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Abstract

Granular materials are ubiquitous in household and industrial manipulation tasks, but their

dynamics are difficult to model analytically or through simulation. During manipulation,

they provide rich multimodal sensory feedback. We present a robotic system we con-

structed for investigating manipulation of granular materials. We present two data-driven,

learning-based frameworks to control scooping and pouring granular materials.

In our first set of experiments, we focus on the task of scooping granular materials

and propose to learn a model of relevant granular material dynamics through a data-driven

approach based on neural networks. We evaluate our approach on a dataset of 7,380 sam-

ples of scooping actions with two different granular materials. Our results indicate that

our model is effective for predicting both mass scooped and change in the material’s height

map, with a respective mean RMSE of 5.8 g and 0.38 cm on each task. We also demonstrate

how our model may be used for control of scooping a desired mass.

In our second set of experiments, we demonstrate a novel framework for using audio

feedback during manipulation of granular materials. Granular materials produce audio-

frequency mechanical vibrations in air and structures when manipulated. These vibrations

correlate with both the nature of the events and the intrinsic properties of the materials pro-

ducing them. We therefore propose learning to use audio-frequency vibrations from contact

events to estimate the flow and amount of granular materials during scooping and pouring

tasks. We evaluated multiple deep and shallow learning frameworks on a dataset of 13,750

shaking and pouring samples across five different granular materials. Our results indicate

that audio is an informative sensor modality for accurately estimating flow and amounts,

with a mean RMSE of 2.8 g across the five materials for pouring. We also demonstrate how

the learned networks can be used to pour a desired amount of material.
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Chapter 1

Introduction

Granular materials permeate our everyday lives, from the food we eat to the ground on

which our homes are built. Whether we are serving ourselves cereal for our morning

breakfast or repotting a house plant, manipulating granular materials in our environment

is frequently required in daily human tasks. Granular materials also play important roles in

industrial processes, such as ground excavation for mining, or mixing for glass and plastic

production [7]. In order for robots to assist in many household and industrial tasks, they

must be able to effectively manipulate granular materials.

The domain of granular materials presents challenging robotic manipulation problems

since manipulation typically relies on a model of the environment to predict the results of

different actions. The dynamics of granular materials depend on the surface interactions

among many constituent particles with potentially heterogeneous individual shapes. These

complex dynamics are often very difficult to analytically model and can be expensive to

simulate [1].

In order to investigate the challenges of robotic manipulation of granular materials, we

designed a robotic setup, shown in Figure 1.1. The setup was designed for flexibility among

multiple experiments, two of which will be detailed in this thesis. The setup includes a

1



Figure 1.1: Robotic setup for investigating manipulation of granular materials with multimodal
sensory feedback. The tub in front of the Sawyer 7-DOF robot arm can be exchanged for tubs with
different granular materials.
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Figure 1.2: The scoop end effector used in our experiments.

Sawyer 7-DOF arm mounted to a table. A tub of a granular material rests in front of

the robot on top of two Dymo USB postage scales for detecting changes in the mass of

material in the tub. On the end of the robot is a custom 3D printed scoop end-effector, with

a close-up image shown in Figure 1.2.

The setup is outfitted with numerous sensors for sensing multiple modalities of signals.

A Realsense D435 camera measuring RGB and depth images captures the surface of the

granular material, and an additional D435 camera is mounted to the end-effector, facing

down into the scoop to capture the RGB and depth of the contents of the scoop. Between

the wrist and the scoop is an ATI Axia80 wrist force-torque sensor for sensing the forces

and moments on the scoop during manipulation. The handle of the scoop has a lapel mi-

crophone with a cardioid profile pointing toward the tip of the scoop’s basin for recording

airborne sound. Finally, a contact microphone is glued to the back of the scoop’s basin for

measuring structural vibrations from the body of the scoop during manipulation.

For testing the generality of the frameworks we test in our experiments, we selected

different granular materials to manipulate, shown in Figure 1.3. Each material is relevant

to a different application of manipulating granular materials, with applications of robotic

3



Figure 1.3: The granular materials used in our experiments, with a 2 cm-wide calipers for scale.
(Top Left) The plastic injection molding pellets (“Pellets”). (Top Center) The peat moss top soil
(“Soil”). (Top Right) The cellentani pasta (“Pasta”). (Bottom Left) The long grain Basmati rice
(“Rice”). (Bottom Right) The coffee beans (“Coffee”).

manipulation in the household, the field, and the factory all being represented. Each of

the materials has very different properties in terms of density, granule stiffness, acoustic

conductivity, etc., which have different effects on the approaches we must use for manipu-

lation.

4



Chapter 2

Learning to Predict the Effects of

Scooping Granular Materials from

Local Height Maps

2.1 Introduction

In this chapter we investigate learning models to approximate the dynamics of different

granular materials during robotic manipulation tasks. We focus on the task of a robot

scooping a desired mass from a container of material, given an observation of the surface

of the material. More specifically, we focus on predicting the parameters that define the

desired trajectory for the scooping skill. We also explore predicting the change in shape of

the material given different scooping actions.

We evaluate our method using data from scooping with a 7-DOF Sawyer robot arm

from Rethink Robotics with a plastic scoop as an end effector (Figure 1.1, 1.2). We evaluate

our approach with two different granular materials: plastic injection molding beads and dry

cellentani pasta. These two materials represent different potential robotics applications, but

5



perhaps more importantly they represent different material dynamics due to the structures

of their constituent particles. Whereas the injection molding pellets are small, smooth,

elliptical, and convex, cellentani pasta pieces are large, helical, and potentially interlocking.

2.2 Problem Definition

Each scooping action by the robot is parameterized by 6 distinct parameters, (x, y, zi, zf, L, θ).

The x and y coordinates define where the tip of the scoop will begin its plunge in the con-

tainer; zi and zf are the respective initial and final height of the scoop through its sweep; L

is the length of the scooping sweeping motion; and θ is the fixed angle the scoop maintains

through the motion. These parameters are each visualized in Figure 2.1. Before perform-

ing a scoop, the robot observes a discretized height map H of the surface of the material.

From these scooping parameters and the observed height map, the robot should be able to

estimate the mass mest of granular material scooped as well as predict the resulting surface

height map H ′est. We reduce the dimensionality of the input to our model by centering H

on the x and y values. The height map is thus defined relative to the starting location of the

scoop. Our model may be described as:

{mest, H
′
est} = f(H, zi, zf, L, θ) (2.1)

We optimize our model with respect to a mean squared error loss on its predictions. We

evaluate our framework against a geometric baseline which assumes all material within the

trajectory of the scoop will be removed without otherwise affecting its surroundings.

6



Figure 2.1: The parameters of the scooping action. The scooping motion can be described as
follows: the robot hovers the scoop above the tub at the (x, y) coordinates, sets the pitch angle
of the scoop to θ, then plunges the scoop straight down to height zi. It then follows a linearly
interpolated path to point (x, y + L, zf) while retaining the same angle θ. Upon reaching this final
point, the robot tilts the scoop up about its back edge to a constant angle of π/12 from horizontal
in order to retain the scooped material, and then lifts up out of the tub. In the example shown in the
figure, the trajectory of the tip of the scoop would follow the magenta arrows.
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2.3 Related Work

Engineering models of granular materials have been developed for recovering mechanical

phenomena and properties from simulation. The authors of [41] and [22] found that mod-

elling granular materials using discrete element methods (DEM) as heterogeneous 2D or

3D ellipsoids rather than as as circles or spheres made for higher simulation quality. The

authors of [14] use a hierarchical framework coupling a finite element method and DEM

techniques to model the behavior of granular materials at a high and a low level, respec-

tively. They demonstrate their technique to be effective in modeling stresses and strains

and localizing them within a large body of sand.

Simulation of granular materials has been refined in the computer graphics commu-

nity [39]. For example, the authors of [47] simulated sand behavior by beginning with a

water simulator and accounting for dynamics more specific to granular materials, such as

interparticle friction to achieve a “visually acceptable result.” The authors of [25] found

that dispensing with many fluid-based assumptions in modelling granular materials and

solving for the internal frictional stresses within the material allowed graphical simulations

to reproduce even more realistic behavior.

With respect to robots and granular media, there is a sizable body of work on mobile

robots interacting with granular media while moving or locomoting [20, 21]. Some work

has approached building models and simulations specifically for modeling these types of in-

teractions [23]. There is also work in modeling and controlling scooping motions for large

construction equipment [30]. The authors of [15] compare using genetic algorithms and

self-learning simulations, wherein a learned neural network-based model of soil properties

is combined with finite element analysis, to predict soil deformations during excavation.

In [35], the author compares several different models for predicting the resistive forces ex-

perienced by a robotic excavator digging through soil. He develops an analytical model

8



of a flat blade moving through soil and compares several learning-based models, including

neural networks, in their ability to tune analytical models to more closely match observed

data. Whereas the excavation application usually concerns granular materials with particles

much smaller than the manipulator, we will model the interactions between a manipulator

and granular particles within an order of magnitude in size.

Data-driven or learned models for robotic manipulation have become increasingly pop-

ular. Paolini et al. combined kernel density estimators and Gaussian processes to model

the probability of grasp success [26]. Deep learning based models, where large neural net-

works are trained on large datasets, have also proven to be quite effective in modelling

complex dynamics in many real-world robotics domains. [19, 27] and [9] have success-

fully used convolutional neural network (CNN) architectures for modelling dynamics in

robotics applications from grasping to drone flying. CNN architectures consist of sequen-

tially applying convolutional kernels to inputs, with weights learned through gradient de-

scent. Their convolutional nature lends itself well to extracting features from inputs where

spatial features are translationally invariant.

A similar work to our own is that of Schenck et al., in which a robot learned to scoop

and dump pinto beans from one container to another to achieve a desired shape [33]. The

authors trained a predictive model based on a CNN and used the Cross Entropy Method

(CEM) [3] to use their model to sample actions for their policy. An approach similar to

Schenck et al. will be used in this paper, in that we will use a height map as input to a

convolutional neural network. However, while our own approach uses scoop action param-

eters directly as inputs to our model, Schenck et al. added an “Action Map” channel for

the trajectory of the scoop in image space as input to their fully convolutional model. The

height maps we use as input to our network are centered on the location of the beginning

of the scooping motion in order to reduce the dimensionality of our inputs.
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2.4 Approach

In this section, we present a data-driven approach to construct a model for open-loop con-

trol of scooping. We describe the underlying structure of our model as well as how we

collect training data.

2.4.1 Granular Material Egocentric Scooping Dataset

We collected training examples for our model using the setup shown in Figure 1.1. The 3D-

printed scoop end effector is composed of a nylon handle, which is semiflexible to protect

the scoop from breaking, and a rigid polylactic acid (PLA) rectangular basin of 7 cm length,

5 cm width, and 3 cm depth (Figure 1.2). For each scooping example, we sampled action

parameters uniformly over the following intervals: x ∈ [−11, 11] cm from the center of the

tub, y ∈ [19, 20] cm from the right wall of the tub, L ∈ [0, 14] cm, zi, zf ∈ [0, 9.5] cm from

the bottom of the tub, and θ ∈ [π/10, π/4]. Each scooping action was performed in the left

direction, with the opening of the scoop parallel to the left wall, as shown in Figure 2.1.

Before performing each scoop, we collected a 1280×720 RGBD image of the container

from the Intel RealSense camera, then took a reading from the scales under the tub of the

initial mass of the tub. Note that each scale has a measurement resolution of 2 g.

The scooping action is performed with the robot in Cartesian impedance control mode

with maximum stiffness in the x and y direction, and a stiffness of 400 N/m in the z direc-

tion to protect the scoop from damage in case of jamming. Thus, the scoop’s adherence to

its desired trajectory may be affected by the resistive forces of the material while scoop-

ing. After performing the scooping action specified by the randomly selected parameters,

the scoop was tilted about the back edge of its basin to a pitch of π/12 from horizontal to

retain the material it had scooped. The scoop was lifted straight up at this angle. We then

measured the final mass of the tub and subtracted the initial mass to determine the mass of

10



Figure 2.2: The histograms of scooped masses. (Left) For the pellets. (Right) For the pasta.
Differences in the skews of the distributions are likely due to the scoop being more prone to jamming
when plunging into and sweeping through the pasta than the pellets.

the granular material scooped by that action. Before dumping the material back into the

container, we collected an additional RGBD image of the container to capture the resulting

surface of the material after the scooping action.

We collected 3,690 examples from each material. Our setup was able to collect about

120 samples per hour, so this dataset represents approximately 60 robot-hours of data. A

histogram of masses scooped for the dataset of each material is shown in Figure 2.2.

2.4.2 Dataset Preprocessing

For each training example, we transformed the points from the camera’s RGBD images

from the camera frame to the world frame. We then centered the x and y coordinates of

the point cloud on the x and y value from the scoop parameters, defining the coordinates

relative to the beginning of the scooping trajectory. Finally, we interpolated the depth

bilinearly from this point cloud over a discretized 0.5 cm grid from a rectangle spanning

4 cm behind to 20 cm ahead of the beginning of the scoop action on the y axis, as well as

3.5 cm in both directions of the x axis from the center of the scoop. Thus, a 14×48 height

matrix was constructed from a 7×24cm section of the granular material. An example of

11



Figure 2.3: An example discretized height matrix H from a pasta surface, constructed by prepro-
cessing. x and y are shown relative to the beginning of the scoop action, with the scoop sweeping
in the positive direction of this relative y.

such a height matrix is shown in Figure 2.3.

Centering on the scooping action’s starting point reduces the dimensionality in two

ways: by obviating the need for the model to use the x and y starting positions of the

action and by reducing the size of the height map matrix without sacrificing its resolution.

This simplification is based on the assumption that the dynamics of scooping of granular

materials are strongly dominated by the structure of the material local to the scooping

action.

The only preprocessing performed on the actions was to compute the sin(θ) and cos(θ)

of the scoop angle θ. Thus, the inputs to our model were a 14×48 initial height map H ,

the initial scoop height zi, the final scoop height zf, the scoop length L, and the angle

parameters sin(θ), and cos(θ). All dimensioned units were in meters. The label of each

training example for the mass estimation task was the mass m of material scooped, in

grams, and the label for the task of predicting the resulting surface was H ′, the resulting

height matrix.

2.4.3 Model Architecture

The locally-correlated and hierarchical spatial structure of the height maps of granular ma-

terials plays to the strengths of a CNN-based approach. Our architecture thus combines

12
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Figure 2.4: The full architecture of our proposed model. In the figure, a represents the vector of
preprocessed scooping action parameters.

a CNN structure for automatically extracting features from the height map with a densely

connected neural network structure for extracting features from the action parameters. A

schematic of the architecture is provided in Figure 2.4.

The height map was first passed through three convolutional layers with 3 × 3 × 16,

2×2×32, and 2×2×64 convolutional kernels, respectively. Each convolutional layer was

followed by a Rectified Linear Unit (ReLU) activation layer to add nonlinearity, as well as a

2×2 Max Pool layer with stride 2 (i.e, the output is reduced to the maximum of every 2×2

contiguous region within each channel). In parallel, the preprocessed action parameters

were passed through two densely connected layers of 64 units each and followed by ReLU

activations.

The outputs of the convolutional network for the height map and the dense network

for the actions were then concatenated together and passed through two densely connected

layers, each with 384 units followed by a ReLU activation. The output of the network up

to this point was used for both the task of estimating the mass scooped and estimating the

resulting height map H ′.

For estimating the mass, this intermediate output was subsequently passed through two

densely connected layers of size 256 units with ReLU activations. A final simple layer

computed a linear function of the output of the penultimate layer to produce the final output
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of the model for the task of estimating the mass m.

For estimating the resulting height map H ′, the intermediate output was passed through

three deconvolutional layers which each upsample their input with a transpose convolution

using a kernel with learned weights. These layers used 2×2×64, 2×2×32, and 3×3×16

kernels, respectively, each with a ReLU activation and a stride of 2 to dilate the intermediate

output from 1 × 6 × 64 to 8 × 48 × 16. This was then resized with bilinear interpolation

to a size of 14 × 48 × 16, then finally convolved with a 3 × 3 × 1 kernel to condense the

output to a single channel and produce an estimate of H ′.

Networks were trained separately for the mass estimation and for the height prediction

tasks, with gradient descent performed with respect to a mean squared error loss on the

corresponding label. During training, the outputs of the densely connected layers were

dropped out with probability 0.5 (i.e. half of the values were set to 0, and the remaining

values were scaled by a factor of 2), to mitigate the risk of overfitting [38].

2.5 Evaluation

We present the results of two experiments for evaluating our method. In the first experi-

ment, we demonstrate the estimation potential and data efficiency of our framework, and

in the second experiment, we demonstrate how our framework may be used to generate

trajectories for scooping a desired mass.

2.5.1 Prediction Baseline

To evaluate the proposed approach, we use a baseline similar to the heuristic used in [33].

The baseline assumes that all material within the width of the scoop’s basin and above the

leading edge of the basin within the scooping action’s trajectory will be scooped, removing

it from the surface of the height map without affecting the untouched regions at all.
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For predicting mass, we numerically approximate the volume integral of the scooped

mass by multiplying the area of each grid square by the sum of the positive differences in

height between the material in each cell and the leading edge of the scoop at each “affected”

point in the grid. We then multiply this volume estimate by the measured packing density

of each material, 0.94 g and 0.38 g/cm3 for the pellets and pasta, respectively. For the final

baseline estimate, we take the minimum between this value and the maximum payload of

the scoop for that granular material.

For predicting the next height matrix H ′, we assume the final height of any affected

point in the matrix will be the expected height of the leading edge of the scoop at that point

in its trajectory, and all unaffected points will retain their same heights.

2.5.2 Prediction Accuracy

For evaluating our model’s accuracy, for each material, we first separated a test set of one

sixth of the data. We then performed 5-fold cross validation on the remainder of the dataset.

To test our model’s sample efficiency, we varied the proportion of the training examples we

used, then trained our model through 1000 epochs until the cross validation error on the

held out fold reached a minimum. We then computed the error on the test set, using this

trained model. The results of this experiment for mass estimation are shown in Figure 2.5,

and those for resulting height map estimation are shown in Figure 2.6.

For qualitative inspection, examples of the height map prediction H ′est of our network

are shown on the left and right of Figure 2.7 for the pellets and pasta, respectively. The

results presented are from models that have been trained on 80% of each material dataset

over 500 epochs until a minimum error had been achieved on 10% of each dataset held out

for cross validation. Results shown are from the remaining 10% of each dataset held out

for testing.
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Figure 2.5: The mass prediction accuracy of our model when trained on varying training set sizes.

Figure 2.6: The resulting height map prediction accuracy of our model when trained on varying
training set sizes.
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Figure 2.7: Examples of predicted and actual changes in surface heights from scooping actions. The
∆ in each subfigure represents the difference between the actual or predicted final height matrix and
the initial height matrix. Height dimensions (visualized with the color scale) are in centimeters.
(Left) Results from the pellets. (Right) Results from the pasta.
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2.5.3 Control

We also tested the effectiveness of our framework in providing a model for trajectory gen-

eration for scooping a desired mass. The task of the experiment was to use the model to

select appropriate scooping action parameters, given a height matrix and a desired mass.

For each material, we trained our model on 90% of our dataset and used the remaining

10% as a validation set. We trained through 500 epochs and saved the model at the epoch

at which the cross validation error was minimized. A desired mass for the task was then

selected uniformly randomly in 2 g increments on the interval from 2 g to 110 g and from

2 g to 64 g for the pellets and pasta, respectively. The x and y value of the scooping

action were then sampled uniformly randomly on the same intervals as those used to collect

the original dataset. A discretized height matrix was constructed from the surface of the

material, centered on this fixed x and y value. This height matrix was used as input to

the model, and the remaining four parameters of the scooping action zi, zf, L, and θ were

selected by minimizing the difference between the model’s estimate and the desired mass

using the cross entropy method, sampling each parameter over the same intervals as those

used to collect the dataset. The selected parameters were then used to perform a scooping

action, and the actual mass scooped was recorded. The results of 60 trials of the task for

each material are shown in Figure 2.8.

2.5.4 Discussion

For the mass prediction task, the root mean squared error (RMSE) of the baseline model

estimate across the entire dataset for each material was 43.1 g and 36.4 g for the pellets and

pasta, respectively. The RMSE of this baseline model for the resulting surface prediction

task was 1.2 cm and 1.6 cm for the pellets and pasta, respectively. For comparison, an

even simpler baseline of assuming the surface height map was completely unaffected by
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Figure 2.8: The results of 60 trials of using the cross entropy method to select optimal scoop action
parameters from a desired mass and a surface height matrix. The mean and standard deviation of
the error residuals are 6.4 g and 6.3 g for the pellets and 2.0 g and 5.1 g for the pasta, respectively.

each scooping action yielded an RMSE of 0.75 cm and 0.96 cm for the pellets and pasta,

respectively. Thus, in both the mass and shape prediction tasks, our models significantly

outperformed the baseline models in each material with only one robot hour of training

data. Qualitatively, our model produced shape predictions that were accurate to a high

level of detail.

Our model was more accurate in predicting mass for the pasta, especially in the low data

regimes. The range of masses in the distribution of scoops for the pellets was higher, as

the pellets were nearly three times as dense as the pasta (see Table A.2 in Appendix A.2).

Our model predicted the shape changes of the pellets more accurately than those of the

pasta. Due to the particles’ shape, the pellets have much simpler and more homogeneous

dynamics. The irregular shape and large size of the pasta granules makes their motion

more difficult to predict to the level of detail required to accurately predict how they will

pile after perturbation from a scooping action. However, our model’s RMSE of less than
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0.55 cm still reflects a strong ability to model the pasta’s complex dynamics. Both materials

had relatively large and rigid granules with negligible cohesion, but this framework should

be evaluated and extended in the future for use on materials with more cohesion, such as

wet materials, or materials for which there is more hysteresis, such as fine soil.

To reduce the dimensionality of our inputs, our model assumes a fixed, hand-coded

region of interest on the surface of the material, but this region of interest may vary sig-

nificantly with different materials. A material’s major axis length of its granules, angle

of repose, etc., could all have a large influence on the size of this region of interest. One

future extension could be to learn an attention mechanism to estimate an appropriate size

and location of the region of interest for a specific granular material.

In both the mass and surface shape prediction tasks, our framework demonstrated strong

sample efficiency given the relatively high dimensionality of the inputs. Note that the

models for each material were trained and tested separately. Future work could investigate

how well a model is able to generalize to a new material, or to adapt to a new material

through few-shot or active learning.

The performance improvements from increasing the training set size attenuated after

about 750 examples for each task, representing approximately 6 robot-hours per material.

The plateau observed in performance for both materials with more training data may be

inevitable with a model which is able to observe only the surface of the material. By only

observing the surface of the material, our framework is oblivious to any buried structure or

heterogeneity in the material which could affect dynamics of scooping.

For the control task, our framework’s performance was commensurate with its perfor-

mance on the supervised mass estimation task. An interesting extension would be to ef-

fectively combine our model with real-time sensor feedback during scooping. This closed-

loop control strategy could potentially reduce the controller error beyond our current result

by allowing our framework to respond accordingly to any structure in the material that
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cannot be foreseen from a surface height map. The results we have shown also merit inves-

tigating how well our framework can generalize to a new material, or if it can be trained on

other materials, then rapidly adapted to a new material after a minimal number of experi-

mental scoops.

2.6 Conclusion

We proposed a novel learning-based approach for modelling the dynamics of granular ma-

terials for manipulation tasks. By assuming that the dynamics of granular materials in

regions local to their manipulation dominate the relevant dynamics, we reduce the burden

of dimensionality on our learning-based model.

We evaluated our framework on a large dataset of scooping two materials with distinct

material and dynamic properties. Our framework was able to reliably predict the mass of

material that a scooping action would collect, as well as the resulting change in the surface

of the materials. Between both materials, the mass prediction and resulting height map

estimation tasks were achieved with a worst-case RMSE of 7 g and 0.5 cm, respectively.

The plateau in performance of our architecture suggests that the observation of the

height map of the surface of a granular material may not convey enough state to make

reliably accurate predictions of dynamics. In the future, the framework could be extended

to adjust its estimates using real-time feedback from sensors during the execution of the

scooping trajectory. In the next chapter, we present a novel audio feedback mechanism that

could be one such feedback mechanism we could incorporate into this framework.
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Chapter 3

Learning Audio Feedback for Estimating

Amount and Flow of Granular Material

This chapter presents work published in [6].

3.1 Introduction

Sound and structural vibration signals provide a rich source of information for manipulating

objects. Humans use this feedback to detect mechanical events and estimate the states of

manipulated objects. For example, one may use the sound of a bottle being filled with

liquid to estimate how close the bottle is to being full. Similarly, the sound from shaking

a near-empty bottle of pills is distinct from the sound of a full bottle, indicating the need

to refill the prescription. Experiments have shown that both humans and primates are able

to classify distinct types of events (such as whether a dropped glass bottle bounces or

breaks [43]), as well as continuous properties of the events (such as the length of a wooden

dowel being struck [4]) using only auditory feedback [2, 11].

The ability to sense and process vibrations during manipulation tasks would allow
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robots to detect and characterize anomalies during manipulation and adapt accordingly.

We may be more familiar with vibrations transmitted through air (i.e., sound). Structural

vibrations transmit through solid materials and can be sensed through vibrotactile and au-

dio sensors. The cost of collecting and processing vibration feedback is comparatively low

relative to other sensor modalities, including vision.

We investigate the use of vibration feedback during the manipulation of granular ma-

terials. Granular materials and tasks entailing their manipulation are ubiquitous in both

households and industrial environments [8]. We focus on the tasks of pouring and scoop-

ing desired amounts of granular materials, exploring whether a robot can use vibration

feedback to estimate how much mass it has scooped or how much it has poured.

In the case of pouring a desired amount, we propose to learn models to estimate the

amount of material poured based on vibration data collected during the pour. Intuitively,

the duration and strength of the vibration should directly correlate with the amount poured.

Since pouring is an irreversible process, the amount being poured in any time step is al-

ways non-negative, a property that we exploit to provide weak supervision for some of our

models.

We evaluate our proposed framework using training data from scooping, shaking, and

pouring using our granular materials manipulation setup (shown in Figure 1.1) with a plas-

tic scoop as the end-effector (shown in Figure 3.1). The scoop has a Neewer P-007 contact

microphone mounted on it for collecting audio-frequency vibrations throughout the manip-

ulation tasks. For testing the generalization of our frameworks, we use five different granu-

lar materials: roasted coffee beans, uncooked Basmati rice, uncooked cellentani pasta, peat

top soil, and plastic injection molding beads. Each of these materials has distinct mechani-

cal properties, including different acoustic properties, and is relevant to a different potential

application.
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Figure 3.1: Positions of the scoop used for pouring and shaking. (Left) The scoop in its resting
position, prepared to pour or shake cellentani pasta. The silhouette of the contact microphone is
visible through the back of the translucent basin of the scoop. (Right) The robot with its scoop at
its maximum pouring angle, a 60 degree pitch, with the peat top soil below its scoop.

3.2 Related Work

Experiments with humans and primates have investigated the use of auditory feedback to

infer characteristics of sound sources. Studies have shown that humans are able to clas-

sify sound sources based on sounds emitted during various perturbations [10]. Previous

works have also shown that both humans and primates are able to make estimates of metric

characteristics of sound sources, such as quantities and geometric dimensions [2, 4, 11, 17].

Various techniques have proven effective for classifying properties of household objects

from mechanical vibrations produced by actively manipulating them. Nakamura et al. [24]

used audio data, collected from shaking objects with a robot arm, among a multimodal set

of features for classifying toys into arbitrary categories. Sinapov et al. [34] used sound

signals from a robot actively interacting with different objects (e.g., shaking, pushing, and

tapping) to classify and characterize properties of common household objects. Griffith et al.

[13] used sound recordings of flowing water striking a container to determine whether it

was capturing water or not. Kroemer et al. [16] used a tactile microphone to capture audio-

frequency vibrations from a probe stroking materials to learn to classify and cluster the

24



material textures. Saal et al. [28] used recordings from touch sensor arrays on a robot arm’s

finger tips while shaking a bottle to infer the viscosity of the liquid the bottle contained.

Most similar to our work, Schenck et al. [32] collected features from multiple sensor

modalities, including robot joint torques and sound recorded by a microphone, while ma-

nipulating containers of granular materials through actions such as dropping and shaking.

These features were combined and compared to deduce patterns in matrix completion tasks

based on high-level features of objects such as the containers’ enclosed materials, colors,

and weight (“light,” “medium,” or “heavy”). Though these frameworks have been effective

for their respective classification tasks, our focus is on estimating the amount of material

captured or released, a continuous value, from sound recordings. Each of these experiments

demonstrates the strength of learning from audio-frequency vibrations to make inferences

about physical events and properties of objects in a robot’s environment.

With respect to pouring, Yamaguchi and Atkeson [45] used stereo vision to estimate

the location and cross section of liquid flow during robotic pouring, using liquids as well

as a fine granular material. Schenck and Fox [31] successfully used vision as feedback for

learning real-time robotic control of pouring liquids. Though these works demonstrate the

strong potential and value of using vision for feedback during robotic pouring, vibrotactile

feedback presents unique advantages as an alternative or additional modality of feedback

during pouring, e.g., its insensitivity to occlusion and lighting variation.

For materials in containers with constricted openings, Webster and Davies [44] were

able to estimate volumes of solid and liquid materials in custom-designed resonator vessels.

They actively searched for the resonant frequency of their vessels by applying different fre-

quency vibrations, then used a polynomial regression model based on Helmholtz resonance

equations. Our approach does not require specially designed Helmholtz resonator vessels

or actively searching for a resonant frequency.

Machine learning techniques for audio-frequency data vary widely based on application
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and purpose. Many techniques have found converting raw audio to a spectrogram represen-

tation to be a powerful tool [12, 13, 29, 34, 46]. Convolutional Neural Networks (CNNs)

have been successfully applied to spectrograms in speech recognition and other classifi-

cation tasks [18, 29, 37]. Other successful approaches to speech recognition from acous-

tic signals have used recurrent architectures based on Long Short-Term Memory (LSTM)

units, which store state in order to learn in the domain of sequential events [36]. Gated Re-

current Units (GRUs) were introduced by Cho et al. [5] as a simpler alternative to LSTM

units for recurrent networks. They have been shown to perform well on tasks involving

learning from acoustic signals [42], even outperforming LSTMs on some tasks [40].

3.3 Estimation of Amount from Vibratory Feedback

In this section, we describe the different network architectures that we explored for the tasks

of estimating amounts and flows of granular materials from audio-frequency vibrations, as

well as how the granular material dataset was collected.

3.3.1 Granular Material Manipulation Vibrotactile Dataset

We collected a dataset of audio-frequency vibratory recordings from five different granular

materials during shaking and pouring manipulation tasks. To collect this dataset, we used

a Rethink Robotics’ Sawyer 7-DOF robot arm (shown in Figure 1.1) and designed a 3D

printed plastic scoop as its end effector (shown at the left in Figure 3.1). The scoop has a 7

cm long, 5 cm wide, and 3 cm high basin and is equipped with a contact microphone glued

to the back outside of its basin for collecting the vibrotactile signal.

We placed a tub containing a granular material in front of the robot. The entire weight of

the tub rests on two DYMO M25 scales. The scales each have a measurement resolution of

2 g. The robot scooped random amounts of material from the tub, then alternated between
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shaking motions and pouring motions, before scooping more material again after the scoop

had been emptied. Before each shaking motion and after each pouring motion, the scales

measured the mass of the tub to ascertain the mass in the scoop and mass that had been

poured, respectively, providing the ground truth mass or flow for each data sample.

The shaking motion was designed to perturb the contents of the scoop enough to make

an audible sound, while spilling as little of the scoop’s contents as possible. Each shake be-

gan with the scoop tilted back to retain material in its resting position: a pitch of -15 degrees

(shown in the left image of Figure 3.1). Then the robot’s joint torques were set to 40% of

their maximum torque in an upward and negative-pitch direction for 80 milliseconds be-

fore abruptly stopping the robot in its current position. Since the motion was very brief,

the majority of the sound occurred well within the first 300 milliseconds of each clip. We

therefore truncated each audio clip to its first 500 milliseconds.

For each pouring motion, the pitch of the scoop began at the resting position and was

then rotated to a random angle between -13 and 60 degrees (shown in the right image

of Figure 3.1) using a constant angular velocity sampled uniformly between 12 and 75

deg/sec. Since the angle and velocity of each pour were randomly sampled, the lengths of

the audio recordings varied from 0.85 to 6.36 seconds. All of the recordings were zero-

padded to 6.4 seconds.

Datasets were collected in this manner with 2,750 shaking and pouring examples for

each of five different materials: roasted coffee beans, uncooked Basmati rice, uncooked

cellentani pasta, peat top soil, and plastic injection molding beads. These materials were

chosen on the basis of their distinct properties, including density, texture, homogeneity,

cohesion, and structure, as well as on the basis of their application diversity in both house-

hold and industrial settings. Refer to Appendix A.1 for more details about the dataset and

Appendix A.2 for more details about each material.
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Figure 3.2: Fully preprocessed spectrograms used as input to our frameworks. (Left) A spectrogram
from pouring 76g of plastic pellets. (Right) A spectrogram from shaking 10g of pasta.

3.3.2 Mapping Vibration Signals to Amounts

We compared several different learning frameworks for estimating the amount of material

in the scoop, as well as the amount poured, based on the data from the contact microphone.

The input to each method was a spectrogram of the audio clip collected during either a

shaking or pouring motion. The spectrograms were computed for each audio clip, binning

both the time and the frequency at equal intervals from 0 to 6.4 seconds and 0 to 12,500

Hz, respectively. This produced a discretized matrix of power levels within each frequency

and time interval, resulting in a 60×80 matrix x for each audio clip, with frequency along

the first dimension and time along the second, as shown in Figure 3.2. For this regression

task, each method was trained on a mean-squared error loss on the estimation of mass φ(x)

on each element of a subset of examples S, consisting of spectrogram inputs x with ground

truth mass values m, as measured by the scales:

Loss =
1

|S|
∑
S

(φ(x)−m)2 (3.1)

For the neural models, we applied this loss during training using minibatch gradient de-

scent, where |S| = 32 for each randomly selected batch. For linear regression, we used the
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full batch of training data to find the analytical regularized least-squares solution.

3.3.3 Linear Regression Baselines

For our linear baseline, we used regularized linear regression. Our input spectrograms have

4800 features, and our dataset has less than 3000 examples per material. For our first linear

baseline, we thus used ridge regression to make linear regression tenable. However, naı̈vely

using ridge regression with such a discrepancy in feature dimensionality and training size

could be prone to overfitting. Thus, along with this simple linear regression baseline, we

devised another linear baseline where we reduced the dimensionality of the input by sum-

ming up the input matrices over their time dimensions to produce a vector in frequency

space. The resulting features are then proportional to the total energy within each fre-

quency range over the duration of a clip. We then performed ridge regression on these 60

features for our second linear baseline.

3.3.4 Convolutional Neural Network

Convolutional neural networks (CNNs) excel in learning local hierarchical features from

structured inputs (e.g., 2D images and 1D audio signals) and have been applied successfully

in speech recognition tasks [29]. By sharing parameters in convolution kernels and max

pooling over local regions, CNNs are relatively invariant to translations. This invariance

and the use of local structure is relevant to spectrograms in which the pouring sounds may

occur at different times in each training example.

Our convolutional architecture consisted of a series of convolutional layers with 3x3x8,

4x4x16, and 4x4x32 kernels, respectively. Each convolutional layer was followed by a

Rectified Linear Unit (ReLU) activation function and a 2x2 Max Pool with a stride of 2,

condensing the output of each layer to the maximum of each non-overlapping 2x2 region.

These convolutional layers were followed by two fully-connected layers of size 256, each
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Figure 3.3: Schematics of audio-based learning model architectures. The input X is a spectrogram
where the columns {X1, X2, ...XT } represent the slices of the spectrogram in its time dimension,
e.g. X1 is the first column vector of powers for the different frequencies in the first time bin of
the spectrogram. (Top Left) Convolutional Neural Network (CNN). (Top Right) Recurrent ar-
chitectures (LSTM/GRU). The only difference between the LSTM and GRU-based architectures
was the type of recurrent unit used. (Bottom Left) Summing fully-connected network (SumFC).
(Bottom Right) Summing recurrent network (SumGRU).
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with ReLU activations. During training, dropout regularization was applied to the outputs

of each of these fully-connected layers, randomly setting each output value to 0 with a

probability of 0.5 and multiplying all other values by 2. From the output of the last layer, a

linear layer was used to produce the mass estimate φ(x). See Figure 3.3 for a visualization

of this architecture.

3.3.5 Recurrent Networks

Recurrent neural networks are well-suited to tasks involving sequential and temporal data,

including audio, which is inherently temporal. Recurrent networks are also well-suited for

variable-length inputs, and theoretically can output an estimate of the mass at any point

in time. The LSTM unit was designed to mitigate some of the pitfalls of recurrent neural

networks by adding differentiable gates to the memory stored by the unit and regulating

the propagation of loss gradients through the time dimension. The currently most popular

design of LSTM uses three such gates, i.e., an input, an output, and a “forget” gate. The

GRU unit was introduced as a simpler alternative to the standard LSTM unit, having only

an “update” and a “reset” gate [5]. Diagrams of both units are shown in Figure A.7 of

Appendix A.4. Rather than using a gate on the output, the GRU directly outputs its hidden

state, reducing its design complexity and the number of parameters that need to be learned.

We thus compared the performance of networks based on both LSTM and GRU units.

The recurrent architectures were applied by progressively processing each time slice

of frequency power levels through a layer of 512 recurrent units. The final output of this

recurrent network was fed to an additional fully-connected layer of 512 units with ReLU

activation, followed by a linear layer to produce φ(x). During training, dropout was applied

to the LSTM output, as well as to the output of the intermediate fully-connected layer used

in regression. The architecture of the LSTM and GRU networks were identical, the only

variation being the type of recurrent units used in the recurrent layer. See Figure 3.3 for a
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visualization.

3.3.6 Summing Networks

The trained networks should ideally be able to predict the amount of material poured at each

time step, such that they can be used for continuous estimation during the pouring process.

However, we only provide the total final amount of material poured for the training data.

Training the step-wise predictions of the networks is therefore only weakly supervised.

In the case of pouring, we can leverage the principle that the amount of material in

the scoop is monotonically decreasing, i.e., the amount poured out during any time step

must be nonnegative. We use this insight to provide additional structure to the models,

constraining them to estimate the mass poured during each time step as a nonnegative value.

We then estimate the total poured mass as the cumulative sum of the mass estimate from all

previous time steps. In this manner, the framework cannot compensate for overestimates in

the material poured by including negative mass flow at a different point in time. We used

this principle in both a fully-connected and a recurrent architecture by training each model

to estimate a nonnegative mass for each time slice.

The summed fully-connected network (which we call SumFC) applied two 512 unit

fully-connected layers, followed by a single unit layer, each with ReLU activations, to each

time step of the spectrogram. Its mass estimate φ(x) was then the sum of the output of

this network for each time step. During training, dropout was applied to the output of each

layer except the final output layer.

The summed GRU network (which we call SumGRU) followed the same premise as

the summed fully-connected network, merely replacing the first two hidden layers with a

GRU layer. It consisted of a 512 cell GRU layer followed by a single unit dense layer with

ReLU activation, summed over all time steps to yield φ(x).

In each architecture, since a ReLU activation constrains the output of the final layer
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to be non-negative for each timestep, the contribution of each timestep to the total sum is

non-negative. Visualizations of both architectures are shown in Figure 3.3.

3.4 Evaluation

For the evaluations, we trained each model until the error on a held-out validation set was

minimized. We then used the corresponding learned model for the evaluation on a separate

held-out test set. Our dataset included many examples of shakes and pours where the

scoop was empty (quantified in Table A.1 of Appendix A.1). To ensure that our models

were robust on examples that were less trivial, we filtered our validation and test sets to

only include examples where the scoop was measured by the scales to be nonempty at

the outset. We report the final test error as the average test error from 5 trials on random

train-validation-test data splits, unless otherwise specified. Note that each material has a

different density and consequently a different distribution of poured masses. Hence, each

model is compared with other models on the same material.

3.4.1 Learning for a Single Material

In practice, a robot may only need to manipulate one given granular material, or it may be

able to construct and store separate models for each material it needs to manipulate. Thus,

we evaluated each of the methods on its ability to train and test on data from the same

material. We tested the dataset for each material individually, splitting into 70-15-15 train-

validation-test percentages. In addition to our linear regression baselines and proposed

models, we also estimated masses from static analysis of the robot’s joint torques and

present all results in Figure 3.4.

For this task, the recurrent architectures (LSTM, GRU, and SumGRU) consistently per-

formed the best for both the pouring and the shaking estimation, with the exception that the
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Figure 3.4: Performance of single-material models on estimating mass of each material. Bars that
surpass the bounds of the graph have their inter-trial means (and standard deviations) respectively
printed above them. (Top) Estimating poured mass. (Bottom) Estimating shaken mass.
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LSTM occasionally was not able to converge during training specifically on the pouring

data for rice. We had noticed during the design of these frameworks that the convergence

of the LSTM was sensitive to the granularity of the discretization of the spectrogram on

its time dimension. It is possible that it may have converged more consistently on the rice

data with a coarser discretization. However, the GRU counterpart to the LSTM network

consistently converged, perhaps due to its reduced unit complexity. Our models consis-

tently outperformed estimates based on static joint torques, with the exception of the raw

regularized linear regression, which was prone to occasionally overfitting.

3.4.2 Learning for All Materials

Rather than using separately trained models for each material it encounters, a robot may

benefit from learning one model over multiple materials. This provides the model with

more data and may help to avoid overfitting, as the robot must learn features that generalize

well across all materials. We thus test each framework’s ability to model multiple materials

simultaneously and whether it benefits from additional data. To test this approach, we

split the data from each material into 70-15-15 train-validation-test percentages, combining

all the train and validation sets for the training process, and using the test set from each

material separately to test our model’s strength for that particular material. These results

are shown in Figure 3.5.

Once again, the recurrent architectures performed best. The LSTM apparently bene-

fitted from learning over all the data and extracting useful features, in that it was able to

consistently converge and model the rice pouring data effectively. The LSTM architecture

also slightly outperformed both GRU architectures on almost all materials, demonstrating

its advantage of having more trainable parameters when trained with this larger training

set.
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Figure 3.5: Performance of all-material models on estimating mass of each particular material.
Bars that surpass the bounds of the graph have their inter-trial means (and standard deviations)
respectively printed above them. (Top) Estimating poured mass. (Bottom) Estimating shaken mass.
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3.4.3 Generalizing to New Materials

Figure 3.6: Performance of models on estimating poured mass of an untrained material, when
trained on all other materials. Bars that surpass the bounds of the graph have their inter-trial means
(and standard deviations) respectively printed above them.

When a robot encounters a new material, its model should ideally generalize well

enough to provide useful feedback on the new material, purely based on what it has previ-

ously learned from other materials. In order to test each model’s efficacy for generalizing

to new materials, we split each dataset into 85-15 training-validation percentages. For each

material m, we used a combined training set and validation set from the respective training
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Figure 3.7: Performance of models on estimating shaken mass of an untrained material, when
trained on all other materials. Bars that surpass the bounds of the graph have their inter-trial means
(and standard deviations) respectively printed above them.

and validation sets of all other materials, and tested on the entire dataset of material m

for which the scoop was measured to be nonempty. Results from 5 trials of random train-

validation splits are shown in for pouring and shaking in Figures 3.6 and 3.7, respectively.

Each neural model performed surprisingly well on the soil and pasta. This may suggest

that the neural architectures were able to sufficiently learn features relevant to each of

these materials from the data of the other materials, or the discrepancy may simply be due

to these datasets’ lower means and standard deviations of both their shaken and poured
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masses relative to the other materials’ datasets (see Table A.1 in Appendix A.1). Since the

models generalized slightly better to the pasta than coffee datasets, this suggests that both

of these factors were likely at play, since the pasta dataset may have higher variance than

the coffee, but the pasta is more acoustically similar to the other rigid materials than the

coffee is.

Overall the linear, CNN, and SumFC models had high variances on this task, with each

of these approaches misestimating the poured mass of the pellets by an order of magnitude

more than the rest of the architectures. Specifically for generalizing to pellets, estimates

based on static analysis of joint torques outperformed many of the models. The pellets

produced a significantly louder noise during pouring, and each of the recurrent networks

used tanh activation functions, which could saturate when confronted with an especially

strong input. The SumGRU, however, may have lost some of this benefit by taking the

sum of the output from each timestep, sacrificing its ability to correct itself and benefit

from saturation. Some normalization of the dataset could have mitigated this issue, but a

naı̈ve normalization may not preserve important features of each datapoint, e.g., absolute

magnitudes of input features may be too important to disregard. Devising an effective

normalization strategy is thus a potential future extension.

3.4.4 Leave-One-Level-Out Cross-validation

To further test the generalization of our models, we tested each model’s performance

through leave-one-level-out cross-validation. For each material, we separated the dataset

into 5 folds based on the percentiles of the masses poured or shaken. The first fold had data

examples with masses from the minimum to the 20th percentile, the second fold the 20th to

the 40th percentile, etc. Note that since the distributions were skewed, and the resolution

of masses was effectively discrete at 2 g intervals, these folds were not necessarily equiv-

alently sized. For each fold, we trained our models on the remainder of the dataset while
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holding out that fold, then minimized our test error on that fold. We report the average

performance over all five folds for each material in Figure 3.8.

On this task, the proposed models performed very similarly on average to how they per-

formed in being trained and tested on all levels of a single material (Section 3.4.1), though

they each had much higher variances. Once again, each proposed model outperformed the

baseline models overall, with the exception of the LSTM-based model, which was not able

to consistently converge on the rice or pellets.

3.4.5 Model Sample Efficiency

In order to test the sample efficiency of each model, we experimented with varying the

amount of data on which our models were trained. For each granular material, we held out

a test set of 15% of the material’s dataset, then trained on different sizes of fixed subsets

of the remaining data for that material. For a validation set, we held out the remainder of

the material’s data which had not been allocated to the training or test sets. We trained

until the error on this validation set was minimized, then reported the test error. Results for

each model, averaging their performance over all the materials, are shown for pouring and

shaking in Figures 3.9 and 3.10, respectively.

The regularized linear regression baseline demonstrated very large variances in the low

data regimes. Though the summed linear regression baseline demonstrated much better

performance in the low data regimes, both baselines often plateaued in their performance

improvements with increases in training set sizes. On the other hand, our proposed models

each demonstrated good sample efficiency, even performing well with as few as 125 data

samples or approximately one robot-hour of data. Overall, the recurrent models demon-

strated the best sample efficiency, with both the GRU-based models outperforming the

LSTM-based model. This aligns with empirical results from related work, which found
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Figure 3.8: Performance of single-material models on estimating mass during leave-one-level-out
cross-validation. Bars that surpass the bounds of the graph have their inter-trial means (and standard
deviations) respectively printed above them. (Top) Estimating poured mass. (Bottom) Estimating
shaken mass.
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Figure 3.9: Training curves showing variation in performance of models with different sized train-
ing sets averaged over data from pouring all materials. Results are from averaging over 5 trials.
(Left) Results from all models. (Right) Results from regularized linear regression omitted to show
detail of other models’ performances.

Figure 3.10: Training curves showing variation in performance of models with different sized train-
ing sets averaged over data from shaking all materials. Results are from averaging over 5 trials.
(Left) Results from all models. (Right) Results from regularized linear regression omitted to show
detail of other models’ performances.

the GRU to sometimes be more sample efficient, having fewer parameters to learn than the

LSTM.
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3.4.6 Real-time Control of Pouring

Vibrotactile sensing could potentially provide valuable feedback for robotic manipulation.

To demonstrate the robot’s ability to use vibrotactile feedback in this setting, we had the

robot use a learned model to terminate a pouring skill once it had poured a desired amount.

Figure 3.11: Controlling pours of granular material to a desired mass with a SumGRU model, using
only tactile audio feedback. The mean and standard deviation of the error residuals are 4.3 g and
3.4 g for the pellets and 0.8 g and 5.8 g for the coffee beans, respectively.

The pours used for our main dataset were too fast to control, and we therefore collected

small datasets of spectrograms and resulting masses for pouring both the plastic pellets

and the coffee beans, tilting the scoop at 9 degrees/second and terminating each pour at a

random duration. We used 800 examples of each material to train separate models based on

the SumGRU architecture. These models were used as the feedback mechanism for a basic

controller, which terminated the pour immediately upon estimating that the mass poured

had reached the commanded mass. Each model made its mass estimates purely based on

the current spectrogram of the audio collected so far from the pour. The SumGRU was

our most computationally expensive architecture, and the feedback loop was processed

at about 20 Hz on a desktop machine with a multi-core processor and an Nvidia Titan
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XP graphics card. Of the 50 milliseconds per feedback loop, about 15 milliseconds was

spent computing and binning the spectrogram, and the remaining 35 milliseconds was spent

passing the spectrogram through the trained SumGRU architecture to generate an estimate

of the mass. The results of 50 trials of commanding each controller to pour masses sampled

randomly up to the max scoop payload are shown in Figure 3.11.

3.5 Discussion

Each of the models evaluated varied in its relative performance on different tasks and ma-

terials. However, patterns that emerged were that the linear baselines, the CNN model, and

the SumFC models had the widest variances in their performances. On the other hand, the

recurrent architectures consistently were the best performers on almost every task. These

architectures are each able to make inferences from relationships between events and fea-

tures over varying lengths of time. With the inherent temporal and sequential nature of

audio data, such relationships may be crucial in extracting the relevant features in this task

of mass estimation.

Our cumulative summing networks, SumFC and SumGRU did not show significant

performance improvements over the LSTM-based and GRU-based architectures. Thus,

our weak supervision of nonnegative pouring flows showed no evidence of significantly

improving performance in the architectures for offline estimation. However, they may be

useful in real-time mass estimation applications. As shown in Figure 3.12, the standard

GRU tends to overshoot in estimating the amount poured during the actual pouring action.

By contrast, the SumGRU does not violate the monotonicity constraint, resulting in phys-

ically possible flow rate estimates throughout the pouring action. Note that the rise in the

estimate of mass for the SumGRU lags behind the most powerful components of the spec-

tra in time, reflecting that its output is not a directly useful real-time estimate. Whereas in
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Figure 3.12: Demonstrating the value of the summing architectures for real-time estimation appli-
cations, when only training with weak supervision. Each plot shows the spectrogram used as input
above the current estimation of mass, as output by the recurrent architecture at each time step. In
the mass estimation plots, the ground truth mass is denoted by the horizontal line. (Left) The output
of the GRU overshoots, then gradually corrects its estimate over time. (Right) The SumGRU does
not overshoot and approaches the correct estimate monotonically.

our work we collected separate datasets specifically for our example control tasks, future

work could investigate training a model from offline data with weak supervision, similar to

our initial datasets, to be used in a real time estimation or control task.

We noticed during tuning that the CNN and SumFC models were sensitive to the hyper-

parameter settings, such as the initial learning rate and learning rate decay schedule. The

recurrent architectures were much less sensitive to changes in hyperparameters, though the

LSTM struggled to converge when trained only on the rice dataset, as shown in Figure 3.4.

We initially had used spectrograms with a finer discretization in the time dimension, but the

LSTM often failed to converge with this fine discretization. The performance of our other

models was not significantly affected. Future work could investigate using other methods

of compressing the time resolution using differentiable methods, such as temporal convo-
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lution layers, then combining these with the recurrent layers.

These frameworks each successfully estimated amounts and flows during pouring and

shaking. An interesting future extension would be to apply and adapt these methods to

estimation of amounts during scooping. In the case of scooping, we expect less correlation

of sound with the mass scooped, since the flow of material into the scoop is not necessar-

ily unidirectional. We thus expect that applying these methods directly to estimation of

granular material amounts during scooping would be more difficult.

Additional interesting future work could investigate arrangements of multiple micro-

phones, potentially not just contact microphones. Though a signal from a single contact

microphone was sufficient for respectable performance on the pouring and shaking tasks,

perhaps the signals from multiple microphones of different types could be combined to

characterize other events. For example, though a contact microphone can capture the vi-

brations within the scoop, the signal from a condenser microphone could capture the sound

of materials falling from the scoop and striking the surface of the material in the tub. Chal-

lenges that may need to be addressed or even leveraged would include robustness to envi-

ronmental and machine noises, as well as the differences in the speeds of vibrations through

different materials and fluids.

3.6 Conclusion

We proposed learning frameworks for estimating amounts and flows of granular material

from audio data collected during robotic pouring and shaking tasks. The evaluated methods

included state of the art frameworks used in learning for audio signal processing. With an

audio signal transformed into a spectrogram, the CNN-based framework was designed to

extract hierarchical features from the structure of the spectrogram. The recurrent models,

based on LSTM and GRU units, were designed to extract variable-length temporal relation-
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ships in the spectrogram. We also proposed a weakly supervised approach to estimating

the amount of flow at each time step. The approach exploits the monotonic nature of pour-

ing and applies a nonnegativity constraint to capture the increasing amount of mass poured

over time.

We evaluated each approach’s effectiveness on a dataset collected from pouring and

shaking five distinct granular materials. The frameworks based on recurrent units were

consistently the most accurate, with RMSEs near 2.5 g, close to the 2 g measurement

resolution from our dataset. They demonstrated strong sample efficiency and were also able

to reliably generalize among multiple materials and even to previously unseen materials.

In the future, we will extend the proposed framework to provide continuous low-level

feedback control (e.g., servo the tilt angle), and explore additional manipulation tasks (e.g.,

scooping and cutting). At a more general level, the results of this work show that audio fre-

quency vibrations can be a surprisingly informative sensory modality in robotic tasks, and

we plan to further investigate the applications and challenges of using vibratory feedback

in robotics going forward.
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Appendix A

Audio Feedback

A.1 Dataset Details

As explained in the main manuscript, the robot scooped material, then alternated shaking

and pouring the material three times before repeating this process, collecting three shake

and three pour recordings per scooping action. This scooping action was randomized in

order to vary the initial amount in the scoop and potentially vary the packing and structure

of the granular material in the scoop. It was randomized by selecting some of its parameters

from random ranges.

The scooping action was performed with parameters as follows (diagrammed in Figure

2.1): the scoop was plunged at a pitch π/5 from the horizontal at a location specified by

the x and y coordinates, to an initial depth zi. The scoop was then drawn through the

material on a linear trajectory for length L in the y direction to final depth zf, all while

maintaining its pitch. Upon reaching the end of this linear trajectory, the scoop was tilted

back about its back edge to a pitch of π/12 from horizontal in order to retain the material

it had scooped before being lifted straight up out of the material. x and y were fixed for all

scooping actions, such that each scooping action started roughly in the middle of the tub,
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offset backward in the y direction to accommodate the length of the scoop. The ranges over

which the lengths and depths were sampled were designed to skew toward completely full

scoops, since each scoop was followed by three shakes and pours, with L ∈ [5, 11] cm and

zi, zf ∈ [0.5, 4] cm. Throughout its trajectory, the impedance in the x and y direction were

set to their maximum values, while the impedance in the z was set to 400 N/m in order to

protect the scoop from breaking when it jammed.

After scooping, the robot then moved the scoop slowly to a fixed, constant location

above the middle of the tub, high enough above the surface of the material to prevent the

scoop from contacting the material in the tub while shaking or pouring. It then performed

each of its shakes and pours at this location, resetting to this location after each action.

The scooping and pouring action parameter sampling intervals were designed to pro-

duce distributions of masses of poured and shaken material that were as uniform as possi-

ble. Significant variations in the materials’ properties made this unrealistic. Empty pours

or “false” pours (i.e. pours in which material was present in the scoop but was retained

in the scoop throughout the pouring motion) were especially common. The frequency of

such pours is quantified in Table A.1. It was for this reason that, while we trained on all

data, we reported the test errors on non-empty pours and shakes to ensure that our reported

performances were not bolstered by too many trivial cases of estimating empty shakes or

pours from silent recordings. Relevant histograms of masses for each material are shown

in Figures A.1 - A.5.
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Table A.1: Dataset metadata for each material type.

Material Empty
Pours
(%)

Non-
empty
Pour
Mean
(g)

Non-
empty
Pour
Std
Dev
(g)

Non-
empty
Pour
Max
(g)

Empty
Shakes
(%)

Non-
empty
Shake
Mean
(g)

Non-
empty
Shake
Std
Dev
(g)

Non-
empty
Shake
Max
(g)

Pellets 17.3 20.0 25.6 78.0 17.3 58.4 29.1 112.0
Soil 27.3 2.4 4.3 32.0 27.5 9.2 7.4 60.0
Pasta 20.2 4.8 7.4 36.0 14.6 12.5 8.7 50.0
Rice 10.6 10.4 14.7 62.0 10.5 30.8 16.5 88.0
Coffee 12.6 6.8 9.4 36.0 12.7 20.6 10.1 52.0

Figure A.1: Distributions of masses for pellets vibrations dataset.

Figure A.2: Distributions of masses for soil vibrations dataset.
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Figure A.3: Distributions of masses for pasta vibrations dataset.

Figure A.4: Distributions of masses for rice vibrations dataset.

Figure A.5: Distributions of masses for coffee dataset.
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A.2 Granular Material Properties

Images of each granular material used in our experiments are shown in Figure 1.3. We also

measured some relevant quantitative properties of each material. We selected a random

sample of granules of each granular material and measured their mean mass. Note that this

was unrealistic for the soil, since the granules of soil were so heterogeneous, ranging from

near-microscopic sand and dust particles to 3 cm long wood fragments. We also filled a

1 L beaker of a sample of each material and measured the sample’s mass to estimate the

packing density of the material. These quantitative measures are shown in Table A.2.

Table A.2: Granular material mass properties. The granules comprising the soil are too hetero-
geneuous in size to measure a mean single granule mass.

Material Mean Single Granule

Mass (g)

Packing Density

(g/cm3)

Pellets 0.039 0.881

Soil N/A 0.327

Pasta 1.33 0.355

Rice 0.0154 0.829

Coffee 0.157 0.334

A.3 Contact Microphones and Ambient Noise

Our dataset was collected in an active lab environment, with occasional conversations and

cooling fans contributing ambient noise, but perhaps the loudest ambient noise was, in most

cases, from the actuation of the robot joints. However, we found that the structural vibra-

tions transmitted through the scoop and recorded by the contact microphone were relatively

unaffected by ambient noise, including robot actuation noise. Using a contact microphone
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directly on the scoop effectively isolated vibrations caused directly by the interaction of the

scoop with granular materials. Empirical evidence of this is shown in Figure A.6, as we

compare pouring recordings taken simultaneously by our contact microphone adhered to

the scoop and a standard lapel microphone pointed forward in the scoop’s handle.

Figure A.6: Spectrograms from different microphones recording simultaneously while the robot
is pouring 10 g of soil. (Left) Spectrogram from the contact microphone used in our dataset.
(Right) Spectrogram from a cardioid-profile lapel microphone. Note the more broad range of fre-
quencies represented in the spectrogram of the lapel microphone. These higher frequency peaks are
likely due to ambient noise in the lab environment from the robot’s actuation, but such vibrations
are not as evident in the contact microphone’s recording.

A.4 Model Architecture Visualizations

Schematics and equations demonstrating the differences between the LSTM and GRU

memory units are shown in Figure A.7. Note that the LSTM unit requires four separate

learned weight matrices (Wx,Wf ,Wi, and Wo), whereas the GRU unit requires only three

(Wx,Wu, and Wr).
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Figure A.7: Comparison of (Top) LSTM and (Bottom) GRU memory cells. For both diagrams, X
is the input, Y is the output, and C is the memory vector. W refers to a learned matrix. ψ refers to
an input vector composed by concatenatingX and Yt−1. � is the Hadamard product. σ is a sigmoid
with range [0, 1].
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