or affixed with motion capture markers to obtain a precise estimate

of their position [44]. However, such instrumentation is challenging for deformable

objects, granular material, food, or other settings. Further, such instrumentation is

costly and time-consuming to setup; hence most of these previous approaches assume

that such instrumentation is only available at training time and these methods do

not allow further fine-tuning of the policy after deployment.

Training in simulation: Another work-around to the issue of noisy state

estimation is to train the policy entirely in simulation, in which the ground truth state

can be obtained from the simulator [5, 22, 66, 72, 99]. Many approaches have been

explored to try to transfer such a policy from simulation to the real world, such as

domain randomization [91] or building or learning a more accurate simulator [12, 86].

However, obtaining an accurate simulator is often very challenging; especially if

the simulator differs from the real-world in unknown ways, these methods will not

transfer well to the real world. Further, building the simulator itself can be fairly

complex. Because these methods require the ground truth state to obtain the reward

function, they require training in a simulator and do not allow further fine-tuning

after deployment in the real world; our method, in contrast, does not require the

ground truth state for the reward function.

2.3.2 Robot learning without ground truth state

Learning a reward function without supervision: One line of work for learning

a reward function is to first learn a latent representation and then use the L2 distance

or cosine similarity in the embedding space as a reward. Different approaches

for representation learning have been explored, such as maximizing the mutual

information between the achieved goal and the intended goal [94], reconstruction

of the observation with VAE [59], or learning to match keypoints with spatial

autoencoders [26]. Our approach explained later in section 5.1 is much simpler

6



2. Background

in that the reward function does not have any parameters that need to be learned.

Changing the optimization: Another approach is to forego maximizing a sum

of rewards as is typically done in reinforcement learning and instead optimize for

another objective. For example, one method is to choose one-step greedy actions

based on a learned one-step inverse dynamics model; after training, the policy is

then applied directly to a multi-step goal [3]. An alternative method is to learn a

predictive forward dynamics model directly in a high-dimensional state space and

use visual model-predictive control [19, 20, 21, 24, 25]. Although these methods

have shown some promise, predicting future high-dimensional observations (such as

images or depth measurements) is challenging. Another approach is to obtain expert

demonstrations and define an objective as trying to imitate the expert [27, 64, 80, 81].

Our approach, however, applies even when demonstrations are not available.

Incentivizing exploration: An alterantive direction is to reward an agent for

visiting unexplored parts of its environment [7, 10, 33, 62, 75, 76, 87]. However, if

such an approach is not combined with some kind of goal-oriented learning, then

the agent will not actually learn how to later perform intentional actions needed to

achieve a task. Thus, the question of incentivizing exploration is somewhat orthogonal

to the ideas explored in this paper.

2.3.3 Multi-task Learning (MTL)

The most similar analogy of auxiliary tasks in the context of supervised learning is

multi-task learning [11, 71, 90]. Past work has found that, by sharing a representation

among related tasks and jointly learning all the tasks, better generalization can

be achieved over independently learning each task [30]. With neural networks, the

common way of using MTL is to share the hidden layers between all tasks while

keeping task-specific output layers, which is the approach we take. Unlike many

works in MTL that try to learn a generic representation that can perform multiple

tasks well [16, 43], we hope that, by combining a large set of auxiliary tasks, some of

these tasks will be helpful for learning a feature representation suitable for the main

control task.
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2. Background

2.3.4 Auxiliary Tasks for Reinforcement Learning

While reinforcement learning with low-dimensional state input can also benefit

from auxiliary tasks in partially observable environments [48, 50], auxiliary tasks

have been more commonly used for reinforcement learning from images or other

high-dimensional sensor readings. The auxiliary tasks can either be supervised

learning tasks such as depth prediction [56], reward prediction [82], or task specific

prediction [53]. Here we focus on self-supervised tasks where labels can be acquired in

a self-supervised manner. Although ground-truth state prediction may also be used

as an auxiliary task in simulation [97], the ground-truth state might not be available

in real world environments when learning from visual observations. Other works

use alternative control tasks as auxiliary tasks, such as maximizing pixel changes or

network features [36]. The weights for each of the auxiliary tasks are either manually

set using prior intuition or through hyperparameter tuning by running the full training

prcoedure multiple times. In this work, we propose to determine what auxiliary tasks

are useful at each time step of the training procedure and adaptively tune the weights,

eliminating the hyper-parameter tuning, which becomes much harder as the number

of auxiliary tasks grows.

An alternative use of auxiliary tasks is to learn a hierarchical policy for better

exploration [70]. Another example of this is the Horde architecture [85] which learns

a general value functions from a set of pseudo-rewards. These types of methods are

orthogonal to the use auxiliary tasks in this work, which are intended for feature

representation learning.

2.3.5 Adaptive Weights for Multiple Losses

Previous works in MTL addressed the problem of specifying weights when multiple

task losses are involved, by optimizing the total loss with model parameters and task

weights jointly with regularization [52, 98]. In comparison to our work, some works

assume that all auxiliary tasks matter equally and adapt the weights based on the

gradient norm [14] or task uncertainty [42]. A similar approach for anytime prediction

balances the weights based on the average loss over the previous training time [34].

These methods assume that all of the auxiliary tasks are equally important. However,

if we scale the number of auxiliary tasks, it is highly probable that some tasks will be
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2. Background

more useful than others. In contrast, our method evaluates the usefulness of each task

online and adapts the weights accordingly such that the more useful tasks receive a

higher weight.

2.3.6 Manipulating deformable objects

Manipulating deformable objects is especially of relevance to agricultural robotics.

Most organs of a plant like leaves, stems and fruit itself are often deformable and

must be treated accordingly. Treating all organs of a plant as rigid bodies would

severely limit a robot’s ability to manipulate them. Deformable object manipulation

presents many challenges for both perception and control. One approach to the

perception problem is to perform non-rigid registration to a deformable model of the

object being manipulated [15, 35, 37, 45, 54, 65, 77, 93]. However, such an approach

is often slow, leading to slow policy learning, and can produce errors, leading to poor

policy performance. Further, such an approach often requires a 3D deformable model

of the object being manipulated, which may be difficult to obtain. Our approach

applies directly to high-dimensional observations of the deformable object and does

not require a prior model of the object being manipulated.
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Chapter 3

Plant Phenotyping

With the goal of making better informed plant breeding decisions, it is critical for

scientists to find correlations between physical features of a plant (plant phenotypes)

to the genetic markers in the high dimensional genome sequence. These correlations

help accelerate the breeding process by allowing breeders in crossing parents with

desirable genetic markers yielding higher quality progeny. Even though the cost of

gene sequencing has dropped considerably over the past two decades (figure 1.1),

the same cannot be said about plant phenotyping. To achieve the desired result

there exists a need for systems that can accurately measure plant phenotypes at high

throughput.

The inability to do this with human labour is currently what is referred to as

the Phenotyping Bottleneck in the scientific community. It is necessary to collect

phenotypic data at scale in order to make decisions that are not prone to sampling

bias. Doing this in outdoor farm conditions can be extremely labor intensive and

prone to human error. This creates an opportunity to deploy robotic systems that

allow high precision repeatable measurements. Using aerial platforms such as UAVs

is attractive due to speed to coverage for a large area. However these platforms are

severely hampered in terms of payload capacity and flying time. These platforms can

also not provide data from underneath the canopy for tall crops such as bio energy

sorghum.

In this work we focus on plant phenotyping for bio energy Sorghum crop. Sorghum

is a diverse crop with over 40,000 accessions. It is useful for a plethora of purposes
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3. Plant Phenotyping

Figure 3.1: Rendering of the ground-based agricultural robot developed at CMU

including but not limited to biofuel, animal fodder and alcohol production. This

research is facilitated by a grant from U.S. Department of Energy Advanced Research

Project Agency-Energy (ARPA-E)’s TERRA program. Plant stalk width and stalk

count are two of the the most important phenotypes required for the sorghum breeding

program.

3.1 Ground Robot Platform

Since none of the off-the shelf platforms have the runtime and payload capacity to

carry oer 50kg of sensors, Tim Mueller Sim, Merritt Jenkins and Justin Abel built a

custom ground robot platform [58] to meet the requirements. The platform shown

in figure 3.1 is capable of autonomously navigating rows more than 30 inches wide.

12



3. Plant Phenotyping

The robot carries a suite of sensors including Sick LIDAR, an inertial measurement

unit. The robot uses GPS with real time kinematic corrections to get sub centimeter

accuracy for pure pursuit autonomous navigation given GPS waypoints. It is equipped

with a two degree of freedom arm for contact sensing. The most relevant sensor for

this work in the custom 9MP stereo camera attached to the back of the robot. The

imager has hardware synced flashes that drown the background and allow us to take

similar images invariant of the natural lighting conditions. We collected images at

3Hz. The robot has three Intel NUC i7 computers. All the sensors are synchronized

and operated using the Robot Operating System.

3.2 Process Pipeline

The motivation behind the work was to develop a high throughput plant phenotyping

computer vision based approach that is agnostic to changes in the field conditions

and settings such as varying lighting conditions, occlusions, etc. Fig. 3.2 shows the

overview of the data-processing pipeline, used by our approach. The faster RCNN

takes one of the stereo pair images as its input and produces bounding boxes, each for

one stalk. These bounding boxes are extracted from the input image (also called as

snips) and fed to the FCN, individually. The FCN outputs a binary mask, classifying

each pixel as either belonging to stalk or the background. To this mask, ellipse are

fitted to the blobs in the binary mask by minimizing the least-square loss of the pixels

in the blob [20]. One snip may have multiple ellipses in cases of multiple blobs. The

ellipse with the largest minor axis is used for width calculation. The minor axis of this

ellipse gives us the pixel width of the shoot in the current snip. The corresponding

pixels in the disparity map are used to convert this pixel width into metric units.

The whole pipeline takes on an average 0.19 seconds to process one image on a GTX

1080 GPU. This makes on-borad data-processing viable for systems that collect data

at 3Hz.
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3. Plant Phenotyping

Figure 3.2: Overview of the stalk count and width calculation pipeline

3.3 Results

3.3.1 Data Collection

Image data was collected in July 2016, in Pendleton, South Carolina using the our

ground robot platform. The algorithms were developed on this data. To test the

algorithm impartially, another round of data collection with extensive ground truthing

was done in February, 2017 in Cruz Farm, Mexico. The images were collected using

a 9MP stereo-camera pair with 8 mm focal length, high power flashes triggered

at 3Hz by ROS. The sensor was driven at approximately 0.05m/s. A distance of

approximately 0.8m was maintained from the plant growth.

Each row of plant growth at Cruz Farm is divided into several 7 feet ranges

separated by 5 feet alleys. To ground truth stalk count data, all stalks were counted

in 29 ranges by two individuals separately. The mean of these counts was taken as

the actual ground truth. Similarly, for width calculations, QR tags were attached to

randomly chosen stalks for ground truth registration in images. The width of these

stalks at height of 12 inches (30.48 cm) and 24inches (60.96 cm) from the ground
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was also measured by two individuals separately using Vernier Calipers of 0.01 mm

precision. Humans at an average took 210 seconds to count the stalks in each range

and an average of 55 seconds to measure width of each stalk. Each range of plants

on an average has 33 stalks, so on an average it would take 33 minutes to measure

stalk widths of entire range.

(a) (b)

Figure 3.3: (a) The Robotanist collecting data in Pendleton, South Carolina (b)
custom stereo imaging sensor used for imaging stalks

3.3.2 Results for stalk count

Due to inability to get accurate homography for data collected at 3Hz, we resorted to

calculating stalk-count/meter using stereo data. For ground truth stalk counts which

were collected from ranges, each range is of constant length 7 feet (2.134 m). Fig. 3.4

shows the R-squared correlation of 0.88 for robot stalk count vs human stalk count.

3.3.3 Results for stalk width

We plot the stalk width values as measured by Human1, Human2 and our pipeline at

approximately 12 inches(30.48 cm) from the ground. At the time of data collection,

we made sure that a part of ground is visible in every image. This allows us get

stalk width at the desired height from the image data. This step is important for

consistent width measurement across all the stalks as there is prevalent tapering in
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Figure 3.4: R squared correlation for human vs robot stalk count

stalk widths as we go higher up from the ground. Fig. 3.5 shows the widths of each

ground truthed stalk as measured by both humans and computed by the algorithm.

Since there is a discernible difference in measurements of the two humans, we

considered the mean of the two readings as actual ground truth. The mean width

of stalks as per this ground truth is 14.354 mm. The mean absolute error between

readings of Human1 and Human2 is 1.639mm and the mean absolute error between

readings from human ground truth and algorithm is 2.76 mm. The error can be

attributed to rare occlusions that force algorithm to calculate height at a location

other than 12 inches(30.48 cm) from the ground. Since this as a possibility, we

thus measure stalk widths at 2 locations during the ground truthing process: at

12inches(30.48 cm) and 24 inches(60.96 cm) above the ground. Calculations from this

data tell us that there was 0.405 mm/inch mean tapering on the measured stalks as

we went up from 12 inches(30.48 cm)to 24 inches(60.96 cm)
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Figure 3.5: Width measured by Human1, Human2 and pipeline

3.3.4 Time Analysis

Table 3.1 shows the time comparisons of humans vs algorithm for an average plot.

Each plot has approximately 33 stalks and is about 2.133m in length. We observe

that automated counting is 30 times faster as compared to humans for stalk counting

and 100 times faster than humans for stalk width calculation.

Human1 Human2 Robot

Stalk Count 3.33 minutes 3.66 minutes
Stalk Width 29 minutes 30 minutes 6.5 seconds

Total 32.33 minutes 33.66 minutes 6.5 seconds

Table 3.1: Environment details including observation, goal dimension (in state space,
we use Image goals with same dimension as observation for learning), time horizon
and distance threshold for successful episode.
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Chapter 4

Stalk Grasping

Previous chapter highlights how computer vision based techniques can be effectively

used for non-contact based plant phenotyping. However there exist several important

physical traits of a plant that cannot be measured without physically grasping the

plant e.g. hyperstectral imaging based abiotic and biotic stress management, stalk

strength, etc. For this purpose we demonstrate a successful deployment of an online,

high-throughput deep learning-based sorghum stalk detection and grasping pipeline

in an outdoor field.

We utilize the custom three degree of freedom end effector mounted on the vertical

linear slide of our ground robot platform. The first DOF is used to move the arm

up and down the vertical slide to grasp plants at various heights. The other two

DOFs are revolute joints that allow inverse kinematics to move the arm to any given

location in plane specified by the height of the linear slide. Figure 4.1 shows a close

up rendering of the two DOF planar manipulator.

4.1 System Overview

The MultiSense S7 was mounted to the robot at a height of 1m above the ground and

25mm in front of the robots center plane. This positions the camera at a distance

from stalks greater than its 200mm minimum range. The camera is synchronized to

custom LED flashes visible in Figure 4.2. The LED flashes provide both consistent

lighting and foreground brightening, which significantly improves correspondence
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4. Stalk Grasping

Figure 4.1: Rendering of two DOF arm mounted on vertical slide of ground robot

Figure 4.2: The Multisense S7 stereo camera mounted to the robot with synchronized
flashes.

matching.

The robot manipulator is designed with three degrees of freedom consisting of a

prismatic joint and two rotational joints (PRR). The motivation behind this design is

that sorghum stalks are roughly vertical and grasp-based measurements are agnostic

to location on a stalk’s circumference. A 3-DOF PRR arm can position itself at only

two circumferential locations at any height on a plant stalk. The manipulator is

actuated by three series-elastic brushless DC motor modules developed by HEBI Inc.

which communicate over LAN.

Computation is performed on a ZOTAC Magnus EN1080K mounted to the robot.

The computer communicates on the robot local network over LAN. It is equipped

with an Intel i7 processor and an Nvidia 1080 discrete GPU. The computer is a ROS

slave running a node consisting of an active session of Tensorflow compute graph. The

node subscribes to the rectified left image frame of the Multisense S7 and publishes
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Figure 4.3: The process pipeline: The left image from the Multisense S7 is fed into
the trained generator, which masks the stalks in the image with red color. The RGB
values of organized point-cloud for the corresponding image is replaced by the output
image of generator. Grasp points are detected within this masked point cloud, and
the gripper servos to the stalks.

the processed image with segmented stalks. Image processing takes approximately

0.2 seconds per image.

4.2 Process Pipeline

4.2.1 Perception and grasp point identification

To semantically segment plant stalk pixels in each individual image, we use Conditional

GANs. For grasping application using Conditional GANs proved to be better than

pixel-wise segmentation networks, as adversarial training regime allows the network

to learn the inherent features of target distribution. Hence, it produces more realistic

segmentation results with sharper edges delineating stalks from rest of the image. This

is understandable, as blob like semantic segmentation output makes the discriminators
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Figure 4.4: (a) Point cloud with masked stalks; (b) Point cloud after thresholding
for red color; (c) Result of applying x-y plane projection to a bin in the point cloud.
Point density heat-map (top) is filtered and region-growing is applied to segment
high density regions (bottom). The centroids of these regions are the prospective
grasp points; (d) Shows the detected grasp points (red spheres) within the robot’s
physical reach, which is only in the left region of the point cloud.

classification task easier.

The Multisense S7 camera uses a hardware trigger to publish an organized point

cloud and a rectified image from the left camera and an organized point cloud. Each

point in the organized point cloud has a corresponding pixel in the left camera frame.

The image from the left camera frame is sent to the conditional GAN, which returns

an image where all of the stalks are labelled red. The pixel locations from the labeled

image are copied to the point cloud so that the stalks are labelled red in the point

cloud.

In order to overcome the challenges of visual occlusion, 5 consecutive point clouds
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Figure 4.5: Manipulator trajectory outline

are stitched together. The point clouds are stitched using the Iterative Closest Point

(ICP) algorithm, which is implemented natively in Point Cloud Library (PCL). The

maximum correspondence distance between points was set to 0.15m, and the cloud

was downsampled using a 3cm x 3cm x 3cm voxel grid for faster correspondence

search. Once the clouds are stitched, they are thresholded for red color. We then

deploy the technique used by Jenkins et. al. [39] wherein the point cloud is divided

into 0.2m segments and each segment is projected onto the x-y plane. Points on

the x-y plane associated with stalks tend to be clustered together due to a stalk’s

vertical profile. After 2D projection and region growing is applied to every slice, the

centroids of each stalk region are reprojected to 3D space in the robot frame. Figure

4.3 illustrates the detection pipeline and Figure 4.4 illustrates the method of slicing a

point cloud and region-growing the 2D projection.

4.2.2 Servoing

The 3D centroids described in the previous section represent points on sorghum stalks

to which the manipulator can servo. Trajectory optimization takes approximately

12 microseconds and merely consists of parameterizing a 2D line in the manipulator

plane between the manipulator’s first joint and the target.

The arm trajectory is controlled using PID on position error and joint velocity

is controlled proportional to position error. Error estimation takes place at approx-

imately 250Hz and arm movements take an average of 2s to reach a target. The
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Figure 4.6: Number of stalks successfully grasped vs stalks number of grasps attempted

motor actuating the linear stage is controlled with a PI-controller. This is because

the moment of inertia of the carriage on the linear stage is very small and a derivative

term is not necessary to prevent overshoot. All three motors were tuned manually

using the quarter amplitude decay method. Fig. 4.5 illustrates the planar trajectory

of the manipulator.

4.3 Results for stalk grasping

The robot was deployed in Florence, South Carolina, USA, on sorghum plants grown

for bioenergy. The plants were 90 days old and approximately 2.5m tall. The robot

was tested in 16 individual stalk grasping experiments. Each experiment consisted

of the robot autonomously driving 0.5m down a sorghum row while running the

end-to-end stalk detection and grasping pipeline. While driving down a sorghum row,

the system captured five stereo pairs and autonomously servoed the manipulator to

every grasp point detected by the Conditional GAN pipeline.

The stereo camera’s field of view is wider than the reach space of the manipulator,

so not all stalks detected in the camera image are reachable. Therefore we define

grasping accuracy as the absolute difference of number of stalks grasped and number
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of stalks attempted, divided by the number of stalks attempted: 1− abs(error)
number of attempts

.

The average grasping accuracy over all 16 experimental runs was 74.13%. Fig. 4.6

shows the results for all 16 experiments. We report accuracy for number of stalks

attempted vs. number of stalks reached, rather than the number of detected stalks vs.

number of stalks grasped. This is because not all detected stalks are in the reachable

proximity of the gripper. As observed in Fig. 4.6, it is often the case that the number

of stalks grasped is greater than number of grasps attempted, i.e. the gripper often

grips more than one stalk in an attempt. This is a result of high stalk density and

lack of collision avoidance in the gripper trajectory planning in our current approach.
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Chapter 5

Reinforcement Learning with

visual observation

The last chapter explored how we can use deep learning techniques for perception and

classical methods for manipulation. However using non-learning based techniques for

manipulation present several challenges in the field conditions. Decoupling perception

and planning for manipulation creates a latency issue in highly dynamic environments

resulting in several failure cases that are impossible to recover from due to lack

of feedback. This is especially true for agricultural robotics where while trying to

manipulate the desired object, the system often ends up altering the environment

itself, thus rendering the model of the world created by perception module obsolete.

The solution thus requires an end to end reactive approach. Reinforcement learning

provides the right framework to tackle this issue. Moreover, using RGB-D observations

for learning is beneficial as we can easily get off the shelf camera sensors that can

provide high throughput observations for the policy reliably. This approach presents

two challenges :-

• How to give rewards to a policy without ground truth state?

• How to make learning more sample efficient when using visual observation?
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5. Reinforcement Learning with visual observation

5.1 Reinforcement Learning without

Ground-Truth State

Making an accurate state estimator without extensive use of sophisticated sensors in

a real world environment is extremely hard. In case of deformable objects, pose is

often not descriptive enough and it is hard to determine what features of the state are

important.Thus we often resort to using policy learning that maps directly from high

dimensional observations to actions. We still need a way to give the learning algorithm

rewards in this scenario. We show that using an indicator reward function combined

with goal relabelling for goal-conditioned reinforcement learning that gives a positive

reward when the robot’s observation exactly matches a target goal observation works

produces equivalent results as compared to a reward function with access to ground

truth state.

5.1.1 Formulation

In reinforcement learning, an agent interacts with the environment over discrete

time steps. In each time step t, the agent observes the current state st and takes

an action at. In the next time step, the agent transitions to a new state st+1 based

on the transition dynamic p(st+1|st, at) and receives a reward rt+1 = r(st, st+1). The

objective for the agent is to learn a policy π(at|st) that maximizes the expected future

return R = E
[∑∞

t=0 γ
trt+1

]
, where γ is a discounted factor in the range of [0, 1].

5.1.1.1 Goal-reaching Reinforcement Learning

In order for the agent to learn diverse and general skills, we define the goal reaching

problem as follows. In the beginning of each episode, a goal state sg is sampled from

a goal distribution G. We learn a goal conditioned policy π(at|st, sg) that tries to

reach any goal state from the goal distribution. As such, we use a goal conditioned

reward function rt = r(st+1, sg) and optimize for Esg∼G
[∑∞

t=0 γ
trt
]
. The transition

dynamics p(st+1|st, at) of the environment remains independent to the goal.

In many real-world scenarios, it is often difficult to construct a well-shaped reward

function. We thus define a sparse reward function that only makes the binary decision
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of whether the goal is reached or not. Specifically, let S+(sg) be a subset of the state

space such that any state in this set is determined to be sufficiently close to sg; in

other words, if the environmental state is within S+(sg), then the task of reaching

sg can be considered to be achieved. Note that S+(sg) can be defined to be an

arbitrarily small set, depending on the task specifications.1 Naturally, we can assume

that sg ∈ S+(sg). A binary reward function can then be defined as

r(st+1, sg) =

R+ st+1 ∈ S+(sg)

R− st+1 /∈ S+(sg),
(5.1)

where R+ and R− are constants representing the rewards received for achieving the

goal and failing to achieve the goal, respectively.

5.1.2 Approach

5.1.2.1 Proxy Reward Functions

In many robotic applications, we do not have access to the true state of the environment

st. We might instead have a noisy or high-dimensional sensor (such as a camera) from

which we record data. From this sensor, we can try to estimate the state, though this

estimate will be noisy, leading to a noisy reward signal.

In such cases, because we do not have access to the true state, we cannot directly use

the true reward function defined in Equation 5.1. Instead, we have noisy observations

ot, from which we must instead define a proxy reward function r̂(ot+1, sg). The

question now becomes how to choose r̂ to be optimal for reinforcement learning, i.e.

which choice of r̂ will lead to the fastest learning and most accurate policy, when r̂ is

used in the context of a reinforcement learning algorithm?

The most common approach in robotics is to perform state estimation. Let us

define an (unknown) function f that maps an observation ot to its corresponding

ground-truth state st = f(ot). However, since we do not observe the ground-truth

state, we must instead infer a noisy estimate of the state ŝt = f̂(ot). This noisy state

1S+ is a function that maps from the state space to a subset of the space.

29



5. Reinforcement Learning with visual observation

can then be used as if it were the true state in equation 5.1:

r(ŝt+1, sg) =

R+ ŝt+1 ∈ S+(sg)

R− ŝt+1 /∈ S+(sg),
(5.2)

However, this approach has two potential issues: first, the state estimator might

be noisy, leading to a noisy reward signal. This is especially true in cluttered

environments with many occlusions, in which an object detector will often produce

many false positives.

Second, in many cases, the state estimator itself might be hard to obtain. This

is especially the case for deformable object manipulation, in which the state of the

deformable object (e.g. the pose of a rope or cloth) must be estimated. Performing

non-rigid registration to a deformabe model of the object being manipulated is often

slow and can be noisy[35, 45, 77]. Even in the case of rigid objects, training an

object detector and pose estimator typically requires many human-annotated training

examples, and using an insufficient number of training examples will lead to noisy

state estimation and noisy rewards.

We therefore investigate whether there is another choice of reward function that

can be used in cases where a state-estimation based reward function would be either

too noisy (due to noisy state estimation) or is not available (due to a lack of a

readily-available state estimator, such as for deformable object manipulation or for

manipulating a novel object for which a detector and pose estimator have not been

trained). Specifically, let us consider a general reward function of the form

r̂(ot+1, og) =

R+ ot+1 ∈ Ô+(og)

R− ot+1 /∈ Ô+(og),
(5.3)

where og is a representation of the goal in observation space and Ô+(og) is a subset

of the observation space for which we will give positive rewards. For example, if

we define Ô+(og) using noisy state estimation, i.e. Ô+(og) = {ot : f̂(ot) ∈ S+(sg)},
then we would recover the reward function of Equation 5.2; however other choices of

Ô+(og) are also possible. Our question then becomes how to optimally choose Ô+(og)

such that our policy will train the fastest when trained with rewards of r̂(ot+1, og).
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We propose using a proxy reward function that does not have any false positive

rewards. To do so, we will use an extreme reward function of Ô+(og) = {og}. In

other words, we will use an indicator reward function:

r̂ind(ot+1, og) =

R+ ot+1 = og

R− ot+1 6= og,
(5.4)

It should be clear that this reward function will have no false positives, since the

reward is positive only if ot+1 = og, which implies that f(ot+1) = f(og), or equivalently,

st+1 = sg. Since sg ∈ S+(sg) by definition, then all positive rewards are true positives,

and there will be no false positive rewards under this indicator reward function.

However, this reward function will be extremely sparse and will have many false

negatives. In fact, without goal relabeling, we would expect all rewards to be negative

under this indicator reward function, since, no two observations in continuous spaces

will ever be identical. However, we will next describe how to learn with this reward

function, even in continuous state spaces, with goal relabeling.

5.1.3 Goal Relabeling for Off-policy learning

As mentioned above, the proposed indicator reward function cannot be directly

applied in continuous observation spaces due to the lack of positive rewards, since the

current observation will never be identically equal to the goal observation. Fortunately,

in the off-policy learning case, we can adopt the goal-relabeling technique introduced

in [4, 40] to learn the goal-conditioned Q function.

Suppose that some transitions (ot, a, ot+1) were observed when the agent took an

action a ∼ π(ot, og) with a goal of og. When we train our critic with this transition,

we use an off-policy reinforcement learning algorithm such as Q-learning (or DDPG

in continuous state and action spaces), which directly minimizes the Bellman error:

Eot,at∼π,og∼G

[
Q(ot, at, og)−

(
r̂ind(ot+1, og) + γQ(ot+1, π(ot+1, og), og)

)]
. (5.5)

Because Q-learning is an off-policy reinforcement learning algorithm, we can replace

the goal observation og with any other observation og′ in our Bellman update of the

Q-function. Specifically, with some probability we will choose to replace og with
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the observation ot+1. By re-labeling og with ot+1, then using our indicator reward

function, r̂ind(ot+1, og) = r̂ind(ot+1, ot+1) = R+. Thus, using goal relabeling, we can

achieve positive rewards, even using an indicator reward function in continuous state

spaces.

5.1.4 Reward Balancing and Filtering

After sampling a batch of data, we train the Q-function with goal relabeling. Let

p1 and p2 determine the relative frequency between providing positive rewards and

propagating rewards to other timesteps in the episode , we use three different strategies

for goal relabeling: with probability p1p2, we relabel og ← ot+1, which will receive a

positive reward under our indicator reward function. With probability p1(1− p2), we

relabel the goal og ← ot′ with an observation from some future time t′ step within

the episode. The indicator reward function will most likely give a negative reward in

this case, which is possibly a false negative. Finally, with probability 1− p1, we use

the original goal (with no relabeling), which will again most likely give a negative

reward under the indicator reward function; as before, this might be a false negative.

We refer to “reward balancing” as setting p1 = 0.9 and p2 = 0.5, leading us

to receive positive rewards approximately 0.45 of the time and negative rewards

approximately 0.55 of the time. Thus the ratio of positive and negative rewards

that we use to train the Q-function are approximately balanced, even with indicator

rewards.

We experimented with removing the second type of goal relabeling, i.e. with

probability 0.45 of relabeling og ← ot+1 and otherwise using the original goal without

relabeling. More specifically, this is equivalent to setting p1 = 0.45 and p2 = 1. We

found that this leads to much worse performance. One explanation is that training

with the goal relabeled to a future state in the episode helps to propagate the positive

reward to other states in the episode, using the Bellman update. This is similar to the

relaxation operation used in solving shortest path problems. With this perspective, p1

can be seen as a weighting factor between providing positive rewards and propagating

rewards. In future work, it might be interesting to explore the relationship between

p1 and other factors relating to value iteration, such as length of the episode, usage

of N-step returns, and prioritized replay.
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We also experimented with setting p1 = 1, e.g. only using relabeled goals taken

from observations from the same episode. We found that this also leads to much

worse performance; the optimization becomes stuck in a trivial solution where the

agent takes no action and stays at the same observation.

While false negative rewards do not adversely affect learning significantly, we still

wish to avoid them if possible to improve the convergence time of the learned policy.

We achieve this using “reward filtering,” in which we filter out transitions that we sus-

pect of having a high chance of being false negatives.For a given transition (ot, at, ot+1),

if ot+1 = og, we know that r̂ind(ot+1, og) = R+. In this case, Q∗(ot, at, og) = R+/(1−γ),

where Q∗ is the optimal Q-function. Similarly, if ot+1 6= og, then r̂ind(ot+1, og) = R−.

Since we know that the policy starting from ot will thus receive at least one negative

reward before receiving positive rewards, then Q∗(ot, at, og) ≤ R− + γR+/(1 − γ).

Thus, we can set a threshold q0, where R− + γR+/(1− γ) < q0 < R+/(1− γ); if we

find that Q(ot, og, at) > q0, then the corresponding reward r̂ind(ot+1, og) is likely to be

a false negative (assuming that the Q-function has been trained well); we thus filter

out such rewards, to reduce the number of false negatives that we use for training.

5.1.5 Experiments

We denote our method, which uses indicator rewards with reward balancing and fil-

tering, as Indicator+Balance+Filter. We compare our method with the following

methods:

• Oracle This method assumes access to the ground truth reward r(st, sg).

• Auto Encoder For vision-based tasks, we train an autoencoder with an L2

reconstruction loss of the image observation, jointly with the RL agent. We

then use cosine similarity in the learned embedding space to provide dense

rewards, as similarly compared in [94]. Specifically, assuming the learned

encoding of an observation o is φ(o) after L2 normalization, the reward will be

r(o, og) = max(0, φ(o)Tφ(og)), similar to the baseline compared in [18].

• Indicator This is the same as our method, without reward balancing and

filtering.

We use the standard off-policy learning algorithm DDPG [49] with goal relabeling

[4]. For the baselines, we use the goal-relabeling and sampling strategy that result in
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the best performance. Specifically, for all these methods, with a probability of 0.9,

we relabel the current goal with an achieved goal sampled uniformly from one of the

future time steps within the same episode, otherwise, the original goals are used. For

all the environments, the ground truth rewards are based on the L2 distance in the

state space:

r(st+1, sg) =

R+ ||st+1 − sg|| ≤ ε

R− o.w.
(5.6)

5.1.5.1 Learning with Indicator Rewards

We first evaluate all the methods in simulated environments in MuJoCo [92], where

all the methods receive the state representation as input:

• Reacher: Teach a two-link arm to reach a randomly located position in 2D

space.

• FetchReach: Move the end effector of the Fetch robot to a random position in

3D.

Both environments above are relatively easy, standard environments from Gym [60].

We test all the algorithms in the Reacher and FetchReach environments where

both current and goal observation are given in RGBD images. The results are

shown in Figure 5.1. While Oracle achieves the best performance, we can see

that other methods with indicator rewards are also able to solve the tasks, though

converging slower. Compared to the Auto Encoder and Indicator baselines, Indica-

tor+Balance+Filter achieves better performances in FetchReach, both in terms of

the success and the final distance to goal. Interestingly, in Reacher environment,

although Indicator+Balance+Filter learns slower when evaluated in terms of success

rate, it has a lower distance to goal (distance in the state space), suggesting a different

learning priority when learning with indicator rewards.

5.1.5.2 Learning with Indicator Rewards from Real Images

Using RGB-D observations and goals, we train a Sawyer robot for 3 dimensional

reaching task with Oracle, Indicator rewards and Indicator rewards with balance and

filter. The goal observations are sampled by moving the robot arm to a uniformly
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Figure 5.1: The success(first row) and the final distance to goal(second row) of
different methods in different environments throughout the training. The observation
are based on the RGBD images rendered in simulation.

sampled location in a cuboid of diagonal length 1.3m and the episode was considered

successful if the end effector was within 0.1m from goal end effector location at the

end of the episode with fixed time horizon of 25 steps. The trained policy performs

position control and outputs end effector displacement within a range of -0.05m to

0.05m in each direction. Figure 5.2 shows the training curves for using the three

rewards. Indicator+Balance+Filter reward is comparable to Oracle both in terms of

success rate and final goal distance while it outperforms just the Indicator reward in

both these metrics.
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Figure 5.2: Success and final distance to goal on learning visual reacher on a physical
Sawyer robot.

5.2 Accelerating Reinforcement Learning using

Auxiliary Losses

Reinforcement learning is known to be sample inefficient, preventing its application to

many real-world problems, especially with high dimensional observations like images.

Learning auxiliary tasks along with the reinforcement learning objective could be

a powerful tool to improve the learning efficiency. However, the usage of auxiliary

tasks has been limited so far due to the difficulty in selecting and combining different

auxiliary tasks. In this work, we propose a principled online learning algorithm that

dynamically combines different auxiliary tasks to speed up training for reinforcement

learning. We argue that good auxiliary tasks should provide gradient directions

that, in the long term, help to decrease the loss of the main task. Our approach

is illustrated in Figure 5.3. We show that our algorithm can effectively combine a

variety of different auxiliary tasks and achieves about a 3x speedup compared to

using no auxiliary tasks in a set of robotic manipulation environments.

5.2.1 Problem Definition

Assume that we have a main task Tmain that we want to complete and a set of

auxiliary tasks Taux,i, where i ∈ {1, 2, ..., K}, that will be used for representation

learning. Each task has a corresponding loss Lmain and Laux,i. In the context of
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Figure 5.3: An illustration of learning with auxiliary tasks. All of the visual observa-
tions and any auxiliary visual information are passed through a shared weight CNN
to get a low dimension representation. The representation, along with other auxiliary
information are then used to perform different auxiliary tasks, as well as the main
task. A final loss is computed by weighting the main loss and all the auxiliary losses.

reinforcement learning, Lmain can either be the the policy loss Lπ or the Bellman

error LQ, such as for actor-critic methods. The losses are functions of the model

parameters θt at each training time step t.

Our goal is to optimize the main loss Lmain. However, using gradient-based

optimization with only the main task gradient ∇θLmain is often slow and unstable,

due to the high variance of reinforcement learning. Thus, auxiliary tasks are commonly

used, especially for image based tasks, to help to learn a good feature representation.

We can combine the main loss with the loss from the auxiliary tasks as

L(θt) = Lmain(θt) +
K∑
i=1

wiLaux,i(θt), (5.7)

where wi is the weight for auxiliary task i and θt is the set of all model parameters at

training step t. We assume that we update the parameters θt using gradient descent

on this combined objective:

θt+1 = θt + α∇θtL(θt). (5.8)
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If a large number of auxiliary tasks are used, some auxiliary tasks may be more

beneficial than others for learning a feature representation for the main task; thus

the weights wi of each auxiliary task (Eqn. 5.7) need to be tuned. Previous work

manually tunes the auxiliary task weights wi [36]. However, a number of issues arise

when we try to scale the number of auxiliary tasks. First, tuning the parameters wi

becomes more computationally intensive as the number of auxiliary tasks K increases.

Second, if the values of wi are learned via hyperparameter optimization, then the

reinforcement learning optimization must be run to near-convergence multiple times

to determine the optimal values of wi; ideally the weights would be learned online

so that the reinforcement learning optimization only needs to be performed once.

Last, the importance of each auxiliary task, and hence the optimal weight wi, might

change throughout the learning process; using a fixed value for wi might limit the

performance.

5.2.2 Approach

We propose to dynamically tune the weights for each auxiliary task. We will first

describe an approach that uses a one-step gradient in Section 5.2.2.1; we will then

extend this framework in Section 5.2.2.2.

5.2.2.1 Local Update from One-step Gradient

In our initial approach, we aim to find the weights for the auxiliary tasks such that

Lmain decreases the fastest. Specifically, define Vt(w) as the speed at which the main

task loss decreases at the time step t, where w = [w1, ..., wk]
T . We then have

Vt(w) =
dLmain(θt)

dt
≈ Lmain(θt+1)− Lmain(θt)

= Lmain(θt + α∇θtL(θt))− Lmain(θt)

≈ Lmain(θt) + α∇θtLmain(θt)
T∇θtL(θt)− Lmain(θt)

= α∇θtLmain(θt)
T∇θtL(θt),

(5.9)

where α is the gradient step size. The first line is obtained from a finite difference

approximation of the time derivative, with ∆t = 1 (where t is the iteration number of
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the learning process). We then write out θt+1 using Eqn. 5.8; followed by a first-order

Taylor approximation.

To update w, we can simply calculate its gradient:

∂Vt(wi)
∂wi

= α∇θtLmain(θt)
T∇θtLaux,i(θt), ∀i = 1, ..., K. (5.10)

This leads to an update rule that is based on the dot product between the gradient of

the auxiliary task and the gradient of the main task. An intuitive explanation would

be, up weight an auxiliary task if its gradient aligns with the main task and down

weight it otherwise. The form of this equation resembles recent work which uses a

thresholded cosine similarity to determine whether to use each auxiliary task [17];

however, our update rule is a product of our derivation of maximizing the speed at

which the main task loss decreases.

5.2.2.2 N-step Update

The gradient in Eqn. 5.10 is optimized for the instantaneous update rate of the

main task, dLmain(θt)/dt, as shown in Equation 5.9. However, we are not actually

concerned with the one-step update of the main task loss Lmain(θt); rather, we are

concerned with the long-term value of Lmain(θt) after multiple gradient updates. In

this section, we extend the method of the previous section to obtain an optimization

objective for w that accounts for the performance on Lmain(θt) in the longer term.

Since the loss changes in one step does not necessarily reflect the long-term

performance, we instead seek to optimize the N-step decrease of the main task loss:

VNt (w) = Lmain(θt+N)− Lmain(θt).

However, exact computation of the gradient with respect to w requires calculating

higher order Jacobians, which can be computationally expensive. We thus adopt a
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first-order approximation:

VNt (w)
.
= Lmain(θt+N)− Lmain(θt) (5.11)

= Lmain
(
θt+N−1 + α∇θt+N−1

L(θt+N−1)
)
− Lmain(θt)

≈ Lmain(θt+N−1)− Lmain(θt) + α∇θt+N−1
Lmain(θt+N−1)

T∇θt+N−1
L(θt+N−1)

...

≈ α
N−1∑
j=0

∇θt+j
Lmain(θt+j)

T∇θt+j
L(θt+j)

resulting in,

VNt (w) ≈ α
N−1∑
j=0

∇θt+j
Lmain(θt+j)

T∇θt+j
L(θt+j) (5.12)

Next, we want to update w by calculating ∇wVNt (w), which requires differentiating

through the optimization process. To avoid this cumbersome computation in a online

process, we ignore all the higher order terms, essentially assuming that a small

perturbation of w only affects the immediate next step. With this approximation,

we get that ∀i = 1, ..., K:

∇wi
VNt (wi) ≈ α

N−1∑
j=0

∇θt+j
Lmain(θt+j)

T∇θt+j
Laux,i(θt+j). (5.13)

We call this approach Online Learning for Auxiliary losses (OL-AUX). The full

algorithm is described in Algorithm 1. As an implementation detail, to balance the

norm of the gradient between different losses, we adopt the Adaptive Loss Balancing

technique [34] and wrap all the auxiliary task losses inside a log operator. Figure 5.3

provides an illustration of the pipeline for computing all the individual losses that

constitute L(θt).

The benefit of the N-step update, compared to the one-step update, comes from

two sources. First, as shown in Eqn. 5.11, the N-step objective considers the long-term

effect on the main task loss of updating the weights w, which aligns with our longer

term goal. Second, as shown in Eqn. 5.13, the N-step method also averages the
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Algorithm 1 Learning with OL-AUX

Input:
Main task loss: Lmain
K auxiliary task losses: Laux,1, . . . ,Laux,K
Horizon N
Step size α, β

Initialize θ0,w = 1, t = 0,
for i = 0 to TrainingEpoch− 1 do

Collect new data using θt
for j = 0 to UpdateIteration− 1 do

t← i · UpdateIteration+ j
Sample a mini-batch from dataset
L(θt)← logLmain(θt) +

∑K
i=1wi logLaux,i(θt)

θt+1 ← θt − α∇θtL(θt)
if t+ 1 mod N == 0 then
∇wi
VNt−N+1(wi)← α

∑N−1
j=0 ∇θt−j

logLmain(θt−j)
T∇θt−j

logLaux,i(θt−j)
w ← w − β∇wVNt−N+1(w)

end if
end for

end for

auxiliary weight gradient over more θ update iterations, which will compute a less

noisy gradient. Ablation experiments are shown in Section 5 to differentiate between

these effects, and we show that both of these effects contribute to our performance.

5.2.3 Experiments

In the following experiments, we aim to answer the following questions:

• How much can we improve sample efficiency by leveraging a set of diverse

auxiliary tasks?

• Is dynamically tuning the weights of the auxiliary tasks important to the

achieved sample efficiency, compared to using a fixed set of weights?

• Is it beneficial to adapt the auxiliary task weight based on its longer term

effect, i.e. N-step update (Section 5.2.2.2) compared to the 1-step update

(Section 5.2.2.1)?

To answer these questions, we empirically evaluate different approaches on a few
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goal-oriented reinforcement learning environments with visual observations, where

the issue of sample complexity is exacerbated due to the high dimensional input. We

use DDPG [49] with hindsight experience replay [4] as our base learning algorithm.

5.2.3.1 Auxiliary Tasks

In the context of manipulation from visual observations, we consider the set of

auxiliary tasks briefly described in Table 5.1.

1. Forward Dynamics [3]: This task enforces forward consistency in the learned

latent representation. Given the current visual observation and the action, the

network is asked to predict the latent representation of the next state. The loss

is defined as the following:

Lfk = ||ffk(e(ot;φ), at;φfk)− e(ot+1;φ)||22,

where ffk and e are the latent space forward model and the CNN encoder

respectively, ot is an observation, and at is an action.

2. Inverse Dynamics [3]: Given two consecutive image observations, this task

predicts the action taken. The loss is specified by

Lik = ||fik(e(ot;φ), e(ot+1;φ);φik)− at||22.

where fik is the latent space inverse dynamics model.

3. Egomotion [2]: Given an image observation and a random transformation of

this image, the network needs to predict the performed transformation. This

task forces the network to learn visual correspondences between the transformed

image and the original image. In our experiments, the transformation is

constrained to be a planar rotation with a degree of θ ∈ [−30◦, 30◦]. The

transformed image is then clipped and scaled to have the same size as the

original image. The input to the egomotion prediction network also shares the

convolutional features with other tasks, including the main task. The loss is

defined as:

Leg = ||feg(e(ot;φ), e(T ot;φ);φeg)− θ||22,
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where T is the transformation.

4. Autoencoder: This task aims to reconstruct the image observation given the

latent representation e(o;φ). It enforces a representation that preserves the

information in the original observation as much as possible. The loss is defined

as:

Lae = ||fae(e(ot;φ));φae)− ot||22

5. Optical Flow [31]: Between every two consecutive visual observations, we

first compute the visual representation of optical flow using Farneback’s [23]

algorithm. Then, the network needs to predict the optical flow result from

the latent representation of the two images. This task encourages a latent

representation that focuses more on the moving pixels and could be helpful for

the object manipulation tasks. The optical flow loss is defined as:

Lop = ||fop(e(ot;φ), e(ot+1;φ));φop)− FK(ot, ot+1)||22,

where fop denotes the optical flow prediction network to be learned and FK

denotes the Farneback’s algorithm. Target optical flow representation for two

NxNxD frames is an NxNx1 mask where the value of each pixel in the mask

represents the strength of the flow vector at that location.

Auxiliary Task Description

Forward Dynamics [3] Given current visual observation and ac-
tion, predict latent space representation of
next observation.

Inverse Dynamics [3] Given consecutive image observations, pre-
dict the action taken.

Egomotion [2] Given raw and transformed visual observa-
tion, predict the transformation applied.

Autoencoder Reconstruct visual observation from latent
space representation.

Optical Flow [31] Given two consecutive visual observations,
predict the optical flow.

Table 5.1: Brief description of the auxiliary losses used.
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5.2.3.2 Environments

We evaluate all methods on robotic manipulation tasks simulated in MuJoCo [92]:

• Visual Fetch Reach (OpenAI Gym [67]). The goal is to move the end effector

of a Fetch Robot to a randomly sampled 3D location.

• Visual Hand Reach (OpenAI Gym [67]). A target hand pose with the

positions of the five fingers of a 24 DOF Shadow hand is randomly sampled from

3D space; the policy is required to control the hand to reach the corresponding

positions of all five fingers. The policy outputs motors commands for the 24

DOFs of the hand.

• Visual Finger Turn (DeepMind Control Suite [89]). A policy needs to control

a 3 DOF robot finger to rotate a body on an unactuated hinge. The agent

receives a positive reward if the body tip coincides with a randomly sampled

target location.

For all the environments, the goal is an RGBD image with objects in the desired

configuration. For Visual Fetch Reach and Visual Hand Reach environments, the

observation is the current RGBD image, while for Visual Finger Turn, the observation

is 3 stacked consecutive RGBD frames.

For all the environments, we use sparse rewards specified by the L2 distance of

the underlying ground truth state from the goal state. The rewards are defined as:

r(st+1, sg) =

R+ ||st+1 − sg|| ≤ ε

R− o.w.
(5.14)

where both st+1 and sg are in state space, R+ = 1 and R− = −1. For hindsight

experience replay, with a probability of 0.9 we relabel the original goal with another

observation from a future time step of the same episode. More details on the

environments and the algorithm used can be found in Appendix A and B.

5.2.3.3 Baselines

We compare the following approaches:

1. No Auxiliary Losses This is our base learning algorithm without using any
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auxiliary tasks.

2. Gradient Balancing This baseline combines all the auxiliary tasks with the

same weight of 1 but uses adaptive loss balancing [34] to balance the norm of

the gradient for different auxiliary tasks.

3. Cosine Similarity This baseline combines the gradients from the auxil-

iary tasks and the main task based on their cosine similarities [17]. Specifi-

cally, ∇θLaux,i is added to ∇θLmain to update the shared parameter θ only if

cos(∇θLmain,∇θLaux,i) ≥ 0.

4. OL-AUX This is our method as described in Algorithm 1, with N=5 (OL-

AUX-5).

5.2.3.4 Online learning of auxiliary task weighting gives significant

improvement

The learning curves of all methods are shown in Figure 5.4. We can see that, in all

environments, using auxiliary tasks with proper gradient balancing gives consistent

improvement over not using auxiliary tasks. By online updating the weighting of

the auxiliary tasks, our method(OL-AUX-5) shows further improvement, achieving

around 3x reduction in sample complexity for Visual Hand Reach and Visual Finger

Turn tasks and 2x reduction for Visual Fetch Reach.

Figure 5.4: The training curves of our method compared to other baselines. The
y-axis shows the percentage of the time that the goal is reached.

We further compare with using only a single auxiliary task along with gradient

balancing in Figure 5.5. We can see that using a single auxiliary task often only

gives marginal improvement over the baseline. On the other hand, our method, by

leveraging the combination of all auxiliary tasks, always performs better or as well
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as the best single auxiliary task. Additionally, we can see that the importance of

the auxiliary task depends on the RL task. For example, inverse dynamics is the

best single auxiliary task for the Visual Hand Reach environment but does not help

much in the Visual Finger Turn environment. Our method is able to exploit the best

combination of the auxiliary tasks without prior knowledge about the relationships

among the auxiliary tasks as well the relationship between the auxiliary tasks and

the main RL task.

Figure 5.5: The training curve for our method (which combines multiple auxiliary
losses) compared to using each individual auxiliary loss one at a time. The y-axis
shows the percentage of the time that the goal is reached.

Figure 5.6: Change of the weights of the auxiliary tasks during training.

For our OL-AUX-5 method, we show how the weights of all the auxiliary tasks

change during training in Figure 5.6. Looking at the weight of an auxiliary task

alongside the single auxiliary task ablation in Figure 5.5, we can see that they often

align. For example, inverse dynamics is the best single auxiliary task in Hand Reach

and it also retains a large weight when combined with other auxiliary tasks. There are

also exceptions: In Finger Turn, optical flow does not work well as a single auxiliary

task. But when combined with other auxiliary tasks, it still has the largest weight for

a small amount of time; In Hand Reach, optical flow performs well as a single task

but when combined with others, the weight is kept at a relatively low level. This
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shows that our method is able to take advantage of the auxiliary tasks that best

suits the RL task at hand, while taking into consideration the interplay of different

auxiliary tasks, without any prior knowledge.

5.2.3.5 Auxiliary task gradients should provide long-term guidance

Our N-step update method incorporates the idea that the auxiliary tasks should

be used to decrease the loss of the main task in the long term. To verify that this

long-term reasoning is important, we compare OL-AUX-5 with OL-AUX-1 where the

weights are updated every time step (as in Sec. 5.2.2.1). For OL-AUX-1, we scale

the learning rate β down by a factor of 5 to make a fair comparison, as it updates w

more frequently. The results are shown in Figure 5.7. As shown, OL-AUX-1 performs

much worse than OL-AUX-5, providing evidence of the importance of using auxiliary

tasks to provide long-term guidance for reinforcement learning.

Figure 5.7: Learning curves comparing different ablation methods.

However, as discussed Sec. 5.2.2.2, there are two reasons why our method might

outperform the OL-AUX-1 baseline: our method takes into account the long-term

effect of the auxiliary weight update on the main objective; also, our method averages

the auxiliary weight gradient over more θ update iterations, which will result in a a less

noisy gradient update. To isolate the influence of taking into account the long-term

effects, we perform another ablation experiment. In this ablation, we perform a

one-step gradient update using Eqn. 5.10, but only update w every N (N = 5) steps.

When updating w, we use N times as much data to compute the gradient, and we

use the same learning rate β as OL-AUX-5. This makes the algorithm the same as

OL-AUX-5 in terms of update frequency, learning rate, and the amount of data used

for the update. The plots from this method are labeled OL-AUX-5 (Ablation)

in Figure 5.7. The gap between OL-AUX-5 and OL-AUX-5 (Ablation) shows the
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effect of ”long-term reasoning” while the gap between OL-AUX-5 (Ablation) and

OL-AUX-1 shows the effect of ”gradient smoothing”. We can see that both factors

contribute to the gained improvement in training time.
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Chapter 6

Conclusions

We show that robotics aided by learning based approaches for perception and ma-

nipulation can provide a solution for high throughput plant phenotyping and aid

the acceleration of plant breeding process. We find the automated measurements

are accurate to within 10% of human validation measurements for stalk count and

measure stalk width with 2.76 mm on average. Ultimately though, we identify that

the human measurements are 30 times slower than the robotic measurements for

count and 270 times slower for measuring stalk width over an experimental plot.

Using our perception approach with simple inverse kinematics based planning for

plant stalk grasping achieves grasping accuracy of 74.13% with a stalk detection F1

score of 0.90.

We argue that decoupling the perception and manipulation pipeline results in

latency induced failure cases due to lack of feedback based end to end control.

Moreover it is hard to model an environment that requires manipulation of deformable

objects. Reinforcement Learning provides a framework ideal for this scenario. Our

experiments demonstrate that plugging a simple indicator reward function coupled

with goal relabelling can perform just as well as a ground truth based reward function

with a Reinforcement Learning based approaches. We also propose a principled

approach to combining several self supervised auxiliary losses to speed up learning

when using visual observation. Our method achieves about a 3x speedup compared

to using no auxiliary tasks in a set of robotic manipulation environments.
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