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Abstract

As an increasing number of robot platforms and robot tasks become
available and feasible, we aim to improve methods for modular robot task
definition and execution. Regardless of the source (human or learned),
autonomous robot behavior can be captured in many ways: as code, as
modules of code, in an unstructured form such as a neural net, or in one
of several more structured formats such as a graph, table, or tree.

This thesis explores structured representations that are simultaneously
understandable by humans and executable by robots. Enforcing a certain
structure on policies can streamline the development of code, enable
task transfer, facilitate task instruction through other modalities such
as interactive dialogue, and cause autonomously learned policies to be
interpretable. This effort is further motivated by the growing desire in
the field of reinforcement learning (and machine learning in general) to
move from black-box models toward “interpretable AI.”

We present Transferable Augmented Instruction Graphs (TAIGs), a
platform-independent task representation and execution framework based
on the functional composition of robot behavioral and perceptual primi-
tives. We provide an overview of the previously introduced Instruction
Graphs and contribute the Augmented Instruction Graphs with the ability
to use memory and represent negated conditions, halt conditions, and
nested graphs in order to capture complex task policies. We further
define representation and execution management to reference a library of
primitives allowing policies to be transferred between different robot plat-
forms. We demonstrate the use of TAIGs by applying them to a concrete
matching game task example using two autonomous robots: Pepper and
Baxter. We further demonstrate TAIG in the context of performing the
RoboCup@Home General Purpose Service Robot challenge task.

Recognizing the value of having a means of constructing a graph aside from
programming, we introduce Interactive-TAIG, a framework for enabling
construction of TAIGs through an interactive dialogue. We demonstrate
this construction technique with a simple search-and-deliver task.

We discuss two types of structured representations for policies learned
autonomously via reinforcement learning. The first is a decision tree struc-
ture, where we extend the partial-Conservative Q-Improvement (pCQI)
method into two successive methods: Conservative Q-Improvement and
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Conservative Q-Improvement 2. The class of decision tree policies learned
via reinforcement learning that we discuss in this thesis are the class of
policies that consists of a decision tree over the state space, which requires
fewer parameters to express than traditional policy representations. In
contrast to many existing methods for creating decision tree policies via
reinforcement learning, which focus on accurately representing an action-
value function during training, our extension of the pCQI algorithm only
increases tree size when the estimated discounted future reward of the
overall policy would increase by a sufficient amount. Through evaluation
in simulated environment, we show that its performance is comparable
or superior to non-CQI-based methods. Additionally, we discuss tuning
parameters to control the tradeoff between optimizing for smaller tree
size or for overall reward.

Secondly, we introduce a method for learning a TAIG using reinforcement
learning. The resulting TAIG includes WHILE loops in the structure,
corresponding to subtasks of the task. This method is a means of a robot
autonomously learning a policy that then has all the benefits of a TAIG.

This thesis includes the release of a few open-source projects and pieces
of code. We release an open-source Python library implementing the
TAIG and interactive-TAIG contributions. Also included are tutorials
and examples for using TAIG on an arbitrary robotic system. Finally, we
release an open-source library with a new AI gym-compatible environment
where the agent controls traffic lights in four-way intersection.
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Chapter 1

Introduction

1.1 Motivation and Approach

The decades ahead will see an increased number of robots performing tasks for the
benefit of humans. Teaching or programming a new task for a robot often requires
complex, tedious implementation. We envision a future in which it is quicker and
easier to instruct robots how to execute new tasks. Robot assistants and partners will
also be able to learn tasks autonomously, but in a manner that allows for interpreting
the learned policy without having to execute it.

Regardless of the source (human or learned by the robot itself), autonomous
robot behavior can be captured in many ways: as code, as modules of code, in an
unstructured form such as a neural net, or in one of several more structured formats
such as a graph, table, or tree.

An important stepping stone towards the future described above is creating
explainable structured representations of policies for the execution of tasks. This
thesis is interested, in particular, in structured representations that are simultaneously
understandable by humans and executable by robots. When a human and a robot
have a common structured representation for components of a task, it becomes
easier for a human to communicate what needs to happen to the robot (whether by
programming or through a more natural interactive process). When disparate robots
can use that common representation, it allows task transfer, where a task meant
to be performed by one type of robot can also be performed by another. When an
autonomously learned policy is structured, it becomes more interpretable.

This thesis extends and develops techniques with the goal of achieving structured,
interpretable policies for robots. This thesis considers tasks involving motion and
perception.

One way to move towards this goal is with work on Transferable Augmented
Instruction Graphs (TAIG). This thesis proposes taking advantage of the robot’s
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CHAPTER 1. INTRODUCTION

knowledge of how to perform other tasks involving similar functionality, or of the fact
that alternate robotic systems could perform the same task. Task dissimilarity or
differences in specific hardware and software configurations are existing challenges
that TAIG is designed to overcome.

TAIG extends and improves upon Instruction Graph (IG) [47], which represents
a task policy as a structured graph. TAIG overcomes some of IG’s limitations and
realizes additional potential. TAIG brings together the concepts of task transfer,
increased ease of task policy creation and maintenance, shared memory between
primitives, and instruction via natural conversation. TAIG begins to account for the
disparities between robot systems that exist in the real world and the differences
between human and robot understanding of a task.

Another way to move towards our envisioned future is through focusing on
structured policies in the context of autonomous learning. Much work has been done
on autonomous robot learning in general. Within the field, there is a debate as to the
relative merits of model-free or model-based methods. One of the major drawbacks
of model-free policies is that the policies themselves are somewhat opaque—they
have to be executed in order to know what they will do. Many powerful machine
learning algorithms have been developed that are “black boxes” [48]. They produce
models which can be used to make predictions or policies that can be used to perform
tasks, but these models are often inscrutable as to their inner logic, or at least
require significant analysis to penetrate. Black box algorithms are less likely to be
accepted for use by an organization, and their adoption occurs more slowly than for
processes that are directly interpretable [37]. It is useful for a person to be able to
understand what manner of policy a robot has learned. It is difficult for humans
to trust decisions that cannot be verified, so much research has gone into creating
interpretable models [91].

Thus, there is a growing interest in Explainable Artificial Intelligence [13]. Ex-
plainable AI can take the form of an AI system that is able to answer specific questions
about its policies [43] or a policy that is represented in a more interpretable format
[81]. This desire for explainability is a motivation for contributing to this area of
Explainable Reinforcement Learning, since many advanced RL methods today result
in policies which perform well but which are not directly interpretable.

This thesis progresses along the path towards learning an arbitrary TAIG, via
several avenues.

First, we explore transforming a previously learned tabular policy into a decision
tree format policy, which we consider an interpretable structure. Decision trees can
also be seen as able to encode a subset of the types of instructions that a TAIG can
encapsulate. Therefore work on learning trees aids in our eventual goal.

We also extend existing RL methods (pCQI) for learning decision trees and
develop our own (CQI and CQI2) in order to enable an agent to autonomously learn
a decision-tree-structured policy via RL.

2
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Finally, we propose a RL method that, when certain criteria are met, can learn a
full-fledged TAIG format policy.

1.2 Guide to Thesis

Chapter 2 discusses background and related work. Chapter 3 introduces the Trans-
ferable Augmented Instruction Graph (TAIG), which is a theory, paradigm, and
open-source library that facilitates developing task plans for robots. Chapter 4
showcases real-world demonstrations of TAIG with physical robots, including task
transfer. Chapter 5, discusses interactive-TAIG, which enables end-users to teach
their robot skills interactively through natural language dialogue. Chapters 6 and 7
discuss using reinforcement learning to allow a robotic agent to learn a task in such
a manner that its task plan is transparent and interpretable. Chapter 6 deals with
approaches involving human-specified conditions and Chapter 7 is concerned with
approaches that determine important features autonomously. Chapter 8 combines
elements from the preceding chapters to develop a method to autonomously learn
a TAIG that includes two while loops (it requires a task and state/action space
formulation that adhere to specific criteria). The common theme is the idea of an
instruction-graph-style task-graph as the task driver, object of construction, or means
of explanation.

This thesis marks the release of multiple open-source libraries and sample code,
including a library for TAIG (Section 3.5) and a new AI-Gym-compatible simulated
reinforcement learning environment in which the agent controls traffic lights at an
intersection (Section 7.2).

Appendices A and B provide useful resources for using TAIG. Additional informa-
tion related to the General Purpose Service Robot TAIG demonstration (Section 4.2)
can be found in Appendices E and F. Appendix C provides documentation for the
Vehicle Intersection AI Gym environment for RL. Appendix D includes information
on optimal hyperparameters for CQI2 results as well as what range of values were
searched to reach them.

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Background and Related Work

This chapter discusses related work relevant to the efforts, methods, and algorithms
proposed and demonstrated in the subsequent chapters of this thesis.

In Section 2.1, we discuss development frameworks and libraries for robots (since
TAIG is an open source framework), along with previous explorations into task
representation and related ideas. Section 2.2 brings up work relevant to the concept
of instructing a robot how to perform a task using verbal monologue, dialogue, or
other spoken interaction. Section 2.3 provides background on reinforcement learning
and decision trees, two typically unrelated concepts which we will combine in this
thesis. Other works that have combined these two areas are also discussed here.

2.1 Development Libraries and Task

Representations for Robots

There are a number of open-source libraries targeted at robots. Robot Operating
System (ROS) [75], Orocos [21], ROCK [41], and OpenRTM-aist [3] are open source
projects that focus on interoperability between the physical and virtual sub-systems
that comprise a robot. RoboComp [56] facilitates creating individual inter-operable
software components within a robot system. YARP [59] facilitates modularity of
devices and components. There are also libraries for specific functionalities such as
MRPT [12] for Simultaneous Location and Mapping, MOOS [68] for mobile robots, or
Autoware [42] for autonomous vehicles. URBI [6] provides event-driven job execution.

Research exists on automated or assisted plan and policy generation for specific
tasks in various contexts [2, 90]. Some planners automatically improve on existing
plans [1] or learn a plan by demonstration [5, 24], or through demonstration combined
with other forms of feedback [4]. Creating a task through a combination of demon-
stration and instruction has been explored [70]. Another approach takes advantage
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of existing knowledge of previously specified tasks [16]. Division of a task plan into
high/low-level logic has been explored by representing high level logic as a Markov
decision process [82] or other planning methods [22]. The approaches mentioned thus
far, however, do not consider task transfer between robots or between very dissimilar
tasks.

A natural representation for a graph-representation of tasks may seem to be Petri
Nets. Petri Nets can be used for graph-representation of tasks, as in [15, 33]. Petri
nets are well suited for describing non-deterministic distributed systems.

Task transfer for similar tasks has been investigated [63]. Other works have
trained a model for a problem and then transferred the model to a similar problem
[44, 54], or have transferred a model to a different problem in a similar domain [40].
In contrast to these approaches and Petri Nets, our focus is on skill transfer between
tasks and task transfer between robots for extremely diverse but well-defined tasks.

Robot Operating System (ROS) facilitates communication between sub-components
of a robot [75]. In contrast, TAIG (introduced in Chapter 3) operates on the task
level, abstracting the entire task policy itself. (TAIG is fully self-contained, but can
be used to complement ROS, as in Section 4.1.3)

Recently, work has categorized aspects of a learned policy as “task-specific” or
“robot-specific” [29] . We will apply this idea to tasks that are instructed by an
external agent.

The concept of “primitives” (simple actions) in a single robot system is an existing
approach [20]. Instruction graph [46], and its extension TAIG (introduced in Chapter
3) are two of multiple possible ways to incorporate this concept.

2.2 Enabling End-Users to Teach Robots Skills

by Instruction

There has been much work done on robots Learning from Demonstration [5, 45], where
the human demonstrates how to perform a task via a means such as teleoperation
and the robot attempts to replicate it. These approaches could be didactic or
interactive [51], sometimes being refined after the initial demonstration [49]. Another
popular means of transferring task information is imitation learning [7], where the
robot views a task being performed and learns how to do it.

In some cases, robots have been created that can combine instructions with
previous knowledge [64]. Among other techniques, a robot might determine similar
actions that are required between tasks, or that one task is similar to another (differing
only in the particulars) [65], or it may retrieve particular demonstration information
based on predicted necessary actions [71].

A natural way for a human to give instructions to a robot is using language. Much
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research has been done on robot understanding of commands or instructions in the
context of task learning [26]. Robots have taken advantage of instruction-by-language
in the realm of manufacturing tasks [25] as well as in a service robot [38], among
other domains. Work has gone into handling uncertainty [38] and variation in spoken
human language (as opposed to using a template) [67]. Work has even been done
combining such instruction with reinforcement learning, using spoken language as a
reward signal to learn anticipated chosen actions [85]. While some studies focus on
comprehension of specific commands, others are focused on comprehension through
interactive dialogue [50].

In previous work, a robot learned an instruction graph [58]. A specific graph
created in each instance was tied to a particular robot (although different graphs were
created tied to different robots). In Chapter 5, we will introduce Interactive TAIG,
where the robot learns a TAIG. As a TAIG, the graphs created are not system-specific.
This method is part of the TAIG framework, is released on the open source library,
and can be used with any robot that runs Python.

2.3 Reinforcement Learning and Decision Trees

2.3.1 Reinforcement Learning

Reinforcement learning is a field of algorithms for obtaining policies of (state →
action) mappings through experience in an environment [83]. We focus on Q-learning:
Given a set of states s ∈ S, a set of actions a ∈ A, and an immediate reward for
executing action a in a state s, the expected value (Q-value) of performing an action
in a state can be learned over time by experimenting with actions in states, observing
the reward, and updating the Q-value estimate via the Bellman equation:

Qt+1(s, a)← (1− α)Qt(s, a) + α(r + γmax
a′

Qt(s
′, a′)) (2.1)

where Qt is the current Q-value estimate for a state-action pair, s and a are the
current state and the chosen action, α is the learning rate, r is the immediate reward
for choosing action a when in state s (as experienced immediately by interacting with
the environment), s′ is the next state that the agent is in after executing a, and a′ is
the best possible next action, such that the maximum expected future reward from
being in state s′ is added to r after being discounted by the factor γ.

2.3.2 Decision Trees

Decision trees have often been used to create easy-to-understand solutions to classifi-
cation problems, among others. They are trees that start at a root node and branch
based on conditions [76]. An additional benefit to decision trees is that they can
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be represented graphically, which aids in human understanding [66]. Some work
has explored combining neural nets and decision tree forms [84, 94], including using
decision trees to explain neural nets [93]. We seek to create a reinforcement learning
policy that is in decision tree form.

With the eventual goal of learning a TAIG through RL, we will consider learning
a decision tree. The if-else branches in a decision tree can help us determine how to
learn the if-else branches in a TAIG.

There are additional benefits to creating a decision tree policy for a task even
without a full TAIG structure. Like a TAIG, a decision tree can be understood by a
human via visual inspection. In particular, smaller decision trees are of value.

In an AI context specifically, it has been suggested that huge decision trees are
insufficiently comprehensible to humans, and that simplifying trees is important
for humans to interact with the representation [77]. Chess experts had difficulty
understanding an early chess-playing algorithm that fully “explained” itself with
a complex decision tree–too complex a tree becomes opaque [60, 61]. It has been
shown that, all else being equal, humans prefer simpler explanations compared to
more complex ones [52]. Based on the foregoing, we assume for the remainder of the
thesis that smaller decision trees are more interpretable by humans.

2.3.3 Learning Decision Tree Policies with RL

We are not the first to attempt to learn a decision tree policy. The “G algorithm”
[23] learns a decision tree incrementally as new examples are added. The Lumberjack
[88] algorithm is for a Linked Decision Forest – like a decision tree but without the
need for repeated internal structure which would otherwise occur. TTree [86, 89]
solves MDPs or SMDPs and involves both state abstraction (grouping states together
and treating them as a single state) and temporal abstraction (referring to techniques
that group sequences of actions together and treat them as one abstract action). [74]
is a work which uses a tree as an internal structure and incrementally builds the tree,
splitting on Q-values. Unlike [36], an approach that uses decision trees as part of the
representation, we use a single decision tree to represent the entire policy. [92] creates
decision trees using a post-learning transformation. In our approaches, we instead
maintain our policy as a tree at all stages of training and merely update our tree.

Structured Policy Improvement [17, 18] represents state as a series of boolean
conditions, and uses a tree as an internal structure (although not as the final policy
representation). Also of note is that this method does not start with random sampling
but with an existing tree initialized with a policy resulting from greedy one-step
evaluation (learning a policy without taking into account future reward).

Another approach to decision tree policy policy via RL is found in [92], but that
approach still requires the backing of a table-like structure from which the tree is
built, requiring maintaining information about each specific visited state.
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The UTree algorithm [57, 87] learns a tree, starting with a single abstract state
and then continually splits as appropriate (based on a splitting criterion), ending when
a stopping criterion is reached. U-Tree based algorithms split a leaf node when there
are enough historic Q-value updates (when the mean is less than 2σ and a minimum
number of samples are present in a leaf’s history list). This is done regardless of
whether the policy would change for either of the new leaves, so unnecessary splits
occur. Additionally, only on-policy transitions are used to populate history lists. As
a result, an initially pessimistic estimate for an action’s Q-value can prevent it from
being chosen and therefore prevents its Q-value from being updated. This can prevent
an agent from converging to a better policy. An effort to produce a decision tree via
RL is found in [34], but the final product is not directly interpretable: it consists of a
tree with linear Gibbs softmax sub-policies as leaves. In contrast, we seek approaches
that create a tree with action choices as leaves.

VIPER distills a deep neural network policy into a decision tree policy for the
purpose of performing validation and verification on the decision tree format [10].

The Pyeatt Method [73] (PM) starts with a single root node and adds branches
and nodes over time. PM maintains a history of changes in Q-values for each leaf,
and it splits when it believes that this history represents two distributions. We will
use PM as a reference method in Chapters 7 and 8.

2.4 Summary

This chapter has presented related work and background information on a number
of topics useful for understanding the proposals and discussions in the chapters to
come. The work on TAIG is a continuation of instruction graph, and it fits into the
field of task representation. With the release of the library, it joins a number of other
open source robot libraries. Building upon existing instructional and conversational
dialogue work, we will demonstrate a means to use an interactive dialogue to construct
a TAIG. CQI and CQI2 are reinforcement learning methods with decision-tree style
policies that build on prior work in the RL and decision tree space. Learning TAIGs
with RL builds upon much the foregoing research and the rest of the thesis itself.

Over the course of this thesis, there will be both learning from humans and
autonomous learning. The vision of this thesis entails a combined human-machine
learning paradigm.
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Chapter 3

Transferable Augmented
Instruction Graph: Formalization

This chapter describes and formalizes the Transferable Augmented Instruction Graph
(TAIG). TAIG is a task representation that extends and improves upon Instruction
Graph (IG) [58].

A TAIG can handle more complex and demanding tasks than a simple IG, making
it more suitable for use in the real world. State and environment information can
now be tracked and recorded. Sub-tasks can be defined and halted.

Significantly, TAIG makes it easier to design and execute transferable tasks for
robots, potentially accelerating the introduction of useful robots into society at large.
TAIG allows a robot that knows one task to re-use existing knowledge where possible.
The method further allows this knowledge to be shared between disparate robots,
despite physical and software differences.

TAIG allows for executing the same instruction set across multiple different robot
platforms. The task logic is abstracted from the specific attributes of each robot.

We first discuss the “Augmented Instruction Graph” (AIG), an enhanced version
of an IG that aims to model and execute more complex tasks than could a simple IG.

We then place AIG in the context of a modular architectural paradigm that makes
it transferable. We call this “Transferable Augmented Instruction Graph” (TAIG)
since it aims to enable us, for the first time, to use identical IGs on different robots.

In order to enable our techniques to be used by the community, we have created
an open-source library and released it.

This chapter is organized as follows: Section 3.1 introduces the Instruction Graph
as background work. Sections 3.2 and 3.3 describe the approach taken to extend the
IG and make it transferable, with additional augmentations discussed in Section 3.4.
TAIG’s ability to handle more complex tasks than a simple IG and enablement of
transferability is demonstrated in Chapter 4.

11



CHAPTER 3. TRANSFERABLE AUGMENTED INSTRUCTION GRAPH:
FORMALIZATION

Figure 3.1: The structure of an example IG.

A tutorial for using TAIG with a Pepper robot is found in Appendix A and
developer-oriented documentation for the TAIG library is found in Appendix B.

3.1 Background: Instruction Graph

The concept of “primitives” (simple actions) in a single robot system is an existing
approach [20]. In previous work, the concept of representing the steps of a task as
an Instruction Graph [58] was developed. Instruction Graphs are directed graphs,
where each vertex node represents a small unit of work or a condition to test. These
units are called “primitives.” Edges between nodes indicate how the graph can be
traversed. Formally, each node v can be represented as

v =< id, InstructionType, f, P > (3.1)

where id is a unique node id, InstructionType is the type of node, f is the literal
function to be executed when that node is run, and P are the parameters to pass to
f . Types can be “Do” (performs an action), “If Condition” (tests an if-condition,
affecting which edge to traverse next), and “Loop” (runs a series of nodes while a
condition is true), among others. (See a graphical representation of an example of
this kind of structure in Figure 3.1.) Edges can be represented by

e =< vi, vj > (3.2)

indicating a progression from node vi to node vj.
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Each Instruction Graph has a single beginning and ending node. There can be
multiple paths through the graph. Execution traverses the directed edges through
nodes, executing each function f therein. If a node has multiple outgoing branches,
the output of f determines which edge to traverse.

The tuple in Equation 3.1 is hereafter referred to as a Node Tuple (as distinct
from the Primitive Tuple introduced later in Section 3.5).

Further work on IG has focused on adding an “autocomplete” to speed task
creation [32] and on the use of IGs in multi-robot scenarios [46]. This thesis addresses
the challenge of efficiently creating dissimilar tasks with shared components, allowing
for interactive graph creation, and enabling multi-robot task transfers.

Subsequent sections of this chapter will change the definition of the node tuple
and expand on IG to make it more robust and transferable. New features will be
added that make it suitable for general use and incorporate instruction graph into a
larger architectural paradigm.

3.2 Augmented Instruction Graph

3.2.1 Memory

The first of the significant contributions of this chapter is the addition of a concept
of a central memory that gets used by the AIG during execution.

In a simple IG, primitives (actions the robot can perform) have no conception
of state, of history, or of any other sort of environmental or temporal context. Task
actions are limited to reactions to the present environment, as opposed to reasoning
about the future.

We might also want the controller of a robot to have information about a network
connection or other session-based information (as in our demonstration in 4.1.2). We
may want the primitives to have access to database connections or other streams of
data. Primitives alone, being stateless, atomic actions or condition checks, could not
handle this scenario.

In a simple IG, some of this behavior could potentially be programmed if one
made assumptions about the underlying robot system. However, it would also be
desirable to be able to use our primitive functions with any backend (database, file
system, local computer memory, or even connections to networked data sources), to
enable transfer between robots, and to upgrade a robot system without breaking the
task.

We give an AIG the ability to have access to a consistent read-write memory active
during the runtime of a task, allowing the robot to keep track of the above-mentioned
information.

This central memory is managed by an object called a Memory Object. A Memory
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Object has an arbitrary set of named attributes, to or from which arbitrary types
of data can be written or retrieved. Before the execution of an Instruction Graph,
a specific Memory Object to be used for that execution is specified. (No Memory
Object needs to be specified during graph creation, although the user should have
one in mind.)

In Equation 3.1, a primitive function and arguments to pass to it are specified for
each node. In addition to any arguments specified in the P list, a “Memory Object”
(associated with the current execution) is passed to the primitive function as the
first argument (preceding the parameters in P ). (See Figure 3.2 for visual diagram.)
The function can then use this object directly and use its methods to read and write
information to memory.

By providing this functionality to the primitives at runtime, an AIG gains the
ability to have memory across the execution of the task. This allows for keeping track
of state and historical records.

A primitive will not interact directly with the memory of the system it runs on.
Primitives’ functions don’t have to care about what sort of backends are used. The
primitives determine what to read and write, and the Memory Object provides and
stores the data. The Memory Object will take care of any requisite backend memory
operations for the specific robotic system for which it was created. The primitives
themselves are still stateless but the task as a whole has memory. (Each primitive
has access to that memory when it executes.)

It is not required for an agent to explicitly instruct a robot to save information.
For a hypothetical task that involve remembering a person’s name and face, primitives
could be created to cause the robot to view the person, listen for their name, and
save this information to memory according to the instruction, “Remember the person
you are looking at.”

A Memory Object can also be used to provide initial state, environment, or other
robot-specific information to a robot. For example, the controller of a robot may
require information about a network connection or other session-based information in
order to execute commands. In this scenario (which is applicable to our demonstration
later), it would not even be possible to execute an IG running primitives on this robot
without the use of an AIG’s Memory Object to handle the maintenance of session
information. Similarly, a Memory Object can be used to open and keep open any
database connections or streams that primitives would then be able to access and
utilize (and to which they could write and from which they could read).

Further, one can easily change environment information by modifying it once in
the Memory Object, which will seamlessly provide it to all primitives.
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3.2.2 Negation

In a simple IG, if one desired to create a graph that contained one or more tests of
when a condition was true and also tests of when that condition was false, it would
be necessary to create double the number of primitives for every such case.

In our approach, the same primitive can be used in both cases because negation
of conditional nodes is allowed. This is most applicable to LOOP nodes. The Node
Tuple is modified from Equation 3.1 to the following:

v =< id, type, pid, P, neg > (3.3)

where id is a unique node id, type is the type of the node, and neg is a boolean
field indicating negation. Instead of having a literal function f there is a primitive
reference pid (discussed later in Section 3.3.1). P are parameters that will be passed
to a function stored on the primitive referenced by pid.

For an action tuple node the neg attribute is ignored. For a condition tuple node
(such as IF or WHILE), if neg is set to False, the node is traversed as normal. If neg
is set to true, then the condition result is flipped. For any conditional node,

node result = cond fun result⊕ neg (3.4)

where cond fun result is the boolean result of the function specified by the primitive
on the node at the time of execution, neg is the node tuple field, and node result

indicates which branch of the graph should be subsequently traversed.

3.3 Transferable Augmented Instruction Graph

Now that an AIG can be created with memory and negation, it is possible to represent
as complex a procedure as needed for many real-world tasks. The following sections
will now discuss how to make the AIG into a TAIG, which is transferable across
robots.

3.3.1 Primitives and Primitive Library

It is desirable to have graphs be serializable, so that they can be saved to a file
and used across systems. Previously, with functions existing directly on node tuples,
this meant that either the function had to be serializable as well, or else a string of
code to evaluate would have to be stored (a bad coding practice).1 However, it is
undesirable to have any of these restrictions on what functions can or cannot be used
as primitives.

1Using eval or exec or similar constructs in any language is typically slower, insecure, and
harder for future developers to debug [8, 11, 72].
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It would also be useful to be able to use different sets of primitives for different
robots. If a task requires communicating with a user, for example, it would be ideal
to have the same type of node in the graph represent “get input from user” and
“announce output to user” regardless of the robot. However, the implementation
details would be different depending on the robot. A robot that could speak and
listen to words would communicate with a user by this method, while a robot that
could do neither might instead display information on a screen and take input in
typed text form. These robot-specific details should be decoupled from the graph
representation, which should be concerned only with how to execute the task itself.

We also want to re-use primitives wherever possible. A robot should be able to
use existing skills for new tasks, and task-specific code should not be tied to a specific
platform, but be able to be itself re-used across robots. TAIG enables this clean
separation between robot- and task-specific primitives. A system without a formal
concept of atomic functionalities may have the transferable and particular content
intermixed and more tightly coupled.

Previously, the functions that would be stored in a Node Tuple would just be
raw functions existing in whatever was the namespace in which the IG was created.
(The previous three paragraphs illustrate the problems with this approach in the
areas of serializability, interchangeability, transferability, and re-usability.) This paper
introduces the Primitive Library, which is a collection of primitives. TAIGs are built
out of these smaller primitives.

When a user (or robot agent) is creating or running an Instruction Graph, a
Primitive Library will be associated with this process.

The primitives themselves are now tuples. Formally, a Primitive Library PL is a
set of Primitive Tuples PT (PTi ∈ PL):

PTi =< pid, t, f >

t ∈ {Action,Condition}
s.t. PTi[pid] 6= PTj[pid] ∀i 6= j where PTi,PTj ∈ PL

(3.5)

f =

{
f : P → ∅ if t = Action

f : P → B if t = Condition, B ∈ {True,False}
(3.6)

where pid is the primitive identifier, t is the Primitive Tuple type, f is function
that can take parameters, and P indicates an arbitrary number of specific arguments
(P = ∅ is allowed). In the node tuple on a graph in Equation 3.3, the pid corresponds
to a pid on a Primitive Tuple in the associated Primitive Library. When the node is
executed, the primitive is looked up by reference, and the parameters P are passed.

All node types can be classified as taking either an Action Primitive (for example,
an “Action” / “Do” node), a Condition Primitive (for example, an “If” node), or no
primitive (for example, “End If” and “End Loop” nodes).
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Serializing a graph to a file is achievable now since the node tuple now stores a
reference (string) to the primitive tuple (which contains the actual function). Since
pid is always serializable, and only the node tuples (and not primitive tuples) are
saved in the instruction graph file on disk, there are no longer any restrictions on
what types of a functions f can be.

The primitives have been decoupled from the nodes. The graph representing the
task plan is decoupled from the robot-specific implementation. A pid is unique within
a PL, but different PLs may have different functions for the same pid. (A pid may be
re-used within a graph of course, to refer to the same primitive multiple times—that
is the purpose.) Any function can be a primitive now, since what is stored in the
node tuple now is simply the reference to the primitive tuple pid. The restrictions
inherent in the simple IG structure are eliminated.

Additionally, a human or robot TAIG creator does not require access to a fully
implemented or loaded-in-memory primitive to create an instruction graph. (This
could help with development on a large system.)

We can use TAIG to use one graph to perform a task with multiple different
robots (as is demonstrated in Section 4.1), by swapping in the library meant for a
new robot. We can use multiple libraries with the same robot as well.

3.3.2 Bringing it All Together: The
Library-Memory-Graph Paradigm

With TAIG, the task policy can be represented independently of a robot, in contrast
to platform-specific approaches. Additionally, the graph itself can be directly executed
by a robot and transferred between robots without modification. (This is in contrast
to a form that is just a description of some machine-readable-only format.)

A system that creates or executes a TAIG utilizes three previously discussed
components: i) the Primitive Library, containing atomic actions and boolean condition
checks, ii) the Memory Object, providing an abstracted interface to read-writable
memory, and iii) and the Graph, describing the high-level task logic.

In an example scenario showing an interaction between these components in
Figure 3.2, the robot is playing a card game, where there are numbered cards on a
table. Previously, in node 23, the robot has determined to pick a certain card. Now,
traversing the graph to node 24, it reaches a node whereby the robot tells the user
the number of the card it has picked. Depending on which robot is running the TAIG,
a different means of communicating the card number to the human is used. In this
example, Robot 1 Primitive Library is associated with the graph, so the robot uses
voice. Also shown are two primitives from an alternate PL for Robot 2, that tells
the user the card via a display on screen instead of via voice. In both cases, the task
graph is the same, and the card number is retrieved from memory. Contrast this to
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Robot 1 Primitive Library

<“A6”, choose_next_card_to_pick>

<“A3”, say_with_arguments>

Robot 2 Primitive Library

<“A3”, display_with_arguments>

<“A6”, choose_next_card_to_pick>

<23, Action, “A6”,[ ],None>

<24, Action, “A3”, [“Turn over card %d.”], None>

Graph Excerpt

Robot-specific 
primitive

Task-specific
shared primitive

Memory Object: “MemoryObj”

integer: next_card
dictionary: known_cards
object: session
…

def say_with_arguments(memory, text):
     card = memory.next_card
     v = memory.session.voice_module
     v.say(text % card) 

def display_with_arguments(memory, text):
     card = memory.next_card
     s = memory.session.screen_module
     s.display(text % card) 

say_with_arguments(MemoryObj,”Turn over card %d”)

Runtime execution when 
Node 24 is traversed with 
associated Memory Object 
“MemoryObj” and 
associated Primitive Library 
“Robot 1 Primitive Library”

Figure 3.2: The three components of the Memory-Library-Graph paradigm interact.

the graph shown in Figure 3.1, where the primitives are integrated into the graph
instead of decoupled, and the independent Memory does not exist.

In the software, this relationship is managed by a “Manager”. At a single point
in time, the Manager holds one Primitive Library, either one Memory Object or no
Memory Object, and either one complete TAIG, no TAIG, or a TAIG in the process
of being constructed. The human or machine agent initializes the Manager object
with a Primitive Library and, optionally, a Memory Object. These can be changed for
other Primitive Libraries and Memory Objects later, between executions of a TAIG
(including between executions of the same TAIG). The Manager begins without a
TAIG. The agent can choose to i) begin creating a new TAIG from scratch or ii) load
a TAIG. After a TAIG is loaded, the agent can choose to i) add to the TAIG or ii)
execute the TAIG. After creating or modifying a TAIG, an agent can choose to i)
save the TAIG with a new or the same name, or ii) execute the new TAIG.

In this manner, the methodology above achieves a modular architecture for creating
and utilizing instruction graphs. There is a separation between memory, task logic,
and atomic task primitives. From a developer perspective, there is an opportunity
for reduction in duplicate code.
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Under this new paradigm, the same graph can be run on multiple robotic systems.
Many primitives can be shared between libraries, decreasing the cost in time, effort,
and lines of code required to implement a task on a new robot.

One of the previous limitations was that an IG would have to be executed in
the same environment as that in which it was written. Now, the TAIG can be used
in multiple environments unchanged. (The Primitive Library counts on a specific
interface to exist in the Memory Object, eliminating any need to have a primitive
refer to a specific system directly and be thus tied to that system.)

If a team is using different databases or sources for development, testing, and
production use, different Memory Objects could be employed to easily enforce this
separation while using the same code for the actual task execution.

For transferring a task from one robot to another, primitives that are task-specific
but not robot-specific can be re-used, while only robot-specific primitives must be
re-entered. For implementing an additional task on the same robot, primitives that
are robot-specific but not task-specific can be re-used, while only the truly new
functionality for the new task must be implemented.

For a properly constructed TAIG, transferring a task from one robot to another
does not require modifying a TAIG at all. The exact same TAIG can be re-used.

3.4 Further Augmentations

3.4.1 Nested Graphs (Graphs as Primitives)

TAIGs can be saved to and loaded from files. Previously, they could be saved, loaded,
and run only in their entirety.

We have added an included-by-default run ig primitive, which appears in the
Primitive Library without being explicitly defined.2 The run ig primitive is an action
primitive and can be used anywhere an action primitive can be used. It takes a single
optional string parameter (the name of the instruction graph to run).

There are two ways to use the run ig primitive. First, explicitly specify the
graph to run. Second, specify no argument. In the latter case, during execution the
primitive will attempt to retrieve the name of the graph to run from the memory
object and then run it. Of course, this requires creating and running a primitive that
will set this name in the memory object ahead of time.

This possibility for dynamic execution is very useful in situations where pre-
specified subtasks are known, but the manner in which they are to be combined or
executed is not.

2If a developer were to create their own custom primitive with the same string id as the run ig
primitive, the run ig primitive would dynamically choose a new string as a unique id (and this id
can also be retrieved programmatically).
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The child graph itself is executed using the same Manager, Memory Object, and
Primitive Library as the parent graph. The child graph runs from beginning to end,
and then the execution returns to the parent graph. (The only exception to this is
noted in Section 3.4.2.)

A child graph can itself run another child graph, drawing from the same set of
instruction graphs. There is no limit as to how deeply graphs can be nested, aside
from limits imposed by the physical memory of a machine.

3.4.2 Halt Conditions

We introduce the concept of a halt condition in an instruction graph. The halt
condition serves as a virtual kill-switch. This has applications in the areas of safety
and control.

During the construction of a graph, in addition to the graph structure, one can
specify a condition primitive as a “halt condition.”

During execution, if a graph has a halt condition specified, the condition is checked
prior to the execution of each node. If the condition evaluates to true, the entire
graph halts execution immediately.

In addition to safety, this is useful in terms of application flow when combined
with nesting graphs. If a child graph (a graph run by the run ig primitive) terminates
execution due to a halt condition, the control flow returns to the parent graph in
the same way as if it had completed successfully. This is useful for creating task
procedures using instruction graphs that include handling unexpected conditions or
otherwise escaping scenarios.

3.5 Open Source TAIG Library for Use by the

General Robotics Community

This thesis marks the debut of an open source library for TAIG. The library is available
on pypi3 and can be installed into any Python environment with the command

$ pip install instruction_graph

The instruction graph library can be used by anyone to use TAIG in their own
projects. It can be used on any robot or other system that can run python. It has
been tested and is compatible with both Python 2 and Python 3. The source code
along with documentation is available on github.4

3Instruction Graph library available as a pypi Python package: https://pypi.python.org/

pypi/instruction-graph
4https://github.com/AMR-/instruction_graph
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Although code for previous robot-and-task specific instruction graphs has been
released before, this marks the first general-purpose instruction graph library suitable
for general use, specifically designed for use by the public. It is also, of course, the
first to feature TAIGs and the Memory-Library-Graph paradigm.

All of the TAIG-related demonstrations and examples described in this thesis
utilized this library to use TAIGs to create and execute tasks.5

3.6 Summary

This chapter introduces the formal definition of TAIG along with an open source
library to facilitate its use. Building on IG, TAIG contains memory, negatable
conditions, nested graphs, and halt conditions. This allows for representing tasks
of a higher level of complexity than the IG. TAIG also entails primitives decoupled
from the graph in the form of the Primitive Library. The Library-Memory-Graph
paradigm enables transfer between robots as well as other benefits. Chapter 4 walks
through a few demonstrations of TAIG in the real world.

5Specifically, instruction graph version 0.1.9 was used in Section 4.1 and 0.2.23 was used in
Section 4.2.
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Chapter 4

Transferable Augmented
Instruction Graph: Demonstration

Chapter 3 discussed the theory of TAIG in detail. This chapter shows real-world
examples of robots running TAIG.

The demonstrations in this thesis run TAIG on commercially available robots
in the physical world. Section 4.1.2 demonstrates on a Softbank Pepper robot how
TAIG can be used to perform a task that could not be accomplished with a simple
IG. Section 4.1.3 shows the benefits of the TAIG system in terms of inter-robot
compatibility, as the same task (a card matching game) is easily transferred from the
Pepper robot to the Rethink Robotics Baxter robot. The usefulness of halt conditions
and nested graph capabilities is illustrated in a further demonstration in Section 4.2,
with a home-assistant challenge task (called “GPSR”).

4.1 Demonstration and Qualitative Comparison:

Task Transfer

First, the Softbank Pepper robot is used to explore the ability of a TAIG to execute
a task that a simple IG would not be able to perform. Then, it is demonstrated how
the exact same TAIG can be executed to perform the same task on a completely
different robot, the Rethink Robotics Baxter.

4.1.1 Robot System

Pepper and Baxter are extremely different robots. Baxter has arms meant for
dexterous manipulation, is stationary, and has a tablet display. Pepper is explicitly
reminiscent of a human, with arms meant more for gesticulation than manipulation,
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and the ability to move around. Pepper can voice words, while Baxter has no audio
output. The camera sensors are very different as well. Baxter runs the Ubuntu
operating system and interfaces with other systems via ROS, while Pepper runs a
custom version of Linux called NaoQi.

4.1.2 Task Demonstration: Pepper Matching Game

The task which will be used to demonstrate the new TAIG paradigm is Pepper playing
a matching card game. Pepper and a human player take turns picking two face down
cards in sequence. If the cards are revealed as a pair when turned over, they are
removed from the board. If not, the cards are turned back face down. The last player
to remove a pair wins the game.

The graph for this game is shown in Figure 4.1b and the primitive library in
Figure 4.1a. Note how 27 out of 33 (81%) of the nodes in 4.1b use a primitive that
is re-used multiple times. In all of these instances, the TAIG is saving memory and
complexity by referencing the primitive tuple using a string key instead of storing
the function directly.

At multiple points in the game, Pepper must wait while the human turns 1 or 2
cards face up or face down. To enable implementing the TAIG, a primitive was made
that takes one integer argument, and returns true if that number of cards are face up.
By referencing this primitive in a Loop node that is negated, the useful functionality
of waiting until that number of cards is face up is achieved.

Memory is essential to task performance. Without the capability to store infor-
mation about which cards are where, it would not be possible to win. The Memory
Object allows us to track information over time.

The Memory Object is also used in this case to maintain session information about
the robot. When writing a program that interfaces with the Pepper robot specifically,
it is a prerequisite to keep track of this information (or re-acquire it). This session
information is used to obtain sensor readings and execute lower level motion or audio
commands. If this session information were not provided to the primitives by the
Memory Object during execution, it would be required to re-initiate a new session at
every step. This would be less efficient than our method, which initiates the session
once and re-uses it throughout execution, providing it to the primitives as needed.
The primitives related to Pepper readings and actions do not care about opening or
closing this connection, they simply use it. The primitives continue to be stateless
and atomic themselves, but the application as a whole has memory.

The graph itself contains no robot-specific information. This will enable the task
to be transferred to a different robot, as described in the next section.
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(a) The Primitive Libraries for the “matching game” task
for Pepper and Baxter. Three Primitives are differ-
ent and the remainder (the majority) can be shared
between the two Primitive Libraries without modifi-
cation.

(b) The TAIG for the “matching game” task. Argument
lists are only shown on nodes if they are not empty.
Negation boolean is indicated if it is true, assumed
to be false otherwise.

Figure 4.1: Primitive Library and Task Graph for Matching Game Task
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4.1.3 Robot-Independent Task Transference: Baxter
Matching Game

The new Memory-Library-Graph paradigm enables us to take the TAIG generated for
Pepper and execute it–unchanged–for Baxter. Previously, a specific IG was tied to
a particular robot. Instead, in our case, we simply saved the graph to a file and loaded
it to execute on Baxter. All that was required was implementing a new Memory
Object, and implementing the minority subset of primitives that were robot-specific.

The Baxter and Pepper Memory Objects kept track of game logic using the same
fields. There were a couple of robot-specific differences. The Pepper Memory Object
kept track of a Pepper session, which is irrelevant to Baxter. Baxter uses ROS1 and
so the Memory Object for it set up subscribers and publishers to certain topics.

Next, new primitives were implemented as necessary. Out of 14 primitives, 11
could be re-used and only 3 had to be implemented anew. The two primitives related
to communicating with the human (“A2” and “A3” in Figure 4.1b) had to be re-
implemented. In particular, Pepper can speak with words, while Baxter has no voice
capability. In the case of Baxter, the robot would display words (or images) on its
screen. The initialization primitive was the only other primitive to require new code,
since initialization is different for these two disparate robots.

The means of attaining images from the camera changed as well, from an API call
to a ROS topic. The image dimensions and image formats also differed. Despite these
differences, no change was required in any primitives in order to handle camera input.
This was taken care of by i) the Memory Object, which in each case retrieved the
image from the appropriate location and stored it in a common format expected by
the primitives that would retrieve it later, and ii) the initialization primitive, which
set up and stored (in the memory) the particular calibrations for the camera used
on each robot. (The image dimensions differed between robots too, but our code to
analyze and determine card information from an image was robust to such changes.)

The majority of the code is unchanged.

Previously, implementing an existing task on a different robot, even with an IG,
would likely have required writing the program mostly from scratch, perhaps with
some manual copy-and-pasting from existing code. In a simple IG, keeping track of
state would have had to been done by a primitive assuming that it was running on a
particular machine and interfacing with that robot directly.

With TAIG, the game-logic related primitives can be run on any machine, not just
the one for which they were created. The Memory Object determines the appropriate
location in which to store the information. The Memory Object allows primitives
to be invariant as to whether the data is stored on a Baxter, on a Pepper or on an

1It is possible for Pepper to use ROS as well, but in our implementation of Pepper playing the
matching game ROS was not used
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Figure 4.2: Pepper and Baxter play the matching game.

external device.

In Figure 4.2, Pepper and Baxter are each shown playing the matching game.
Baxter’s screen indicates that it has found a pair, while Pepper is voicing this fact
aloud. A video of a segment of this game can be found at https://github.com/AMR-/
CMU-Structured-Representations-For-Robots-Videos/blob/master/Transferable_

Augmented_Instruction_Graph_Video.mp4

As shown, in the Memory-Library-Graph paradigm, once the task logic is specified,
all that requires being changed are the particular atomic functionalities that are truly
robot-specific. Task handling related to the task itself (if properly separated into task
and robot primitives) largely does not need to be rewritten. The task-based, robot
independent primitives can be used without modification.

An identical set of instructions was used to perform the same task on different
robots. Handling different types of hardware is accounted for, and even different
capabilities (speech abilities on Pepper compared to lack of a speaker on Baxter) can
be addressed. The specific low-level instructions differ. A minority of robot-specific
actions differ. The Instruction Graph itself, however, is identical across both robots.
The very Instruction Graph that was generated for Pepper playing the matching
game was saved to a file. Using the exact same Python commands on Baxter as on
Pepper to load and run the TAIG, this file was loaded and was executed without
modification, causing Baxter to play the matching game as well.
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4.2 Practical Demonstration: General Purpose

Service Robot

RoboCup@Home is an international competition for at-home robots. This section
discusses how TAIG helped enable our Pepper robot to tackle a task such as General
Purpose Service Robot (GPSR).

4.2.1 RoboCup@Home and the General Purpose Service
Robot Task

RoboCup@Home (www.robocupathome.org) is an international competition in which
robots perform tasks meant to imitate activities that a household assistive robot
might be expected to perform, such as retrieving groceries, guiding a guest through
the house, or fetching drink orders at a cocktail party. One of its leagues is the Social
Standard Platform league, in which Pepper robots are used.

One of the most challenging tasks in the first stage of the competition in 2018 is
called “General Purpose Service Robot” (GPSR).

In GSPR, the robot will receive three commands (one at a time). Each command
is generated randomly from a grammar. There are millions of possible sentences that
can result. Find examples listed in Figure 4.3.

Tasks may involve numerous robot capabilities including moving to locations,
searching for objects or furniture, identifying objects, identifying people, counting
people and objects, finding people, following people, guiding people, pose detection,
gender detection, gesture detection, clothing detection, carrying objects, and dialogue-
based interactions with humans (to learn information, deliver a message, or for other
purposes).

This test is presented as a case study since it highlights the utility of the Task
Representation research that was used to address the test.

4.2.2 Robot System

We use the Pepper robot. In addition to the TAIG framework, we use an object
recognition system and NLP framework.

Object recognition is accomplished through a CNN with data augmentation
techniques based on [31] and trained with YOLOv2 and pre-trained weights dark-
net19 448.conv.23 for the convolutional layers.

The Robot has an NLP framework developed in the CORAL lab (a successor
to that described in [27]) that can listen for audio with Pepper’s microphones and
transform the audio into text using either Pepper’s inbuilt Nuance Vocon or Google
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• navigate to the living room find a waving person and say what day is today

• tell me the gender of the person at the entrance

• tell me the name of the person in the living room

• tell me how many people in the dining room are boys

• find the lightest cutlery in the kitchen

• tell me how many fruits there are on the side table

• pick up the grape juice and place it on the storage table

• bring me the orange

• deliver the fork to the person raising their right arm in the corridor

• navigate to the counter locate the paprika and deliver it to robin at the
desk

• follow robert from the bed to the corridor

• lead charlie to the bookcase you will find them at the couch

Figure 4.3: Example GPSR Category 2 Commands

Cloud Speech. Each recognized utterance is parsed using a linear chain conditional
random field parser trained on the specific task and subtask in question.

Finally, each parsed utterance is matched with a parametrized frame that rep-
resents a robot command. At a given time, the parser is attempting to match to a
specific set of frames, called a frameset. The parse with the best match is returned
if it contains the required frame parameters.

The frame is provided to the application on a ROS topic with a ros message that
has 6 fields aside from the header:

• frame - a string identifier for the frame (e.g. “Deliver Object”, “Find Object
In Room”, “Drink Order”, “Yes”)

• raw - a string of the raw text received

• parameters - a dictionary of key-value pairs representing parameter names
and values (e.g. “room” → “living room”)

• incomplete - a boolean to indicate whether the frame is “incomplete”. If false,
it means that the parsing was completely successful. If true, it means that the
parsing encountered some errors, but that there was enough information to
indicate something (and it is up to the application to choose how to handle this
partial information, if at all). If and only if incomplete is true, one or both of
the missing and/or unexpected fields will be populated (if false, neither will
be)
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• missing - a string array of parameter names that were missing from the sentence

• unexpected - a dictionary of key-value pairs of parameters whose values do
not correspond to the expected parameter type (e.g. “room” → “pasta”)

We developed a Memory Object to use with GPSR that listens to this ROS topic
and stores the most recent frame.

There are primitives in the Primitive Library used here which set or change the
frameset, and another that consumes a frame.

To give an example of a frame, consider the command, “find the largest apple in
the bedroom.” The parser will recognize this as the frame “findobjcatextreme” (Find
Object/Category by Extreme-Attribute). The “findobjcatextreme” frame has three
parameters. First, the attribute (“largest”), the object or category (“apple”) and the
room (“bedroom”). The resulting ROS message published would have the following
structure:

frame→ “findobjcatextreme”
raw→ “find the largest apple in the bedroom”
parameters→ (obj property→ “largest”, object→ “apple”, room→ “bedroom”)
incomplete→ False

If the sentence had instead been “find the largest fruit in the bedroom” (a category
instead of an object) then there would be a key-value pair of category →“fruit”
instead of object →“apple”. A contract exists between the planning and speech
module detailing what parameter names a given frame can have, and how many.

It could also be that there was an incomplete parse. Perhaps the phrase “find the
largest apple in the bed” was heard, in which case the message would look like

frame→ “findobjcatextreme”
raw→ “find the largest apple in the bed”
parameters→ (obj property→ “largest”, object→ “apple”)
incomplete→ True
unexpected→ (room→ “bed”)

Sometimes a task will involve additional dialogue. For example, one of the tasks
is to go to a room and ask a person their name. In this scenario, when Pepper enters
the room, the frameset is changed to “name” so that after Pepper asks for a person’s
name, it can process their response. Another example is when Pepper is asked to
manipulate an object. Since Pepper does not have this functionality, the decision was
made to cause it to ask a person for help. Part of this interaction involves asking
yes/no questions of a human, for which Pepper switches to the “yesno” frame.
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4.2.3 Enabling GPSR through TAIG

GPSR involves a complex series of actions. The possible requests that could be made
of Pepper are large and involved but finite. Creating a defined task plan ahead of
time, such as with a TAIG, is theoretically feasible. Certainly, it would be desirable
to be able to take advantage of the specifics of the possible tasks that are known.
However, the degree of variability is still such that creating the whole task as a single
graph would be tedious to implement and very brittle to execute and maintain or
modify. If that were our only option, it would be inferior to simply writing actual
code for the task.

A more suitable approach would be to create specific plans ahead of time for
executing particular components of the larger test. We can use nested graphs for this
purpose.

GPSR involves listening to and executing three robot commands. We write each
possible command as a graph. The GPSR test itself is also a graph (see listing 4.2 for
the graph description and listing 4.1 for the legend for interpreting graph listings in
this document). The GPSR-test graph involves listening for the command, and then,
after parsing it, dynamically loading the appropriate graph for the specific subtask
specified. It does this three times.

Another aspect of the approach is the halt condition each subtask graph has.
During execution of a subtask, Pepper displays a “Stop Subtask” button on it’s tablet.
When this button is pressed, the subtask stops execution immediately. The purpose
of this is to account for situations in which Pepper gets stuck or is otherwise unable
to continue with a particular subtask. We can use the RoboCup@Home Continue
rule, and press the button. Control flow returns to the parent graph and Pepper
will return to the starting position and wait for the next command (if any remain).
Although continuing at this point would make us unable to achieve points for that
particular command, it leaves open the possibility to achieve points for executing
additional commands during the test.

The graph for the GPSR parent task in is shown in listing 4.2 and a corresponding
subset of primitives from the Primitive Library is shown in Figure 4.4 (the columns
are ID, Name, and Description, respectively).
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Actions

begin_frame_listen Listen for Frame

Listen for a command or statement (subscribe to 
topic to which the speech module will publish 
frame information)

clear_subtask_info Clear Subtask Info
Clear values in memory after GPSR subtask is 
complete

go_to_location Go To Location

Go to the Location specified by the string passed 
as argument.  If string is None, go to a location 
specified in memory.

inc_counter Increment Counter Increment the counter variable by 1

load_gpsr_by_frame
Load GPSR TAIG for 
Subtask

For GPSR, determine the appropriate TAIG to run 
as a child graph based on the command frame, 
and note this graph in memory

match_frame Match Frame

Check the last speech heard (or series of speech), 
and determin the Frame of the question being 
asked / statement being made.  Specify this frame 
on memory.last_question_frame

queue_subtask_statement
Queue Subtask 
Statement

For GPSR, parse a command frame and and add 
parameter information to memory

run_ig Run Graph

[Built In] Run the specified graph, or load from 
memory the name of a graph and execute it as a 
child graph of the current graph, passing the same 
memory and primitive library

sa_frame Set Say Args for Frame

Set [say] arguments on memory from the frame in 
preparation for repeating the question or command 
in Pepper's own words

say Say Perform Text to Speech on the Input Argument

say_with_args Say With Args

Perform Text to Speech on Input Argument as a 
template, filling in certain strings from say_args list 
in memory

set_counter Set Counter Set the counter variable to a value
Conditions

counter_less Is Counter Less Than
Check if the counter variable is less than the 
passed argument x

frame_heard Has Frame Been Heard
Check if any frame has been detected since 
listening was last begun

Figure 4.4: Primitives used in GPSR parent TAIG.
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Listing 4.1: Legend for Graph Listings

Key :
NODE TYPE (NEGATION) p r i m i t i v e i d [ argument l i s t ]

Listing 4.2: TAIG for GPSR

START GRAPH
say ``Begin General Purpose S e r v i c e Robot ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` Hel lo . Today I am a General Purpose S e r v i c e Robot . ' '
s e t c o u n t e r [ 0 ]
WHILE c o u n t e r l e s s [ 3 ]

say `` Please g ive me a task to perform , and when you t e l l
↪→ i t to me, p l e a s e do not pause in the middle o f
↪→ your sentence ' '

b e g i n f r a m e l i s t e n `` gps r ca t ego ry 2 ' '
WHILE NOT frame heard
END LOOP
match frame
sa f rame
say w i th a rg s ``The task ( task %d) that I am to perform

↪→ i s %s . ' '
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask

↪→ ' '
l oad gps r by f rame
run i g
c l e a r s u b t a s k s t a t e m e n t `` p l a n n e r c o n f i g / planner / subtask

↪→ ' '
i n c c o u n t e r
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

END LOOP
say ``GPSR has been completed ' '
END GRAPH

4.2.4 Description of a Specific GSPR Command Execution:
“Deliver Object From Location” Task

This section describes the partial execution of GPSR by exploring how it handles an
example first command.

In the beginning of the GPSR task, the robot goes to designated start, says
“Please give me a task to perform...” and listens for a command (as described in
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Listing 4.2 in Section 4.2). While a frame is not heard, the robot is kept in the while
loop listening for a frame.

Let’s say the command the operator gives it is “go to the dining table, find
the crackers, and bring it to Charlie at the sink.”

First, this will be parsed by the speech module, which will match it to the “deliv-
erobjfrom” frame (“Deliver Object From” frame). The “Deliver Object From” frame
refers to the category of command that could be described as “Go to a location,
find an object and deliver it to the person at another place.” It has four required
parameters (placement, object, name, and beacon). Thus, a ROS message published
by the speech node after processing the above sentence would be:

frame→ “deliverobjfrom”
raw→ “go to the dining table find the crackers and bring it to Charlie at the sink”
parameters→ (name→ “Charlie”, beacon→ “sink”, object→ “crackers”, placement→
“dining table”)
incomplete→ False

When this hits the topic, the controller consumes it and the frame heard prim-
itive condition becomes true, exiting the waiting loop. The robot repeats to the
human the task it is to perform (e.g. processing the ROS msg). Then, it adds to the
Memory Object the information from the parameters, and sets in the memory which
graph to run as a child graph (in this case, “deliverobjfrom.ig”). Then it runs that
graph as a nested child graph.

The Primitive Library and the Memory Object are passed to this child graph
during execution, so that it can have access to the information. The details of this
graph are described in listing 4.3. The primitives used in this subtask can be found
in Figure 4.5 (the columns are ID, Name, and Description, respectively).

The robot announces it’s intention to find an object in the room, in this case
saying, “I am going to find crackers at the dining table and deliver it to Charlie at
the sink.” Then it will proceed to the dining table using the go to location primitive,
accessing the stored location of “dining table” and going to the coordinates to which
it corresponds on the map. Once at this location, the search for catobj primitives
causes it to retrieve the object “crackers” from memory and search for it in the
vicinity. If it cannot find it, it goes back to the operator and reports such.

If it is able to find the crackers, then it must somehow bring them back to the
operator. This was an important challenge for our team, as Pepper does not have
great manipulation capabilities. Due to these limitations, the team made the decision
to not attempt to have Pepper try to carry anything. Instead, Pepper will begin an
intelligent interaction with a human to ask for assistance.

First, it will look for a human. If it finds one, it will call out to them, identifying
them by shirt color, and ask them for help. It bribes the human with candy in return
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for assistance. Then, it enters into dialogue with the human, asking the question in
yes/no format and waiting for a response. When the response is heard, the robot
proceeds accordingly. If the response is negative, the robot returns to the operator,
and explains the situation. If the response is affirmative, the robot tells the human to
pick up the object and follow it, at which point it leads the way back to the operator.
In either case, information about the human is stored in memory so that Pepper can
talk about it to the operator.

In this manner, Pepper completes the task.
The TAIG for this subtask begins on the next page.
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Listing 4.3: The complete TAIG for “Deliver Object From” (“deliverobjfrom”) GPSR
Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s e t s a y a r g s d e l i v e r o b j f r o m
say w i th a rg s `` I am going to f i n d %s at the %s and d e l i v e r i t

↪→ to %s at the %s . ' '
g o t o l o c a t i o n None
say w i th a rg s `` I am look ing f o r %s . I am at %s now . I w i l l

↪→ d e l i v e r the ob j e c t to %s at the %s l a t e r . ' '
s e a r c h f o r c a t o b j None
IF catob j f ound

say w i th a rg s `` I found %s at the %s . I need to d e l i v e r
↪→ i t to %s at the %s . ' '

approach obj
po int
say `` I t doesn ' t look l i k e something that I can pick

↪→ up . I am going to look f o r someone to help me . ' '
put down arm
i n i t h e a d
f i n d p e r s o n i n p l a c e
IF person found

s e t h e l p e r i n f o
s ay w i th a rg s ``Excuse me person wearing a %s

↪→ s h i r t , or anyone in t h i s room . Would you
↪→ help me pick up the %s here at the %s and
↪→ d e l i v e r i t to %s at the %s ? I f you do t h i s
↪→ f o r me , my team ' s humans w i l l g ive you
↪→ candy l a t e r . P lease answer yes or no . ' '

b e g i n q f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please p ick up the ob j e c t
↪→ and f o l l o w me . ' '

g o t o l o c a t i o n None
say w i th a rg s ``The person wearing a %s

↪→ s h i r t helped me br ing the %s at
↪→ the %s here . I am now look ing f o r %
↪→ s . I am at the %s now . ' '

f i n d p e r s o n i n p l a c e
IF person found

say `` I s e e a person here . Excuse
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↪→ me, the person wearing a %
↪→ s helped me br ing the %s at
↪→ the %s over . You must be
↪→ %s at the %s . P lease take
↪→ the ob j e c t from my he lpe r
↪→ . ' '

say ``Thank you f o r he lp ing me
↪→ d e l i v e r the ob j e c t . The
↪→ task i s done . I w i l l
↪→ return ' '

g o t o l o c a t i o n ``
↪→ d e s i g n a t e d s t a r t ' '

s ay w i th a rg s ``The person
↪→ wearing a %s helped me
↪→ br ing the %s at the %s to %
↪→ s at the %s . The task i s
↪→ done ' '

ELSE
say `` I t seems l i k e the person I

↪→ am look ing f o r i s not here .
↪→ Sorry , p l e a s e l eave the
↪→ ob j e c t here . I w i l l r e turn
↪→ to my operator . ' '

g o t o l o c a t i o n ``
↪→ Des ignated s ta r t ' '

s ay w i th a rg s ``The person
↪→ wearing a %s s h i r t helped
↪→ me br ing the %s at the %s ,
↪→ but I couldn ' t f i n d %s at
↪→ the %s . So we l e f t the
↪→ ob j e c t the re . The task i s
↪→ done . ' '

END IF
ELSE

say ``Ok. Thanks f o r l e t t i n g me know . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``The person wearing a %s

↪→ s h i r t would not he lp me br ing the
↪→ %s at the %s to %s at the %s ,
↪→ although I did f i n d i t . Sorry . ' '

END IF
ELSE

say `` I t seems that no one i s in here . I w i l l go
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↪→ back . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found the %s at the %s , but I

↪→ couldn ' t car ry i t and I couldn ' t f i n d
↪→ anyone to help me br ing i t to %s at the %s
↪→ . ' '

END IF
ELSE

say `` I cannot f i n d the ob j e c t here . I w i l l go back
↪→ . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I could not f i n d the %s at the %s to

↪→ d e l i v e r to %s at the %s . Sorry . ' '
END IF
END GRAPH
HALT CONDITION: b u t t o n i s p r e s s e d ``Stop Subtask ' '

What if Pepper gets stuck? With such a complex task, this is not an impossibility.
Although the developers attempted to account for most scenarios, there is a chance
it could happen. In the current graph, if Pepper successfully finds the objects and
sees a human near enough to talk to but the human just stands there and does not
respond to Pepper’s interrogation, Pepper will wait indefinitely for the human to
respond. Of course, knowing of this possibility allows us to account for it in the code,
but ultimately there is always the chance of the unexpected. In this situation, an
operator can use the specified halt condition and press the “Stop Subtask” button.
Control will return to the parent GPSR graph and the robot will have an opportunity
to earn more points before time runs out.

Please find a list of all primitives used in GPSR in Appendix F and some additional
subtask graphs for GPSR in Appendix E.

Without the advances in TAIG, it would not have been feasible to use instruction
graph for GPSR.

With our improvements, the use of TAIG is not only possible but advantageous.
TAIG enables us to dynamically load and run subtasks using graphs-as-primitives.
We use halt conditions as an emergency control flow measure that does not require
stopping the entire operation of the robot.

4.3 Further Use of TAIG

The TAIG software was used during the 2018 RoboCub@Home competition and was
also used in the CORAL lab for Pepper and Baxter to complete tasks.

Additionally, it was used in Human-Robot Interaction experiments conducted on
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Figure 4.5: Primitives used in “Deliver Object From” TAIG.

Actions
approach_obj Approach Object Approach object in front of Pepper

begin_frame_listen Listen for Frame
Listen for a command or statement (subscribe to topic to which the 
speech module will publish frame information)

find_person_in_place Find Person In Place Search for a person by spinning in a circle until the person is found

go_to_location Go To Location
Go to the Location specified by the string passed as argument.  If 
string is None, go to a location specified in memory.

init_head Initialize Head Put head facing forward and up

point
Point At Location of 
Interest Point at a specified coordinate

put_down_arm Put Down Arm Pepper lowers any raised arms

queue_subtask_statement
Queue Subtask 
Statement

For GPSR, parse a command frame and and add parameter 
information to memory

say Say Perform Text to Speech on the Input Argument

set_say_args_deliver_obj_from
Setup Say Args for 
Deliver Object From

in the Deliver Object From subtask, take the information about 
locations, person name, and object and queue them in say_args in 
memory to be put into say args templates when say_args is next 
called

say_with_args Say With Args
Perform Text to Speech on Input Argument as a template, filling in 
certain strings from say_args list in memory

search_for_catobj Search For CatObj

Search the current room for the specified thing (if object, search for 
the object, if a category, search for any object in that category)
Pepper will go to the center of the room and spin around, or for a 
large room, go to certain specific points in the room and spin around 
in those locations in order to search

set_helper_info Set Helper Info

If Pepper has found a human during the most recent search, save 
their detected attributes to memory (i.e. shirt color) in preparation for 
asking them for help moving an object

Conditions

button_is_pressed Button Is Pressed
Are any of the specified buttons (displayed on Pepper's screen) 
pressed since they were displayed (or since last reset)?

catobj_found
Is Category or Object 
Found Has a Category or Object been found in the most recent search

helper_response_heard
Helper Response 
Heard Has a request for help been answered (in any manner)

person_found Is Person Found has a person been found in the most recent search

positive_repsonse Positive Response
Assuming the most recent frame was either a "yes" or "no" category 
of response from a human, was the response "yes"/"agree" etc?
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the CMU campus that involved analyzing a human’s response to Pepper’s behaviors
during a competitive game [78, 79].

4.4 Summary

This chapter provided real-world demonstrations of the feasibility and usefulness of
TAIG. All demonstrations were successful. TAIGs on the Pepper robot showed how
the use of innovations such as the Memory Object and halt conditions enabled more
complex tasks to be represented and executed than could be done with an IG.

Implementing GPSR would have been tedious to create as a graph if nesting were
not an option. With nesting and halt conditions, it is not only feasible but beneficial.

Another task (the memory game) was transferred between two robots (the Pepper
and Baxter), where the exact same policy representation was used to execute the task
on both systems. Implementing the memory game was possible to do in a transferable
manner due to the introduction of memory and the primitive library. This shows how
TAIG enables task transfer.
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Chapter 5

Interactive Transferable
Augmented Instruction Graph

Chapters 3 and 4 focused on the ability to develop, modify, and transfer a task plan
between executions.

Chapter 5 builds on this foundation and discusses modifications made to the
TAIG framework that allow a human to interact with a computer/robot agent to
build a TAIG interactively during runtime. This contributes towards a future that
includes lay people using natural verbal interaction with robots as a means of creating
task plans.

Through the work presented in this chapter, a human will be able to have a
conversation with this agent according to a set grammar. Through this grammar, the
human will be able to command execution of command primitives or existing task
graphs as well as build up new task graphs that can be executed.

This marks another improvement over the simple IG, in the following ways.
Although similar interactive work was done regarding the simple IG [58], Interactive-
TAIG is included in the TAIG library and is a framework that is fully customizable by
the end user. New primitives can be added in to the framework to be recognized, and
even the grammar itself can be adjusted. Additionally, interactive-TAIG supports
the creation of nested graphs during the interactive process.

Section 5.1 introduces a formalization of the additions to TAIG that enable
interactivity. It involves updating the Primitive Tuple and introducing the Interactive
Manager. Section 5.2 demonstrates creating a TAIG via this interactive process.

Interactive-TAIG is an extension to TAIG that allows for interactivity in a situation
where the use of a TAIG might be desired.
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5.1 Methods for Realizing Runtime Interactivity

There are two main components to the extension. First, the primitive tuple is
expanded with additional elements. Primarily this is to allow the robot and human a
means of referring to a primitive.

The second main component is the “Interactive Manager” (IM), which serves as
the agent with which the human interacts.

5.1.1 The Updated Primitive Tuple

In the pursuit of interactivity, we do not only care what a primitive does, but also
how a sentence can refer to it, both as a request and as a description. Thus PT shown
in Equation 3.5 is expanded and updated as per Equation 5.1. This may entail some
additional up-front development cost per primitive.

The additional elements enable the following functionality:

• Specifying how the human (or non-IM agent) refers to this primitive

• Specifying how a string of a text describes the parameters of this primitive

• Specifying how the IM agent refers to this primitive, both in general and with
a specific parameterization

All the new elements are optional, but should be filled in if the primitive is to be
used in an interactive manner. It is explicitly not required to include them and their
presence or lack thereof has no effect on the technical operation of an instruction
graph.

PTi =< pid, t,f, name, description,

matchFn, argparseFn, paramDescFn >

t ∈ {Action,Condition}
matchFn : (string→ {True,False})

argparseFn : (string→ list[string])

paramDescFn : (list[string]→ string)

s.t. PTi[pid] 6= PTj[pid] ∀i 6= j where PTi,PTj ∈ PL

(5.1)

where the new elements name, description, matchFn, argparseFn, and paramDescFn

are described below. As in Equation 3.6, pid is the primitive identifier, t is the type,
and f is the literal function. To use the interactive agent, at least matchFn (and
argparseFn if you want any parameters to be parsed) must be filled in.
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Human-Readable Name and Description

name is a human-readable simple-name for the primitive and description is a
human-readable description meant to give information about what the function does,
any arguments it might take, what should be supplied, and other useful long-form
information.

Human Understandability Even Without Interactivity These two attributes
would be useful to fill in even if a developer was handcrafting tasks and not using the
interactive module. It would benefit a human developer, too.

In a real-world complex robotics system, there could be a large number of primitive
actions and conditions. Moreover, it may not be clear from the function name what
the entire purpose of a primitive is, or what arguments it requires. It would be
inefficient and defeat the purpose of using the TAIG paradigm if it required a human
to read and becomes familiar with the code of each primitive in order to decide if
they should tell a robot to include it in an instruction graph.

In this manner, the benefit the name and descripition elements still provide is
understanding the purpose and behavior of a primitive without looking through the
code. A human user creating an IG can use this to quickly create an IG even from a
Primitive Library with which they are previously unfamiliar. An additional benefit is
that when an IG is automatically generated by a robot or other machine process (as
in [47]), a human could readily understand what the new IG does by inspecting these
attributes.

Match Function or Regex

The element matchFn is a function that checks an input text string (from a human
or other agent) and determines if it refers to the primitive PTi (returning a boolean
True if so). In the instruction graph library, this element can be a function or it can
be a regular expression (regex) [53]. If it is a regex, it is transformed into a function
that returns True if the regex matches the input string.

This must be specified in order for the IM to recognize a string of written text as
referring to this primitive.

Argument Parsing Function or Regex

The element argparseFn is a function that takes as input a string (previously
confirmed to refer to the primitive PTi) and returns a list of strings that are the
parameter values for the specific parameterization of this primitive.

In the instruction graph library, argparseFn can be a function or it can be a
regex. If it is a regex with capturing groups, it is transformed into a function that
returns a list of strings, where each string is the contents of a captured group.
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If the primitive has no parameters, this value can be ignored. Otherwise it should
be specified in order for the IM to parse a string of written text into a specific
parameterization.

Parameterized Description Function or Regex

The element paramDesFn is a function that maps from a list of strings (representing
parameters) to a string. The output string is a natural language description of
this primitive parameterized with the input parameters. This is used when the
IM agent wishes to describe an instance of a primitive. The output should be
human-understandable.

If paramDesFn is not supplied, the IM agent will fall back to description instead.
If neither of these values is supplied, then the IM has no way to describe the primitive
in a human-intelligible manner.

Example

Consider the following mini-example. Imagine that there is a library with the following
two primitives defined:

PT1 = < 1,Action, f1, “Rotate”, ”Rotate in place.”,

matchFn : r‘‘rotate .* (degrees|radians)’’

argparseFn : r‘‘rotate (.*) (degrees|radians)’’

paramDescFn : “rotate %s %s” >

PT2 = < 2,Action, f2, “Move”, “Move in a forward/back.”,

matchFn : r‘‘move (forward|back) .* (foot|feet|meters)’’

argparseFn : r‘‘move (forward|back) (.*) (foot|feet|meters)’’

paramDescFn : “Move in the %s direction by %s %s” >

(5.2)

The r prepending the string indicates a regular expression to be tested.
Consider that a phrase “Please move forward three meters.” is heard by the agent.

(The specific processing of this will be covered in the next section.) To determine
whether this corresponds to any primitives, the matchFn attribute is checked, and
the regular expression contained within is run against the phrase. In this case, it
would match PT2 but not PT1.

Now, consider that PT2 is matched, and it is now required to determine how to
parameterize the node tuple that will refer to this primitive tuple. This is done
by accessing the argparseFn attribute of PT2. In this example, it is a regular
expression with capturing groups. Three arguments will thus be captured, and stored
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as parameters. (Thus it can be inferred that it is valid for f2 to take three parameters.
It is important that the output of argparseFn and input of f are compatible.) In this
case, the three parameters would be “forward”, “three”, and “meters”.

If the agent needs to describe this node in the graph, it will use paramDescFn to
describe it as “Move in the forward direction by three meters.”

The example here uses the regex and string conventions, with the behavior
described. Creating explicit functions to match, parse, and describe is also permitted.

5.1.2 The Interactive Manager

The goal of the Interactive Manager is to allow command and instruction of the
robot or agent in the execution and construction of TAIGs via natural language. By
default, there is a text-based interface. It is possible to connect it to an external
speech system to allow for verbal communication as well.

The grammar is a combination of library-defined structures and primitive-defined
structures.

On instantiation, the Interactive Manager refers to a specific Primitive Library
and (optionally) Memory Object. This controls what primitives are available.

Additionally, there is a default set of a “Builder Phrases” which can be modified
as necessary. This controls the grammar (and so the grammar is also somewhat
configurable). There is a set of grammar components that are always present, but the
specific regex or string corresponding to it can be changed. For example, the default
for an affirmative response is “yes” but this could be changed to “yup,” “righty-o,”
or any other phrase desired. Another example is that the default phrase for a human
to tell the IM when learning a task is done is any pattern satisfying the regex

done (?:learning|teaching)

but this could be changed to any regex. The details of the Builder Phrases are shown
in Appendix B and an example interaction is shown in Section 5.2.

Interaction with the IM is achieved through repeatedly calling the parse input text
method. It takes one argument, a string of text from the human or other agent, and
returns a string representing the response. This simple interface means that the IM
could be hooked into a variety of other systems.

The IM agent can be thought of as a finite state machine. The IM agent exists in
one of four different states:

• WAITING: No task is currently being learned. Agent can be told to i) execute
a primitive, ii) execute a graph, or iii) begin learning a graph. (A newly
instantiated IM begins in this state.)

• CONFIRM LEARN: The IM agent believes that it has just been asked to learn
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a new task graph, and will listen for confirmation.

• LEARN WAITING: The IM agent is currently learning a new task graph. Agent
can be told to add a new primitive or be told that the graph is complete.

• CONFIRM ADD: The IM agent believes that it has just been asked to add a
primitive to a task graph, and will listen for confirmation.

The IM maintains the following attributes:
• state ∈ {WAITING,CONFIRM LEARN,LEARN WAITING,CONFIRM ADD}
• ig dir: the directory where existing graph files are to be found and new graphs

are to be stored

• p: Builder Phrases

• ig name: None during WAITING, otherwise holds the name of the graph
currently being built

• PTQ: a fully parameterized Primitive Tuple queued to be added. (Will be
empty in all states aside from CONFIRM ADD.)

When the parse input text method is called, the behavior will depend on the
state. In each of the four states, the raw input text is pattern-matched against a
series of Builder Phrases, in the order noted in the figure. When a match occurs, the
relevant action and/or state change occurs. The agent will respond appropriately,
asking for confirmation in the case of a request, or stating what action it has taken
(whether execution of a task/primitive, construction of a graph, or other action). If
no match occurs, the agent responds with this fact, asking for another response. The
state machine is described in Figure 5.1.

The orange shapes represent the four states. Each branch from each state is
numbered. Each branch represents a path to follow if a particular pattern is matched,
checked in the order of number increasing from 1 (the largest number off of each
circle represents the default case if no previous matches occur). Each branch has text
indicating the nature of the patterns (patterns themselves are configured and stored
in Builder Phrases). A pentagon is a conditional check and a blue box represents the
procedure that the agent follows (low level procedures may not be included).

For example, consider an IM in the WAITING state that receives input text “raise
arm”. First, the IM will check whether it is being asked to learn a new graph. It is
not. Second, it checks whether it is asked to run a graph. It is not. Next, it will
check whether there is a primitive in the library that matches “raise arm”. If there
is, it will be executed at this time. If the input text was instead “run raise arm”, this
matches the Phrase for running a graph, and so it would attempt to run a task graph
with the name “raise arm”, regardless of whether or not there was a primitive with
that designation as well. If the input text is “I will teach you to raise arm” the agent
would assign “raise arm” to ig name, move to state CONFIRM LEARN, and ask for
confirmation to learn this new graph. These general matching regular expressions are

46



CHAPTER 5. INTERACTIVE TRANSFERABLE AUGMENTED INSTRUCTION
GRAPH

Figure 5.1: A finite state machine representing the Interactive Manager’s behavior
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in the Builder Phrases and can be modified before execution if desired.

The extra elements in the Primitive Tuple discussed in Equation 5.1 in Section
5.1.1 enable some of this functionality. The details of these cases are discussed in the
following subsections.

Executing a Task Graph

In the WAITING state, if the “run task graph” pattern is matched (which by default
settings would be “run [task-graph-name]”), the ig dir directory is searched for a
graph with this name. Both pre-existing and newly created task graph files will be
stored here. If one is found, it is loaded and executed immediately. If no such graph
is found, the agent says it cannot find a graph by this name.

One limitation discovered in the course of implementing this example is that in
the case of audio conversation, names that are spelled differently but sound the same
are an issue. Of course, when communicating via typed text this is not a problem.

Executing an Action Primitive

In the WAITING state, if neither the “learn new graph” nor “run graph” patterns
are matched, the agent assumes it is being instructed to execute a single primitive. It
iterates through the entire primitive library, executing each matchFn until a match
occurs. (If no match occurs, the agent responds with this information.) Then, if there
is a match, the argparseFn is used to parameterize the instance of the Primitive
Tuple, which is then immediately executed with those parameters. The paramDesFn

(or description) is used to describe back to the user what the agent is now executing.

Adding an Action Primitive to a Task Graph

In the LEARN WAITING state, if none of the patterns 1 through 7 are matched,
branch 8 is the “Add Action Primitive”. The agent will attempt to match input
text to a Primitive Tuple using matchFn, and if a there is a match, parameterize it
using argparseFn. This information is stored in PTQ. The paramDesFn is used for
the agent to ask confirmation of the user as to whether what the agent believes is the
requested node to create is actually so, and the state is set to CONFIRM ADD.

In the state CONFIRM ADD, if the user gives an affirmative text input, the
Primitive Tuple stored in PTQ becomes added to the task graph. If the user gives
a negative text input, PTQ is simply cleared. Either way, the state returns to
LEARN WAITING.
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Adding a Conditional Primitive to a Task Graph

In the LEARN WAITING state, if the “Add If” or “Add While” (branch 2 or 3) is
recognized, a conditional Primitive Tuple is retrieved, parameterized, and added to
the queue in much the same way as for an action Primitive Tuple. The confirmation
is the same as well.

The difference is that there will be a keyword such as “If” or “While” that tells
the agent that the text following will specify a Conditional type of Primitive Tuple
and not an Action.

Adding a Nested Graph (run ig) as a Node to a Task Graph

When in the LEARN WAITING state, a Run IG node can be added to the task
graph (nesting an existing graph inside a new graph). The syntax for this is exactly
the same as the syntax for requesting to execute a graph in the WAITING state.
When the command is received in the LEARN WAITING state, however, instead of
executing the graph, the agent will ask for confirmation and then add it as a node in
the graph currently under construction.

5.2 Learning to Search and Deliver a Message

We demonstrate the Interactive TAIG capability on the Pepper robot with a search-
and-deliver-message task.

The imagined scenario is that a human operator wants to teach Pepper to find
them and tell them when their next meeting is. To make the scenario simplistic,
‘searching’ is simply rotating in place until a person is found.

There are nine primitives used in this demonstration, two conditional and seven
action. Find them described in Figure 5.2 (with interactive-enabling attributes
noted).1 ((The paramDescFn (or parsed description) attribute is a function but in
the figure it is just noted as a string that conveys the result. For example, the actual
value for the ROTATE primitive is
lambda args: "rotate %s radians %s" % (args[0], args[1]),
abbreviated as the value shown in the figure.)

During the demonstration, according to the dialogue shown later, two graphs are
created. The first graph is a “spin search” graph, where Pepper learns to spin around
until it sees a human. When it sees a human it stops and the task completes. This is

1Find the full code file at https://github.com/AMR-/CMU-Structured-Representations-For-Robots/
blob/master/Interactive_TAIG/pepper_ig/ITAIGDemoPrimitiveLibrary.py If you view the
code, note also the following difference between the names of the attributes in the code and in
this thesis: matchFn becomes match re or fn, argparseFn becomes argparse re or fn, and
paramDescFn becomes parsed description.
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SAY

“say (.*)”

ROTATE

match_re_or_fn

argparse_re_or_fn

parsed_description

matchFn argparseFn paramDescFn

“say (.*)” “say (.*)” “say %s”

“Rotate (right|left) 
[0-9.]+ radians(s|)”

“Rotate (right|left) 
([0-9.]+) radians(?:s|)”

“rotate %s radians %s”

PERSON_
FOUND

“mark person found” “mark person as found”

MOVE_
FORWARD

“move forward [.0-9]+ 
meter(s|)”

“move forward ([0-9.]+) 
meter(?:s|)”

“Move forward %s meters”

WHAT_
TIME

“.*what time.*” “What time is it?”

WHEN_
MEETING

“when is my meeting” “When is my meeting”

THANK_
YOU

“thank you” “”

IS_DONE_
SEARCHING

“Person found” “person found”

IS_HUMAN_
VISIBLE

“.*human.*visible.*” “a human is visible”

SA
Y

“s
ay
 (
.*
)”

“s
ay
 (
.*
)”

“s
ay
 %
s”

SA
Y

“s
ay
 (
.*
)”

“s
ay
 (
.*
)”

“s
ay
 %
s”

Actions

Conditions

match_re_or_fn argparse_re_or_fn parsed_description

Figure 5.2: Description of primitives in Primitive Library used in the Search and
Deliver Message task
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End

Action

While

If

End

N
Negation

End

Action

While

If

End

N
Negation

IS_DONE_SEARCHING N

ROTATE [“left”, 0.78]

IS_HUMAN_VISIBLE

PERSON_FOUND

SAY [“No one is in front 
of me.”]

ELSE

End

RUN IG “spin_search”

WHEN_MEETING

Spin_search graph find_and_remind_me_of_meeting graph

Figure 5.3: Description of the task graphs that are created during the demonstrated
dialogue

used as a subtask in the “find and remind me of a meeting” graph, where Pepper
will spin around until it sees a human, after which it will state when is the person’s
meeting. These two graphs are shown in Figure 5.3. The graphs are created entirely
using the interactive process.

To use interactive TAIG with Pepper, a simple script2 was made that uses Pepper’s
in-built speech recognition to translate spoken words into text which is then fed
to the interactive manager. (Since voice recognition is not a part of this work, a
limited vocabulary specific to this demonstration was defined for Pepper, increasing
the chance that Pepper would hear our phrases correctly. The text was then fed
into the interactive manager in raw form.) The text response from the interactive
manager (if any), is then spoken by Pepper.

Find the actual dialogue used in the demonstration in Figure 5.4. ‘H’ refers to
the human and ‘P’ refers to Pepper.

The dialogue begins with the human giving commands to Pepper, with Pepper
executing the commands (telling the current time and moving forward a meter). You
can see that the command matches the matchFn attribute of the WHAT TIME and
MOVE FORWARD primitives.

Then, the human indicates that Pepper should learn a new graph “spin search”.
The first command in this graph is a to create a while loop. Note how the command
“While not person found” indicates the while loop, indicates the negation, and identifies

2Find example code for using TAIG interactive manager with Pepper here: https://github.

com/AMR-/CMU-Structured-Representations-For-Robots/tree/master/Interactive_TAIG
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H: Pepper, what time is it?
P: Current time is [time]
P: Executed ‘what time is
it?’
H: Move forward one meter.
P: [moves forward]
P: Executed move forward
one meters
H: I will teach you to
spin search
P: I will learn to spin search?
H: Yes
P: Ok, I am ready to learn.
What is first?
H: While not person found
P: I should a start a while
loop with negated condition
‘person found’?
H: Yes
P: Ok, what’s next?
H: Rotate left 0.78 radians
P: I should rotate by radians
0.78?
H: Yes
P: Ok, what’s next?
H: If human is visible
P: I should start an IF con-
dition with condition ‘if hu-
man is visible’?

H: Yes
P: Ok, what’s next?
H: Mark person found
P: I should mark person as
found?
H: Yes
P: Ok, what’s next?
H: ELSE
P: I should add an ELSE
clause to the IF condition?
H: Yes
P: Ok, what’s next?
H: Say “No one is in front of
me.”
P: I should say ‘no one is in
front of me’?
H: Yes
P: Ok, what’s next?
H: End if
P: I should end the IF con-
dition?
H: Yes
P: Okay, what’s next?
H: End loop
P: I should end the loop?
H: Yes
P: Ok, what’s next?

H: Done Learning
P: I have learned spin search
H: I will teach you to find me
and remind me of a meeting
P: I will learn to find me and
remind me of a meeting
H: Yes
P: Ok, what’s first?
H: Run spin search
P: I should run the graph
spin search?
H: Yes
P: Ok, what’s next?
H: State meeting time
P: I should ‘when is my meet-
ing?’
H: Yes
P: Ok, what’s next?
H: Done learning
P: I have learned
‘find me and remind me of
a meeting’

H: Run find and remind me
of a meeting
(P executes task)
H: Thank you.
P: You are welcome

Figure 5.4: Full dialogue for the demonstration
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Figure 5.5: Pepper learns and executes the “find-and-remind-me-of-a-meeting” task.

the condition for the loop. The interactive manager’s Builder Phrases tell it how to
parse the fact that it is a while loop and how to parse the negation, and the matchFn

attribute on the IS DONE SEARCHING primitive causes the match.

The second command to add to the graph is “Rotate left 0.78 radians”. This adds
a parameterized action primitive. Once again, the matchFn attribute on the ROTATE
primitive causes the match. The argparseFn attribute allows the interactive manager
to parse the two arguments from the command: “left” and “0.78”. The paramDescFn

attribute describes how Pepper will phrase the intended primitive with parameters
when it requests confirmation from the human.

The graph shown in Figure 5.3 is created via this interactive process.

After the “spin search” graph is created, the human in the demonstration creates a
“find and remind me of a meeting” graph. This graph has as it’s first action primitive
a run ig primitive that will run a nested graph named “spin search”.

Finally, after creating these graphs, the human user commands pepper to execute
the “find and remind me of a meeting” task. Pepper then spins around until it sees
the human again, and reminds them of the meeting. See a sequence of pictures
depicting some moments from this process in Figure 5.5. Videos of this demonstration
can be downloaded from the github video repository associated with this thesis.3

3A videos of this interaction can be downloaded from https://github.com/AMR-/

CMU-Structured-Representations-For-Robots-Videos/blob/master/ITAIG_raw.mp4. The
same video with visual annotations corresponding to the robot’s state and understand-
ing of the in-construction task graph can be downloaded from https://github.com/

AMR-/CMU-Structured-Representations-For-Robots-Videos/blob/master/ITAIG_all_

annotations.mp4.
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5.3 Summary

This chapter introduced an extension to TAIG that facilitates interactive dialogues
with a computer or robot agent, through which TAIGs can be created, saved, loaded,
and run. This helps to make TAIG useful in the world, as it is no longer strictly
necessary to use programming to create or run a TAIG. These advances are included
in the open-source library. With the right groundwork (a sufficiently defined Primitive
Library), even a lay-person could interact with an agent to run commands or give
instruction on a wholly new task.
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Chapter 6

Explainable Reinforcement
Learning via Decision Tree Policies:
Using Human-Defined Conditions

This chapter switches focus from constructing structured policies under human
direction to learning structured policies with a combination of human input and
autonomous learning. When autonomous learning is brought into the picture, it could
be asked whether keeping policy structured matters. There are reasons for structure,
one of which is that it allows for interpretability. The benefits of interpretability are
further discussed in Chapter 7. A human may be able to determine and define possible
actions and conditions, but not determine optimal or even a successful policy. (In
other words, creating a Primitive Library, but without creating a successful graph.)

Chapter 6 begins an initial investigation into constructing policies in a decision
tree format using reinforcement learning. It discusses policies that take the form of a
decision tree where the conditional branches of the tree are split on features defined
by a human. A human will create a set of possible conditions/features that the agent
can choose to utilize, and our methods will determine which ones to use and where
to place them in a tree.

The first method, described in Section 6.2, learns a tabular policy using rein-
forcement learning that our algorithm transforms into a decision tree. The next
method, described in Section 6.3, learns a decision tree itself using a reinforcement
learning algorithm. The domain used in each case, the Taxi domain, is explained in
Section 6.1.
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Figure 6.1: Visual representation of the taxi environment.

6.1 Taxi Environment

In our explorations with human-defined conditions, the Taxi environment “Taxi-
V2” [30], from Open AI [19], is used.1 The Taxi environment is a 5x5 grid. The taxi
can drive around. Obstacles are represented by ‘—’ and open space by ‘:’. There
are four locations where passengers can stand to wait to be picked up (marked by
the letters ‘R’, ‘G’, ‘Y’, ‘B’). A passenger will start at one of these locations and
want to go to a different one of the same four locations. The goal is to find a policy
for the taxi such that wherever the taxi starts it will go to the passenger, pick up
the passenger, go to the goal location, and drop off the passenger. This discrete
environment has 500 total states and 6 basic actions. Two examples are shown in
Figure 6.1. On left, the taxi (yellow rectangle) is at position (1,2), the passenger to
be picked up is in position 3 (‘B’), and the drop-off location is in position 1 (‘G’).
The taxi turns green when the passenger is inside it. On the right, the episode is
complete, as the taxi has dropped off the passenger at their destination.

6.2 Transformation of an Existing Tabular Policy

6.2.1 Method

One method of building a decision-tree-style policy is to take an existing policy and
transform it into a decision tree style policy.

The method proposed here transforms a Q-table Q from a tabular policy into a
decision tree. The idea is to group states that are similar (with similar features and
the same ‘best action’) into buckets based on conditions.

1https://gym.openai.com/envs/Taxi-v2/
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In the transformation method, a human specifies a set of conditions C, where
each c ∈ C is a function mapping from a state s to a boolean B.

Given C and Q, the process has two steps: i) checking whether C is “sufficient”
to separate the policy into a decision tree, and ii) transforming the policy.

Algorithm 1: Procedure for Determining If a Set of Conditions is “Sufficient”
with Respect to a Given Tabular Policy

1 Given set of conditions C where each (c : s→ B) ∈ C (meaning, each c in C
is a function taking a state s as an argument and returning a boolean).

2 Given environment E with set of possible states s ∈ S
3 Given a Q-table which maps each s ∈ S to a next action

4 -
5 g ∈ mixed groups← a list of sets, where each set g ⊂ S and sets in the list are

non-intersecting (mutually exclusive);
6 % initialize mixed groups as a list with a single item - the set S itself
7 mixed groups← [{S}];
8 D ← C;
9 while mixed groups 6= ∅ and D 6= ∅ do

10 c← condition drawn from and removed from D;
11 split groups← (the list of sets derived by taking each set in mixed groups

and separating that set into two sets – one set containing each s for which
c(s) is true and one set containing each s for which c(s) is false);

12 Remove from split groups all empty sets;
13 Remove from split groups all sets where each state s in the set yields the

same next action according to the Q-table;
14 mixed groups← split groups;

15 end
16 if mixed groups = ∅ then
17 The conditions in C are sufficient
18 else
19 The conditions in C are insufficient
20 end

The algorithm for step (i) is shown in Algorithm 1. If C is marked “sufficient”,
then C can be used to create a decision tree that replicates the policy of the table
precisely. It is not always necessary for a set of conditions C to be marked as
sufficient in order to obtain a policy that could solve a task—it may be the case that
a policy that almost replicates the tabular policy is good enough. But this check
provides a guarantee, and even if C is not sufficient, exploring what states remain in
mixed groups at the end of a sufficiency check can allow the human to intelligently
determine new conditions to add to C. It might also be that a decision tree using
sufficient conditions would overfit, and that using insufficient conditions is a superior
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state F1 F2 F3 action
A 0 0 0 3
B 0 1 1 4
C 1 1 1 5
D 1 1 1 5
E 0 0 1 4
F 1 0 1 5
G 0 0 0 3
H 1 1 0 3

Table 6.1: Example of sufficiency concept: states and features

choice. (This is always environment and condition dependent.)

Algorithm 2: Transforming a Q-table into a Decision Tree Policy

1 Given an ns x na q-table Q (where ns are the number of states s ∈ S and na

are the number of actions a ∈ A);
2 Given an indexed, ordered set of condition functions (c : s→ B) ∈ C such that

c(s) yields a boolean ∀c, s;
3 f ← a ns x nc feature matrix (where nc are the number of c ∈ C), created as

follows:
4 for r ← 0 to ns do
5 for i← 0 to nc do
6 % give the value of f at (r,i) the binary output from executing the ith

condition ci on the rth state sr
7 f [r, i] ← ci(sr)

8 end

9 end
10 L← a 1 x ns label vector :
11 for r ← 0 to ns do
12 L[r] = a′ for which value of Q(sr, a

′) is greatest;
13 end
14 Create a decision tree using features f and labels L using the standard ID3

algorithm;

For example, given the 7 states in Table 6.1, consider the case where the human
suggests features 1 and 2 compared to the case where the human suggests features 1,
2, and 3. The results of the conditions for a given state are as shown. (“F1” means
“feature 1,” and the “action” is action with the highest Q-value.) With only features 1
and 2, the following groupings result: ((A, E, G), (B), (C, D, H), (F)). Two of the
groups have members with different “best actions,” (state A has best action 3 and
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Figure 6.2: Example count of how many states indicate a particular best action for a
successful policy

state E has best action 4) and so this feature set would be marked insufficient. It
could still be chosen for use, but efficacy is not guaranteed. Alternatively, using a
feature of set of features 1, 2, and 3 results in grouping ((A, G), (E), (B), (C, D),
(H)). Now, the feature set is sufficient, because no group has multiple best outcomes.
Each group could be represented as an abstract state in a leaf node of a tree.

The algorithm for step (ii), the actual transformation, is shown in Algorithm 2.
We create a condition table, where each state is evaluated against each condition. We
uses these as features for learning a decision tree. The number of classes for leaves is
equal to the number of discrete actions available. We use ID3 [39] to learn the tree.

6.2.2 Exploratory Results

To demonstrate this method, the simple Taxi environment is used. The Taxi environ-
ment has 500 states, and six actions. We used standard tabular Q-learning to solve
the environment.

In Figure 6.2, see an example of the distribution of how many states have a
particular action as the ‘best action’ for an example tabular policy. It is not surprising
that there are exactly 4 dropoff states (for 4 locations) or 12 pickup states (4 pickup
locations x 3 goal locations for each).

In Figure 6.3 find the final list of conditions used for transforming the Taxi
environment. Some of the conditions were thought of immediately (such as checks for
where the passenger and goals are), while others (such as ‘obstacle on the immediate
right’) were proposed after using Algorithm 1 to determine which sets of states were
not being separated that should be. The final C used is not sufficient. There were
25 ‘mixed groups’ remaining. Typical of this was the group (283, 183).2 The group
of size two had two states with different best actions. See renderings of each in

2In Taxi, states can be uniquely referenced by an integer.
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1. Taxi is at goal location

2. Destination is above the taxi

3. Destination is right of the taxi

4. Destination is below the taxi

5. Destination is left of the taxi

6. There is an obstacle between taxi
and destination

7. Taxi is at passenger location

8. Passenger is in taxi

9. Passenger is below taxi

10. Passenger is above taxi

11. Passenger is right of taxi

12. Passenger is left of taxi

13. Taxi is on right edge of environment

14. Taxi is on left edge of environment

15. Taxi is on bottom edge of environ-
ment

16. Taxi is on top edge of environment

17. There is an obstacle between taxi
and passenger

18. There is an obstacle on taxi’s imme-
diate left

19. There is an obstacle on taxi’s imme-
diate right

Figure 6.3: List of conditions used for taxi decision tree.

Figure 6.4. (At left is the taxi environment in state 283, and at right is the taxi
environment in state 183. Both states satisfy the same set of conditions for our set of
conditions.) In state 283, the taxi is at position (2,4), and the “best action” is to
go Up. In state 183, the taxi is at position (1,4), and the best action is to go Left.
Both of these are reasonable actions. However, is there no reason that the taxi at
(2,4) also could not go Left. Ultimately, some human judgement is required in this
technique to determine what set of conditions a successful policy would require.

With unlimited max depth, transformed tree for the example policy has a size of
361 nodes. While it is useful to show the feasibility of transforming a policy in this
way, the table itself is only 500 states large.

There are a few limitations to this method. One of the most prominent is that it
requires human effort to determine the conditions necessary to use. Additionally, it
does not learn the tree directly but rather it requires first obtaining a tabular policy,

Figure 6.4: Taxi environment states 283 and 183
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which is not possible for all environments. The result is an approximation of a policy.

6.3 Learning a Tree with Pre-Specified

Conditions

6.3.1 Method

This method learns a decision tree directly using reinforcement learning and human-
specified conditions.

Find the algorithm for this method in Algorithm 3. Lines 1-4 describe the setup
parameters. The condition functions C are the human-specified conditions. Lines
5-8 describe the creation of a mapping M of literal states sl ∈ SL to abstract states
sc ∈ SC . This mapping is determined by how each condition in C evaluates sl (the
“condition profile”). Lines 9-11 describe some subsequent setup before running the
main algorithm in lines 12-16. Q-learning is run with a Q-table policy and a Tree
policy, with state space SC instead of SL. Since the real observations will be in SL,
the mapping M is used to convert a literal state sl to an abstract state sc. The
Q-table is updated after taking an action just as in standard Q-learning. The Q-table
is never used directly to choose an action, however. Instead, a tree T is derived from
the Q-table using ID3, and that decision tree is utilized during the exploit step to
choose an action. At the end of training, T is the resulting decision tree policy.

This results in lower memory requirements, since only abstract states are tracked
instead of tracking every state. When the algorithm learns information by taking
an action from a particular literal state, it assumes the same result applies to other
states in the abstract state. Although this method uses a table as part of its process,
the actual policy is represented by a decision tree.

6.3.2 Results

We again use the taxi domain with the 19 human-specified conditions from Figure
6.3. 500 literal states were transformed into 370 abstract states.

We trained on 100,000 episodes with greedy-ε. We used an episode time-out
of 100 timesteps (if the agent did not succeed in 100 timesteps, the episode would
terminate). In the beginning of training, it would always timeout and penalties per
episode ranged from 24 to 33.

At the end of the training, evaluating the resulting policy on 10 episodes showed
an average timesteps per episode of 82.2 (it solved the task within 100 timesteps
sometimes, and other times it timed out). The penalties incurred were reduced to
0. While this is far from optimal, it did learn. Extending training to one million
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Algorithm 3: Procedure for Learning a Decision Tree with Human Specified
Conditions in Realtime
1 Given an indexed, ordered set of condition functions (c : s→ B) ∈ C such that

c(s) yields a boolean ∀c, s;
2 sl ∈ SL ← set of literal states;
3 a ∈ A← set of actions;
4 d← maximum depth for the decision tree to be learned (can be unlimited, with

finite conditions it will be a finite tree);
5 A vector of length nc (the number of conditions) can be produced for a state s

by evaluating each condition c at that state and setting the corresponding
index in the vector to 0 for False or 1 for True. Call this vector the
“condition profile” of a state.;

6 sl ∈ g ∈ G← set of sets of states such that for a given grouping g, all sl ∈ g
have the same condition profile, no sl in different g have the same condition
profile, and each sl is distributed in exactly one set g.;

7 sc ∈ SC ← set of abstract states formed by drawing one state from each g∀g;
8 M : (sl → sc)← a mapping that maps each sl to its corresponding sc.;
9 nsc ← the size of SC ;

10 F ← a nsc x nc features matrix where each row is the condition profile for each
state sc.;

11 Q← a nsc x na Q-table (where na is the number of actions in the action space);
12 Initialize a decision tree T as a single leaf indicating a single action randomly

chosen from A.;
13 Run a normal Q-learning algorithm on (Q, SC , A) with the following

adjustments:
14 • During exploitation, ignore Q and use T to choose the action to perform

instead
15 • When updating Q, consider the actual state of the environment sl, use M to

map it to sc, and update the row of the Q-table Q corresponding to sc
16 • When any row of Q is updated, IFF the column with maximum reward for

that row changes, update T to be the decision tree that best fits the current Q,
using F as the features in the ID3 algorithm, with maximum depth d if set.

17 At the conclusion of training, T represents the learned decision tree.

62



CHAPTER 6. EXPLAINABLE REINFORCEMENT LEARNING VIA DECISION
TREE POLICIES: USING HUMAN-DEFINED CONDITIONS

training episodes does not improve the average time to complete the task, suggesting
that this is a limitation of the method, or at least of this method on this domain.

6.4 Summary

This chapter introduced a method that trained using a standard tabular method and
transformed the policy after the fact. Then, it introduced a method that learns a
decision tree without any intermediary representation.

There are scenarios where, at this point in time, a computer cannot determine
what is or is not a relevant feature by which to make decisions, but a human can. In
such a scenario, it may be the case that a human can posit possible features, but not
determine an optimal policy in the manner that an RL algorithm can.

In these situations, techniques such as those introduced in this chapter become
relevant. The techniques here presented involved decision tree policies. Humans
declared possible conditions upon which the tree could split, and the methods used
reinforcement learning to determine the optimal policy thereby.
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Chapter 7

Explainable Reinforcement
Learning via Decision Tree Policies:
Conservative Q-Improvement

This chapter switches focus from constructing structured policies under human
direction or learning with a combination of human input and autonomous learning to
learning structured policies completely autonomously. It might be asked whether we
should continue to care about structure if the policy is going to be learned completely
autonomously. One of the benefits of a structured policy is how it allows a human to
understand or interact with the policy.

Understanding a learned policy would be useful in several types of situations.
First, it would be useful where safety is a concern, such as in vehicles or drones
[55, 69]. It can also affect the degree of trust in a system. Doctors are less likely
to trust decision-making aids they cannot explain, even if the model has actually
discovered useful new information [13, 35]. Having the ability to perform a human
check could increase trust in a model that was created in simulation but not yet
exposed to the real world. There is the potential for harmful bias (i.e. sexism) in a
learned model[14, 28], another area in which a human check could be useful. Allowing
human review would also apply in situations where simulation is possible but testing
the model in real life is extremely expensive (such as space exploration [9]).

A subsequent goal will be to have a robot autonomously learn a TAIG in order to
solve a task. To move towards this end, this chapter keeps the focus on learning a
policy in the form of a decision tree. A decision tree has conditional branches, which
is a subset of TAIG functionality. We will improve upon an existing technique to
learn a decision tree policy via reinforcement learning. Our method allows an agent
to learn a decision tree using reinforcement learning where it makes decisions about
on what features to split in the observation space.

65



CHAPTER 7. EXPLAINABLE REINFORCEMENT LEARNING VIA DECISION
TREE POLICIES: CONSERVATIVE Q-IMPROVEMENT

Figure 7.1: An image of Robot Navigation environment

Two environments are introduced in Sections 7.1 and 7.2, both of which will be used
to test the methods. All environments used in this chapter are implemented in AI Gym
from Open AI [19]. Section 7.3 provides background information on the previously
mentioned “existing technique,” the Partial Conservative Q-Improvement (pCQI)
method. Section 7.4.1 introduces Conservative Q-Improvement (CQI), which improves
upon pCQI by adding fine-splitting capabilities. Section 7.4.2 introduces Conservative
Q-Improvement 2, which improves upon CQI by adding Feature Combinations. We
test these methods on the environments discussed in this chapter, comparing them
against each other as well as against a baseline reference method. The basic results
are described in Section 7.5.1. Since one of the attributes of the CQI/CQI2 methods
is the ability to choose for optimizing for different goals (i.e. overall reward, size),
Section 7.5.2 delves into how to go about tuning hyperparameters to achieve these
tradeoffs.

7.1 Modified RobotNav Environment

We use the modified RobotNav environment described in [80] to test the methods. In
this 2D environment, there is a robot, a goal location, and one or more obstacles/holes.
The robot must navigate to the goal while avoiding the obstacles/holes, as shown in
Figure 7.11. There are three actions in the action space: i) move directly towards
goal, ii) move perpendicular to direct-line-to-goal (right), iii) move perpendicular to
direct-line-to-goal (left).

1Image taken from [62, 80]

66



CHAPTER 7. EXPLAINABLE REINFORCEMENT LEARNING VIA DECISION
TREE POLICIES: CONSERVATIVE Q-IMPROVEMENT

Figure 7.2: Two examples of rendering of the vehicle intersection environment

Additional modifications can be made to the environment to yield, effectively,
multiple similar environments. Using the 4-length state space as in [80] of [i) angle
between agent and goal, ii) distance from agent to goal, iii) angle between agent and
hole/obstacle, iv) distance between agent and hole/obstacle], is henceforth called
“Robot Navigation A”. Using the alternate 5-length state space [i) agent position x, ii)
agent position y, iii) hole/obstacle position x, iv) hole/obstacle position y, v) boolean
(0 or 1) indicating whether the agent was closer to the goal than the hole/obstacle
was], will henceforth instead be termed “Robot Navigation B.”

The code for the Robot Navigation environment can be found at https://github.
com/AMR-/CMU-Structured-Representations-For-Robots/blob/master/RobotNavigation/

RobotNavigation.py.

7.2 Vehicle Intersection Environment

Additionally, we present a new OpenAI Gym “Toy Text”-compatible environment:
“Vehicle Intersection”. We also provide the code for this configurable and difficult
environment.2 It is described in some detail here, with additional documentation in
Appendix C. This is an additional environment that we use to test the methods.

In Vehicle Intersection, vehicles approach a four-way intersection from the four
two-lane roads. Each approach to the intersection has a stoplight that can be red or
green. The agent controls these four traffic lights, and actions involve turning the
lights red or green.

2Find it on GitHub at https://github.com/AMR-/gym_vehicle_intersection
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The vehicles move at a fixed speed when unimpeded. If they are blocked by a
vehicle in front of them going in the same direction, they stop. If they are blocked by
a vehicle in front of them going in a different direction, there is a collision. If a vehicle
approaches the edge of the intersection and encounters a green light, it continues
moving. If it approaches the edge of an intersection and encounters a red light, it
stops and waits until the light is green, at which point it moves forward.

Additionally, each car has an attribute called “turn signal” which can be one of
three values: “none,” “left,” or “right.” This indicates what direction it will turn at
the intersection. Vehicles come in different lengths. Movement and time are discrete.

Each episode, there are a set number of vehicles that will spawn on the map over
the course of the episode. The episode completes when either this number of vehicles
has safely exited the intersection or when there is a collision between any two vehicles.

The agent receives a penalty of -1 when a vehicle is forced to wait at a red light
(per vehicle, per timestep). A vehicle stuck behind another vehicle waiting at a red
light also incurs this penalty. The agent receives a penalty of -1000 when a collision
occurs. An optimal episode has, at most, a reward of 0 (which may not always be
possible depending how vehicles spawn). The goal becomes that of reducing waiting
time for vehicles while also avoiding collisions.

The environment has a render() method which shows a visualization in colored
ASCII characters. Find an example in Figure 7.2. The shown rendering includes the
default road length of 14. The lights are situated near the intersection, to the right of
each road, and display red or green. In both examples, at least one vehicle is waiting
at a red light while another passes through the intersection. At right is a vehicle in
the midst of turning left through the intersection, as a vehicle approaching from the
left-road waits at a red light (when it turns green, it will turn right). At the front of
each vehicle an arrow indicates the turn signal.

There is no acceleration in this environment. Vehicles move or they don’t. There
is a delay in vehicle movement of one timestep when a red light turns green. (When
an action is taken, vehicles move first, and then the lights change.)

Action spaces are discrete options. In this work the SetByLight action set is
used (for a discrete action space of size 9) instead of the default.

The following are some of the customizable options for the environment and their
defaults (for a full list, see the documentation in Appendix C):

• action set - which of the action sets to use (ToggleRoad(), ToggleLight(), Set-
ByRoad(), SetByLight(), SetExplicitly()) (see full documentation in Appendix
C or online for details). default: ToggleRoad()

• road length - length of the road before the intersection. (intersection length is
2.) default: 14

• use turn signals - boolean. if False, cars only go straight. default: True

• max vehicles on map - when this number of vehicles are on the map, do not
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spawn additional vehicles until at least one exits the intersection. (Note: This
parameter affects the size of the observation space.) default: 8

• vehicles to spawn per episode - the number of vehicles to spawn per episode.
affects episode length. default: 10

• waiting penalty. default: -1

• collision penalty. default: -1000

The following equation gives the upper limit of the size of the observation space
(some states are unreachable):

16 · V · (4 · (L+ 2) ·R) (7.1)

where V is the maximum number of vehicles allowed on the map, L is the road length,
and R = 3 if turn signals are used, R = 1 otherwise.

In this thesis, Vehicle Intersection has max vehicles on map set to 2.

7.3 Partial-CQI

This thesis builds upon what is termed the Partial Conservative Q-Improvement
(pCQI) method, a joint work with Topin, Jamshidi, and Veloso which is a part of
the Conservative Q-Improvement method (CQI) [80]. We discuss pCQI here in some
detail.

The pCQI method is a technique for learning a decision-tree-style policy using
RL. The tree is initialized with a single leaf node, representing a single abstract state.
Over time, it creates branches and nodes by replacing existing leaf nodes with a
branch node and two child leaf nodes.

The tree is split only when the expected discounted future reward of the new
policy would increase above a dynamic threshold. This minimum threshold decreases
slowly over the course of training and resets to its initial value after every split.

The high-level algorithm is shown in Algorithm 4. At a given timestep, the
environment will be in state st. This will correspond to some leaf node L. When
there is a single leaf node, states correspond to this node. When there are multiple
leaf nodes, the tree must be traversed to determine the corresponding L (each branch
node having a boolean condition that operates on st, indicating which of two children
to traverse).

Once L is identified, an action at is chosen. If exploring, a random action is
taken. If exploiting, an action is chosen based on the highest Q-values on that leaf.
Executing the action yields a reward rt and next-state st+1. A series of updates are
then performed.

Each node tracks information on Q-values for each action and visit frequency for
the node. The Q-values on leaf L are updated using the standard Bellman equation
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update. Each node keeps track of how often it has been visited. Each leaf node
maintains a history of possible splits (one per dimension, splitting on the halfway
point of each dimension). These are potential means of converting the leaf node into
a branch node with two child nodes. These estimated child nodes have hypothetical
visit frequencies and Q-values-per-each-action, which are updated at each update
step where the agent is in a state corresponding to a given node.

Algorithm 4: Partial Conservative Q-Improvement

1 T← initial tree is a single leaf node;
2 HS ← the starting threshold for what potential ∆Q is required to trigger a split;
3 hS ← HS;
4 D ← the decay for HS and hS values;
5 for number of episodes do
6 while episode not done do
7 st ← current state at timestep t;
8 L← leaf of T corresponding to st;
9 at, rt, st+1 ← TakeAction(L);

10 UpdateLeafQValues(L, at, rt, st+1);
11 UpdateVisitFrequency(Tree, L);
12 UpdatePossibleSplits(L, st, at, st+1);
13 bestSplit, bestValue← BestSplit(T, L, at);
14 if bestV alue > hS then
15 SplitNode(L, bestSplit);
16 else
17 hS ← hS ·D
18 end

19 end

20 end

Then, the possible splits are checked to determine which split would yield the
most split value, where split value is increase-in-expected-reward moderated by visit
frequency. If this value is beyond a threshold hS, the split occurs. Otherwise, this
threshold is decreased slightly, by a decay value D. Splits can occur at any timestep.
hS loosely affects the rate at which splits will occur.

In contrast to the methods described in Chapter 6, pCQI-style methods do not
require a human to determine ahead of time which conditions should be considered
for a split. The method makes that determination itself. What it does require is
that the environment state space be represented as a multidimensional vector, with
elements having some semantic meaning.

Please find a diagram of how pCQI (and derivative methods) work in Figure 7.3.
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Figure 7.3: Example of an update to the policy tree in pCQI

This shows a tree in the process of being constructed. In this example, the state
space has two features, feature a and feature b, each of which can take values from 0
through 9. There are three possible actions. At left the tree is shown at a certain
timestep, and at right after the action for that timestep has been taken. At left, see
the two branch nodes in orange and three leaf nodes in blue. Each branch node has
a condition, and every node aside from the root node has a visit frequency count.
Truthfully satisfying the condition indicates the rightward branch. Let it be assumed
that the current state is (a = 7, b = 2). Since a 6> 4.5, the left branch is traversed, and
then since b < 4.5, the right branch is traversed. The maximum Q-value at this leaf
is at action 0, and so action 0 is taken. In this example, a negative reward results. It
can be seen on the tree on the right how the visit frequency metrics are updated. The
path from the root node to the leaf node (highlighted) has visit frequency increased
and sibling nodes to affected nodes have their visit frequency decreased. The Q-values
on the leaf node are updated.

Each leaf node also has a number of “potential splits.” Displayed in the diagram
are the two possible nodes that could be created per dimension. These potential
nodes have their own visit frequencies and Q-values which are updated as if they
existed on the main tree. When one of these splits seems likely to yield a better
policy than the current one (according to a formula specified in the source paper), a
split is executed, and potential nodes become real nodes.
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7.4 CQI and CQI2: Method

There are two main innovations to pCQI discussed in this thesis. The first (multiple
splits per dimension), changes partial CQI (pCQI) to full CQI (CQI). The second
(feature combination functions) yields CQI version 2 (CQI2).

7.4.1 CQI: Multiple Possible Split Locations Per
Dimensions

The innovation in Conservative Q-Improvement (CQI) is to allow multiple possible
split locations per dimension. The pCQI algorithm stores possible splits, where each
possible split was a single division of an existing dimension precisely in half (according
to the stated bounds of the dimension’s values). In CQI, the same dimension of the
space can be split multiple times in multiple locations, which can enable reaching
the optimal policy with less nodes. A configurable hyperparameter nS is added,
indicating the “number of splits.” The nS value controls how many split-points are
considered as possibilities in each dimension. (pCQI is equivalent to CQI with nS = 2,
the minimum valid value for this hyperparameter.)

In pCQI, for situations where the optimal split is not the halfway point between
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If b > 3

v = 0.5

Q: [1.4, 1.1, 2]

v = 0.5

Q: [0.7, 3, 0.5]

v = 0.5
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v = 0.5
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Figure 7.4: Example of the multiple Split objects per dimension in CQI
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the lower and upper bounds of a feature value, multiple nodes would have to be used
to describe this situation. CQI and CQI2 can handle such situations in a single node.
For example, with CQI2 and nS = 8 or a multiple of 8, a dimension with optimal
first-split location of one-eighth of the distance from lower bound to upper bound
could be split on that optimal location. In contrast pCQI would have to use three
nodes in succession, first splitting on the halfway point, then on the quarter-way
point, and only then on the eighth-way point.

The algorithm for CQI is similar to pCQI. The main difference is an initialization
and in the SplitNode function, shown in Algorithm 5. SplitNode takes a leaf node
and turn it into a branch node with two children leaf nodes.

Algorithm 5: SplitNode
Splits leaf node N into nodes B, L, R

1 SplitNode(N , bestSplit):
2 Let B be an internal branching node.;
3 Let L,R be left and right children of B, respectively.;
4 B[v]← N [v];
5 B[m]← bestSplit[m];
6 B[u]← bestSplit[u];
7 for N ∈ {L,R} do
8 N [Splits]← { Add a set of left-right split pairs, one for each dimension and

split.}
9 end

10 L[v]← bestSplit[left][v];
11 L[Q]← bestSplit[left][Q];
12 R[v]← bestSplit[right][v];
13 R[Q]← bestSplit[right][Q];
14 Return B, L, R
15 ———————
16 Hyperparameters:
17 Qinit ← default Q-value;
18 nS ← the number of splits to check for in each dimension;

In both cases, a leaf node has the following attributes: visit frequency v, a mapping
of actions to Q-values (Q : (a→ q)), and a list of Split objects Splits. Each Split

object contains information about potential splits (one each per potential split), and
has dimension number m, value to split on up, and Q-value and visit frequency for
both of the potential children (left.q, left.v, right.q, and right.v). In pCQI each
Splits list will contain one Split per dimension, and up will be the halfway point
between the lower and upper bounds of Split[m]. In CQI, there will be (nS − 1)
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number of Split objects per-dimension per Splits list. The nth Split for dimension
m will contain a up with value up = n

nS
· (mU − mL) + mL for n = 1 to (nS − 1),

where mU and mL are the upper and lower bounds of dimension m, respectively. In
pCQI, length(Splits) = 2 ·M , and in CQI, length(Splits) = nS ·M , where M is
the total number of dimensions in the state space.

The Splits list is initialized in the root node at the beginning of training, and is
initialized in new nodes created by the SplitNode function.

Find an example diagram of this situation in Figure 7.4. In this example, the
amount of splits has been increased to 3, such that there are two split-points per
dimension instead of one. Node traversal, splitting, and metric updates all occur in
the same manner as in pCQI.

7.4.2 CQI2: Feature Combinations

In some cases it is useful to be able to choose an action based on multiple features,
or how one feature relates to another. To this end, Conservative Q-Improvement 2
(CQI2) enables the ability to use Feature Combination Functions (FCFs) to combine
features in the state space. In our technique, FCFs are used to expand the real
state space into a larger conceptual state space with additional dimensions that are
functions of real features. For example, a new dimension m3 might be created that
contains the sum of the values in dimensions m1 and m2.

At runtime, CQI2 takes in a list of FCF’s to use. An FCF is a tuple as shown in
Equation 7.2.

FCF = < FF , FB, commutative >

FF : (xval, yval)→ zval

FB : (xlow, xhigh, ylow, yhigh)→ (zlow, zhigh)

commutative ∈ {True,False}

(7.2)

where all xi, yi, zi values are scalar values of features (or lower/upper bounds), FF

is the combination function (such as summation), FB is a function used to calculate
the bounds of new dimension z based on the bounds of x and y, and commutative is
a boolean indicating whether FF is commutative.

The FCFs are used to expand the state space. The state expansion process is
described in Algorithm 6.

A similar process is used to find the bounds of the expanded state space from the
real state space bounds (but using the FB instead of FF ).

The number of states in the expanded state space E is given by
E =

(
(2 ·Nncomm +Ncomm) ·

(
NR

2

)
+NR

)
, where Nncomm and Ncomm are the number
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Algorithm 6: AugmentState augments multidimensional state s ∈ RM into
expanded multidimensional state s′ ∈ RM ′

using a list of FCF’s A

1 AugmentState(s, A):
2 Let P be the ordered set of all combinations of pairs of dimensions mi in s

(ordered by a consistent process);
3 s′ ← s;
4 for (mi,mj) ∈ P do
5 for c ∈ A do
6 FF ← c[FF ];
7 mnew ← FF (mi,mj);
8 Append value of mnew to s′ as a new dimension;
9 if c[commutative] then

10 mnew ← FF (mj,mi);
11 Append value of mnew to s′ as a new dimension;

12 end

13 end

14 end
15 Return s′ as the expanded state;

of non-commutative and commutative FCFs, respectively, and NR is the number of
real states.

The environment simulator does not need to be changed, new states are expanded
from real states at every step (although a cache is used to speed up processing of
repeat states, if any). Nor does the CQI2 algorithm need to be changed in any way.
From the perspective of the underlying CQI2 algorithm, the combination states are
just like any other state, and they can be split on in the same manner.

Indeed, one of the benefits of this concept is that in theory it could be applied to
expand the state space of any multidimensional environment in front of any learning
algorithm. It is, however, of particular benefit to CQI-style learners to have additional
useful bounded scalar dimensions from which to choose.

7.5 CQI and CQI2: Results

This section presents a comparison of the Pyeatt Method (PM)3, pCQI, CQI, and
CQI2. We evaluate these methods on three environments: Robot Navigation A,
Robot Navigation B, and Vehicle Intersection (V = 2).

3The Pyeatt Method was discussed in Section 2.3.
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In Robot Navigation A and B, partial Conservative Q-Improvement and derivatives
create trees with greater average reward per episode than those created with the
Pyeatt Method. Also in these two environments, trees created via *CQI methods have
an order of magnitude fewer nodes than those created via PM. In Robot Navigation
A and B, CQI improves upon pCQI in the metrics of both policy size and reward. In
VehicleIntersection, CQI2 demonstrates an improvement over pCQI and CQI in both
policy size and reward.

7.5.1 Direct Comparison

To fairly compare methods, a grid search was performed for each method to determine
the best hyperparameters. The bounds of the tested values for each hyperparameter
for each environment are shown in Tables D.1 and D.2 in Appendix D. The visit decay
and split threshold decay parameters for pCQI, CQI, and CQI2 are held constant
at 0.999 and 0.9999, respectively. All of the best hyperparameter configurations fall
within the ranges searched.

In our runs of CQI2, the following functions are used as FCFs: i) summation
(x+ y), ii) equality boolean (x == y), iii) subtraction (x− y), and iv) greater than
boolean (x > y). The first two are commutative and the last two are not. (So in
Algorithm 6, A is of size 6. For Robot Navigation A, the real state space is of size 4
and the expanded state space is of size E = 40. For Robot Navigation B, the real
state space is of size 5 and the expanded state space is of size E = 60. For Vehicle
Intersection, the real state space (when setting the number of vehicles on the map to
2) is 12, and the expanded state space is of size E = 408.

In all cases a greedy-ε of ε = max(0.05, 1− step/d) was used.

For Robot Navigation A, three million (3 · 106) training steps were used, with
γ = 0.8, d = 400, 000. For Robot Navigation B, two million (2 · 106) training steps
were used, with γ = 0.8, d = 300, 000. For Vehicle Intersection, one million (1 · 106)
training steps were used, with γ = 0.9, d = 200, 000.

In all cases, 10 trials were performed of the above process at each configuration
and the results were averaged. During each trial, the final policy was evaluated by
averaging the results of the episodes over the course of 50,000 steps.

Find a table of results of methods in environments at optimal parameters in
Table 7.1. In the “Method” column, ‘(R)’ indicates hyperparameters optimized for
reward and ‘(S)’ indicates hyperparameters optimized for size (the smallest tree
that has a higher reward than a previous method, unless otherwise noted). The
specific hyperparameters associated with each optimal point are noted in Table D.3
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Env: Robot Navigation A Robot Navigation B
Tree Size Avg. Reward/Ep. Tree Size Avg. Reward/Ep.

Method Avg. Std. Dev. Avg. Std. Dev Avg. Std. Dev. Avg. Std. Dev
PM 1917.8 9.10 -48.714 51.58 493.8 3.79 -61.29 45.97
pCQI (R) 7.8 1.40 -18.800 0.25 20.2 3.79 -20.10 0.31
pCQI (S) 7.0 0.00 -18.906 0.18 20.2 3.79 -20.10 0.31
CQI (R) 43.2 5.03 -18.753 0.62 22.2 4.34 -19.99 0.31
CQI (S) 7.0 0.00 -18.766 0.30 18.6 3.98 -20.10 0.52
CQI2 (R) 47.8 2.86 -21.077 2.98 181.8 46.27 -22.82 4.99
CQI2 (S) 31.6 0.97 -37.681 45.87 148.8 35.60 -23.85 5.27
Env: Vehicle Intersection

Tree Size Avg. Reward/Ep.
Method Avg. Std. Dev. Avg. Std. Dev
PM 201.0 0.00 -747.551 32.54
pCQI (R) 12403.4 629.55 -717.211 117.94
pCQI (S) 9044.4 385.26 -733.602 117.10
CQI (R) 21941.6 587.88 -693.113 135.30
CQI (S)4 5179.8 459.83 -738.748 59.47
CQI (S)5 11897.2 519.44 -716.942 86.56
CQI2 (R) 19345.6 1083.62 -468.268 46.39
CQI2 (S)6 1708.8 164.68 -710.316 117.69
CQI2 (S)7 3491.4 248.56 -641.918 117.90

Table 7.1: Comparison of RL decision tree policy methods across environments

in Appendix D.
In Figures 7.5 and 7.6, find, for selected methods, a plot of the size of the tree

policy during training vs. the reward that it has achieved at that size. (The number
of training steps is constant at 106, and the lines end at different sizes since different
policies yield different final tree sizes.)

Across all three environments, the CQI method is shown to be capable of achiev-
ing a higher reward than either the Pyeatt Method or pCQI. Additionally, in all
environments, the CQI method is capable of producing a smaller tree for a given
minimum reward threshold than is the pCQI environment (or in the case of Robot
Navigation A, achieving a better reward for the same minimum tree size). In Robot
Navigation A and B, even the larger tree associated with the highest reward value is
smaller than the tree produced by the Pyeatt Method. In the Vehicle Intersection

4Optimized for size with respect to Pyeatt. This is the smallest size tree for CQI whose reward
surpasses the highest reward the Pyeatt Method can achieve at any size.

5Optimized for size with respect to pCQI. This is the smallest sized tree for CQI whose reward
surpasses the highest reward the pCQI method can achieve at any size.

6Optimized for size with respect to pCQI. This is the smallest sized tree for CQI2 whose reward
surpasses the highest reward the pCQI method can achieve at any size.

7Optimized for size with respect to CQI. This is the smallest sized tree for CQI2 whose reward
surpasses the highest reward the CQI method can achieve at any size.
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Figure 7.5: Comparison of reward vs size during training for pCQI vs CQI2 on Vehicle
Intersection

Environment, even though the Pyeatt Method has a smaller-size/smaller-reward tree
compared to the *CQI family, CQI is able to surpass Pyeatt (achieve a higher reward
than that of which Pyeatt is capable) with a smaller tree than the tree with which
pCQI is able to surpass Pyeatt. Here CQI is also able to beat pCQI’s best score while
maintaining a smaller size than the size of the tree for pCQI’s best-scoring tree. All
of this is enabled by the addition of more than two split possibilities per node.

CQI2 is capable of achieving a higher reward than the Pyeatt Method in all
environments. In Robot Navigation A and B, CQI2 does so while achieving a smaller
size tree overall, even at reward-optimized parameters. CQI2 achieves a significantly
higher reward than all other methods in the Vehicle Intersection environment. Also
in this environment, CQI2 is capable of producing a smaller final tree for a given
minimum reward threshold when compared separately to each of the pCQI and CQI
methods. This demonstrates what can be achieved with FCFs.
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Figure 7.6: Comparison of reward vs size during training for various methods on
Vehicle Intersection

We also speculate that longer training times would enable reaching higher rewards
and smaller trees for the CQI2 method across all environments. Every time that
the number of training steps was increased, both reward and size metrics improved
for CQI2. (The other methods had small improvement, if any, beyond the 500k
training steps point.) The idea that more training would be specifically helpful to
CQI2 is bolstered by Figures 7.5 and 7.6, where CQI2 lines seem to be on an upward
slope while others have plateaued. Testing beyond the training steps noted here was
not possible due to real-world resource and time constraints. One of the reasons
that CQI2 takes so much longer than other methods to achieve the optimal policy
is that the state space is exponentially larger, and so can take a correspondingly
larger amount of time to explore, even with the savings of inferring information about
abstract states.

Another benefit of the CQI2 and CQI methods are their ability to make a trade-off
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Figure 7.7: Analysis of the effect of the nS CQI/CQI2 hyperparameter

between optimizing for size or optimizing for reward. This is suggested by Table 7.1
and discussed further in the next section.

7.5.2 Parameter Sensitivity

The previous section referred to the ability to optimize either for the size of the policy
or for the highest reward. This section discusses the ability of CQI and CQI2 to
tradeoff between these two optimalities, and how tuning the hyperparameters specific
to this method affects the outcome. This will be useful to practitioners seeking to
use this method.

In Figure 7.7, find graphs showing the effect of tuning the nS (“number of splits”)
parameter while other hyperparameters are kept at optimal values for runs of Vehicle
Intersection with CQI2. The line is average values, and the shaded areas show
minimum and maximum values. It can be seen that in general, there is no direct
correlation between this parameter and better policies, whether in the case of change
in policy size or reward value.

A better or worse nS value is likely policy specific. Sometimes the ability to split
at certain locations is better than others.

However, having this as a tunable parameter itself clearly improves the ability of
the overall search to yield a superior policy on either desired metric. This is shown
in the previous section, where across all environments, CQI had a higher maximum
reward than pCQI, and lower minimum achievable size for a given level of reward
achieved.

There is no guarantee that moving the value of nS in one direction will have a
particular effect. Thus, in practice, searching widely is useful to determine which
value is best, as it can result in a superior policy.
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Figure 7.8: Analysis of the effect of the HS CQI/CQI2 hyperparameter

In Figure 7.8, find graphs showing the effect of tuning the HS parameter while
other hyperparameters are kept at optimal values for runs of Vehicle Intersection
with CQI2. The line is average values, and the shaded areas show minimum and
maximum values.

It is very clear that increasing HS results in a smaller size policy, and decreasing
results in a larger size policy (when number of training steps are fixed). This is
intuitive, since a higher HS will cause the algorithm to wait longer before making
a split. Waiting longer to perform a split means that the earlier splits are better
informed and therefore higher quality. When this happens, it is more difficult to
improve the policy further, so it takes more steps for potential splits to reach the
split threshold. Larger values can yield smaller trees.

The graph of behavior of reward is also very interesting, as two trends are seen on
either side of the clearly optimal reward. First, as HS is increased, reward increases8.
This makes sense because when the algorithm waits longer before making a split, the
split will be made at a potentially more informed location, leading to a higher-scoring
overall policy.

Second, past a certain point, reward decreases. This is because if the algorithm
waits too long to make a split, then in a finite series of training steps there may not
be time to fully develop a successful policy (too long an interval between splits means
that it is impossible to split enough times to create a successful policy).

Potentially, training time could allow for smaller trees without sacrificing final
reward—as long as the training time is sufficient for the chosen HS, the final policy
will have sufficient time to train and avoid the “cliff” that results in poor policies.

Thus, during a tuning procedure, a user of this method could choose to increase

8Although it may not be as stark visually as the subsequent decrease, from HS = 10−6 to 10−4

there is a marked increase in average reward.
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HS to search for smaller policies, or decrease HS if they wonder if a larger policy
might better capture a higher reward policy (if they thought current values to be on
the right side of the reward-optimal curve).

7.6 Summary

This chapter discusses various related methods for conducting reinforcement learning
to solve tasks where the policy is in a decision tree format. It describes the Robot
Navigation and Vehicle Intersection environments, the latter of which is itself a
contribution of this thesis. It introduced the CQI and CQI2 methods, which extend
pCQI.

This chapter shows how CQI and CQI2 outperform pCQI and PM. In all cases
tested, the *CQI family yields greater reward than PM. CQI can reach smaller trees
than pCQI for the same or greater reward in all environments tested, and in the
environment with the largest state space tested, CQI2 reaches smaller trees with
greater reward compared to both pCQI and CQI. Additionally, one of the relevant
aspects of the CQI/CQI2 methods is the ability to target a high reward policy or
a small size policy above a certain reward threshold. Achieving this requires some
understanding of how the hyperparameters affect the final policy, and this detailed
understanding is presented and demonstrated here as well.

The CQI and CQI2 methods contribute to the literature on explainable RL. Due
to their decision tree structure. they allow a robot to autonomously learn policies
that are interpretable.
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Chapter 8

Learning a TAIG-style Policy with
Reinforcement Learning

This chapter builds on the decision-tree-policies-via-RL methodology from Chapter 7
to learn a TAIG-style policy with WHILE loops.

Earlier thesis chapters demonstrated TAIG’s power as a policy structure. Chapters
3, 4, and 5 discuss humans creating a TAIG through programming or interactive
instruction.

If a robot were able to learn such a structure autonomously, it would be of great
benefit. It would truly allow for human-robot collaboration. Then, tasks could be
jointly learned and instructed. A learned task could be modified by a human, and
an instructed task could be improved upon by an AI agent. It would represent a
symbiosis of machine and human intelligence.

It would be even more of a challenge to build not just a TAIG, but one with
WHILE-loops, a typically tricky control structure to learn autonomously.

This chapter achieves these goals, bringing this vision of future that much closer.
Section 8.1 provides a high-level overview of the strategy for achieving this and the
rationale behind it. Section 8.2 delves into the details of the method for building a
TAIG via RL. Section 8.3 notes a couple of limitations of the method. Section 8.4
proves the feasibility of the method, showcasing TAIGs built via this RL method for
the Robot Navigation B environment.

8.1 Overview of Approach

Chapters 6 and 7 introduce various methods to learn a decision-tree style policy
through reinforcement learning. The branches of a decision tree are like IF-ELSE
clauses in a TAIG, with one crucial difference. The decision tree policies of Chapter
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7 indicate a decision-making process to be performed at every timestep, whereas a
TAIG is a sequence of actions representing the entire task.

One can trivially transform a decision tree policy into a TAIG by surrounding the
decision tree with a WHILE loop with the condition “while task is not complete”.
Nothing would be gained from doing this in terms of the actual performance of the
task itself, but it allows us to think of the policy as a TAIG. The question can then
be asked, “Can this policy be transformed into a more informative TAIG?”

One means of doing this would be to consider a task as a series of subtasks. This
series of subtasks can each be represented by WHILE loops connected in series, where
the policy in each subtask can be a decision tree. (Naturally, this formulation is only
applicable to some types of tasks.)

The question then becomes, “Can this single tree be split into multiple policies
across multiple WHILE loops?”

The following section addresses this question as it discusses a method that can
be applied to a particular kind of two-stage task. It will learn a decision tree style
policy through reinforcement learning, and then derive two trees from that single
tree, placing each tree inside of a WHILE loop, thus autonomously learning a TAIG.

8.2 Methodology

There are a few prerequisites for this method to be applicable:

• The task must have two stages

• These two stages must correspond to a feature that exhibits the following
behavior: constant at some value in the first stage, and constant at some
different value in the second stage

• The above feature must be the split-upon feature in at least one branching node
of a single-decision-tree-style successful policy

If the prerequisites are not satisfied, the method will not fail, but it will either not
produce a policy with sequential While-loops (leaving the policy in single-decision-
tree form) or it will produce two while-loops with the same decision tree in each (a
meaningless separation).

The method has three parts:

1. Build a single-decision-tree style policy

2. Determine if there is a feature that separates the task into two stages, and if so,
what are the properties of the feature’s change between stages

3. Separate the single decision tree into two decision trees, place each decision tree
into an appropriately configured WHILE loop, and place the WHILE loops in
series with each other
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This sequence is described in a more formulaic manner in Algorithm 7. Line 1
corresponds to step 1, line 2 corresponds to step 2, and lines 3 through 13 correspond
to step 3.

Algorithm 7: The three steps of the procedure to build a TAIG-style policy
with two while loops in sequence

1 π0 : (s→ a)← single-decision-tree policy that maps state s to action a;
2 D, comp, uD ← FindSubtaskFeature(π0);
3 if some value returned for D then
4 if comp then
5 W1← a condition primitive with condition s[D] < uD;
6 else
7 W1← a condition primitive with condition s[D] >= uD;
8 end
9 W2← a condition primitive with condition “task is done”;

10 B1, B2← copies of the root node of π;
11 πt1 ← SplitTreesForWhile(B1, D, comp);
12 πt2 ← SplitTreesForWhile(B2, D, ∼ comp);
13 πTAIG ← A TAIG with two WHILE loops in sequence, the first WHILE

loop having condition W1 and inner actions and conditions equivalent to
πt1, and the second WHILE loop having negated condition W2 and inner
actions and conditions equivalent to πt2

14 end

Part 1, creating the single-decision-tree style policy, can use the procedure from
Section 7.4.2 to build a decision tree using reinforcement learning.

Part 2 utilizes the FindSubtaskFeature procedure, which is in Algorithm 8. If
two sequential subtasks cannot be determined, then all return values are NULL and the
procedure ends (no TAIG can be created). The procedure of FindSubtaskFeature
observes the execution of a learned policy. Lines 1-4 simply describe the process of
determining if there is one dimension that can be used to separate the task into two
“stages”. If so, this is assigned to D. A boolean comp is returned that is True if the
initial value of dimension D is lower than the final value, and False otherwise. Recall
that in this constrained situation, a while-split will only be attempted if there are
exactly two stages, so the initial and final values of this dimension are the only values
it ever takes. Finally, a value uD is returned as a midway point between these two
values. It does not have to have any meaning, nor appear in the nodes of the policy
π. Its purpose will be simply to differentiate between the initial and final values of
dimension D.

Part 3 involves transforming policy π into a TAIG style policy with WHILE loops
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using the information obtained in part 2. Line 3 of Algorithm 7 checks whether
such a transformation is possible. If FindSubtaskFeature returns all NULLs, this
particular transformation is not possible and is not attempted. If values are returned,
however, then the transformation proceeds, with lines 4 through 13 detailing the
process. A TAIG will be created with two WHILE loops in sequence, each containing
a series of If-Else Condition primitives and Action primitives. In other words, two
decision trees are created, each of which are used to populate primitives inside the
corresponding one of the two loops. In lines 4 through 9, the conditions for the
condition primitive for each WHILE loop are generated. The first condition, W1,
corresponds to the initial state of dimension D. The second condition, W2, is just
“task is done” to ensure that the task will run to completion.

Algorithm 8: FindSubtaskFeature takes a policy π and determines if any
features can be used to signify a change between two stages of a task.

1 FindSubtaskFeature(π):
2 Allow observing an execution of policy π to generate a vector of booleans tB.

This vector tB is of length equal to the length of s. Each element in tB is true
if and only if the corresponding element in s changed once and only once
during task execution.

3 TB ← the union of all tB generated by executing policy π n times, for a large
value of n;

4 if any(TB) then
5 D ← the first element in TB that is true (the multi-stage signifying

dimension);
6 u1 ← the initial value of of dimension D;
7 u2 ← the final value of dimension D;
8 comp← Boolean(u1 < u2);
9 uD ← u2−u1

2
if comp else u1−u2

2
;

10 return D, comp, uD;

11 else
12 The policy cannot be split into multiple stages.
13 return NULL, NULL, NULL;

14 end

In lines 10 through 12 of Algorithm 7, two decision tree policies are created from
copies of π0, according to SplitTreesForWhile (detailed in Algorithm 9). Policy
πt1 is appropriate for executing in the first WHILE loop, and πt2 is appropriate for
executing in the second.

Thus the final step in line 13 of Algorithm 7 is to take the two new decision
tree policies and add them to the TAIG. Available Action Primitives correspond

86



CHAPTER 8. LEARNING A TAIG-STYLE POLICY WITH REINFORCEMENT
LEARNING

to the discrete set of actions in the action space. Conditional Primitives could be
conceptualized in two ways: i) there is a single conditional primitive that take two
parameters (dimension and value), returning true if the value of the dimension at the
current observed state is less than value, and ii) there are a number of conditional
primitives equal to the number of dimensions, each of which takes a single parameter
(value), returning true if the value of the dimension at the current observed state is less
than value. Branching nodes in the policies indicate how to form these Conditional
Primitives for IF-ELSE structures, and Leaf Nodes indicate which Action Primitive
to add. πt1 and πt2 by themselves could be represented as a decision tree policy or as
a TAIG as described.

Algorithm 9: SplitTreesForWhile removes from the tree with root node at
B any branches that do not satisfy the condition information.

1 SplitTreesForWhile(B, D, comp):
2 if B is leaf node then
3 return B;
4 else
5 if B[m] = D then
6 if comp then
7 return B[left];
8 else
9 return B[right];

10 end

11 else
12 B[left]← SplitTreesForWhile(B[left], D, comp);
13 B[right]← SplitTreesForWhile(B[right], D, comp);
14 return B;

15 end

16 end

The SplitTreesForWhile procedure for obtaining πt1 or πt2 from π is shown in
Algorithm 9. This procedure is a recursive process that progresses node by node
through the initial policy. For comp == True, the resulting tree is intended to be
the policy when dimension D is in its lower-valued state. Any node that splits on
D (B[m] = D) has its left child returned. (Thus any node in π that splits on D
will be replaced with whatever successors correspond to the lower-valued branch,
and other child nodes discarded.) For comp == False, the reverse happens, since
the higher-valued state is requested. Since D can only be two values (or else this
procedure would not be executing), the procedure can take advantage of that fact to
ignore the value u that B splits on in any case. It can use its uD split value without
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detrimental effect. (If one were attempting to model a task with more than two
stages, this would definitely not be a valid assumption, but here it is.) Leaf nodes
are left unchanged. Branch nodes not splitting on D are unchanged themselves, but
with children that are processed by SplitTreesForWhile in turn.

At the end, no nodes are left in πt1 or πt2 that split on dimension D, and each
policy is suitable for either the lower-valued case of D or the higher-valued case.

Find a general illustration of the structure of of the result of Algorithm 7 in Figure
8.1.

In this manner, a policy can be learned autonomously through reinforcement
learning and, if certain criteria are met, transformed into a TAIG-style policy.

8.3 Limitations

To use this approach with CQI or CQI2 (see Chapter 7), all of the requirements
of the CQI or CQI2 methods must be satisfied. It would be feasible, however,
to use the approach described in this chapter with any means of generating the
pre-transformation decision tree policy, and then this limitation would not apply.

Another limitation is that the task to be learned must be in two clearly defined
stages, signified by exactly one change-in-value for a dimension of the state, in order
to obtain the while-loops.

A further pitfall occurs when there are two clearly defined stages, but the optimal
policy is identical in each case. If the dimension that signifies the state change is not
split upon in policy π ever, then πt1 and πt2 will be equivalent. While this should not
affect performance, it does make the while-split unnecessary. This could be addressed
by adding a check for the presence of such a node in π as an additional criteria before
performing a split (if this were a priority).

Finally, a limitation of our method is that is cannot produce arbitrary TAIGs, or
TAIGs with WHILE loops other than what is described here.

Even so, this approach is the first that generates a TAIG-style policy from a policy
learned through RL.

8.4 Results

We test this technique on the Robot Navigation B environment.
The hyperparameters tested were all those that were noted as tested for Robot

Navigation B environment for CQI2 in Section 7.5. Ten trials were run for each
set of hyperparameters, where each trial consisted of two-million training steps
(with ε = max(0.05, 1 − step/d), where d = 300, 000), evaluated with 50,000 steps
before transformation, and evaluated with 50,000 steps after transformation (if
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Figure 8.1: Description of structure of TAIG policy for two-stage task after transfor-
mation from decision tree
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CQI2 Policy
(π0, Pre-Transformation)

TAIG Policy

πt1 πt2 πTAIG

α HS nS

% Trials
Transform
to TAIG

Avg.
Size

S.D.
Size

Avg.
Reward

S.D.
Reward

Avg.
Size

S.D.
Size

Avg.
Size

S.D.
Size

Avg.
Size

S.D.
Size

Avg.
Reward

S.D.
Reward

0.01 0.1 8 100% 148.8 35.60 -23.85 5.27 146.6 35.01 141.8 35.27 290.0 71.74 -23.43 5.04
0.001 1 2 90% 58.8 8.51 -19.83 1.02 58.0 8.12 48.4 11.93 108.4 16.13 -20.16 0.95
0.0005 1 9 90% 55.4 6.91 -28.65 14.25 55.0 7.55 52.3 11.66 80.0 18.68 -28.98 14.64
0.001 1 9 80% 42.3 15.71 -22.48 5.47 42.0 15.41 38.3 14.89 82.3 28.39 -22.72 4.94

Table 8.1: Best results for TAIG policy per %-successful-transformation group

transformation to TAIG occurred). Parameter 4 was the parameter that indicated the
two stages of this task (when a transformation occurred, it meant that the algorithm
correctly identified this piece of information).

In Chapter 7, “reward achieved” and “size of policy” were valued metrics in a
resulting policy. This chapter adds a third metric of value, which is the percentage
of trials in which a policy is transformed into TAIG. (If there is no dimension that
follows the two-stage pattern described in the previous section, the policy will not be
transformed from its decision tree form.)

For example, with (α = 0.001, HS = 1, nS = 2), this method achieves a trans-
formation rate of 90%. These hyperparameters yield the highest reward among all
policies where transformation-to-TAIG occurs 90% of the time. The reward of πTAIG

is -20.16. The average size of the decision tree πt1 is 58 and the average size of πt2 is
48.4. (The average size of π0 is 58.8.) After transformation into a TAIG, the average
total size of the TAIG (excluding ELSE, END-IF, and END-LOOP nodes) is 108.4.
The trial for these parameters with the maximum total decrease in node size from π0
to πt1 or πt2 was a transformation from π0 of size 75 to πt1 of size 73 and πt2 of size
45.

Among the group of sets of hyperparameters that yield a successful TAIG trans-
formation 100% of the time, the set of (α = 0.01, HS = 0.1, nS = 8) results in both
the highest average reward and smallest size. The reward of πTAIG is -23.43. The
average size of the decision tree πt1 is 146.6 and the average size of πt2 is 141.8. (The
average size of π0 is 148.8.) After transformation into a TAIG, the average total size
of the TAIG (excluding ELSE, END-IF, and END-LOOP nodes) is 290. The trial for
these parameters with the maximum total decrease in node size from π0 to πt1 or πt2
was a transformation from π0 of size 117 to πt1 of size 115 and πt2 of size 93.

See these results with additional information presented in Table 8.1. (Sizes of final
TAIG are given excluding ELSE, END-IF, and END-LOOP nodes from the count.)
In the headings, nS refers to number of splits, HS is the split-threshold-maximum,
and “S.D.” is an abbreviation for “Standard Deviation.”

The entry for the 80% group in Table 8.1 is both the highest average reward and
the smallest average size πTAIG for the group.
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Figure 8.2: Illustration of the TAIG transformation process for a subsection of a
decision tree
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The smallest average size πTAIG across all hyperparameters tested across all groups
regardless of %-success-transformation, and where the policy still achieves the task1,
is a size of 80, occurring with (α = 0.0005, HS = 1, nS = 9). This policy has a
post-transformation reward of -28.98, and falls into the 90%-success transformation
group. It has an average maximum reduction from π0 to either πt1 or πt2 of 24, and
an average pre-transformation size of 57. The average reward pre-transformation was
-29.06.

The parameters that yielded the largest average reduction in size from π0 to either
πt1 or πt2 (while still achieving the task), across all groups, are (α = 0.4, HS = 1, nS =
7). Here, the average size of π0 was 332.25 nodes, and the average size of πt1 and πt2
was 299.75 and 273.5, respectively, for an average maximum reduction of 58.75. With
these parameters, the %-Transformation is 80%, and the average reward of the TAIG
when a transformation does occur is -28.29.

Looking at the group of hyperparameters that achieve a transformation 100% of
the time, slighter lower rewards and larger sizes are found. A user of this method
thus may choose whether to prioritize ending up with a TAIG a larger percentage of
the time, even if a worse overall policy results, verses successfully transforming into
a TAIG less of the time but achieving a smaller size or higher-reward policy during
those cases where it does transform. (Additionally, it is worth noting that the specific
nature of this tradeoff may be domain dependent.)

Find an illustration of part of an example final policy in Figure 8.2. This is part
of an example tree, with parameters (α = 0.01, HS = 0.1, nS = 5). The π0 has a total
size of 89 nodes and achieves an average reward of -20.29. Feature 4 is identified as
the subtask signifier—it is a boolean indicating whether the robot is past the hole
yet or not (0 if the hole is closer to the goal than to the robot and 1 if the robot is
closer to the hole than to the goal). The πt1 has 73 and πt2 has size 83. Shown in the
diagram are sections near the top of the tree that change due to the transformation,
followed by their completed transformation into TAIG form. The full size of the
TAIG (excluding ELSE, END-IF, and END-LOOP nodes) is 158. The average reward
it achieves is -21.07. Although the total policy is larger than π0 and the reward shows
a slight decrease, the TAIG form allows one to inspect differences in behavior and
strategy that the robot employs during the course of the two different subtasks of the
task.

The method discussed in this chapter allows for creating TAIG-style policies
that can successfully solve the Robot Navigation B task. Average rewards pre-
and post-transformation are very similar, well within a single standard deviation,
demonstrating that the transformation to TAIG at optimal hyperparameters does not
sacrifice efficacy. While the potential for trading off %-Transformation vs. Reward

1The term “achieving the task” in this instance is defined as “having an average reward above
-30.”
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exists, it is also a testament to the soundness of the method that there exist parameters
at which 100% transformation is possible while solving the task.

8.5 Summary

This chapter introduces a method whereby reinforcement learning is used to construct
a TAIG. First, CQI2 is used to build a decision-tree style policy. Then a procedure
is applied to transform the decision tree into a TAIG, with successive WHILE-loop
clauses containing series of IF-ELSE clauses. This method also implicitly determines
whether a feature distinguishes between two stages of a two-stage task.

The method presented here solves the Robot Navigation B task through au-
tonomously learning a TAIG. It is capable of performing comparably with pCQI
in some cases and outperforming the Pyeatt Method. Various tradeoffs that can
be made when using this method to optimize for different metrics (reward, size,
%-success-transformation) are discussed as well. This is the first time that a TAIG
has been autonomously learned.

Thus, this chapter demonstrates the feasibility of using RL to learn a TAIG-style
policy to solve a task.

Autonomously learning a decision-tree was valued in Chapter 7 due to the inter-
pretability of such a structure. The contributions of this chapter involve enabling a
robot to autonomously learn a TAIG, which is a difficult structure to learn. A TAIG
has a much richer set of control flow structures than a decision tree, and corresponds
to the structures created by humans in Chapters 3 through 5. When a robot learns a
TAIG, it is learning a common, structured representation that enables interpretability
of complex behavior.

93



CHAPTER 8. LEARNING A TAIG-STYLE POLICY WITH REINFORCEMENT
LEARNING

94



Chapter 9

Conclusions

This chapter summarizes the work in terms of the contributions of the thesis and
discusses future work.

9.1 Contributions

We have introduced TAIG, a system for task transfer that accounts for the disparities
between robot systems that exist in the real world. We have provided an open
source library for TAIG and a means of creating TAIG via interactive dialogue.
We have introduced CQI and CQI2, extending pCQI. These are all methods for
explainable reinforcement learning, allowing a robot agent to learn how to solve a
task by developing a structured policy. Finally, we introduce a method for learning a
certain type of TAIG with WHILE loops.

The TAIG paradigm adds negation to nodes and connects modular memory to the
graph. These enhancements enable a robot to perform more complex tasks than they
can with a simple IG. We have discussed the creation of the Primitive Library and
the Memory-Library-Graph paradigm, by which functionalities can be transferred
across tasks and across robots. We demonstrated that with TAIG, whole tasks in and
of themselves can be directly transferred between robots without any modification of
the graph. Using the paradigm introduced in this paper also reduces development
time since primitives and Instruction Graphs can be re-used.

We discussed how nesting TAIGs inside action primitives in other TAIGs and how
the use of halt conditions can be used to build structures for performing complex
tasks with subtasks. We demonstrated this with a complex GPSR task.

Using TAIG, a single task plan can be specified for robots with wildly different
hardware and technical capabilities, and a single robot can understand new tasks by
building on existing knowledge.

95



CHAPTER 9. CONCLUSIONS

We demonstrated how the interactive dialogue system can be used to give instruc-
tions to a robot to build up its knowledge of how to perform a task, using previously
known primitives or graphs.

We noted the release of the instruction graph library, which implements TAIG.
The library includes capabilities for building the components of the interactive
dialogue, as well as every other capability discussed or utilized in Chapters 3 through
5. The robotics community may find it useful for accelerating the development of
robotic systems.

We introduced Conservative Q-Improvement and Conservative Q-Improvement
2, extensions of partial-CQI which enable a robot agent to develop a structured
representation of a task policy in the form of a decision tree via reinforcement learning.
CQI2 can be used in any environment with discrete actions and a multidimensional
state space. It produces a policy in the form of a decision tree, and, like the pCQI
method before it, produces smaller trees than existing methods while not sacrificing
policy performance. We investigated the nature of the CQI2 method, discussing ways
that one might optimize for tradeoffs between smaller trees and strictly better policies.
We found that pCQI out-performed the Pyeatt method and that CQI outperformed
pCQI. This is due to CQI’s conservative nature, whereby it only creates a new node
when doing so will result in an improvement in the policy.

CQI2 builds on CQI by expanding the state space, building new features out of
combinations of existing features. CQI2 outperforms CQI in some cases, since certain
relationships can be taken advantage of using a single node split that previously
required multiple nodes. One caveat is that due to the expanded state space, CQI2
takes longer to train than pCQI or CQI.

The tradeoffs of CQI/CQI2 can be tuned depending on the use case, and depending
on the domain. For example, if there were a domain where CQI/CQI2 produces
large trees, a practitioner could settle for lower reward in order to have a smaller
tree that can be understood and inspected. On the other hand, if all policies for an
environment were relatively small, or if the policy only had to be manually inspected
occasionally or without hurry, then one could choose parameter values which result
in a larger, better-performing policy.

Finally, we incorporated learning decision-tree policies into a methodology for
learning a TAIG. This methodology can be used to solve a task that i) has exactly
two stages, delineated by a value change in a single feature of the state space, and
ii) can be solved with a decision tree policy alone. The methodology results in a
TAIG, where two WHILE loops are arranged in sequence with a (potentially) large
series of IF-ELSE clauses inside each. We demonstrated how this transformation
can be performed resulting in a TAIG that is learned and developed completely
autonomously yet is able to solve a task satisfying the criteria.

Structured, interpretable policies such as decision trees or TAIGs have many
benefits, whether constructed or learned. If one developer creates a policy for a robot,
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a different developer can see what the robot will do without having to ask the human,
just by looking at the structure. When a robot learns a policy, a human does not
have to wonder why a robot is taking an action or what the robot will do in a specific
scenario—the policy is interpretable for all to see. Another example is in a scenario
where an end-user wishes to continually tweak a policy, or change it after it has been
learned.

Autonomous robots will be everpresent in the world of the future, but they need
not be a mystery. Structured representations for behaviors of autonomous robots
may allow robots to serve humanity more successfully, and to be better understood
by engineers and end-users alike.

9.2 Future Work

Possible future work for TAIG could include adding validation checking, to ensure
runtime compatibility between a Memory Object, a Primitive Library and a Graph.
This could be a software script or an add-on to an Interactive Development Environ-
ment (IDE). Currently it is up to the developer or robot operator to ensure that this
compatibility exists.

Future work can expand the Interactive TAIG to be even more useful, such as
adding the ability to modify the graph in place (as opposed to overwriting an existing
graph in full if a change is desired). There are also opportunities to create more
complex requests. For example, “change all tuples of type x to have parameter y”,
along with the parsing necessary to support that (it may entail going beyond regular
expressions, using a more sophisticated NLP technique).

Another means of interactively consuming and creating a TAIG would be through
a graphical display. The TAIG could be displayed in a GUI and the user could drag
tuples around to change the order, or add tuples from the library in another pane.

Future work regarding CQI or CQI2 could entail modifying the algorithm to
utilize tree-building methods that are not strictly additive but rebalance the tree
along the way. This could result in a further reduction of final policy size. Addition-
ally, a regularization term which allows the tree size to directly affect the policy’s
perceived reward would allow CQI to directly optimize for a trade-off between size
and performance on original tasks. Since interpretability is one of the goals, a user
study could be performed to quantify this aspect of the method.

Future work for learning a TAIG with While Loops could involve developing
technique similar to that presented in this thesis, but expanding Algorithms 7 through
9 to handle additional numbers of subtasks (three or more). The criteria would be
some degree of feature stability for periods of time. This would allow creating longer
sequences of while loops representing stages of a task.

There is also much future work to be done on learning while loops in other contexts.
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Other types of TAIG-compatible structures are also worth learning, such as sequences
of actions. Future work could also entail developing additional methods of learning
tasks that take advantage of TAIG’s other capabilities, such as halt conditions.

Further opportunities for future work could be discerned by pondering the goals
and ideas about the future expressed by the direction taken by this thesis, and
considering the next step with regards to the work that remains.

One of the main visions for this thesis is robots learning to solve tasks through a
combination of inputs (self-learned, programmed/instructed, and collaboration with
a human) instead of only one. Beyond the learning of TAIGs, there is worthwhile
work to be done toward realizing this vision, where over time humans and robots
build a shared understanding of the world and how to achieve our goals, each one
building on the knowledge and strengths of the other.

This thesis helps to bridge the gap between constructed or instructed policies and
learned policies. The above suggestions describe the path forward to bring about a
better world for tomorrow.
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Appendix A

Developer’s Tutorial for Using
TAIG With Pepper

In this Appendix, please find an introductory tutorial for using the TAIG library
with a Pepper robot. For an explanation of the TAIG paradigm, see Chapter 3.

A.1 Using TAIG for a Task

This section demonstrates how to use TAIG. We are going to create a simple task for
the Softbank Pepper robot.1 The task we will create is for Pepper to naively search
for a human by spinning around, and to greet them when it finds one. This task
graph and the primitive library for this task are shown in Figure A.1.

Install TAIG as a Python library with pip2:

1For those without access to a Pepper, more trivial examples that do not require a robot of any
kind are available in the library’s GitHub repository documentation.

2Find it on pypi: https://pypi.python.org/pypi/instruction-graph, or view the source
code at: https://github.com/AMR-/instruction_graph
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Figure A.1: An example of the structure of the Task Graph and Primitive Library.
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$ pip install instruction_graph

We will create attributes in the Memory Object to store state information, Pepper’s
session information, and variables we want to track. We then create a series of
primitives to execute the component action and condition checks. Finally we write a
controller that builds the Graph and saves it to a file, and that can also load and run
the graph.

A.1.1 The Memory Object

The Memory Object is where we store information we want to track over time. Since
we are using Pepper, we need to track the naoqi session. We also have two states,
“SEARCHING” and “FOUND PERSON,” among other information.

Download the example file PepperMemory.py3. This is the file where the Memory
Object is created.

The Memory Object class should extend BaseMemory. It can declare whatever
attributes it needs to in init . It can have helper functions, as in cleanup here.
Every Memory Object must implement memory name, which returns a descriptive
string (used in logging).

Note that if the project uses ROS, subscribers to nodes and publishers should be
set up in the Memory Object.

A.1.2 The Primitive Library

Next we consider the atomic units of work and condition checks that make up our
task. At this stage, if we have previously implemented tasks (on this or other robots),
we might want to look at our existing Primitive Libraries to see what can be re-used.
Perhaps one of our existing libraries has everything we need. If it is our first TAIG,
of course, we will have to create a new Primitive Library.

For our simple task we want four Action Primitives (“say”, “rotate”, “per-
son found”, and “cleanup”) and two Conditional Primitives (“is searching” and
“is human visible”).

We will create a PepperPrimitiveLibrary.py file. The full example file can
be downloaded from the repository4. The Primitive Library class should extend
BasePrimitiveLibrary.

A single primitive is essentially a function with metadata. First, define the func-
tion. In the excerpts in Figure A.2, we see two example methods. These methods will
later be referenced by the “say” Action Primitive and “is pepper searching” Condition

3https://github.com/AMR-/instruction_graph/blob/v0.2.8/instruction_graph/

example/PepperMemory.py
4https://github.com/AMR-/instruction_graph/blob/v0.2.8/instruction_graph/

example/PepperPrimitiveLibrary.py
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def say(memory, text):

tts = memory.session.service("ALTextToSpeech")

tts.say(text)

def is_pepper_searching(memory):

return memory.state == States.SEARCHING

Figure A.2: Functions for use in Primitives

ActionPrimitive("say", self.say,

"Say", "Do text-to-speech on input argument")

ConditionalPrimitive("is_searching", self.is_pepper_searching)

Figure A.3: ActionPrimitive and ConditionalPrimitive

Primitive. Note how both are stateless. The Memory Object will be passed as the
first argument when the function is called, so every primitive function should include
it even if the function does not utilize it.

There are three required functions.
• list action primitives - return a list of ActionPrimitives. ActionPrimitives and

ConditionalPrimitives are instantiated as shown in Figure A.3. The arguments
are i) pid string, ii) the function itself, iii) & iv) optional human-readable name
and description. (There are additional optional arguments for advanced use not
covered in this tutorial.)

• list conditional primitives - return a list of ConditionalPrimitives

• library name - return a string that is a descriptive name for the library

A.1.3 Controller: Graph Creation and Execution

We can create the graph inside whatever framework we desire. In our sample
application here we are going to create a controller object that will create and run
the graph. We will create a PepperController.py file. The full example file can be
downloaded from the repository5.

We use the Manager to create, save, load, and execute graphs. When we instanti-
ate a Manager we specify the particular Primitive Library and Memory Object to

5https://github.com/AMR-/instruction_graph/blob/v0.2.8/instruction_graph/

example/PepperController.py
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use. Here the Manager is initialized with instances of PepperMemory and Pepper-
PrimitiveLibrary. Any graphs executed with this manager will use the associated
Primitive Library and Memory Object. A graph created with this Manager can be
saved to file and used with any compatible Primitive Library or Memory Object, not
just that with which it was created.

The build instruction graph method shows how to use a manager to create a
new graph and save it. (It builds the graph shown in Figure A.1.) First it calls
create new ig on the Manager. Now there is a Graph on the Manager’s ig attribute.
Nodes of various type (actions, if, loops) can be added. When specifying an action or
condition, include as the first argument the Primitive’s pid, and if necessary include
a list of arguments in args. Note that we do not explicitly pass the Memory Object,
so the list of arguments we pass should be one less than the number of arguments
in the function referenced by the referenced Primitive. Refer to the example file for
examples for various kinds of nodes. After the graph is created, we can save it to file
by calling save ig on the Manager and passing the filename.

The run instruction graph method loads the task graph file with load ig and
then runs it with run.

A.1.4 Let’s Run It

Figure A.4: Pepper using TAIG

Download the pepper build.py example script6

(creates the graph and saves to a file named pep-
per demo.ig) and the pepper run.py example
script7 (executes an existing graph file named
pepper demo.ig). Note that they are exactly
the same except for the last line. Run them as
follows:

$ python pepper_build.py

--ip [IP.TO.YOUR.PEPPER] --port 9559

$ python pepper_run.py

--ip [IP.TO.YOUR.PEPPER] --port 9559

After a task graph has been created once, the same file can be re-used. See a
picture of our Pepper taken while searching for a human in Figure A.4.

6https://github.com/AMR-/instruction_graph/blob/v0.2.8/instruction_graph/

example/pepper_build.py
7https://github.com/AMR-/instruction_graph/blob/v0.2.8/instruction_graph/

example/pepper_run.py
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A.2 Conclusion

We introduce TAIG as a task definition framework in which we construct high level
tasks out of stateless behavioral and perceptual primitives with access to memory. The
TAIG library can help a robotics team accelerate the development of new and existing
systems by re-using existing functionality. TAIG encourages clean organization
wherever it is used in the codebase, a quality that helps a robot (or any complex
system) stand the test of time.

We contribute this open-source library and corresponding pip package and make
it available for use by the robotics community. It is well-tested8 and development
continues apace. We ourselves have used TAIG at Carnegie Mellon University to
streamline the development of new tasks on Pepper as well as transfer tasks between
disparate robot systems (Baxter and Pepper).

8Tested on python 2.7 and 3.5, with tests included in the repository.
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Appendix B

Documentation for TAIG Open
Source Library

In this section find the documentation that comes with the TAIG open source library
software.

Transferable Augmented Instruction Graph (TAIG) is a library that allows the
creation of task plans for robots or for other agent-systems. These task plans can be
transferred across systems very easily.

Tasks are created in a graph form with conditionals and loops. Nodes in the
graph refer to “primitives” which are atomic units of work (actions for the system to
perform) or conditions to test.

Create an Instruction Graph, and associate it with a Primitive Library and
Memory Object (noted below) and you can execute the task on a system.

This paradigm is useful because it allows executing a single task plan across
multiple robots/systems. For a single robot, allows defining atomic functionality once,
and re-using it across all the tasks that that robot is to complete.

Table of Contents

1. Installation
2. Introduction
3. QuickStart / Example
4. Details for Developing Your Own TAIG

1. Creating Memory
2. Creating Primitives
3. Creating the Graph and Saving to File
4. Running the Graph
5. Additional Techniques
6. Nested Graphs
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5. Interactive Taig
6. Credits

B.1 Installation

To install the library just run

pip install instruction_graph

instruction graph has been tested with Python 2.7 and 3.6.

B.2 Introduction

There are three components to the paradigm:

1. The Memory Object
2. The Primitive Library
3. The Instruction Graph

The Memory Object has fields that store any information required by the appli-
cation at runtime (session info, database connection, ROS topics, state information,
and any other data the application will track and store).

The Primitive Library is an object which holds a collection of Primitives. A
Primitive can be either an Action or a Condition. Actions are simple actions that are
performed. Conditions are simple conditions that are tested, and can be used in an
IF or WHILE node. Each Primitive has at least a Primitive ID and a function. (See
more details below.)

The Instruction Graph is a directed graph. Each node contains a reference to a
primitive. When the graph is traversed, the function held by the Primitive to which
the node refers is executed. (See more details below.)

The Memory Object provides the memory, and should contain no task logic. The
Primitive Library contains Primitives with atomic functionality. Primitives should
be divided into robot/system-specific Primitives and task-specific Primitives (this
organizational division is not required, but is just for your own benefit). Primitives
should not have any task logic nor should they refer to system memory directly, but
rather should use the Memory Object to read/write any data they require. Primitives
should be stateless. The Instruction Graph contains the task logic.

These three components are modular. You can switch one out without touching
the other two.

During graph creation or execution, we say that a graph is “associated” with a
Primitive Library and Memory Object. This association is performed by Manager.py.

106



APPENDIX B. DOCUMENTATION FOR TAIG OPEN SOURCE LIBRARY

B.3 QuickStart / Example

To just quickly run an instruction graph, you can use the example Memory and
Library that ships with instruction graph.

You can run and execute the following code:

from instruction_graph import Manager

from instruction_graph import DefaultMemory,

ExamplePrimitiveLibrary↪→

COUNT = "count"

HOW_COOL = "how cool is TAIG?"

A_SET = "fun_set"

A_GET = "fun_get"

A_PRINT = "print_args"

C_LESS = "less"

mem = DefaultMemory()

lib = ExamplePrimitiveLibrary()

m = Manager(memory=mem, library=lib)

m.create_new_ig()

m.ig.add_action(A_SET, args=[COUNT,5])

m.ig.add_action(A_SET, args=[HOW_COOL,"So awesome and cool."])

m.ig.add_if(C_LESS, args=[COUNT, 10])

m.ig.add_action(A_PRINT, args=["The count is less than %d", 10])

m.ig.add_else()

m.ig.add_action(A_PRINT, args=["The count is NOT less than %d",

10])↪→

m.ig.add_end_if()

m.ig.add_action(A_GET, args=[HOW_COOL])

m.save_ig("graph.ig")

m.load_ig("graph.ig")

m.run()

You are creating a graph using the example Memory and Primitive Library. It
will set two values in the memory, check one of them in an if condition and print,
and then get the value of the other and print it.
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This is a basic example, of course, so that you can understand it easily.

B.4 Details for developing on your own TAIG

Memory, Primitives, and Graph are decoupled and modular. You can use different
Memory Objects with the same or different Graphs, and different Primitive Libraries
with the same or different Graphs. So, you can create them and combine them in
any order.

B.4.1 Creating Memory

Memory is a good place to start as you create your own system. Technically Memory
is not required. If your application is totally reactive and stateless, then you can just
set the memory to None in the Manager.

Probably you will want some memory though.
When creating the memory object, consider all the types of information that

you may want to store. This could be containers for application state information,
connections to databases, or anything else you will need.

Create a Python file, for example example create.py

Consider this class, similar to DefaultMemory in the QuickStart example:

from instruction_graph.components.Memory import BaseMemory

class DefaultMemory2(BaseMemory):

def __init__(self):

super(DefaultMemory2, self).__init__()

self.info = {}

self.database_connection = None

self.counter = 0

self.whatever = "data"

def memory_name(self):

return "Another_Example_Memory"

It has attributes that an application can use. A Memory object can define any
attributes.

Memory Object should extend BaseMemory, and implement the memory name

method.
If you want your application to publish to a ROS topic, we recommend adding

the rospy.Publisher object as a value to an attribute of the Memory object. If you
want your application to subscribe to a ROS topic, we recommend adding that to the
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Memory as well, along with any callback (the callback could update additional values
in the memory). Primitives should not subscribe to topics directly, and Primitives
should publish to ROS topics by referencing the Publisher on the Memory object.

B.4.2 Creating Primitives

Primitives are where the actual low-level functionality for executing task components
is stored.

There are two kinds of Primitives, Actions and Conditions. Actions store atomic
functionality, and are meant to be used on Action nodes. Conditions check conditions,
and are meant to be used on IF or WHILE nodes.

Primitive functions can be parameterized (they can take arguments).

To create a primitive, you will first define a function. A function meant for an
action primitive should not have a return value. A function meant for a condition
primitive should return True or False.

See an example Primitive Library defined below.

from instruction_graph.components.PrimitiveLibrary import

BasePrimitiveLibrary↪→

from instruction_graph.components.PrimitiveTuples import

ActionPrimitive as Action, ConditionalPrimitive as Cond↪→

class ExamplePrimitiveLibrary2(BasePrimitiveLibrary):

def library_name(self):

return "Example_Primitive_Library_2"

def list_action_primitives(self):

return [

Action(fn_name='set', fn=self.set_value, human_name='Set

Function', human_description='Sets a value in the

memory.'),

↪→

↪→

Action("print_args", self.print_args, "Print with Args",

"Print the first argument interpolated with the

second."),

↪→

↪→

Action("dec", self.decrement, "Decrement Key",

"Decrement the value found at the specified key by

1")

↪→

↪→

]

def list_conditional_primitives(self):
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return [

Cond('less', self.check_if_less, human_name='is less',

human_description="Checks if the value of a certain

key is less than a given value. (Returns true if

so.)")

↪→

↪→

↪→

]

# Actions #

@staticmethod

def print_args(memory, text, args):

print(text % args)

@staticmethod

def set_value(memory, key, value):

memory.info[key] = value

print('%s set to %s' % (key, value))

@staticmethod

def decrement(memory, key):

value = memory.info[key] - 1

memory.info[key] = value

print("%s: %s (decremented)" % (key, value))

# Conditions #

@staticmethod

def check_if_less(memory, key, maximum):

value = int(memory.info[key])

return value < maximum

Note how functions are defined and then referenced in the ActionPrimitive and
ConditionPrimitive instantiations.

Required methods are:

• library name - a string to indicate this library’s name, used in logging
• list action primitives - should return a list of ActionPrimitives
• list conditional primitives - should return a list of ConditionalPrimitives

110



APPENDIX B. DOCUMENTATION FOR TAIG OPEN SOURCE LIBRARY

B.4.3 Creating the Graph and Saving to File

Let’s use our Memory and PrimitiveLibrary from above in creating an instruction
graph.

We instantiate a Manager object, specifying the Memory and PrimitiveLibrary
objects that we created above.

This particular graph will set the value of “count” in the memory to 6.Then it
will kick off a loop that will run until “count” is less than 1. In each iteration of the
loop it will check whether “count” is less than 3. If so, it will print “count is less
than 3” and if not it will print “count is greater than or equal to 3”. Then “count”
will be decremented.

Finally, the graph will be saved to “graph filename.ig”

from instruction_graph import Manager

mem_obj = DefaultMemory2()

eg_library = ExamplePrimitiveLibrary2()

igm = Manager(library=eg_library, memory=mem_obj)

ct = "count"

igm.create_new_ig()

igm.ig.add_action("set", args=[ct, 6])

igm.ig.add_loop('less', args=[ct, 1], negation=True)

igm.ig.add_if('less', args=[ct, 3])

igm.ig.add_action("print_args", args=["count is less than %d", 3])

igm.ig.add_else()

igm.ig.add_action("print_args", args=["count is greater than or

equal to %d", 3])↪→

igm.ig.add_end_if()

igm.ig.add_action("dec", args=[ct])

igm.ig.add_end_loop()

igm.save_ig("graph_filename.ig")

Run this code to check it out!

B.4.4 Running the Graph

After you have created “graph filename.ig,” you can load it and run it.
Use the following code to do so (you can reuse the existing Manager or create a

new one as show). This can be in the same file, or in a new file called example run.py

from instruction_graph import Manager
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from example_create import DefaultMemory2,ExamplePrimitiveLibrary2

mem_obj = DefaultMemory2()

eg_library = ExamplePrimitiveLibrary2()

igm = Manager(library=eg_library, memory=mem_obj)

igm.load_ig("graph_filename.ig")

igm.run()

Note that the graph can be run on a system right from the file. You do not need to
create anew. Make sure that the Primitive Library and Memory Object you use with
a graph are compatible.

B.4.5 Additional Techniques

There is a special type of node you can add to a graph called a ‘halt condition’.
Whenever the halt condition becomes true, the graph execution immediately stops.
To add a halt condition, use the set halt condition command. Add a line according
to the following example anytime during graph creation:

igm.ig.set_halt_condition("less_or_no_key", args=["key1", 7],

negation=True)↪→

In this case, the example primitive used with the arguments shown in the example
line mean that the graph execution would halt if key1 was defined and if its value
exceeded 7. Like other conditional primitives, this can be negated or not, and used
with whatever arguments you desire.

This is useful if you are on a robot system with an emergency stop button, or if
you want your agent to terminate execution immediately under other scenarios.

B.4.6 Nested Graphs (Graphs as Primitives)

You can use the special built in “run ig” action primitive to include a node that
attempts to run a different graph. In this manner, graphs can be nested within other
graphs. The manager will attempt to look for the graph in the same directory to
which all graphs are being saved (so if you are going to used previously saved graphs,
ensure these directories are the same).

When running a sub-graph, the entire graph executes before the node on the
upper graph is exited. The library and memory in the parent graph are passed to
the child during execution, and updates to the memory object made by the child
graph execution will persist when execution continues on the parent graph. There is
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no limit to how much you can nest graphs (aside from the practical consideration of
computer memory).

The default name of the primitive to run a graph is “run ig”. If this is the name
of another primitive in the user-defined library, a different name is chosen. If the
library subclasses BasePrimitiveLibrary as described in this documentation, then the
name of the primitive will be stored in the run ig name attribute of the library, and
can be retrieved therefrom.

There are two ways to run a graph: explicitly by name and by checking the queued
name. (The latter allows for the dynamic selection of a graph to run.)

To run a sub-graph explicitly, consider the following line:

igm.ig.add_action(igm.library.run_ig_name,

args=["path-to-graph-as-string"])↪→

This will put a node in the graph that contains the instruction to run the graph
path-to-graph-as-string when it is executed.

Please do note that it is the instruction that is added to the graph and not the
child graph itself. If the subgraph changes (if a new file is saved to the same filename),
it is this new graph that will be loaded and executed at runtime.

To run a sub-graph dynamically, find the structure to do so in the following two
lines:

igm.ig.add_action("queue_ig", args=["path-to-graph-as-string"])

igm.ig.add_action(igm.library.run_ig_name)

A path to the graph to run is queued up with the “queue ig” primitive. Then, run ig
is run without arguments to indicate accessing it this variable .

The “queue ig” method is not included by default, but it is in the example
primitive library where it is defined as follows:

@staticmethod

def queue_ig_prim(memory, path):

memory.queue_ig_as_primitive(path)

You can copy this implementation or write your own to achieve this functionality. If
you use a Memory that extends BaseMemory, then the queue ig as primitive and
get queued ig methods will be inherited by the memory and can be referenced in
the above manner.

If a halt condition is included on a graph used as a child graph, and the halt
condition becomes satisfied, child graph execution will terminate, and execution of
the parent graph will continue on to the next node. This has two ramifications:

1. The parent graph does not know if the child graph completed successfully
2. Sub-tasks can be terminated without stopping agent execution

113



APPENDIX B. DOCUMENTATION FOR TAIG OPEN SOURCE LIBRARY

B.5 Interactive TAIG

The Interactive Manager (IM) extends the Manager and acts as an agent. You,
another human, or another computer system can then interact with the IM over a
text-based interface to execute primitives, create task graphs, and executive task
graphs.

There are a few steps towards using the IM.

First, define Primitives with appropriate elements. Then instantiate the IM and
use it.

When the IM is evaluating an input, it attempts to make sense of the request,
and handle it, and respond.

B.5.1 Primitive Library for IM

Defining a Primitive Library for use with an IM is similar to defining it for use normally.
Primitive functions are implemented in the same way. The only difference is that
when creating ActionPrimitive and ConditionPrimitive objects and listing them in
the list action primitives and list conditional primitives functions, additional
properties are added.

See an example Primitive Library defined below.

from instruction_graph.components.PrimitiveLibrary import

BasePrimitiveLibrary↪→

from instruction_graph.components.PrimitiveTuples import

ActionPrimitive as Action, ConditionalPrimitive as Cond↪→

class ExamplePrimitiveLibrary2(BasePrimitiveLibrary):

def library_name(self):

return "Example_Primitive_Library_2"

def list_action_primitives(self):

return [

Action(fn_name='im_set', fn=self.f_set, human_name='Set

Function',↪→

human_description='Sets a value in the memory.',

match_re_or_fn="set [a-z0-9 ]+ to [a-z0-9 ]+",

argparse_re_or_fn="set (.*) to (.*)",↪→

parsed_description=lambda args: "Set the value of

'%s' to '%s'" % (args[0], args[1])),↪→
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Action(fn_name='im_inc', fn=self.increment,

human_name='Increment Key',↪→

human_description='Increment the value found at

the specified key by 1.',↪→

match_re_or_fn="inc(rement)? [a-z0-9 ]+",

argparse_re_or_fn="inc(?:rement)? ([a-z0-9

]+)"),

↪→

↪→

Action(fn_name='im_dec', fn=self.decrement,

human_name='Decrement Key',↪→

human_description='Decrement the value found at

the specified key by 1.',↪→

match_re_or_fn="dec(rement)? [a-z0-9 ]+",

argparse_re_or_fn="dec(?:rement)? ([a-z0-9

]+)",

↪→

↪→

parsed_description=lambda args: "Decrement %s by

one" % args[0]),↪→

]

def list_conditional_primitives(self):

return [

Cond(fn_name='less', fn=self.check_if_less,

human_name='is less',↪→

human_description="Checks if the value of a certain

key is less than a given value. "↪→

"(Returns true if so.)",

match_re_or_fn="[a-z0-9 ]+ is less than [0-9]+",

argparse_re_or_fn="([a-z0-9 ]+) is less than

([0-9]+)",↪→

parsed_description=lambda args: "The value of '%s'

is less than %s" % (args[0], args[1])),↪→

]

# Actions #

@staticmethod

def f_set(memory, key, value):

memory.set(key, value)

print('%s set to %s' % (key, value))

@staticmethod

def increment(memory, key):
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value = int(memory.get(key)) + 1

memory.set(key, value)

print("%s: %s (incremented)" % (key, value))

@staticmethod

def decrement(memory, key):

value = int(memory.get(key)) - 1

memory.set(key, value)

print("%s: %s (decremented)" % (key, value))

# Conditions #

@staticmethod

def check_if_less(memory, key, maximum):

value = int(memory.info[key])

return value < maximum

This is very similar to the example Primitive Library noted before, with additional
Primitive attributes as follows:

• match re or fn: This is a regular expression or function (returning a boolean).
When the IM receives text input, it uses this parameter to determine if this is
a primitive to which the text is referring. If the regex matches, or the function
returns true, it is considered a match.

• argparse re or fn: This is a regular expression or function (returning a list
of strings). After a piece of input text has been identified as referring to a
primitive, this function is called to determine how to parameterize it. If it is a
regular expression, each capturing group is a parameter. If argparse re or fn
is omitted, no parameters are passed to the primitive.

• parsed description: This is a function that takes in a list of arguments
and returns a string. It is used by the agent to respond to the user, for
describing a parameterized primitive. If parsed description is not specified,
the human description is used.

Note that the primitives you create for use in the interactive manager might
receive their arguments as strings. You should ensure that the functions defined for
the primitives themselves do any type conversion required.

B.5.2 Using the Interactive Manager

Find an example of instantiating the Interactive Manager with example Memory and
Primitive Library below.
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from instruction_graph.interactive.InteractiveManager import

InteractiveManager↪→

from instruction_graph.example.DefaultMemory import DefaultMemory

from instruction_graph.example.ExamplePrimitiveLibrary import

ExamplePrimitiveLibrary↪→

memory_obj = DefaultMemory()

library = ExamplePrimitiveLibrary()

im = InteractiveManager(library=library, memory=memory_obj)

resp = im.parse_input_text("set key 1 to 3")

print(resp)

resp = im.parse_input_text("I will teach you to dance")

print(resp)

...

resp = im.parse_input_text("Done Learning")

print(resp)

The IM is initialized with a library and a memory. It creates a Manager inside itself
which it uses to build a graph if necessary.

The parse input text method takes in text. The IM agent will perform any
actions and return its response as a string. Actions may involve executing primi-
tives/graphs or building/saving graphs.

The IM can exist in four states:
• WAITING: can be commanded to execute a primitive, execute a graph, or start

learning a new graph
• CONFIRM LEARN IG: after being asked to start a new graph, the IM will

ask for confirmation
• LEARNING IG WAITING: During construction of a new graph, can be in-

structed to add a primitive to the graph, or stop learning the graph
• CONFIRM ADD PRIM WHEN LEARNING: when the IM believes it has

heard a primitive to add to the graph, it will repeat what it has heard and ask
for confirmation. The state is stored on the state attribute (im.state) in above.
It should never be necessary to access, it is described here merely of interest
and as it may help you understand what is going on.

The manner in which a primitive is recognized is the same for executing or
adding. match re or fn is used to match, argparse re or fn is used to parse prim-
itives, and parsed description is used during the confirmation request. Matching
attempts are processed in the order in which they are listed in the return from
list conditional primitives or list action primitives.
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One primitive is added to the graph at a time.
The grammar for the communication itself is noted by the Builder Phrases, noted

in the next section.

B.5.3 Builder Phrases

Please find in Table B.1 the Builder Phrases, which entail the commands or
requests that the IM will understand. The first column shows the attribute name in
the BuilderPhrases object, the second column shows the (configurable, default) value,
and the third column has a description of the purpose and meaning. In the table, the
non-IM agent is referred to as a human for clarity, although, as mentioned, it doesn’t
have to be a human, it could be another computer agent.

Any text input not matching a phrase from Builder Phrases is assumed to refer
to an action primitive that should be executed or added.

You can customize your own BuilderPhrases and use those with the Interactive
Manager, as shown below.

from instruction_graph.interactive.InteractiveManager import

InteractiveManager, BuilderPhrases↪→

from instruction_graph.example.DefaultMemory import DefaultMemory

from instruction_graph.example.ExamplePrimitiveLibrary import

ExamplePrimitiveLibrary↪→

from instruction_graph.interactive.utils import regex

memory_obj = DefaultMemory()

library = ExamplePrimitiveLibrary()

builder_phrases = BuilderPhrases()

builder_phrases.confirm_pos = regex("(Yes|Yeah|Righto)")

builder_phrases.confirm_neg = regex("Nope")

builder_phrases.agent_start = "Get ready! It's interactive time."

im = InteractiveManager(library=library, memory=memory_obj,

phrases=builder_phrases)↪→
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Attribute Default Description
teach you regex("i will teach you to (.*)") human instruction to IM to begin learning a graph with

name in the first captured group
confirm pos regex("y(?:es|eah)?") human affirmative
confirm neg regex("no") human negative
teaching done regex("done

(?:learning|teaching)")

human instruction to IM to save and finish graph currently
under construction

h if cond regex("if (?P<neg>(?:not|don’?t)

)?(?P<cmd>.*)")

add a conditional primitive specified by the <cmd> captur-
ing group as an IF condition to the graph. If the <neg>

capturing group is present, negate it.
h while cond regex("(?:while|loop)

(?P<neg>(?:not|don’?t)

)?(?P<cmd>.*)")

add a conditional primitive specified by the <cmd> capturing
group as a WHILE/LOOP condition to the graph. If the
<neg> capturing group is present, negate it.

h else regex("else") add an ELSE node
h end if regex("end if") add an END IF node
h end loop regex("end loop") add an END LOOP node
run ig regex("run (.*)") if in state WAITING, execute the saved graph specified by

the capturing group. if in the process of building a graph,
add a run ig node to run a graph with this name

agent start "Beginning interactive graph

runner and builder."

IM outputs this at startup

exec prim success "" when a primitive is successfully executed, the IM responds
with this

exec prim fail "Could not find or run primtive

<prim id>"

What to output when the IM believes the human specified
a primitive but it can’t find the primitive specified

exec graph success "" the IM outputs this after successfully executing a graph
exec graph fail "Could not find or run graph

<prim id>"

What to output when the IM believes the human specified
a graph but it can’t find the graphspecified in the directory

build new graph "I will learn to <name>?" when the IM believes that the human has asked it to learn
a new graph, it outputs a request for confirmation

yes learn "Ok, I am ready to learn. What is

first?"

The IM outputs this at the beginning of learning a graph.

no learn "Ok" The IM outputs this after receiving a negative response to
checking whether it should learn a graph

unclear confirm "I don’t understand. Please name

a primitive to add or tell me I’m

done."

The IM outputs this when it cannot process the human
response after the IM asks for a yes/no response.

unclear learn "I don’t understand. Please name

a primitive to add or tell me I’m

done."

The IM outputs this if it doesn’t understand text input
during graph construction.

confirm new primitive "I should <cond> <name>" During graph construction, the IM asks for confirmation
for adding a primitive using this construction. <name>

will be replaced with the name of the primitive (including
parameters), and <cond> will be replaced by any of the
following if required: IF, WHILE, NOT

new primitive confirmed pos "Ok, what’s next?" When the human responds confirming adding a node, the
IM outputs this.

new primitive confirmed neg "Ok, what’s next?" When the human responds rejecting confirmation of adding
a node, the IM outputs this.

confirm add run graph name "run the graph <name>" The IM uses this construction to confirm adding a run ig
node

new run graph not exist "The graph you are requesting I

add does not seem to exist. I

checked for it at <location>."

when attempting to add a run ig node to a graph, this is
output if the graph is not fond

done building graph "I have learned <name>." When the IM saves a graph and exits graph construction, it
outputs this.

Table B.1: Builder Phrases
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Appendix C

Documentation for Vehicle
Intersection Open Source AI Gym
Environment

Vehicle Intersection (VI) is an AI Gym1 compatible reinforcement learning environ-
ment. It is a “Toy Text” environment. It is highly configurable and difficult.

1<https://gym.openai.com/>
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Figure C.1: VI rendering example

C.1 Description

Vehicle Intersection simulates a four-way vehicle intersection with stoplights. Vehicles
spawn at the edges of the map and approach the intersection at the center, driving
on two-land roads. Each approach to the intersection has a stoplight that can be red
or green. The agent controls these four traffic lights, and action involve turning the
lights red or green.

Vehicles move at a fixed speed when unimpeded. If they are blocked by a vehicle
in front of them going in the same direction, they stop. If they are blocked by a
vehicle in front of them going in a different direction, there is a collision. If a vehicle
approaches the edge of the intersection and encounters a green light, it continues
moving, if it approaches the edges of an intersection and encounters a red light, it
stops and waits until the light is green, at which point it move forward.

Additionally, each vehicle has an attribute called a “turn signal” indicating whether
it will turn, go left, or go right at the intersection.
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Each episode runs either until a configurable number of vehicles spawn and exit
the intersection safely or until a collision occurs.

The agent receives a penalty of -1 when a vehicle is forced to wait at a red light
(per vehicle, per timestep). A vehicle stuck behind another vehicle waiting at a red
light also incurs this penalty. The agent receives a penalty of -1000 when a collision
occurs. An optimal episode has at most a reward of 0 (which may not always be
possible depending how vehicles spawn). The goal becomes to reduce waiting time
for vehicles while also avoiding collisions.

C.2 Action Space

There are five “Action Sets” which correspond to action spaces. You can import
them as follows:
from vi_env.VehicleIntersectionActionSets import SetByRoad,

SetByLight, ToggleRoad, ToggleLight, SetExplicitly↪→

When instantiated, each action set has a describe() method that gives a description
(see Example section). Actions are passed in to the step function as integers.

The five action spaces available by default are described here as well, listed in
order of increasing action space size:

C.2.1 ToggleRoad()

1. wait
2. toggle lights on vertical road
3. toggle lights on horizontal road

C.2.2 SetByRoad()

1. wait
2. make lights on vertical road green
3. make lights on vertical road red
4. make lights on horizontal road green
5. make lights on horizontal road red

C.2.3 ToggleLight()

1. wait
2. toggle lights on left approach
3. toggle lights on upper approach
4. toggle lights on right approach
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5. toggle lights on lower approach

C.2.4 SetByLight()

1. wait
2. makes light on left approach green
3. makes light on left approach red
4. makes light on upper approach green
5. makes light on upper approach red
6. makes light on right approach green
7. makes light on right approach red
8. makes light on down approach green
9. makes light on down approach red

C.2.5 SetExplicitly()

1. wait
2. set lights to Red, Red, Red, Red (Left, Up, Right, Down)
3. set lights to Red, Red, Red, Green
4. set lights to Red, Red, Green, Red
5. set lights to Red, Red, Green, Green
6. set lights to Red, Green, Red, Red
7. set lights to Red, Green, Red, Green
8. set lights to Red, Green, Green, Red
9. set lights to Red, Green, Green, Green

10. set lights to Green, Red, Red, Red
11. set lights to Green, Red, Red, Green
12. set lights to Green, Red, Green, Red
13. set lights to Green, Red, Green, Green
14. set lights to Green, Green, Red, Red
15. set lights to Green, Green, Red, Green
16. set lights to Green, Green, Green, Red
17. set lights to Green, Green, Green, Green :

C.3 Observation Space

The observation space is represented by a vector of length 4+4*V, where V is the
maximum the number of vehicles that are allowed to be on the map at a single time.

The first four elements indicate which lights are red or green (0 for red, 1 for
green) in the following order: Left, Up, Right, Down.
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Each set of the next four elements indicates a vehicle on the map. The four
elements in order are as follows:

1. Approach Road: 0-3 for Left, Upper, Right, Lower
2. Position of Front of Vehicle: for an intersection of size 2 and road length of R

this can range from 0 to R+2. 0 means it is about to exit the intersection, 2
would mean it is about to enter the intersection, and a higher number is some
distance farther away from the intersection.

3. Length of vehicle: the remaining length of a the vehicle. Note that when a
vehicle partially exits the intersection, it will be represented as a smaller vehicle
about to exit.

4. Turn Signal: -1 for left, 0 for straight, and 1 for right

C.4 Requirements

VI requires Python 3 and the following Python libraries, all of which available on pip:
• gym 0.10.5+
• six 1.11.0+
• numpy 1.15.4+
• bitarray 0.8.3+

C.5 Setup

In the vi env folder find the three files with the code for Vehicle Intersection. You
can take the vi env folder and drop it into your project and import it as shown in
the Usage or Example section, or just copy in those three files. Please maintain
attribution information.

C.6 Usage

See an example usage below:

from vi_env.VehicleIntersection import VehicleIntersection

env = VehicleIntersection()

env.reset()

action = env.action_space.sample()

env.step(action)

env.render()
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If you like, you can also specify certain settings in the environment.
Some useful ones may be the action set, the maximum vehicles on the map, and

the road length.

from vi_env.VehicleIntersection import VehicleIntersection

from vi_env.VehicleIntersectionActionSets import SetByLight

env = VehicleIntersection(action_set=SetByLight(),

max_vehicles_on_map=4,

road_length=20)

env.reset()

action = env.action_space.sample()

env.step(action)

env.render()

A Vehicle Intersection environment has the standard methods of reset() and
step(action), as well as a render() method which can be run in a terminal to
output a visual representation of the state.

C.7 Example

Included in this repository is the disp env.py script, which runs the environment
with random actions. Run it with python3 disp env.py in the terminal to see a
representation of the environment over a sequence of timesteps with random actions.

C.8 Settings

VehicleIntersection() can be instantiated with a number of parameters. The full
list of customizable parameters is explained here.

• action set - which of the action sets from to use (ToggleRoad(), ToggleLight(),
SetByRoad(), SetByLight(), SetExplicitly()), default: ToggleRoad()

• road length - length of the road before the intersection. (intersection length is
2.) default: 14

• use turn signals - boolean. if False, cars only go straight. default: True

• turn signal dist - 3-tuple. If using turn signals, probabilities of each occurring
in a given vehicle. (Left, None [Straight], Right) default: (0.33, 0.34, 0.33)

• max vehicles on map - when this number of vehicles are on the map, do not
spawn additional vehicles until at least one exits the intersection. Note: This
parameter affects the size of the observation space. default: 8
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• vehicle types - an OrderedDict of (string → 2-Tuple(int, int) ) pairs. This
corresponds to (“vehicle name” → (“length min”, “length max”)). default:
OrderedDict([("car", (4, 4)), ("van", (6, 6)), ("truck", (8, 12))])

• vehicle dist - Tuple of length equal to size of vehicle types. Probability of
each vehicle type spawning each time a vehicle is to spawn. default: (0.4, 0.35,
0.25)

• vehicle colors - OrderedDict of (string → string) pairs indicating what color
each vehicle type should be in the rendering. default: OrderedDict([(“car”,
“yellow”), (“van”, “magenta”), (“truck”, “cyan”)])

• vehicle speed - the distance an unimpeded vehicle will move each timestep.
default: 1

• spawn interval - 2-Tuple indicating minimum and maximum time to wait
between spawning vehicles. default: (2, 7)

• vehicles to spawn per episode - the number of vehicles to spawn per episode.
affects episode length. default: 10

• lights init - starting configuration of the lights. The default is all green. default:
(1, 1, 1, 1)

• waiting penalty - default: -1

• collision penalty - default: -1000
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Appendix D

Gridsearch Bounds Used and
Hyperparameters Found When
Learning Decision Tree Policies

In Section 7.5, results were shown for various methods and environments. In each
case, a gridsearch was performed to find the optimal hyperparameters. The bounds
of the gridsearch for pCQI, CQI, and CQI2 are shown in Table D.1. The bounds of
the gridsearch for Pyeatt Method are shown in Table D.2.
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Environment Method Bounds
α HS numSplits

Robot Navigation A
pCQI 0.0001 to 0.3 1 to 10,000,000 n/a
CQI 0.0001 to 0.3 1 to 1,000,000,000 2 to 9
CQI2 0.001 to 0.3 0.1 to 10,000,000,000 2 to 10

Robot Navigation B
pCQI 0.0001 to 0.2 0.01 to 1,000 n/a
CQI 0.0001 to 0.2 0.01 to 1,000 2 to 7
CQI2 0.001 to 0.4 0.05 to 100,000 2 to 9

Vehicle Intersection
pCQI 0.01 to 0.4 0.00005 to 1000 n/a
CQI 0.01 to 0.4 0.00001 to 1000 2 to 7
CQI2 0.01 to 0.5 0.00001 to 10,000 2 to 9

Table D.1: Gridsearch bounds for pCQI, CQI, and CQI2

Environment Method Bounds
α History List Min.

Robot Navigation A
Pyeatt Method

0.01 to 1 1,000 to 25,000
Robot Navigation B 0.1 to 0.8 5,000 to 30,000
Vehicle Intersection 0.01 to 0.8 1000 to 15,000

Table D.2: Gridsearch bounds for Pyeatt Method
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Env: Robot Navigation A Robot Navigation B

Method α HS numSplits
History

List
Min.

α HS numSplits
History

List
Min.

PM 0.9 - - 3,000 0.2 - - 8,000
pCQI (R) 0.001 10,000 2 - 0.001 10 2 -
pCQI (S) 0.001 100,000 2 - 0.001 10 2 -
CQI (R) 0.005 1,000 4 - 0.001 10 6 -
CQI (S) 0.001 100,000 5 - 0.001 10 4 -
CQI2 (R) 0.1 100,000 9 - 0.1 1 7 -
CQI2 (S) 0.2 1,000,000,000 8 - 0.01 0.1 8 -
Env: Vehicle Intersection

Tree Size Avg. Reward/Ep.

Method α HS numSplits
History

List
Min.

PM 0.6 - - 10,000
pCQI (R) 0.3 0.001 2 -
pCQI (S) 0.1 0.001 2 -
CQI (R) 0.3 0.0001 6 -
CQI (S) 0.2 0.01 4 -
CQI (S) 0.3 0.001 5 -
CQI2 (R) 0.3 0.0001 2 -
CQI2 (S) 0.01 0.01 7 -
CQI2 (S) 0.1 0.01 9 -

Table D.3: Best hyperparameters found for various RL decision tree policy methods
across environments

In Section 7.5, results were shown for various methods and environments. In each
case, these results are using the optimal hyperparameters found in the grid search.
The optimal hyperparameters for each entry in Table 7.1 is shown in Table D.3 above.
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Appendix E

TAIGs for Additional Subtask
Graphs for GPSR

In this section please find additional examples of GPSR sub-task TAIGs. All primitives
used in these examples can be found in Appendix E.

Listing E.1: TAIG for “Discover the Name of a Person in a Location and Report it”
(“nameperson”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to l e a rn who i s in %s ' '
s ay w i th a rg s `` I am going to go to %s ' '
g o t o l o c a t i o n None
say w i th a rg s `` I am in the %s ' '
say ``Let me look around f o r who i s here . ' '
f i nd any pe r son [ None , None ]
IF person found

b e g i n f r a m e l i s t e n ``names ' '
say `` Hel lo human , what i s your name ? ' '
WHILE NOT frame heard
END LOOP
learn name from frame
say w i th a rg s ``Your name i s %s . ' '
s ay w i th a rg s `` Hel lo %s , i t i s n i c e to met you . I w i l l

↪→ go t e l l the operator that you are here . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I went to the room you asked me to go to

↪→ and I found %s . ' '
ELSE

say `` I cannot f i n d anyone here . I w i l l go back . ' '
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g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d anyone at %s . ' '

END IF
say ``Task Complete ' '
END GRAPH
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Listing E.2: TAIG for “Go to a Location and say Something to a Person” (“talk-
nameplace”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d %s at the %s and t e l l %s . ' '
g o t o l o c a t i o n None
say w i th a rg s `` I am look ing f o r %s . I am at the %s . I w i l l

↪→ t e l l %s once I f i n d the person . ' '
f i nd any pe r son [ None , None ]
IF person found

IF i s a n s w e r q u e s t i o n g p s r
say `` Hel lo ! Nice to meet you . My operator

↪→ t o ld me to anwer a ques t i on from you .
↪→ Please ask your ques t i on . ' '

b e g i n f r a m e l i s t e n `` prede f ined ' '
WHILE NOT frame heard
END LOOP
s a q u e s t i o n g p s r
s ay w i th a rg s ``The ques t i on Iam to answer i s %s

↪→ . ' '
answer que s t i on gps r
s ay w i th a rg s ``The answer to your ques t i on i s %s

↪→ ' '
say ``Thank you . I w i l l r e turn . ' '

ELSE
se t an swe r gp s r
s ay w i th a rg s `` Hel lo ! Nice to meet you . My

↪→ operator asked me to t e l l you %s . ' '
say `` I w i l l go back now . ' '

END IF
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` I did not f i n d anyone . The task i s done . ' '

END IF
END GRAPH

135



APPENDIX E. TAIGS FOR ADDITIONAL SUBTASK GRAPHS FOR GPSR

Listing E.3: TAIG for “Find a Person of a Certain Attribute at a Location and say
Something” (“talkggpplace”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d a person who i s %s at the %s

↪→ and t e l l %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r a person who i s %s . I am at

↪→ the %s . I w i l l t e l l %s once I f i n d the person . ' '
f i nd any pe r son [ None , None ]
IF p e r s o n o f i n t e r e s t f o u n d

IF i s a n s w e r q u e s t i o n g p s r
say `` Hel lo ! Nice to meet you . My operator

↪→ t o ld me to answer a ques t i on from you .
↪→ Please ask your ques t i on . ' '

b e g i n f r a m e l i s t e n `` predf ined ' '
WHILE NOT frame heard
END LOOP
s a q u e s t i o n g p s r
s ay w i th a rg s ``The answer to your ques t i on i s %s

↪→ . ' '
say ``Thank you . I w i l l return ' '

ELSE
se t an swe r gp s r
s ay w i th a rg s `` Hel lo ! Nice to meet you . My

↪→ operator asked me to t e l l you %s . ' '
say `` I w i l l go back now . ' '

END IF
g o t o l o c a t i o n ``The task i s done . ' '

ELSE
say w i th a rg s `` I cannot f i n d anyone who i s %s here at %s

↪→ to t e l l %s . I w i l l go back . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d anyone who i s %s at %s

↪→ to t e l l %s . The task i s done . ' '
END IF
END GRAPH
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Listing E.4: TAIG for “Bring an object from a location.” (“retrieveobjfrom”) GPSR
Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to r e t r i e v e %s from %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %. I am in %s now . ' '
s e a r c h f o r c a t o b j None
IF catob j f ound

say w i th a rg s `` I found %s in %s . ' '
approach obj
po int
say `` I t doesn ' t look l i k e something that I can pick

↪→ up . I am going to look f o r someone to help me . ' '
put down arm
i n i t h e a d
f i n d p e r s o n i n p l a c e
IF person found

s e t h e l p e r i n f o
s ay w i th a rg s ``Excuse me person wearing a %s

↪→ s h i r t , or anyone in t h i s room . Would you
↪→ h e l p l me pick up the %s here in teh %s ? I
↪→ can show you wehre to br ing i t . I f you do
↪→ t h i s f o r me , my team ' s humans w i l l g ive you
↪→ candy l a t e r . P lease answer yes or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please p ick up the ob j e c t
↪→ and f o l l o w me . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``With the help o f a

↪→ person wearing a %s s h i r t who
↪→ should have f o l l owed me here , I
↪→ brought the %s in the %s . The task
↪→ i s done . ' '

ELSE
``Ok. Thanks f o r l e t t i n g me know . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``The person wearing a %s

↪→ s h i r t would not he lp me br ing the
↪→ %s in the %s over , a lthough I did
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↪→ f i n d i t . Sorry . ' '
END IF

ELSE
say `` I t seems that no one i s in here . I w i l l go

↪→ back . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` I found the object , but I couldn ' t f i n d

↪→ anyone to help me br ing i t over . ' '
END IF

ELSE
say `` I cannot f i n d the ob j e c t here . I w i l l go back

↪→ . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

END IF
END GRAPH

Listing E.5: TAIG for “Find an object in a room.” (“findobjcat”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d the %s i n t he %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r the %s . I am in the %s now . ' '
s e a r c h f o r c a t o b j
IF catob j f ound

IF i s c a t
s ay w i th a rg s `` I s e e %s which be longs to the

↪→ category %s here in the %s . I w i l l go back
↪→ and repor t to my operator . ' '

put down arm
i n i t h e a d
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found %s which be longs to

↪→ theh category %s in the %s . The task i s
↪→ done . ' '

ELSE
say w i th a rg s `` I s e e the %s here in the %s . I

↪→ w i l l go back and repor t to my operator . ' '
put down arm
i n i t h e a d
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found the %s in the %s . The

↪→ task i s done . ' '
END IF
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ELSE
say `` I cannot f i n d the ob j e c t here . I w i l l go back

↪→ . ' '
i n i t h e a d
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d the %s in the %s . The

↪→ task i s done . ' '
END GRAPH
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Listing E.6: TAIG for “Report Which Object or Object-in-a-Category has a Certain
Property at a Location” (“findobjcatextreme”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d the %s %s in the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r the %s %s here . I am in the %

↪→ s now . ' '
s ea r ch ex t r eme ob j ca t [ None , None ]
IF found objcat ext reme

say w i th a rg s `` I have found the %s %s here in the %s .
↪→ I w i l l go back and t e l l the operator . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I have found the %s %s in the %s . The

↪→ task i s done . ' '
ELSE

say `` I cannot f i n d any o f the des ignated ob j e c t here
↪→ . I w i l l go back and t e l l the operator . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I could not f i n d the %s %s in the %s

↪→ because none o f them was there . The task i s done
↪→ . ' '

END IF
END GRAPH

Listing E.7: TAIG for “Find Three Objects or Categories of Objects of a Certain
Nature at a Certain Location” (“findthreecatextreme”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d three %s %s at the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r three %s %s here . I am at the

↪→ %s now . ' '
s ea r ch ex t r eme ob j ca t [ None , None ]
IF found objcat ext reme

say `` I have found the o b j e c t s here . I w i l l go back
↪→ and t e l l the operator . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I have found the %s %s in the %s . The

↪→ task i s done . ' '
ELSE

say `` I cannot f i n d any o f the des ignated ob j e c t here
↪→ . I w i l l go back and t e l l the operator . ' '
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g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I could not f i n d the %s %s in the %s

↪→ because none o f them was there . The task i s done
↪→ . ' '

END IF
END GRAPH

Listing E.8: TAIG for “Find a Person of a Certain Attribute in a Room”
(“findpersonattr

′′)GPSRSubtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d a person %s in the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r a person %s . I am in the %s

↪→ now . ' '
f i nd any pe r son [ None , None ]
IF p e r s o n o f i n t e r e s t f o u n d

say w i th a rg s `` I found a person %s in the %s . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found a person %s in the %s . The task

↪→ i s done . ' '
ELSE

say w i th a rg s `` I cannot f i n d any person %s in the %s
↪→ here . I w i l l go back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d any person %s in the %s .

↪→ The task i s done . ' '
END IF
END GRAPH

Listing E.9: TAIG for “Report how many people in a room satisfy certain criteria.”
(“countgp”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to count how many people who are %s

↪→ in the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am going to look f o r a l l the people who are %

↪→ s here . I am in the %s now . ' '
c o u n t p p l w i t h a t t r [ None ]
s ay w i th a rg s `` I have found %s who are %s in the %s . I w i l l

↪→ go back and repor t the number . ' '
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g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I have found %s who are %s in the %s . ' '
END GRAPH
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Listing E.10: TAIG for “Take an Object From You, and Deliver It to a Location”
(“placeobj”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to take the %s from you and d e l i v e r

↪→ i t to the %s . ' '
say `` I t does not look l i k e something that I can pick up .

↪→ Would you be ab le to hold on to i t ? I can guide you to the
↪→ d e s t i n a t i o n . P lease answer yes or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say w i th a rg s ``Great . P lease take the %s and f o l l o w me
↪→ to the %s . ' '

g o t o l o c a t i o n [ None ]
s ay w i th a rg s ``Thank you f o r b r in ing the %s over . We

↪→ are at the %s now . The task i s done . ' '
ELSE

say w i th a rg s `` Alr i gh t . I w i l l f i n d someone e l s e to
↪→ ehlp me take the %s to the %s . ' '

f i n d p e r s o n i n p l a c e
IF person found

s e t h e l p e r i n f o
s ay w i th a rg s ``Excuse me person wearing a %s

↪→ s h i r t , or anyone in t h i s room . Would you
↪→ help me take the %s from the operator to
↪→ the %s ? ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e
say ``Ok. Please take the ob j e c t from the

↪→ operator and f o l l o w me . ' '
g o t o l o c a t i o n [ None ]
say ``We have reached our d e s t i n a t i o n . Thank

↪→ ou f o r he lp ing . I w i l l go back . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

ELSE
say ``Ok. Thanks f o r l e t t i n g me know . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` I could not f i n d anyone to he lp me take

↪→ the %s to the %s . Sorry . ' '
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END IF
END IF
END GRAPH

Listing E.11: TAIG for “Find an Object in a Location, and Take it to Another
Location” (“takeplaceobj”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to take the %s from %s to %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s . I am in the %s now . I

↪→ w i l l go to the %s l a t e r . ' '
s e a r c h f o r c a t o b j [ None ]
IF catob j f ound

say w i th a rg s `` I found %s in the %s . I w i l l take i t to
↪→ the %s . ' '

say `` I t doesn ' t look l i k e something that I can pick
↪→ up . I am going to look f o r someone to help me . ' '

put down arm
i n i t h e a d
f i n d p e r s o n i n p l a c e
IF person found

s e t h e l p e r i n f o
s ay w i th a rg s ``Excuse me person wearing a %s

↪→ s h i r t , or anyone in t h i s room . Would you
↪→ help me take the %s here in the %s to the %
↪→ s ? Please answer yes or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please p ick up the ob j e c t
↪→ and f o l l o w me . ' '

g o t o l o c a t i o n [ None ]
say ``We have reached our d e s t i n a t i o n

↪→ . P lease l eave the ob j e c t here .
↪→ Thank you . ' '

ELSE
say ``Ok. Thanks f o r l e t t i n g me know .

↪→ I w i l l go back . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``The person wearing a %s

↪→ s h i r t would not he lp me take the %
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↪→ s from the %s to the %s , although I
↪→ did f i n d i t . Sorry . ' '

END IF
ELSE

say `` I t seems tha tno one i s in here . I
↪→ w i l l go back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found the %s in the %s , but I

↪→ could not f i n d anyone to help me take i t
↪→ to the %s . Sorry . ' '

END IF
ELSE

say `` I cannot f i n d the ob j e c t here . I w i l l go back
↪→ ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
END IF
END GRAPH
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Listing E.12: TAIG for “Find a person at a location, and report back regarding one
of their attributes.” (“ngpperson”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to a r epor t a person ' s %s at the %s

↪→ ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am going to look f o r a person and repor t

↪→ t h e i r %s . I am at the %s now . ' '
f i n d p e r s o n i n p l a c e
IF i s r epo r t name

IF person found
b e g i n f r a m e l i s t e n ``name ' '
say `` Hel lo human , what i s your name ? ' '
WHILE NOT frame heard
END LOOP
learn name from frame
say w i th a rg s ``Your name i s %s . ' '
s ay w i th a rg s `` Hel lo %s , i t i s n i c e to meet

↪→ you . I w i l l go t e l l the operator that you
↪→ are here . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I went to the room you asked me

↪→ to go to and I found %s . ' '
ELSE

say `` I cannot f i n d anyone here . I w i l l go
↪→ back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I went to the room you asked me

↪→ to go to but I could not f i n d anyone there
↪→ . ' '

END IF
ELSE

report human attr [ None ]
IF human attr found

say w i th a rg s `` I am at the %s . I have found a
↪→ person who i s %s here . I w i l l go back and
↪→ r epor t to my oeprator . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``The person I found at the %s

↪→ was %s . The task i s done . ' '
ELSE

say `` I cannot f i n d anyone here . ' '
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g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` I did not f i n d anyone at the des ignated

↪→ l o c a t i o n . The task i s done . ' '
END IF

END IF
END GRAPH

Listing E.13: TAIG for “Find three objects of a certain category in a room.” (“find-
threecat”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d three o b j e c t s o f the category

↪→ %s in the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am going to f i n d the o b j e c t s o f the category

↪→ %s . I am in the %s now . ' '
count ob j ca t s [ None ]
s ay w i th a rg s `` I have found %s %s here at the %s . I w i l l go

↪→ back and repor t to the operator . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found %s %s at the %s in t o t a l . The task i s

↪→ done . ' '
END GRAPH

Listing E.14: TAIG for “Count how many of an object or category there are.”
(“countobjcat

′′)GPSRSubtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to count how many %s there are at %s

↪→ . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r a l l the %s here . I am at the

↪→ %s now . ' '
count ob j ca t s [ None ]
s ay w i th a rg s `` I have found %s %s here at the %s . I w i l l go

↪→ back and repor t to the operator . ' '
i n i t h e a d
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I found %s %s at the %s in t o t a l . The task i s

↪→ done . ' '
END GRAPH
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Listing E.15: TAIG for “Get the Object at the Default Location (Not Given Location
to Search For)” (“retrieveobj”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d the %s . ' '
g e t o b j l o c [ None ]
s ay w i th a rg s ``The d e f a u l t l o c a t i o n o f the %s i s %s . I am

↪→ going to look f o r i t the re . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s . I am at the %s now . ' '
s e a r c h f o r c a t o b j [ None ]
IF catob j f ound

say w i th a rg s `` I found %s at the %s . ' '
approach obj [ None ]
po int
say `` I t doesn ' t look l i k e something that I can pick

↪→ up . I am going to look f o r someone to help me . ' '
put down arm
i n i t h e a d
f i n d p e r s o n i n p l a c e
IF person found

s e t h e l p e r i n f o
s ay w i th a rg s ``Excuse me person wearing a %s

↪→ s h i r t , or anyone in t h i s room . Would you
↪→ help me pick up the %s here at the %s ? I
↪→ can show you where to br ing i t . I f you do
↪→ t h i s f o r me , my team ' s humans w i l l g ive you
↪→ candy l a t e r . P lease answer yes or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please p ick up the ob j e c t
↪→ and f o l l o w me . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``With the help o f a

↪→ person wearing a %s s h i r t who
↪→ should have f o l l owed me here , I
↪→ brought the %s at the %s . The task
↪→ i s done . ' '

ELSE
say ``Ok. Thanks f o r l e t t i n g me know

↪→ . ' '
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g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s ``The person wearing a %s

↪→ s h i r t would not he lp me br ing the
↪→ %s at the %s over , a lthough I did
↪→ f i n d i t . Sorry . ' '

END IF
ELSE

say `` I t seems that no one i s in here . I
↪→ w i l l go back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` I found the object , but I couldn ' t f i n d

↪→ anyone to help me br ing i t over . ' '
END IF

ELSE
say `` I cannot f i n d the ob j e c t here . I w i l l go back

↪→ . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I could not f i n d the %s at the %s .

↪→ Sorry . ' '
END IF
END GRAPH

Listing E.16: TAIG for “Take the Object and Deliver It to a Person at a Beacon”
(“deliverobjname”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d %s and d e l i v e r the %s at the

↪→ %s . ' '
say `` I t does not look l i k e something that I can pick up .

↪→ Would you help me d e l i v e r i t ? I f you do t h i s f o r me , my
↪→ team ' s humans w i l l g ive you candy l a t e r . P lease answer yes
↪→ or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please take the ob j e c t and f o l l o w me . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s to d e l i v e r the %s .

↪→ I am at the %s now . ' '
f i nd any pe r son
IF person found

say w i th a rg s `` Hel lo ! You must be %s . My
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↪→ operator helped me br ing the %s here at the
↪→ %s . Please take i t from my operator . ``

say `` the task i s done . Thank you f o r
↪→ he lp ing me br ing i t over . I w i l l go back
↪→ . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
ELSE

say w i th a rg s `` I cannot f i n d %s here to
↪→ d e l i v e r the %s to . I am at the %s . I w i l l
↪→ go back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
END IF

ELSE
say w i th a rg s ``Sorry . I am not ab le to f i n d % and

↪→ d e l i v e r the %s and the %s , because I cannot p ick i t
↪→ up . ' '

END IF
END GRAPH

Listing E.17: TAIG for “Meet a Person at a Beacon, and Guide Them To Another
Beacon” (“guide”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to guide %s from %s to %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s . I am at %s . I w i l l go to %

↪→ s l a t e r . ' '
say ``Let me look around f o r who i s here . ' '
f i nd any pe r son [ None , None ]
IF person found

say w i th a rg s `` Hel lo . You must be %s . My operator
↪→ t o ld me to guide you from %s to %s . ' '

say ``Would you f o l l o w me? I can lead you to your
↪→ d e s t i n a t i o n . P lease answer yes or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say w i th a rg s ``OK %s . We are at the %s now .
↪→ We are heading to the %s . ' '

g o t o l o c a t i o n [ None ]
say ``We have reached our d e s t i n a t i o n . I

↪→ w i l l go back to my operator . ' '
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g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I have guided %s from %s to %s .

↪→ The task i s done . ' '
ELSE

say `` Alr i gh t . Thanks f o r l e t t i n g me know .
↪→ I w i l l go back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I have found %s at the %s who

↪→ r e f u s ed to f o l l o w me to %s . The task i s
↪→ done . ' '

END IF
ELSE

say w i th a rg s `` I cannto f i n d %s here to guide from %s
↪→ to %s . I w i l l r e t u r n . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
say `` I did not f i n d the person you to ld me to look

↪→ f o r . The task i s done . ' '
END IF
END GRAPH
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Listing E.18: TAIG for “Meet a Person and Guide Them (When Locations are not
Initially Specified)” (“guidenothing”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to guide %s . ' '
say `` I don ' t know where the person i s and where to guide

↪→ them . Would you be ab le to s p e c i f y where the person i s and
↪→ where to guide them? Please f i r s t say the l o c a t i o n o f the
↪→ person . For example , bedroom . ' '

b e g i n f r a m e l i s t e n `` l o ca t i on ' '
WHILE NOT frame heard
END LOOP
add lo ca t i on [ 0 ]
s ay w i th a rg s `` Alr i gh t . I am going to guide %s at the %s . ' '
say ``Now p l e a s e say the l o c a t i o n o f the d e s t i n a t i o n . For

↪→ example , k i t chen . ' '
b e g i n f r a m e l i s t e n `` l o ca t i on ' '
WHILE NOT frame heard
END LOOP
add lo ca t i on [ 1 ]
s ay w i th a rg s ``Thank you ! I am going to guide %s at the %s to

↪→ the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s now . I am at the %s . I

↪→ w i l l go to %s l a t e r . ' '
f i n d p e r s o n i n p l a c e
IF person found

say w i th a rg s `` Hel lo %s . My operator to ld me to guide
↪→ you from %s to %s . ' '

say ``Would you f o l l o w me? Please answer yes or no . ' '
b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT frame heard
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please f o l l o w me . ' '
g o t o l o c a t i o n [ None ]
say ``We have reached our d e s t i n a t i o n . Thank

↪→ you ! I w i l l go back now . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

ELSE
say `` Alr i gh t . Thanks f o r l e t t i n g me know .

↪→ I w i l l go back now . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
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END IF
ELSE

say `` I cannot f i n d the person here . I w i l l go back
↪→ . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d %s at the %s to guide to

↪→ %s . ' '
END IF
END GRAPH

Listing E.19: TAIG for “Guide a Person to Somewhere, Knowing Where They are to
Go But Not Where They Start” (“guidenostart”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to guide %s to the %s . But I don ' t

↪→ know where the person i s . ' '
say ``Would you t e l l me the l o c a t i o n o f the person ? FOr

↪→ example , the s o f a . ' '
b e g i n f r a m e l i s t e n `` l o ca t i on ' '
WHILE NOT frame heard
END LOOP
add lo ca t i on [ 0 ]
s ay w i th a rg s ``Thank you ! I am going to guide %s at the %s to

↪→ the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s now . I am at the %s . I

↪→ w i l l go to %s l a t e r . ' '
f i n d p e r s o n i n p l a c e
IF person found

say w i th a rg s `` Hel lo %s . My operator to ld me to guide
↪→ you from %s to the %s . ' '

say ``Would you f o l l o w me? Please answer yes or no . ' '
b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT frame heard
END LOOP
IF p o s i t i v e r e s p o n s e

say ``OK. Please f o l l o w me . ' '
g o t o l o c a t i o n [ None ]
say ``We have reached our d e s t i n a t i o n . Thank

↪→ you . I w i l l go back now . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

ELSE
say `` Alr i gh t . Thanks f o r l e t t i n g me know . I
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↪→ w i l l go back now . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

END IF
ELSE

say `` I cannot f i n d the person here . I w i l l go back ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d %s at the %s to guide to

↪→ %s . ' '
END IF
END GRAPH

Listing E.20: TAIG for “Meet a Person at a Beacon and Guide, not Told to Where
to Guide” (“guidenoend”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to guide %s at the %s . But I don ' t

↪→ know where to guide the person . ' '
say ``Would you t e l l me the l o c a t i o n o f the d e s t i n a t i o n ? For

↪→ example , the s o f a . ' '
b e g i n f r a m e l i s t e n `` l o ca t i on ' '
WHILE NOT frame heard
END LOOP
add lo ca t i on [ 1 ]
s ay w i th a rg s ``Thank you ! I am going to guide %s at the %s to

↪→ the %s . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r %s now . I am at the %s . I

↪→ w i l l go to %s l a t e r . ' '
f i n d p e r s o n i n p l a c e
IF person found

say w i th a rg s `` Hel lo %s . My operator to ld me to guide
↪→ you from %s to %s . ' '

say ``Would you f o l l o w me? Please answer yes or no . ' '
b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT frame heard
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please f o l l o w me . ' '
g o t o l o c a t i o n [ None ]
say ``We have reached our d e s t i n a t i o n . Thank

↪→ you ! I w i l l go back now . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '

ELSE
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say `` Alr i gh t . Thanks f o r l e t t i n g me know . I
↪→ w i l l go back now . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
END IF

ELSE
say `` I cannot f i n d the person here . i w i l l go back

↪→ . ' '
g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
s ay w i th a rg s `` I did not f i n d %s and the %s to guide

↪→ to %s . ' '
END IF
END GRAPH
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Listing E.21: TAIG for “Take the object and deliver it to a person with a certain
gesture in a room.” (“deliverobjgesture”) GPSR Subtask.

START GRAPH
queue subtask statement `` p l a n n e r c o n f i g / planner / subtask ' '
s ay w i th a rg s `` I am going to f i n d someone %s and d e l i v e r the %

↪→ s at the %s . ' '
say `` I t does not look l i k e something that I can pick up .

↪→ Would you be ab le to he lp me d e l i v e r i t ? I f you do t h i s f o r
↪→ me, my team ' s humans w i l l g ive you candy l a t e r . P lease
↪→ answer yes or no . ' '

b e g i n f r a m e l i s t e n ``yesno ' '
WHILE NOT h e l p e r r e s p o n s e h e a r d
END LOOP
IF p o s i t i v e r e s p o n s e

say ``Ok. Please take the ob j e c t and f o l l o w me . ' '
g o t o l o c a t i o n [ None ]
s ay w i th a rg s `` I am look ing f o r a person %s to d e l i v e r

↪→ the %s . I am at the %s now . ' '
f i nd any pe r son
IF p e r s o n o f i n t e r e s t f o u n d

say w i th a rg s `` Hel lo ! You must be %s . My
↪→ operator helped me br ing the %s here at the
↪→ %s . Please take i t from my operator . ' '

say ``The task i s done . Thank you f o r
↪→ he lp ing me br ing i t over . I w i l l go back
↪→ . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
ELSE

say w i th a rg s `` I cannot f i n d anyone %s here to
↪→ d e l i v e r the %s to . I am at the %s . I
↪→ w i l l go back . ' '

g o t o l o c a t i o n `` d e s i g n a t e d s t a r t ' '
END IF

ELSE
say w i th a rg s ``Sorry . I am not ab le to f i n d the

↪→ person %s and d e l i v e r th %s at the %s , becaue I
↪→ cannot p ick i t up . ' '

END IF
END GRAPH
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Appendix F

List of All Primitives Used in the
GPSR task

Please find listed on the following pages all the primitives used in the TAIGs noted
in Appendix E and in Section 4.2.
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id Name Description
Action

add_location
Process Location from 
Frame

Add any beacons, placements, or rooms specified in the 
most recent Frame to appropriate locations in memory 
(destinations and say_args)

answer_question_gpsr Answer Frame (GPSR)
Answer a question asked by a human in the context of a 
GPSR subtask interaction

approach_obj Approach Object Approach object in front of Pepper

begin_frame_listen Listen for Frame
Listen for a command or statement (subscribe to topic to 
which the speech module will publish frame information)

clear_subtask_info Clear Subtask Info Clear values in memory after GPSR subtask is complete

count_ppl_with_attr
Count People With 
Attribute Count the number of people who have a particular attribute

count_objcats Count ObjCats

search the room in order to count how many of the object or 
category there are.  if none is specified, retrieve from 
memory.  save this inormation to memory and queue it in 
say_args

find_any_person Search For Person Look arond until Pepper sees any human

find_person_in_place Find Person In Place
Search for a person by spinning in a circle until the person is 
found

go_to_location Go To Location

Go to the Location specified by the string passed as 
argument.  If string is None, go to a location specified in 
memory.

inc_counter Increment Counter Increment the counter variable by 1
init_head Initialize Head Put head facing forward and up

learn_name_from_frame
Learn Name From 
Frame

put name learned from recent frame into memroy and 
say_args

load_gpsr_by_frame
Load GPSR TAIG for 
Subtask

For GPSR, determine the appropriate TAIG to run as a child 
graph based on the command frame, and note this graph in 
memory

match_frame Match Frame

Check the last speech heard (or series of speech), and 
determin the Frame of the question being asked / statement 
being made.  Specify this frame on memory.
last_question_frame

point
Point At Location of 
Interest Point at a specified coordinate

put_down_arm Put Down Arm Pepper lowers any raised arms

queue_subtask_statement
Queue Subtask 
Statement

For GPSR, parse a command frame and and add parameter 
information to memory

report_human_attribute
Report Human 
Attribute

Save a person's attributes and room they are in to say_args 
in memory

run_ig Run Graph

[Built In] Run the specified graph, or load from memory the 
name of a graph and execute it as a child graph of the 
current graph, passing the same memory and primitive library

sa_frame
Set Say Args for 
Frame

Set [say] arguments on memory from the frame in 
preparation for repeating the question or command in 
Pepper's own words

sa_question_gpsr
Set Say Args for 
Frame (GPSR)

Set [say] arguments on memory from the frame in 
preparation for repeating the GPSR command  in Pepper's 
own words

say Say Perform Text to Speech on the Input Argument

say_with_args Say With Args
Perform Text to Speech on Input Argument as a template, 
filling in certain strings from say_args list in memory

search_extreme_objcat
Search for Object with 
Property

search current room for a specified object that has the 
specified property (if not explicitly specified, object and 
attribute retrieved from memory).  announce when done 
searching, and save information to memory
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id Name Description

search_for_catobj Search For CatObj

Search the current room for the specified thing (if object, 
search for the object, if a category, search for any object in 
that category)
Pepper will go to the center of the room and spin around, or 
for a large room, go to certain specific points in the room and 
spin around in those locations in order to search

set_answer_gpsr Set Answer GSPR

queue say_args in memory with appropriate conversation 
starter that Pepper was requested to use to begin a 
conversation with a person during a GPSR subtask

set_counter Set Counter Set the counter variable to a value

set_helper_info Set Helper Info

If Pepper has found a human during the most recent search, 
save their detected attributes to memory (i.e. shirt color) in 
preparation for asking them for help moving an object

set_say_args_deliver_obj_from
Setup Say Args for 
Deliver Object From

in the Deliver Object From subtask, take the information 
about locations, person name, and object and queue them in 
say_args in memory to be put into say args templates when 
say_args is next called

Condition

catobj_found
Is Category or Object 
Found

Has a Category or Object been found in the most recent 
search

counter_less Is Counter Less Than
Check if the counter variable is less than the passed 
argument x

found_objcat_extreme Found ObjCat Extreme

Has recent search resulted in finding an object (or object in a 
particular category) matching the appropriate attributes, and 
been stored in memory?

frame_heard
Has Frame Been 
Heard

Check if any frame has been detected since listening was 
last begun

helper_response_heard
Helper Response 
Heard Has a request for help been answered (in any manner)

human_attr_found
Found Person of 
Particular Attribute

Has recent search discovered a person matching the 
particular attributes noted in memory?

is_answer_question_gpsr
Is Answer Question 
GPSR

Is the GPSR task involving answering a question from a 
person?

is_report_name Report Name Is Pepper to report a person's name?
person_found Is Person Found has a person been found in the most recent search

person_of_interest_found
Found Person of 
Interest

Has recent search populated persons_of_interest in memory 
(ie because they have a certain attribute)

positive_repsonse Positive Response

Assuming the most recent frame was either a "yes" or "no" 
category of response from a human, was the response "yes"
/"agree" etc?

159



APPENDIX F. LIST OF ALL PRIMITIVES USED IN THE GPSR TASK

160



Bibliography
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