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Abstract

Mobile robots need good estimates of their state to perform closed-loop control in
structured and unstructured environments. A number of existing algorithms rely on
data fusion from multiple sensors to compute these estimates. This work focuses
on state estimation using sensors which only measure information (acceleration,
motor speed, joint angles) internal to the robot – proprioceptive sensors – since
measurements of external features (light intensities, distance measurements, sound
amplitude) may not always be reliable. Wheeled robots conventionally use IMUs
and motor encoders for robust proprioceptive odometry. Legged robots, however,
interact with their environment through intermittent foot-ground contacts which
introduces additional noise in the IMU and joint encoder measurements making
this problem challenging. We implement an Extended Kalman Filter (EKF) based
state estimator which uses foot-ground contact information to counteract noisy
sensor measurements from the IMU and motor encoders. This method has been
implemented on simulation based quadruped and on an actual hexapod system.
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Chapter 1

Introduction

Robotic systems are used for carrying out a different variety of tasks in different
kinds of environments. In order to carry out these tasks successfully and efficiently,
one needs to control them using feedback about the state of the robot. The state of
the robot has to be estimated either with respect to a feature in the environment or
with respect to their current position. This thesis specifically focuses on the latter
method which is also called odometry. The odometry method implemented in the
paper does not assume anything about the number of legs, the type of gait or the
kind of terrain. The results are shown on two kinds of platforms, quadruped in
simulation and on actual hexapod system.

Generally, the different methods of state estimation of the robots are based on their
structure and the environment they operate in. The structure of the robot usually
includes, (i) kinematics: the design of the robot (links and joints), (ii) dynamics:
the expected motion of the robot under an influence of external or internal force
or torque. The environment of the robot can greatly influence the motion of the
robot by introducing an external force or torque on the system. The inaccuracies in
determining the exact structure and environmental disturbances lead to inaccuracies
in the prediction of the motion of the robot. In other words, the expected motion of
the robot is not exactly equal to the actual motion of the robot.

For instance, a manipulator armmight struggle picking up objects of varying shapes,
sizes and materials in an open loop control because of inaccuracies in the robot
dynamics model and controller. Therefore, we need to close the loop using the
feedback from the sensors. Sensors tend to be noisy and some of them do not
give the full information about the robot motion. Hence, robot motion will have
to be estimated by fusing multiple sensors in such a way that not only the full
state is observable but also noise of each sensor is corrected by other sensors. The
interactions of robots with the environment also need to be estimated to infer how
well the robot is performing a task.



2

The state of the robot comprises of knowledge of robot motion and of features
in the environment which, if known, fully describe the robot’s motion over time.
State estimation is generally done by combining the dynamic model of the robot
with a measurement model. The dynamic model of the robot gives an estimate of
the expected state and that expected state is corrected using the measurement from
different kinds of sensors on the robot which gives additional information about
one or more state quantities of the robot. The sensors on the robot can be broadly
divided into two sets:

1. Introceptive/Proprioceptive Sensors: Measure information from within the
robot’s structure.For instance, accelerometer, gyroscope, wheel odometer.

2. Exteroceptive Sensors: Measure information from outside. For instance,
camera, time of flight transmitter/receiver, Global Positioning System (GPS).

Although more sensors enrich the information content recovered about the state of
the robot but this comes at a greater post processing computation and payload cost.
In a way, state estimation is about making the best of the sensors the robot has. The
challenge of estimating the state of the robot can vary depending on the model of
the robot, the sensors used and the amount and type of noise associated with them.
It is also important to note that certain sensors cannot describe the state of the robot
completely and hence, observability analysis needs to be done to conclude which
states are observable, if any.

Legged robots ranging from a hopper robot to a multi-legged system like all other
robotic systems need a state estimation method too. The reason why state estimation
is challenging on such robots are the following:

1. The dynamics are highly non-linear and there are inaccuracies in calculating
a dynamic model mathematically.

2. The state space of such a robot is large because it includes not only the pose
of the robot’s chassis but also the pose of the joints of its feet.

3. The system is interacting with the environment via multiple intermittent
ground contacts and impacts which makes sensors more noisy.

To solve these problems, today legged robots use a variety of sensors ranging from
IMUs, contact sensors, time of flight sensors and cameras to do both the prediction



3

Figure 1.1: Hebi Hexapod robot: The robot built by Hebi Robotics using X-
modules which work on the principle of series elastic actuators.

and correction step. Such a method is referred to as sensor fusion which predicts and
corrects the state of the robot using different sensors. Typically, prediction is done
using the dynamics model of the robot and correction is done using observations
given by a sensor. Since the dynamics of a legged robot is highly non-linear and
linearization of the dynamics is required for EKF, an easier dynamics model is
adopted by using an IMU for prediction. The joint encoders are used for correction
to perform the full state estimation.

The IMUmeasures the linear acceleration and angular velocity which are integrated
over time to predict the position, velocity and orientation of the robot. The joint
encoders are used to calculate the feet positions (only the ones which are in contact
with the ground) and update the position and orientation of the robot. Contacts
for the legs are calculated using joint torques which give a good enough estimate
removing the need for having physical contact sensors on the feet.

The papers ([1],[2],[3],[4] ) which make use of only proprioceptive sensors show
that with the use of sensors and the state space used in this paper, the absolute
position and yaw angle are unobservable. Even though they are unobservable, the
error between estimated and ground truth in absolute position and yaw angle seemed
to reduce the drift under limited slippage, as compared to only using an IMU for
estimation.



4

Contributions A state estimator that fuses the information from an IMU and
kinematics has been adopted and tested on a HEBI hexapod (6-legged) robot (as
shown in figure 1.1) and the results have been closely verified with the ground
truth. The ground truth was collected from an external motion tracker system and
measurements were taken from the on-board IMUs. Before the algorithm was
adopted on hardware, the experiments were done on a 4-legged robot in simulation
where ground truth and measurements were taken from Matlab-Simulink. This
state estimator uses only proprioceptive sensors. There are no assumptions made
regarding the gait and number of robot legs and it is immune to little foot slippage
caused either due to the gait or terrain.

The rest of the thesis report is divided in the following sections, (i) Related work
followed by (ii) the the details of the model of the robot on which the experiments
were carried out. Further, (iii) the state estimation algorithm is described theoreti-
cally with the pseudo-code and finally, (iv) Results are discussed both quantitatively
and intuitively.
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Chapter 2

Background and Related work

State Estimation is a probabilistic approach to robotics which intends to estimate
the state of the robot in terms of probability distributions. Such an estimated state
is also referred to as the belief state of the robot. Most common probability distri-
butions used for state estimators are Gaussian Distribution and are estimated using
conditional probabilities over the observed variables referred to as measurements.

2.1 A primer on probability and state estimation
Abelief state is posterior probability over state variables conditioned on the available
data. The available data is typically of the past control inputs u1:t and the past
observations acquired from the sensors, z1:t−1. Mathematically a belief over a state
variable xt can be represented as follows:

bel(xt) = p(xt |z1:t−1, u1:t)

Since this uses only past information and not current observation, this is referred
to as "prediction" in the context of probabilistic filtering. It is important to note
that although we have control input at the time t, we don’t have the observations at
time t because we are predicting the state of the robot at time t. The observations
will be recorded once the robot moves and this observation will be used to correct
the prediction which makes up the next step of probabilistic filtering called the
"correction or measurement update".

The common algorithm used for probabilistic filtering is a Bayes filter. It is a
recursive method used to calculate beliefs at time step t from beliefs calculated at
previous time step t-1. In order to account for the previous beliefs, we need to
multiply the probability of previous belief and the probability where it would end
up with the new control input. This prediction will then be corrected using the
observation, zt by multiplying the above prediction with probability that the new
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observation may be observed. This results in the following equation:

bel(xt) = ηp(zt |xt)
∫

p(xt |ut, xt−1)bel(xt−1)dx︸                              ︷︷                              ︸
bel(xt )

(2.1)

The product of two probabilities might not lead to a probability, that is, might not
integrate to one. Thus, we introduce a normalization constant, η to make sure that
the integration of the beliefs over all states xt equal to one. It should be noted that
we assume Markov property of the state and therefore only consider the previous
state, current control input, and current observation to predict and update the current
state.

There are variety of filters which are derived from Bayes filter with different set of
assumptions on the basis of process model, measurement model and noise models.
However, the goal of these filters is the same which is to minimize the effect of
noise on our state estimation. In order to solve this problem, a prior for the noise
of each sensor is assumed. Since it is not exactly known which type of distribution
is noise associated with, one or more of the filtering methods might be applicable
to a particular system. Based on the assumptions and computational complexity, a
method is chosen for a particular robot. Few of the common Bayes filter based state
estimation methods are summarized in the Table 1.1.

The ExtendedKalman Filter works on the basis of linearization of non-linear process
dynamics and non-linear measurement dynamics. Unscented Kalman Filter does
not linearize the models and thus non-linearity of the model is captured by sampling
over the probability distribution. Particle filter which is based on Monte Carlo
method does not assume anything about the probabilistic distribution of the belief
state.

2.2 State Estimation for Legged Robots
The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Particle
Filter satisfy the assumptions for performing state estimation on legged robots.
However, particle filter is very computationally intensive due to the non-linearity of
dynamics and high dimensional state space of such robots. A particle filter might
need large number of samples because of the number of moving parts in the system
and constant interactions with the environment which are difficult to model. EKF
and UKF are thus, a better fit for such a problem.
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Method Process and
Measurement Model Noise Distribution Computational

Complexity
Kalman Filter linear Gaussian O(n2 + k2.8)
Extended

Kalman Filter non-linear Gaussian O(n2 + k2.8)+
O( f (x)) +O(h(x))

Unscented
Kalman Filter non-linear non-Gaussian O(L2(n2 + k2.8)+

O( f (x)) +O(h(x))
Particle Filter non-linear non-Gaussian O(M log M)

Table 2.1: Different types of Bayes filter with their assumptions and computational
complexities for each time step of running these algorithms(n is the dimension of
xt , k is the dimension of zt , L is the number of weights and M is the number of
particles sampled.)

Although there has been work done using simplified dynamics model of the legged
robots (like Spring Loaded Inverted Pendulum (SLIP) [5] and Linear Inverted Pen-
dulum Model (LIPM) [6][7]), there hasn’t been many papers on state estimation of
legged systems for number of legs greater than two using such a dynamics model.

A good state estimator for a legged robot should be robust to different kinds of
terrain, gaits, locomotion speed and number of legs. This is ensured by skipping
the dynamics model which includes such parameters and instead using IMU as a
process dynamics model. It should also take into account the fact that the motions
are periodic over an interval and that the system is interacting with the environment
via multiple intermittent ground contacts.

Most of the research groups which work on state estimation for legged robots using
proprioceptive sensors make use of contact/pressure sensors. One of the common
approaches of combining forward kinematics and contact information is called
foothold matching. Foothold matching is a method to estimate the motion of the
body with respect to the feet which are continously in contact with the ground over
the concerned time steps. It is calculated using the feet positions with respect to the
body frame which can easily be derived using forward kinematics of the legs.

Gassmann, Zacharias, Zollner, et al. [8] extended the work on foothold matching
by introducing probabilistic weights in order to consider the reliability of the ground
contact constraints. This work was done using the ground reaction force which
was calculated from motor current/torque measurements and without use of any
external contact sensors. One of the earliest works on state estimation using forward
kinematics was published by Roston and Krotkov [9] on their Ambler hexapod. This
work was extended in [10] where it was assumed that the robot is in contact with
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three of its six feet at all times and that the terrain was completely flat. In [11], same
research group fused the leg based odometry obtained from kinematics with data
from an IMU which is found to be useful in handling tripod gait running. Görner
and Stelzer [12] have shown that roll and pitch angles can also be estimated if joint
torque measurements are available. The angular estimates obtained this way can be
fused with the ego-motion estimates obtained from foothold matching and can be
combined with inertial data to globally localize a robot [13].

A fundamental limitation with using foothold matching is that a minimum of three
contact points are required. In order to include more dynamic gaits where this
assumption might not be valid, data-driven approaches have been used. Reinstein
and Hoffman [14] presented a data-driven approach using joint encoders, pressure
sensors and an on-board IMU. The limitation of this approach is the trade-off be-
tween the amount of training data required and generalization to various locomotion
patterns and terrains.

A significant amount of work has also been done on state estimation by including
additional sensor modalities and using filter based methods. IMU measurements
have been used in the prediction model for a Kalman filter [15] based sensor fusion
method ([13] [16] [17]). This has been shown to be efficient and accurate as it
keeps the filter size small, avoids using of dynamics model and offer the possibility
for online bias estimation. Assuming some knowledge about the terrain, Chitta et
al. [18] developed a pose estimator based on particle filter which fuses IMU and
kinematics of the leg to get the odometry.

A fundamental limitation of all the above work is the assumption that the contact
points are stationary. Measuring slippage can help avoid noise and corrupted mea-
surements. In filtering setups, the stochastic nature of the approach can be used
to evaluate the probability of observing a given measurement. In [1], the authors
demonstrate a way to apply this to legged robotic state estimation in order to re-
ject the kinematic measurements of slipping feet by thresholding the mahalanobis
distance of the innovation (difference between prediction and measurement). If
available, the consideration of further sensor readings such as force sensors can also
be helpful for slip detection [19].

2.3 Approach Presented in this Thesis
In the presented approach, an Extended Kalman Filter has been implemented which
fuses IMU, leg-ground contacts and leg kinematics. This approach has been adopted
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from [2].

A general algorithm of an EKF is shown in Algorithm 1. An EKF is a type
of a recursive Bayes filter which requires previous belief state of the robot and
measurements and control at time t. Using the previous belief state and input, a
state is predicted. Its covariance is calculated using process Jacobian (Ft) found by
linearizing f (µt, ut) at the predicted state,µt and control input,ut . This predicted
belief is then corrected by a measurement residual,yt which is the error between
measured observations and predicted observations. This measurement residual
is then scaled by a gain matrix, called Kalman Gain Kt to get the corrected belief
mean,µt . Covariance of this corrected state, Σt is foundwith the help ofmeasurement
Jacobian (Ht) and predicted covariance,Σt as shown in the last step of the algorithm.
This algorithm is then called recursively till the last time step.

Algorithm 1 Generic Extended Kalman Filter Algorithm
Require: µt−1, Σt−1, ut, zt
µt ← f (µt−1, ut) // Predicted State estimate
Σt ← FtΣt−1FT

t +Qt // Predicted Covariance estimate
yt = zt − h(µt) // Measurement Residual
Kt ← Σt HT

t (HtΣt HT
t + Rt)−1 // Kalman Gain

µt ← µt + Kt yt // Updated State estimate
Σt ← (I − Kt Ht)Σt // Updated Covariance estimate
return µt, Σt

This algorithm is modified for legged systems such that IMU is used for prediction of
the state and, contacts and forward kinematics are used for correcting the prediction.
Using an IMU for prediction is analogous to a dynamics model of a car where
acceleration and steering information is used as a process dynamics.

State Representation
The state of the robot at time t consists of a mean and covariance. The mean of the
state is represented as follows:

µt := (rwt , vwt , qbw
t , pwit , b

b
f t, b

b
wt)

where, rwt is the COM position in the world frame, vwt is the velocity of the COM
in the world frame, qbw

t is the rotation from body frame to world frame, pwit are
feet positions in the world frame and bb

f t and bb
wt are biases for accelerometer and

gyroscope respectively represented in the body frame, all at time t. Thus the total
size of the state is (16 + 3N) where N is the number of legs of the robot.
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A quaternion representation is used in order to avoid the singularity whenever we
add a change in orientation, either measured (prediction step) or calculated (update
step). However in order to linearize the process dynamics, quaternion representation
is replaced by the axis-angle representation. Therefore, the covariance of the state
is represented by a positive semi-definite matrix of size, one dimension lesser than
the state, (15 + 3N, 15 + 3N).

Sensor Devices

1. IMU: The IMU meaures the acceleration and angular velocity in the sensors
frame which are transformed to the body frame to get ab

t and ωb
t which are

used directly in the algorithm as inputs.

2. Joint Encoders: Joint encoders provide the angular position of all joints.
Based on the kinematics derived from the robot, the location of each foot can
be estimated in the base frame of the leg. This can be then transformed to be
represented in the body frame of the robot.

Prediction Step
The belief state of the robot is predicted using only IMU data. The accelerometer
gives us the linear acceleration and gyroscope gives the angular velocities both
in the IMU frame. This is then transformed to body frame using the appropriate
rotation and translation. The acceleration is integrated twice to get the position and
integrated once to get the velocity. Similarly, the angular velocity is integrated once
and converted to quaternion (using a function denoted by ζ) to get the orientation of
the COM in the quaternion representation. The following equations are the discrete
process dynamics which are used for the prediction of the state.

Position: rt+1 = rt+1 + ∆tvt +
∆t2

2
(Rwbat + g) (2.2)

Velocity: vt+1 = vt + ∆t(Rwbat + g) (2.3)

Quaternion: qt+1 = ζ(∆tω) ⊗ qt (2.4)

Feet Position: pi,t+1 = pi,t ∀i = 1, ...N (2.5)

Accelerometer Bias: ba,t+1 = ba,t (2.6)

Gyroscope Bias: bω,t+1 = bω,t (2.7)
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Using the error dynamics model, the process Jacobian can be evaluated which can
be used to predict the covariance of the state by the following equation:

P−k+1 = Fk P+k FT
k +Qk

Measurement Step
Using a forward kinematics model the location of the point feet can be computed
with respect to the robot body. Assuming that feet in contact with the ground remain
stationary over a part of the gait cycle, they can be matched between successive time
steps and thereby used to calculate the incremental motion. Since encoders are less
noisy than IMU, forward kinematics is used for correction of the predicted state.
The measurement residual, for this application, is the difference between actual
feet positions and their predicted values (h(µt)) which is given by the following
equations:

Measured feet positions in the body frame, s = f wd_Kin(α) (2.8)

Predicted feet positions in the body frame, s = Rbw(pi,k − rk) (2.9)

Measurement Residual, y = s − s (2.10)

Where, α is the joint angles, Rbw is predicted rotation matrix, pi,k is predicted feet
positions and rk is predicted robot’s COM position.

The measurement Jacobian are calculated by considering the error states and re-
moving higher order terms as shown in [2]. Using the measurement residual and
measurement Jacobian, correction in the state is calculated which is added back to
the predicted value to get the resultant state.

Observability Analysis
This approach does not assume anything about the gait, robot’s dynamics and
kinematics and terrain which means this algorithm can be used for any type of gait
and robot as long as it has an on-board IMU and joint encoders on the legs. Through
an observability analysis, it is shown that apart from absolute position and yaw angle
of the robot, all other states are fully observed. The pitch and roll angles become
fully observable when the robot regains ground contact and thus, errors reduce.
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Chapter 3

Modelling and Implementation

The state estimation algorithm is shown to beworking on two sets of robotic platform,
(i) Simulation: on a quadruped using Matlab-Simulink, and (ii) Hardware: Hebi
X-series Hexapod. The following sections explain in detail about their kinematics,
dynamics, controls and sensors of the robots.

3.1 Simulation
A 4-legged robot was simulated usingMatlab-Simulink as shown in Figure 3.1. The
robot’s main body or the chassis is 60 cm long, 30 cm wide and 15 cm thick. It
weighs 16.2 kg and each foot weighs 838 grams making the total mass of the body
to be 19.5 kg. Each leg of the robot has 3 degree of freedoms and 4 components
namely, base, shoulder, elbow and feet. The physics engine used to simulate foot-
ground contacts and impacts is the SimMechanics Contact Library. There is just
enough friction and damping on the ground in order to have a balance between
inelastic and elastic collision to simulate a little slippage.

The robot’s gait is similar to an animal gait where diagonally opposite legs move
together. The controller is designed such that the feet follows a cubic spline while
moving until the feet hits the ground. It can also be referred to as an alternating gait.
The trajectory on which experiments are carried out is of a walking sequence in a
straight line for over a minute in which it covers a distance of around 20 meters.

The ground truth and measurements are acquired from a Simulink block called
"Body Transform Sensor" which calculates the distance of the frame attached to
the body with respect to the frame assigned as the world frame. Thus the ground
truth pose follows exactly the motions of the robot. The acceleration and angular
velocity is also given by the Body Transform Sensor which simulates an on-board
IMU sensor.

The controller runs at a frequency of 400 Hz and the sensors give data at a frequency
of 10 KHz. The experiments were done offline by running the state estimator at the
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frequency of both, 1 KHz and 10 KHz.

Figure 3.1: Model of the Simulated Robot: This is a snapshot of the simulink
model of the 4-legged robot spawned in Matlab.

3.2 Hardware
A remote-controlled hexapod robotics kit commercially sold by HEBI Robotics
(shown in Figure ??) has also been used for experiments. This robot is called X-
monster because of the X-series actuators/modules used for all of the six legs. The
entire robot weighs 21 kg with a total length and width of around 1.1 m. The legs
are made of 3 links namely, base, shoulder and elbow. The robot walks at a speed
of 0.13m/sec following a tripod gait. The robot moves with very little slip due to
the rubber feet and gas springs attached to every leg.

X-series actuators have sensors that enable simultaneous control of position, velocity,
and torque as well as three axis inertial measurement. It is important to note that
there is no IMU on the chassis itself. Hence, we simulated an IMU on the center of
the mass by first, doing a SE(3) transformation and integrating the measurements
from the 6 IMUs on the first (or "base") joint of the legs which do not move as
they are attached to the rigid chassis through a fixed link. We measure position
and torque from all the X-series modules to do forward kinematics and contact
estimation. Since, it follows a tripod gait, it is safe to assume that there will always
be atleast 3 legs which will be in contact with the ground. We use this assumption
in our state estimator.

The ground truth data is collected using a motion capture system. Three markers
are put on the robot’s chassis such that the centroid of the three markers lie around
the geometric center of the mass. These markers are tracked to get the entire pose
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of the robot.

The robot’s feedback handler which acquires the sensor data is running at 1KHz and
the ground truth data is received at 120 Hz which is limited by the tracking sensors
frequency. The state estimator also runs at 1KHz.

3.3 Implementation details
This section explains the details of how the approach mentioned in section 2.3 has
been implemented on the two platforms, simulation and hardware. To simplify
the notation, we denote the World frame as W, Body frame as B, IMU frame as I,
Shoulder of the robot as S and Feet of the robot as F. These frames and points of
reference are shown in Figure 3.3. The following subsections explains the flow of
algorithm pictorially shown in Figure 3.2.

Figure 3.2: Flow of the algorithm: This is a flow chart of the algorithm dividing the
implementation into three layers, data acquisition, data pre-processing and filtering.

Sensor Layer
In simulation, the integration of linear acceleration and angular velocity are straight
forward because IMU frame and body frame are assumed to be the same. This case
is different for the the real platform, the hexapod as there doesn’t exist any IMU
on the chassis of the robot. There are IMUs in each of the Hebi X-series modules.
The base modules are attached to the chassis by a rigid link. The IMUs in the
base modules of all the 6 legs are used to emulate an IMU in the body frame by
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transforming them to the COM and then averaging them. The equations used are as
follows:

ab
t = Rbsas

t − ωb
t × (ωb

t × rbs) (3.1)

ωb
t = Rbsω

s
t (3.2)

Both the equations transform the measured quantities from the sensor frame to base
frame using a rotation matrix calculated based on the kinematics of the robot. The
second term in equation 3.1 includes angular velocity and its cross product with the
translation offset from COM to the sensor. This is required to capture the effect of
angular velocity of the sensor on the linear acceleration of the COM. Once the linear
acceleration and angular velocity of all the sensors are in the body frame, mean of
these readings are taken to get the acceleration and angular velocity of the COM.

Data Pre-processing Layer
The data for ground truth is received at a different rate than the sensor feedback data.
Also, since they are run through two different programs, a data synchronization step
is needed. This is done by storing the Eastern Standard Time (EST) in milliseconds.

Once, the data is synchronized, we use the joint angles to get the forward kinematics
of the legs which are in contact with the ground. In the simulation, Matlab-Simulink
which uses the SimMechanics Contacts Library 1 gives the contact measurements
directly. However, that is not true on the hexapod and hence, we measure the joint
torques and calculate the ground reaction force using the following equations:

FS = (JT
S )−1τ (3.3)

FB = RBSFS (3.4)

ci = (FBz <= 0) (3.5)

where FS is the force exerted by the feet on the ground in the spatial (world) frame, JS

is the leg Jacobian (only translation) in the spatial frame, τ is the measured torques
on the motors of the leg, FB is the force exerted by the feet on the ground in the body

1Steve Miller (2019). Simscape Multibody Contact Forces Library
(https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-
forces-library), MATLAB Central File Exchange. Retrieved July 18, 2019.
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(a) Quadruped model

(b) Hebi hexapod Model

Figure 3.3: Understanding frames and points of references for both the plat-
forms, simulation and hardware.

frame, RBS is the predicted rotation to go from body frame to the spatial frame, ci

is a boolean where 1 is in contact and 0 not in contact and FBz is the z-component
of FB. The dimensions of FS is 3 × 1 because we only consider the translation part
of the Jacobian (3 × 3).

Information Fusion or Filtering Layer
The filtering algorithm as implemented is shown in the Algorithm 2. The prediction
step is carried out using only the IMU measurements in the body frame as per the
equations 2.2-2.7. The update step is only carried out for the feet in contact with the
ground so the measurement residual is of size, (3C, 1), where C is number of feet in
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contact multiplied by the degree of freedom (= 3) for each foot.

Algorithm 2 EKF for legged robots using IMU, Contacts and Forward Kinematics
Require: µt−1, Σt−1, at : linear acceleration, ωt : angular velocity, αt : joint angles,

ct : boolean vector representing legs in contact
Prediction Step:

µt ← f (µt−1, at, ωt)
Σt ← FtΣt−1FT

t +Qt
Update Step:

sb
t ← leg_kin(αt) + offset of shoulder from base

if new contacts detected then
pwi ← rwt + sb

t
end if
for all legs in contact do

yt ← sb
t − h(µt)

Kt ← Σt HT
t (HtΣt HT

t + Rt)−1

µt ← µt + Kt yt
Σt ← (I − Kt Ht)Σt

end for
return µt, Σt
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Chapter 4

Results and Discussion

The comparison between the ground truth and filter results are shown in Figure 4.1
and 4.2. The simulated robot walks at a speed 0.33 m/s whereas the real robot is
walking at a speed of 0.06 m/s in the x-direction. The y direction is considered
to be parallel to ground and perpendicular to x and the z direction points outward
from the ground. The simulation was carried out with realistic noise levels in
the measurements given by the Simulink body transform sensor. The results on
hardware were carried out on multiple trajectories and the noise parameters were
chosen such that they are same for multiple experiments. The plots 4.1 show the
results for the simulation which is a trajectory of the robot going forward for 10m in
the x direction for 30 seconds. The drift is as low as 7% in the position estimate in x
direction and further lesser drift in y and z direction even though the acceleration in
z is large due to the impacts. The velocity estimates although not exactly accurate
do not show drift. The orientation estimates are accurate with no drift.

The plots 4.2 demonstrate the results for the hardware platform which covers a
distance of about 2 meters in 35 seconds. The drift is again limited to 8% in the
position estimate in x direction with little to no drift in y and z. Similar to the
simulation results, the velocity estimates are noisy but do not experience drift and
orientation estimates are very accurate with no drift.

These results validate the observabiity analysis presented in the paper [2] that
position and yaw angle are unobserved whereas the velocity, roll and pitch angles
are observed. Intuitively, the reason that position and yaw are unobservable is
because neither IMUs nor joint angles can estimate the position and yaw angle
without drift. However, we do get a sense of absolute zero velocity when the robot
is stationary which is estimated using contacts. Roll and pitch angles can also be
estimated exactly using forward kinematics (in the body frame) on legs in contact
with the ground in consecutive time steps.
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Figure 4.1: Resulting plots of the state estimator on Simulation : It shows a
comparison of estimated states and their respective ground truth data.
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Figure 4.2: Resulting plots of the state estimator on Hardware : It shows a
comparison of estimated states and their respective ground truth data.
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Chapter 5

Conclusion and Future Work

A reliable state estimation using only proprioceptive sensors was implemented and
tested on an actual hexapod system without the need for restrictive assumptions
such as flat ground or pre-defined gait pattern. The results obtained are observed
to be consistent with the theoretical understanding of the algorithm. A closed
form linearization of process and measurement dynamics to obtain the respective
Jacobians speeds up the EKF algorithm. The state estimation algorithm performs
better with higher frequency measurements and high frequency estimation because
linearization is more accurate then. For the same reasons, this performs better on
slower gaits with limited slippage.

This work can be directly extended to terrain analysis by using the position of
the robot and feet estimated. This work can also be used for building control
strategies that could help the robot to follow a desired trajectory. There can be
significant improvements made for stability and traversability using both better
control strategies and terrrain analysis. This work also can be extended bymeasuring
slippage of the feet and including that information in the state estimator.
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