
Towards Safe Reinforcement Learning in

the Real World

Edward Ahn

CMU-RI-TR-19-56

July 18, 2019

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
David Held, chair

John Dolan
Lerrel Pinto

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Keywords: Robotics, Reinforcement Learning, Safety, Control, Sim-to-Real

To my family

iv

Abstract

Control for mobile robots in slippery, rough terrain at high speeds is
difficult. One approach to designing controllers for complex, non-uniform
dynamics in unstructured environments is to use model-free learning-based
methods. However, these methods often lack the necessary notion of safety
which is needed to deploy these controllers without danger, and hence
have rarely been tested successfully on real world tasks. In this work,
we present methods and techniques that allow model-free learning-based
methods to learn low-level controllers for mobile robot navigation while
minimizing violations to user-defined safety constraints. We show these
learned controllers working robustly in both simulation and in the real
world on a 1:10 scale RC car, as well as a full-size vehicle called the
MRZR.

v

vi

Acknowledgments

First, I would like to thank my advisor, Dave Held, for his mentorship
and guidance, as well as an opportunity to work on an interesting and
important problem in robotics. I would also like to thank my committee
members, John Dolan and Lerrel Pinto, for providing invaluable advice for
my thesis. I am also sincerely thankful for everyone in the entire R-PAD
lab for their support and help; I am honored to have been a member of
this lab.

Finally, thank you to all of my family and friends. I could not have
accomplished as much without the moral support I received especially
during stressful, sleepless nights. This memorable, unique journey has
only been possible because of these people.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Current Challenges and Scope . 3
1.3 Contributions and Organization . 4

2 Background and Related Work 7
2.1 Vehicle Models . 7

2.1.1 Kinematic Bicycle Model . 8
2.1.2 Dynamic Bicycle Model . 10

2.2 Autonomous Rallying . 13
2.3 Safe Policy Learning . 14
2.4 Sim-to-Real . 15

3 Model-free Control 17
3.1 Introduction . 17
3.2 Related Work . 18

3.2.1 Preliminaries . 18
3.2.2 Policy Gradient Algorithms 19
3.2.3 Trust Region Policy Optimization 20
3.2.4 Constrained Policy Optimization 21

3.3 Simulation Environment . 22
3.4 Problem Formulation . 23
3.5 Varying Simulation Sensor Delay for Stability 26

3.5.1 Real World Results . 29
3.6 Learning Policies with CPO . 30

3.6.1 Straight Line Following . 31
3.6.2 Circle Following at Target Velocity 32
3.6.3 Circle Following at High Velocities 34
3.6.4 Real World Results . 36

4 Conclusions 37
4.1 Contributions . 37
4.2 Future Work . 38

ix

A State Space Derivations 39

B Experiment Parameters 41
B.1 RC Car Specifications . 41
B.2 Initial State Distribution . 41

B.2.1 Straight Line Following . 42
B.2.2 Circle Following . 42

B.3 Simulation Parameters . 43
B.4 Hyperparameters . 43

C Code 45

x

List of Figures

1.1 Safe control strategy overview. In the training phase, we use safe
reinforcement learning algorithms that we investigate in this thesis
combined with an offline neural network verification tool to produce
a safe policy. During test time, a safety monitor based on verified
runtime verification uses this safe policy as well as the current state to
either pass on the action that the policy computed if deemed safe, or
if unsafe, produce a fallback action. 2

1.2 The MRZR 4. This highly mobile off-road vehicle developed by Polaris
Industries is a military-grade vehicle used for deployment in missions
with difficult terrains and a need for ultra-light tactical mobility. We
test our algorithms on this vehicle. 3

1.3 The “FFAST” vehicle. This vehicle is a 1:10 scale rear-wheel drive
front steering RC car designed as a test platform for testing dynamic
motion planning and control algorithms. 4

2.1 Kinematic Bicycle Model . 9

2.2 Dynamic Bicycle Model . 11

2.3 Tire deformation that is captured by the brush tire model to accurately
compute tire forces. 12

3.1 Simulation pipeline. The simulation takes action inputs to produce
new states using the differential equations provided by the vehicle
model, and the planner takes new states and computes new actions. . 22

3.2 Simulation rendering. We see the robot following a circle of radius 1
meter at a velocity of 1.0 m/s with a randomized initial state. This
policy was trained using TRPO. 23

3.3 State space for circle following. 25

xi

3.4 Average distance error and average velocity for varying control fre-
quencies for driving in a straight line at a target velocity of 1.0 m/s.
Four policies using random seeds were trained for each of the dt values
0.03, 0.1 and 0.2. Then, the best-performing policies for each dt in
terms of mean distance error were chosen. 50 different trajectories were
collected from each best-performing policy and averaged to compute
performance metrics above. We see from these results that using a
longer sensor delay results in a marginally more optimal policy with
respect to mean distance error (in meters) and mean velocity (in meters
per second). 27

3.5 Commanded speed and the corresponding jerk induced by the com-
manded speed from a policy rollout. We see in (a) that dt = 0.2 has the
least variance in commanded speeds. (b) shows this further, as training
against higher dt values clearly induces policies with significantly less
jerk in commanded speeds. 28

3.6 Commanded steering angles and the corresponding jerk induced by
the commanded steering angles from a policy rollout. We see in (a)
that dt = 0.2 has the least variance in commanded steering angles. (b)
shows this further, as training against higher dt values clearly induces
policies with significantly less jerk in commanded steering angles. . . 29

3.7 Trajectories collected from real world using policies trained with varying
control frequencies. We can see that a longer dt, or a lower control
frequency, performs significantly better than training with a higher
control frequency. 30

3.8 Average returns using TRPO and CPO to follow straight lines at
a target velocity of 1.0 m/s. 5 random seeds were trained for each
algorithm. 31

3.9 Average distance error and average velocity for driving in a straight
line at a target velocity of 1.0 m/s, driving in a circle at a target
velocity of 1.0 m/s and driving in a circle as fast as possible. Four
policies using random seeds were trained for each of the objective.
Then, the best-performing policies for each objective in terms of mean
distance error were chosen. 50 different trajectories were collected from
each best-performing policy and averaged to compute performance
metrics above. 32

3.10 Average returns using TRPO and CPO to follow circles of radius 1
at a target velocity of 1.0 m/s. 5 random seeds were trained for each
algorithm. 33

xii

3.11 Number of constraint violations made by TRPO and CPO on different
environments. The best policy with respect to average mean distance
to the target trajectory from five random seeds was chosen to collect
metrics displayed in this table. Metrics were averaged based on 50
rollouts. Note that metrics were collected after the first 30 time steps
passed, so that the agent had sufficient time to converge to the line
from different initial states. 33

3.12 Average distance error, velocity and number of constraint violations
over training using TRPO and CPO to follow circles of radius 1 as fast
as possible. 5 random seeds were trained for each algorithm. 34

3.13 Mean wheel slip κ over training, averaged over 5 random seeds, with
the objective of following a circle of radius 1.0 meter as fast as possible. 35

3.14 Real world trajectory. The black arrows show the position and orien-
tation of the car over a trajectory. The red dotted circle shows the
target trajectory. 36

xiii

List of Tables

B.1 Components of vehicle . 41
B.2 Estimated values used to model RC Car and MRZR in simulation.

Values for the MRZR were not estimated rigorously, and all values can
significantly improved via better system identification. 43

B.3 Hyperparameters . 44

xiv

Chapter 1

Introduction

1.1 Motivation

Tremendous advances in autonomy have been made in the past few decades. Driven

by innovations in computing, autonomy is increasingly being incorporated in our

everyday lives, from facial recognition technology for security purposes to the budding

self-driving car industry. While autonomy has shown great promise, factors impeding

the full adoption of autonomous systems can be summarized as a lack of a concrete

notion of safety, especially with the use of data-driven techniques that are highly

unpredictable and lack guarantees on correctness but at the same time are necessary

for generalization in uncertain, unstructured and dynamic environments. Historically,

when the human was in the loop, assurance in autonomous systems was maintained

via rigorous design processes and compliance through testing. These approaches

assume, unfortunately, that the system does not learn and evolve over time.

This thesis addresses this lack of formal safety in autonomous systems today by

investigating means of incorporating safe learning in systems, combined with offline

policy verification as well as runtime verification via rigorous safety monitors during

test time. Through this integration of safety measures, we look to show that it is

possible to deploy systems that are both formally and empirically safe. Though

applicable in a wide range of areas in robotics, we narrow our focus to developing

safe algorithms for control of autonomous vehicle systems.

For a deeper insight into the problems of addressing safety in autonomous vehicles,

1

consider control for a mobile robot in a non-uniform terrain, slippery environment.

While vehicle dynamics of mobile robots moving at low speeds is relatively simple,

moving at high speeds in these environments often induces non-trivial lateral forces,

causing slip that can be hard to model, particularly when environments change

over time. Even though these problems can be mitigated with accurate system

identification, dealing with dynamic environments relies on a lot of engineering that

is not generalizable to other applications.

An attractive solution is to use model-free control. Without relying on the

accuracy of a model of the environment, model-free control methods can essentially

learn the environment dynamics, which can be powerful for planning in uncertain

environments. Of course, learning control often warrants the need for the use of

function approximators like neural networks, which are hard to verify. The work

in this thesis revolves around making this approach safe through safe methods of

learning, verifying trained networks and runtime monitoring during test time.

Figure 1.1: Safe control strategy overview. In the training phase, we use safe
reinforcement learning algorithms that we investigate in this thesis combined with an
offline neural network verification tool to produce a safe policy. During test time, a
safety monitor based on verified runtime verification uses this safe policy as well as
the current state to either pass on the action that the policy computed if deemed
safe, or if unsafe, produce a fallback action.

2

1.2 Current Challenges and Scope

In this thesis, we specifically focus on low-level control, where we control the agent to

follow lines to a given waypoint. Waypoints are computed via a high-level planner,

which is just an off-the-shelf path planner such as RRT*. For our low-level controller,

we use model-free control via model-free reinforcement learning, to remove the

dependency on having an accurate model of the environment. This hierarchy of

planners is a common approach used in robotic systems, such as the winners of the

DARPA Grand Challenges, Stanley [21] and Tartan Racing [23].

The overarching goal of this thesis is to show that model-free control methods

can be safe to deploy in the real world. Our solution to designing safe methods

for model-free control in the real world is three-pronged: we use safe reinforcement

learning methods, neural network verification to verify our trained policy networks,

and formal runtime verification to monitor our runtime performance. See Figure 1.1

for an overview of our strategy. All three are challenging for the following reasons:

• Safe reinforcement learning: limited success in developing safe model-free control

methods in the real world

• Neural network verification: larger networks take prohibitively long to verify

• Runtime verification: difficult to formally model complex dynamical systems;

most runtime verification uses models that assume the agent to be a point mass

Figure 1.2: The MRZR 4. This highly mobile off-road vehicle developed by Polaris
Industries is a military-grade vehicle used for deployment in missions with difficult
terrains and a need for ultra-light tactical mobility. We test our algorithms on this
vehicle.

3

In this work, we reduce our scope to developing safe reinforcement learning

methods that are robust enough to train and run in the real world. Preliminary work

has been attempted to integrate our trained policies with neural network verification

tools and safety monitors at runtime, but experiments to see the effectiveness of doing

so is reserved for future work; see Chapter 4 for more information.

Because this work is in conjunction with the DARPA Assured Autonomy initiative,

we develop these control methods to deploy on the MRZR 4 (see Figure 1.2). While

we were successfully able to deploy trained policies onto the MRZR, results on the

MRZR are not mentioned in this document because of legal matters. Instead, all

data and results in this thesis were collected from a custom 1:10 scale RC car (see

Figure 1.3). Its specs are outlined in Appendix B.

Figure 1.3: The “FFAST” vehicle. This vehicle is a 1:10 scale rear-wheel drive front
steering RC car designed as a test platform for testing dynamic motion planning and
control algorithms.

1.3 Contributions and Organization

The main contributions of this thesis are listed as follows:

• Implementation of a high-fidelity vehicle model for simulation purposes, proven

to robustly train policies using model-free reinforcement learning algorithms

that transfer directly to the MRZR

• Use of a combination of techniques that we outline in this work to aid sim-to-real

transfer and minimize fine-tuning

4

• To the best of our knowledge, the first use of CPO outside of toy simulation

environments

• The ability to safely learn optimal drifting behaviors when following circles at

high speeds that are unattainable without drifting

This thesis is organized as follows. Chapter 2 discusses relevant background

and related work to this thesis, which includes explanation of vehicle models and

reinforcement learning. Then, Chapter 3 provides an explanation of how model-

free control was used to train policies that transferred well into the real world with

minimal fine-tuning. We delve into both simulation and real world results for following

arbitrary trajectories at a target velocity and following circles at high speeds in this

chapter. Finally, in Chapter 5, we summarize the thesis contributions and present

the ongoing future work. Note that all metrics in this thesis are in standard SI units

(such as meters, seconds).

5

6

Chapter 2

Background and Related Work

In this chapter, we review background and related work for vehicle models needed to

build a simulation pipeline, autonomous driving in slippery environments, safe policy

learning and sim-to-real approaches to make it possible to deploy trained policies in

simulation directly to the real world.

2.1 Vehicle Models

In reinforcement learning, a model-free algorithm is an algorithm that does not assume

having a model of the dynamics of the robot interacting with the world. Instead,

this class of algorithms simply use sampled trajectory data to perform optimization.

However, for our purposes, we want to train policies that take a state input and

output an action that are robust to different environments to allow direct sim-to-real

transfer in order to minimize expensive fine-tuning processes. Therefore, an accurate

model of how our agent interacts with the world is needed, so that our simulation is

able to simulate what the agent may see in the real world.

To implement a simulator accurate enough to train robust policies, a suitable

vehicle model must be chosen. Many vehicle models with varying fidelity exist. The

trade-off between using a high-fidelity model versus a lower-fidelity model, lies in

the increasing nonlinearity of the resultant dynamic equations. While nonlinearity

prevents linear feedback controllers from being implemented, for our case this does not

matter since we do not use linear controllers, but rather neural network controllers.

7

In this section, we examine the dynamic bicycle model with a nonlinear brush tire

model, which we used to build a simulation for training policies.

Note that we investigate these models under the assumption that the control

inputs to the model are the front wheel steering angle δf and commanded velocity

v = Rω, where R is the radius of the wheel and ω is the angular wheel velocity.

Formally, our state X and our control inputs U are parametrized as follows:

X =
[
x y ψ ẋ ẏ ψ̇

]T
(2.1)

U =
[
Rω δf

]T
(2.2)

where x and y are the coordinates of the center of mass in the inertial frame (X, Y),

ψ is the inertial heading of the center of mass and ẋ, ẏ and ψ̇ are the corresponding

velocities of those components.

2.1.1 Kinematic Bicycle Model

The bicycle model at its core is relatively simple; the tires on each axle are lumped

together to form a ’bicycle’ with two wheels that have twice the cornering stiffness

and force capability. While this means that load transfer effects are ignored, this

approach has been shown to be sufficient when modeling drifting [16].

Here, we discuss the kinematic bicycle model which is necessary to explain the

dynamic bicycle model. See Figure 2.1. Let v be the speed of the vehicle, lr and lf

be the distances from the center of mass of the vehicle to the rear and front axles,

respectively, and β be the angle of the velocity with respect to the longitudinal axis

of the car. Note that δf and δr are the steering angles of the front and rear wheels,

but for our robot, since there is no rear steering, δr = 0.

Then, based on geometric relations, we can deduce the following nonlinear contin-

8

Figure 2.1: Kinematic Bicycle Model

uous time equations that describe the kinematic bicycle model [15]:

ẋ = v cos(ψ + β) (2.3)

ẏ = v sin(ψ + β) (2.4)

ψ̇ =
v

lr
sin(β) (2.5)

v̇x = ψ̇vy (2.6)

v̇y = −ψ̇vx (2.7)

ψ̈ = 0 (2.8)

β = tan−1

(
lr

lf + lr
tan(δf)

)
(2.9)

Evidently, the system identification on the kinematic bicycle model is simple -

only two parameters need to be estimated, lr and lf . These parameters are also

easily measured. However, this model is limiting because it assumes that the vehicle

experiences small lateral forces that are characterized by mv2

R
, where m is the mass of

the vehicle and 1
R

is the curvature of the road the vehicle is following. In an intuitive

sense, the model assumes that the velocity vectors at the wheels are in the direction

of the orientation of the wheels, implying that all slip angles are assumed to be zero.

Again, this holds when lateral forces are small with small values of v. Furthermore,

the curvature must also be changing slowly, or else larger lateral forces can be induced.

9

A dynamic bicycle model is necessary to the extent that these assumptions do not

hold.

2.1.2 Dynamic Bicycle Model

In a dynamic bicycle model, lateral forces are taken into account by building a model

that takes into account the forces that are exerted on the vehicle (not just geometric

relations). See Figure 2.2. The following equations describe the dynamic bicycle

model [15]:

ẋ = v cos(ψ + β) (2.10)

ẏ = v sin(ψ + β) (2.11)

ψ̇ =
v

lr
sin(β) (2.12)

v̇x = ψ̇ẏ +
1

m
(Fxr − Fyf sin δf) (2.13)

v̇y = −ψ̇vx +
1

m
(Fxr cos δf + Fyr) (2.14)

ψ̈ =
1

Iz
(lfFyf − lrFyr) (2.15)

The first three equations stem from the kinematic bicycle model. Note that ẋ 6= vx

and ẏ 6= vy; due to an unfortunate abuse of notation, ẋ and ẏ refer to the velocity of

the center of mass in the inertial frame (X, Y), whereas vx and vy are the velocities

of the center of mass with respect to the vehicle’s longitudinal and lateral axes,

respectively. In addition, ψ̇ is the yaw rate, m the vehicle’s mass and Iz the moment

of inertia for the vehicle. Finally, Fyr and Fyf are the lateral forces on the rear and

front tires, respectively, and Fxr is the longitudinal force on the rear tire, which is

generated by the rear motor. The lateral and longitudinal forces on the tire can be

computed in a variety of different ways using different tire models. We investigate

the linear and brush tire models below.

10

Figure 2.2: Dynamic Bicycle Model

Linear Tire Model

In the linear tire model, the longitudinal forces and lateral forces on the tire are

simply defined as

Fxi = Cxκ (2.16)

Fyi = −Cαiαi (2.17)

where i ∈ {f, r}, αi is the tire slip angle, Cx is the tire stiffness and Cαi is the tire

cornering stiffness. For our purposes, since we use the same tires, we let Cα := Cαr =

Cαf . κ is the slip value, which is defined to be

κ =
Rω − vx

vx
(2.18)

where vx is the velocity of the vehicle with respect to its longitudinal axis, R the

radius of the wheel and ω the angular velocity of the wheel. We can see that to

control the vehicle’s acceleration, the linear velocity of the motor Rω needs to be

increased or decreased by the motors. In addition, we can deduce that if κ = −1 the

vehicle is slipping, if κ =∞ the vehicle is skidding and if κ = 0 the vehicle has no

slip or skid.

Finally, the values of αf and αr can be found geometrically:

αf = arctan2(vy + lf ψ̇, vx)− δf (2.19)

αr = arctan2(vy − lf ψ̇, vx) (2.20)

11

These values are the slip angles for each wheel axle, as denoted in Figure 2.2.

(a) Lateral deformation (b) Longitudinal deformation

Figure 2.3: Tire deformation that is captured by the brush tire model to accurately
compute tire forces.

Brush Tire Model

Unlike the linear approximation above, the brush tire model is a more sophisticated

tire dynamics model that incorporates nonlinear relationships between lateral forces

and slip angles. At a high level, the brush tire model assumes that the part of the tire

in contact with the road consists of independent springs called brushes that undergo

deformation and resist with a constant stiffness.

The equations below summarize the formulas that compute the tire forces, where

Fzi is the load on the corresponding wheel axle with i ∈ {f, r} and µ and µs are

the coefficients of kinetic and static friction, respectively. For the full derivation, see

Rami’s doctoral thesis [16]. For the front wheels,

Fyf =

−Cα tanαf + Cα2

3µFzf
| tanαf | tanαf − Cα3

27µ2Fzf
2 tan3 αf |αf | ≤ αsl

−µFzf sign(αf) |αf | > αsl
(2.21)

where the slip angle αsl equals

αsl = tan−1 3µFzf
Cα

(2.22)

12

Note that because the vehicle is rear-wheel drive, no forces are exerted on the front

tires in the longitudinal direction, meaning Fxf = 0. For the rear wheels we have

Fxr =
Cx
γ

κ

1 + κ
F (2.23)

Fyr = −Cα
γ

tanαr
1 + κ

F (2.24)

where γ, the combined slip value, and F equal

F =

γ − 1
3µFzr

γ2 + 1
27µ2Fzr2

γ3 γ ≤ 3µFzr

µsFzr γ > 3µFzr
(2.25)

γ =

√
Cx

2

(
κ

1 + κ

)2

+ Cα
2

(
tanαr
1 + κ

)2

(2.26)

Conveniently, the brush tire model only adds two parameters, Fzr and Fzf , that

need to be estimated. As a result, there is not much cost added to using a brush tire

model as opposed to a linear tire model.

2.2 Autonomous Rallying

Autonomous rallying, involving controlling a vehicle under slippery conditions with

non-trivial lateral forces, has been studied extensively. Approaches largely boil

down to model-based approaches such as model-predictive control and trajectory

optimization, but research in model-free control in these environments is lacking.

GeorgiaTech’s AutoRally group [5] has used MPC in a variety of different ways to

follow a circular dirt track at extremely high speeds using a 1:5 scale RC car. Their

initial work with this platform involved using stochastic sampling of trajectories to

control the vehicle aggressively [25]. Other teams have also used MPC successfully,

such as Keivan’s [10]. However, MPC is computationally expensive since it replans at

each step online.

To mitigate this issue, some researchers have tried to learn parameterized control

policies with expert demonstrations. The AutoRally group recently tried using

imitation learning to learn end-to-end control with visual inputs [13]. For learning

13

control, they used DAgger [17] with an MPC expert, as opposed to a human expert

who may not be able to provide stable and consistent high-frequency feedbacks while

the learner is driving the car. Though this approach is successful, it does not easily

generalize to new environments because MPC is model-based. Lau [11] showed that

it is possible to leverage a single demonstration to learn a linear control policy using

policy gradients to do aggressive maneuvers. However, having a strictly linear policy

is a drawback even though a model-free learning method was used.

Finally, the most similar work to ours is work by Cutler [4], who initializes a policy

with a simple model and fine-tunes the policy with PILCO, a model-based algorithm

that uses Gaussian processes to model uncertainty in environment dynamics. Instead

of using a model-based algorithm which depends on accurate modeling of uncertainty

as well as a handcrafted, complex reward function, we use a model-free reinforcement

learning algorithm with a simple objective.

2.3 Safe Policy Learning

Another goal of this project is to guarantee some sort of safety in our learning process.

Though safe but aggressive driving has not been studied well to the best of our

knowledge, safety in robotics is a very well studied area. Safety is usually achieved

by motivating the agent to act safely, making sure a policy never leaves a safe subset

of parameters or some constrained optimization with safety constraints.

Intrinsic fear [12] is a technique that can be used to motivate (or guard) agents

from periodic catastrophes in training. Agents with intrinsic fear possess a fear model

trained to predict probability of imminent catastrophe. The resulting score then used

to penalize Q-learning objective. We do not use this approach because there is no

formal notion of safety here.

Bayesian optimization with safety constraints [3] is another approach to find model

parameters under a safe subset of parameters, by using Gaussian processes to explore

parameter space. However, an accurate model of the environment is required, and

in this work we want to mitigate that dependency. Similarly, Held [6] developed a

probabilistic framework to have a probabilistically safe policy transfer during learning,

in which expected return is maximized while containing expected damage within

some limit. Unfortunately, assumptions that are made to allow this technique to

14

work for manipulation do not apply to our aggressive driving domain.

In our work, we use Constrained Policy Optimization [1], which is a model-free

reinforcement learning algorithm with probabilistic guarantees on the number of

user-defined safety constraint violations. This approach is explained in more detail in

Chapter 3. Because this algorithm is model-free, we do not need to have an accurate

model of the environment. In addition, the ability to define safety constraints allows

our reward function to be very simple, with minimal reward engineering.

2.4 Sim-to-Real

In our work, we investigate ways to perform sim-to-real so that we can reduce

expensive real world fine-tuning and leverage a lightweight simulation that we built.

Sim-to-real is the process of transferring a policy trained in simulation directly into

the real world, and is often difficult if state distributions seen in simulation differ

from the real world. We outline relevant techniques to truncate this ‘reality’ gap in

this section.

While the best approach is to perform better system identification in order to have

a more realistic simulator, this is often difficult because the real world is challenging

to model. Instead, we look at ways to make our policy more robust, so that it

can handle a wide state distribution. A popular and simple approach to do this is

domain randomization [22]. Domain randomization involves training a network with

noise added to its input. With enough variability while training in the simulator,

the real world may appear to the model as just another variation. Similarly, Peng

adds noise to dynamics parameters [14], though a recurrent policy is also used so

that a history of the past states and actions can be used to infer the dynamics of

the system. The best demonstration of these techniques working to produce robust

policies is work by OpenAI that involves learning dextrous in-hand manipulation

policies using a physical Shadow Dextrous Hand [2]. The authors used a wide variety

of randomization techniques to achieve accurate in-hand object reorientation. In our

work we also use a variety of randomization techniques to produce a robust policy.

Rather than learning a more robust policy, some approaches simply learn dynamics

values online. Yu introduced one such approach that involves learning a policy

that takes in state and environment parameters, and a function for online system

15

identification, which takes in a recent history of state and action tuples to predict

values of environment parameters [26]. We do not use this approach yet, but mentioned

in future work in Chapter 4.

16

Chapter 3

Model-free Control

3.1 Introduction

Traditional methods of planning and control often suffer when under continuous,

complex robotic tasks. Oftentimes engineering a cost function or generating a good

nominal trajectory is difficult. In our application of mobile robot driving, this is

also true. Since our vehicle will run in non-uniform, slippery terrain at high speeds,

coming up with a robust, optimal control policy can become intractable.

Through success in robot simulation or benchmarks like Atari, model-free re-

inforcement learning has emerged as a popular choice for researchers to develop

control policies for high-dimensional sequential decision making problems like this.

These methods formulate the problem as a Markov Decision Process and attempt to

optimize some reward function [7], which is ideally simple to prevent finding local

optima. However, a critical challenge to model-free reinforcement learning is making

sure policies are safe. Because reinforcement learning inherently uses a trial-and-error

approach to finding successful control policies, we cannot formally guarantee anything

about the agent’s behavior during test-time. This is a risk for anyone performing

robotic tasks in the real world.

While approaches to perform safe reinforcement learning have been developed,

most do not transfer well into the real world and are only safe in simulation. In this

chapter, we attempt to formulate our problem in a way that will allow us to use

Constrained Policy Optimization (CPO) [1] to safely control the robot to drive in

17

a circular trajectory, either at a target velocity or as fast as possible. Doing so will

allow us to place some guarantees on the safety of our policy, an important step in

the direction of assured autonomy.

For faster convergence in training, we use the simulation that we developed in the

previous chapter, which we know will accurately simulate the vehicle dynamics of our

robot. Then, we either perform sim-to-real transfer and directly test policies on our

robot, or we fine-tune policies by training in the real world first before testing.

3.2 Related Work

3.2.1 Preliminaries

In reinforcement learning, a Markov Decision Process is a widely-used framework for

solving sequential decision making problems. Specifically, the framework allows an

optimal policy to be computed which maximizes long-term reward over a sequence of

decisions. An MDP is defined simply as a tuple (S,A, r, P, ρ, γ) where:

• S is the set of all states

• A is the set of all actions, which may be continuous or discrete

• r : S ×A → R is the reward function

• P : S ×A× S → [0, 1] is the transition probability function (ex. P (s′|s, a) is

the probability of transitioning to state s′ given that the agent was previously

at state s and took action a at state s)

• ρ : S → [0, 1] is the initial state distribution

• γ ∈ (0, 1) is the discount factor.

Note that an MDP makes the control problem tractable by using the Markov Property,

which assumes that a state st+1 is only dependent on its predecessor state st and the

action at that was taken to reach state st+1. That is, put formally,

p(st+1|st, at, . . . , s0, a0) = p(st+1|st, at)

Finally, a stochastic policy is defined to be a function π : S ×A → [0, 1], where π(a|s)
denotes the probability of selecting action a in the state s. The set of all policies is

18

denoted as Π.

Reinforcement learning algorithms aim to select a policy π which maximizes some

performance measure, J(π), which is typically defined to be the infinite (or finite)

horizon expected discounted return. In other words,

J(π) := Eτ∼π

[
∞∑
t=0

γtr(st, at)

]
(3.1)

where γ ∈ [0, 1) is the discount factor and τ = (s0, a0, s1, . . .) is a trajectory. τ ∼ π

means that the trajectory was sampled from a distribution of trajectories defined by

π; in other words, s0 ∼ ρ, at ∼ π(·, st) and st+1 ∼ P (·|st, at). Also of interest is the

discounted future state distribution, dπ(s), defined by dπ(s) = (1− γ)
∑∞

t=0 γ
tP (st =

s|π).

We use the following standard definitions of the state-action value function Qπ,

the value function Vπ and the advantage function Aπ:

Qπ(st, at) = Est+1,at+1,...

[
∞∑
l=0

γlr(st+l, at+l)

]
(3.2)

Vπ(st) = Eat,st+1,...

[
∞∑
l=0

γlr(st+l, at+l)

]
(3.3)

Aπ(s, a) = Qπ(s, a)− Vπ(s) (3.4)

where t ≥ 0.

3.2.2 Policy Gradient Algorithms

In policy gradient algorithms with function approximation, a parametrized policy

π(a|s,θ) is learned that can select actions without consulting a value function, where θ

is the policy’s parameter vector. The policy parameter is learned based on the gradient

of some performance measure J(θ) with respect to the policy parameter, which allows

gradient ascent to be performed (since we want to maximize performance).

Using policy gradient algorithms has advantages, such as being able to approach

an optimal stochastic policy [19]. In addition, value-based methods such as Q-learning

[24] require a discretization of the action space, while policy gradient methods do not.

19

Sutton proved in the policy gradient theorem that the policy gradient does not

depend on the gradient of the changing state distribution [20]. In addition, he showed

that the policy gradient could be simplified into an analytic expression:

∇J(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇θπ(a|s,θ) (3.5)

where µ is the on-policy distribution under π.

3.2.3 Trust Region Policy Optimization

Trust region methods for reinforcement learning is one approach that has shown

great promise for optimizing neural network policies that often suffer from perfor-

mance collapse after bad updates [8]. To guarantee monotonic policy improvement,

trust regions are used to optimize an analytically computed lower bound on policy

performance. This approach has shown to reach state-of-the-art performance in

conventional deep RL benchmarks via Trust Region Policy Optimization (TRPO)

[18].

Specifically, TRPO, an on-policy, model-free reinforcement learning algorithm,

has policy updates of the form

πk+1 = arg max
π∈Πθ

Es∼dπk ,a∼π [Aπk(s, a)]

s.t. D̄KL(π||πk) ≤ δ

where D̄KL(π||πk) = Es∼πk [DKL(π||πk)[s]] and δ > 0 is the optimization step size.

The set πθ ∈ Πθ : D̄KL(π||πk) ≤ δ is called the trust region.

In implementation, TRPO is simply a truncated natural gradient descent with

a line search to enforce the trust region. Natural gradient descent [9] is a form

of gradient descent that is invariant to model parameterizations because steps in

the gradient descent are taken with respect to the KL divergence (or, in practice,

the second order approximation of the KL divergence at πk = π, called the Fisher

information matrix, since for small step sizes this approximation is sufficient). Because

natural gradient descent involves inverting this Fisher information matrix which can

be prohibitively expensive, truncated natural gradient descent approximates this

20

inversion via the conjugate gradient method.

Note that due to approximations from theory, policy improvements are not strictly

monotonic. However, TRPO is a very stable learning algorithm.

3.2.4 Constrained Policy Optimization

Because these trust region methods guarantee monotonic policy performance, this

approach can be adapted to Constrained MDPs (CMDPs), which are MDPs augmented

with constraints that restrict the allowable policies for these MDPs. Specifically, the

MDP is augmented with a set C of auxiliary cost functions (constraints), C1, . . . , Cm,

where each function Ci : S×A×S → R is, much like the reward function, a mapping

between transition tuples to costs. The MDP is also augmented with limits d1, . . . , dm

that correspond to their respective cost functions.

Let JCi(π) denote the expected discounted return of a policy π with respect to

the cost function Ci; in other words, let JCi(π) = Eτ∼π[
∑∞

t=0 γ
tCi(st, at, st+1). Con-

strained Policy Optimization (CPO) [1], is a local policy search method that attempts

to find the optimal policy π∗ = arg maxπ∈ΠC
J(π), where ΠC = π ∈ Πθ : ∀i, JCi(π) ≤ di

is the set of policies that satisfy all constraints in the CMDP.

Like TRPO, CPO is an on-policy model-free reinforcement learning algorithm

that has policy updates of the form

πk+1 = arg max
π∈Πθ

Es∼dπk ,a∼π [Aπk(s, a)]

s.t. JCi(πk) +
1

1− γ
Es∼dπk ,a∼π

[
AπkCi(s, a)

]
D̄KL(π||πk) ≤ δ

where AπkCi(s, a) is the advantage function for policy πk with respect to the constraint

Ci, similar to the normal advantage function Aπ but replacing the reward function R

with the constraint Ci.

In implementation, assuming small step sizes, the objective and cost constraints

are well-approximated by linearizing around πk, and, like TRPO, the second order

approximation of KL divergence at πk = π (ie. the Fisher information matrix) is used.

Since the Fisher information matrix is always positive semi-definite, this optimization

21

problem is convex and can be solved using duality. In the current implementation,

only one constraint is handled, but is possible to optimize over an arbitrary number

of constraints.

3.3 Simulation Environment

Figure 3.1: Simulation pipeline. The simulation takes action inputs to produce new
states using the differential equations provided by the vehicle model, and the planner
takes new states and computes new actions.

To train policies with minimal real world training to mitigate issues of sample

efficiency, we built a simulation based on the dynamic bicycle model with a brush

tire model mentioned in Chapter 2. In this section, we briefly outline the simulation

pipeline that was built. Note that (also in Chapter 2) the control inputs to our model

are the commanded steering angle δf and the commanded linear velocity of the rear

wheels, vx. For simplicity in notation, define δ := δf . Note that the linear velocity

v = Rω.

The simulation pipeline can be seen visually in Figure 3.1. At a high level, the

planner takes the current state as an input and outputs a corresponding action.

The action and the current state are fed into differential equations from the vehicle

dynamics model to produce derivatives of the state, which the ODE integrator uses

22

to compute the next state. The ODE integrator also takes in a time step dt, which

simulates control frequency of the planner (how fast the controller can output actions).

Table B.2 in Appendix B.3 shows the parameters we used to build the simulation,

for training policies for both the RC car and the MRZR. Figure 3.2 shows a typical

screen display from the simulation.

Figure 3.2: Simulation rendering. We see the robot following a circle of radius 1
meter at a velocity of 1.0 m/s with a randomized initial state. This policy was trained
using TRPO.

3.4 Problem Formulation

In both our simulation and on the actual robot, the planner receives the state in

the form
(
x, y, ψ, ẋ, ẏ, ψ̇

)
, where (x, y) are the Cartesian coordinates of the robot’s

position with respect to the inertial frame, ψ is the yaw (heading) of the robot, ẋ and

ẏ are the velocities of the robot with respect to the longitudinal and lateral axes of

the vehicle and ψ̇ is the angular velocity of the robot in the robot frame. We want to

develop a controller that will take states as an input and output controls of the form

(vx, δ) where vx is the commanded wheel velocity and δ is the commanded steering

angle. We work under the assumption that a high-level path planner exists, and the

controller’s job is to simply follow an already planned trajectory.

Intuitively, a trajectory can be broken down into a sequence of line segments

23

and arcs of varying curvature. Therefore, to simplify the problem, we design the

controller to follow a straight line and circles of arbitrary curvature. Note that in

all of these experiments, we fixed the curvature to 1 (i.e., follow a circle of radius 1).

Our work naturally extends to following arcs of varying curvature. In addition, our

agents are only trained to follow the straight line y = 0 and a circle centered at (0, 0).

To follow arbitrary lines and arcs, we use coordinate transformations to transform

these arbitrary lines and arcs into y = 0 and circles centered at (0, 0), respectively.

A key insight into training policies is to use relative state and not absolute state.

Since we parameterize the policy with a neural network as our function approximator,

we want the agent to recognize that being on one part of the straight line or the arc is

the same as being on another part of the straight line or the arc. Put differently, the

control inputs should not depend on the absolute state of the robot, since absolute

states depend on the reference frame. Below, we explain how we transformed absolute

states into the relative states that our planners were trained with by defining a

function T that maps absolute states to relative states.

Straight Line Following

Let the absolute state s =
(
x, y, ψ, ẋ, ẏ, ψ̇

)
. For straight line following, we define the

transformation TS : R6 → R5 as follows:

TS(s) =
(
y, ψ, ẋ, ẏ, ψ̇

)
(3.6)

The transformation T simply discards the parameter x, so that the input to the

network does not depend on how far the agent has driven along the line y = 0.

Circle Following

Let the absolute state s =
(
x, y, ψ, ẋ, ẏ, ψ̇

)
. For circle following, we define the

transformation TC : R6 → R4 as follows:

TC(s) =
(

∆x, θ, ∆̇x, θ̇
)

(3.7)

The derivations and formulas for computing the four relative state parameters can

be found in Appendix A. These parameters were derived based on Figure 3.3, where

24

the parameters stay the same if the agent’s yaw with respect to the tangent and the

agent’s distance to the closest point on the circle remain the same.

Figure 3.3: State space for circle following.

To train this neural network policy, we also need to define a reward function

for our reinforcement learning algorithms to optimize. The key idea is to make

reward functions simple to avoid reaching local optima during training. In all of

the experiments conducted, we want our vehicle to follow a straight line or circle

at a target velocity or, or follow a circle as fast as possible to see if the agent will

potentially learn drifting behavior.

For straight line following at a target velocity, we used the reward function

r(s, a) = −|y| − λ1(v − vf)2 (3.8)

and for circle following at a target velocity, we used the reward function

r(s, a) = −|∆x| − λ1(v − vf)2 − λ2 max
(

0, |θ| − π

2

)2

(3.9)

25

where λ1 and λ2 are hyperparameters and vf is the target velocity. The first terms

in both functions are distance penalties, and the second terms in both functions are

velocity penalties. The third term in Equation 3.9 is the direction penalty, designed

to force the agent to move either counter-clockwise or clockwise depending on the

initial state. Note that we use the L1 penalty for distance and L2 for velocity since L1

penalizes more for smaller deviations than L2 penalties, and we would like distance

error to be minimized over velocity error.

Finally, for circle following as fast as possible, we used the reward function

r(s, a) = v2 − C · 1[∆x ≥ ε]− λ2 max
(

0, |θ| − π

2

)2

(3.10)

for training an agent using TRPO, where C is a constant used to penalize the agent

for drifting too far from the circle. Since CPO has the ability to set a constraint, the

following reward function was used for CPO training instead:

r(s, a) = v2 − λ2 max
(

0, |θ| − π

2

)2

(3.11)

In our experiments, we had λ1 = λ2 = 0.25 for all of the reward functions.

3.5 Varying Simulation Sensor Delay for

Stability

In a perfect simulation, trained policies can transfer directly onto the real robot, and

these policies will be optimal. However, in our experiments, we found that policies

trained in our current simulator did not directly transfer to the real world. One failure

case that we observed is the following: for a robot trained to follow a straight line,

the policy in simulation would output extreme changes in steering angle to correct

any errors and stay close to the line. This policy performs well in simulation, but

it does not transfer well to the real world; such a policy is sensitive to variations in

sensor and actuator delays, control frequency, and other variables.

One solution to this problem is to perform better system identification to model the

sensor and actuator delays, control frequency, and other relevant system parameters.

However, these variables can be difficult to measure. As an alternative, we tried

26

significantly reducing the control frequency (or increasing dt) during training, i.e., we

reduce the frequency at which our policy can choose a new action. In the original

simulation, the policy can choose a new action every 35 ms; in the updated version,

the policy can choose a new action every 100 ms. We found that such a change results

in the policy learning much smoother actions, rather than choosing actions that

alternate between the action limits as we previously observed. At test time, we do

not alter the control frequency; we allow the robot at test time to change the actions

as frequently as possible. Nonetheless, reducing the control frequency at training

time results in a smoother learned policy that significantly improves the performance

when transferred to the real world. Another way to think about this change is as

follows: by reducing the control frequency during training, we encourage the model

to learn more conservative actions, since there is less feedback in the system. On a

high level, we are training more of an open-loop controller to find stable actions.

(a) Average Distance Error (b) Average Velocity

Figure 3.4: Average distance error and average velocity for varying control frequencies
for driving in a straight line at a target velocity of 1.0 m/s. Four policies using
random seeds were trained for each of the dt values 0.03, 0.1 and 0.2. Then, the
best-performing policies for each dt in terms of mean distance error were chosen. 50
different trajectories were collected from each best-performing policy and averaged to
compute performance metrics above. We see from these results that using a longer
sensor delay results in a marginally more optimal policy with respect to mean distance
error (in meters) and mean velocity (in meters per second).

To test how policies trained with higher values of dt perform empirically, we ran

27

an experiment in simulation where the objective was to follow a straight line at a

target velocity of 1.0 m/s. In Figure 3.4, we see that reducing the control frequency

allows distance error to be minimized, while the average velocity hugs the target

velocity more tightly.

To further see the benefit of using a higher dt in training, we examine jerk. Jerk

is simply defined to be the rate of change of acceleration, i.e., the time derivative of

acceleration:

j(t) =
d

dt
a(t) (3.12)

Intuitively, if the rate of change of acceleration is high inside a vehicle, one would

experience ’jerky’ motion rather than smooth behavior. We therefore want jerk to

be relatively low to exert less force on the vehicle and its passengers and (for our

application) sensors.

(a) Commanded Speed (b) Jerk on Commanded Speed

Figure 3.5: Commanded speed and the corresponding jerk induced by the commanded
speed from a policy rollout. We see in (a) that dt = 0.2 has the least variance in
commanded speeds. (b) shows this further, as training against higher dt values
clearly induces policies with significantly less jerk in commanded speeds.

In Figure 3.5, (a) shows the commanded speed produced by the best trained

policies for each value of dt for one rollout, and (b) shows the jerk induced by the

commanded speeds by each policy. We see that the commanded speed is significantly

less jerky and much smoother with policies that were trained with higher dt. Again,

28

this makes sense because essentially we are training more and more of an open-loop

controller as dt increases, which yields stable actions.

Perhaps more importantly, we see a similar result in commanded steering angles,

which is shown in Figure 3.6. It is not only undesirable but often impossible to

have steering angles that are jerky since there is a physical limit on how fast the

steering angle can change. Therefore, training with a higher dt helped stabilize the

commanded steering angles, which helped the agent learn a more optimal policy.

(a) Commanded Steering Angle (b) Jerk on Commanded Steering Angle

Figure 3.6: Commanded steering angles and the corresponding jerk induced by the
commanded steering angles from a policy rollout. We see in (a) that dt = 0.2
has the least variance in commanded steering angles. (b) shows this further, as
training against higher dt values clearly induces policies with significantly less jerk in
commanded steering angles.

On the other hand, there are various alternate ways to mitigate drastic action

changes, such as manually constraining the action changes, using action regularization

via reward function engineering, inputting actions into the policy network to learn

some sort of continuity, etc. However, we found that manipulating dt has been the

simplest way to avoid local optima.

3.5.1 Real World Results

To test if this technique helps with sim-to-real, trained policies with varying control

frequencies were directly transferred to the real world. Specifically, five seeds for

29

dt = 0.035 and dt = 0.2 were trained, and the best performing policy was chosen

based on average distance error.

(a) dt = 0.035 (b) dt = 0.2

Figure 3.7: Trajectories collected from real world using policies trained with varying
control frequencies. We can see that a longer dt, or a lower control frequency, performs
significantly better than training with a higher control frequency.

From these experiments, we observed that policies trained with lower control

frequencies are much more stable and exhibit less jerk. See Figure 3.7 for a visualiza-

tions of the real world trajectories. We found that, due to the gap between simulation

and the real world, oscillations in the resulting trajectories made by policies were

amplified in the real world. Hence, even though the policy trained in (a) is trying to

follow a straight line, it follows more of a sinusoidal trajectory.

3.6 Learning Policies with CPO

While policies with TRPO can be trained to be robust, using CPO is more powerful

since we can obtain probabilistic guarantees on the number of violations to constraints

that we specify. In the sections below, we use TRPO as a baseline to compare

performance and show that CPO not only trains policies to perform comparably

against its TRPO counterparts, but also empirically does not violate the constraints

in expectation.

30

3.6.1 Straight Line Following

The constraint that we want to satisfy at all times is

JCstraight
(s, a) = y < ε (3.13)

where s =
(
x, y, ψ, ẋ, ẏ, ψ̇

)
and a = (vx, δ) are the current state and action taken by

the planner. This constaint encourages the agent to never stray away further than

some distance ε away from the target straight line.

Learning curves can be seen in Figure 3.8. Interestingly, we can see that TRPO

converges at a faster rate than CPO, but CPO reaches a slightly higher average return

at convergence.

Figure 3.8: Average returns using TRPO and CPO to follow straight lines at a target
velocity of 1.0 m/s. 5 random seeds were trained for each algorithm.

However, at test time TRPO- and CPO-trained policies perform similarly. Per-

formance metrics can be seen in Figure 3.9. Both mean distance from the target

trajectory (which should be close to 0) and mean velocity (which should be close to

the target velocity, 1.0 m/s) measured from a trajectory rollout with a randomized

initial state for TRPO- and CPO-trained policies do not show much difference in

value. This is similar for constraint violations - see Figure 3.11. CPO marginally

violates fewer constraints than TRPO at test time, but the difference is minimal and

can be attributed to noise.

31

(a) Average Distance Error (b) Average Velocity

Figure 3.9: Average distance error and average velocity for driving in a straight line
at a target velocity of 1.0 m/s, driving in a circle at a target velocity of 1.0 m/s and
driving in a circle as fast as possible. Four policies using random seeds were trained
for each of the objective. Then, the best-performing policies for each objective in
terms of mean distance error were chosen. 50 different trajectories were collected from
each best-performing policy and averaged to compute performance metrics above.

3.6.2 Circle Following at Target Velocity

The constraint that we want to satisfy at all times is

JCcircle
(s, a) = ∆x < ε (3.14)

where ∆x is the closest distance from the circle to the agent (see Figure 3.3) and ε is

a hyperparameter. This constraint encourages the agent to never venture more than

a distance ε away from the circle. In our experiments, we set ε = 0.05 meter.

Learning curves can be seen in Figure 3.10. We see that the constraint helps

the agent converge to a policy marginally quicker than if an agent was trained with

TRPO. This makes sense because the constraint guides the agent to learn a policy

that is optimal, whereas vanilla TRPO would have to find the optimal policy through

trial and error by searching through the state space.

See Figure 3.9 for performance metrics. Like straight line following at a target

velocity, at test time TRPO- and CPO-trained policies performed similarly. While

TRPO performed marginally better in both mean distance and mean velocity, the

32

Figure 3.10: Average returns using TRPO and CPO to follow circles of radius 1 at a
target velocity of 1.0 m/s. 5 random seeds were trained for each algorithm.

difference in the real world is not significant enough and can be attributed to noise.

We also see in Table 3.11 that both TRPO- and CPO-trained policies commit a

similar number of constraint violations. Again, results are not conclusive enough to

show which of TRPO or CPO is preferred for training policies.

Figure 3.11: Number of constraint violations made by TRPO and CPO on different
environments. The best policy with respect to average mean distance to the target
trajectory from five random seeds was chosen to collect metrics displayed in this table.
Metrics were averaged based on 50 rollouts. Note that metrics were collected after
the first 30 time steps passed, so that the agent had sufficient time to converge to the
line from different initial states.

33

3.6.3 Circle Following at High Velocities

The constraint for circle following at high velocities is the same constraint we used

for circle following at a target velocity - see Equation 3.14. In these experiments, we

again set ε = 0.05.

Figure 3.12: Average distance error, velocity and number of constraint violations
over training using TRPO and CPO to follow circles of radius 1 as fast as possible. 5
random seeds were trained for each algorithm.

Because reward functions are defined differently for TRPO and CPO training,

it does not make sense to compare learning curves for average return over training.

However, in Figure 3.12, the learning curves for average mean distance error, average

velocity and average number of constraint violations are plotted across training.

Interestingly, we see that policies trained with CPO performs better relative to

TRPO-trained policies with respect to all metrics as ε is decreased. Specifically, as ε

is reduced, CPO-trained policies achieve significantly lower distance errors, while also

34

reaching high velocities. Furthermore, less constraint violations are made. Note that

as ε is reduced, the constraint is harder to achieve (less distance tolerance to target

trajectory).

We hypothesize that TRPO fails to find an optimal policy because the amount of

high negative reward the agent obtains at initial states prevents it from obtaining

any useful reward signals necessary for learning. On the other hand, training a policy

with CPO is convenient because separating the constraint from the reward function

allows learning to be done more efficiently by having a more dense reward signal

guide the agent to learn policies that do not violate constraints.

Using the best performing policy from both TRPO and CPO with respect to

distance error across 50 rollouts, performance metrics were collected; see Figure 3.9.

There is a clear benefit to using CPO, as the mean distance error is significantly less

and yet still achieves high velocities. We also see in Figure 3.11 the average number

of constraint violations that were made with these policies over 50 rollouts. It is clear

that CPO policies violate constraints considerably less than TRPO policies.

Figure 3.13: Mean wheel slip κ over training, averaged over 5 random seeds, with the
objective of following a circle of radius 1.0 meter as fast as possible.

Interestingly, to achieve a high speed while attaining small distance error, the

best performing CPO policy needed to learn to drift. We measure the amount of

35

drift by recording the value of wheel slip, or κ (see Equation 2.18). In Figure 3.13,

we see that κ increases over training, which means the agent is leveraging non-trivial

lateral forces to follow the circle at high speeds.

3.6.4 Real World Results

Unfortunately, due to the gap between simulation and the real world, drifting was not

able to successfully be done in the real world. This is probably due to the inaccuracies

of some dynamics parameters that we rely on in simulation such as moment of inertia

and friction coefficients (see Chapter 4 for discussion on future work). See Figure 3.14

for a sample trajectory collected in the real world. Even though in simulation the

policy performed well, in the real world the trajectory it followed deviated significantly

from the target trajectory.

Figure 3.14: Real world trajectory. The black arrows show the position and orientation
of the car over a trajectory. The red dotted circle shows the target trajectory.

36

Chapter 4

Conclusions

4.1 Contributions

Control for autonomous driving in slippery environments is difficult due to dynamics

that are hard to model. While model-free learning removes this dependency on an

accurate environment model, learning often involves black-box optimization that

do not provide much interpretability, rendering policies unsafe. In this thesis, we

introduced techniques we used to learn robust, probabilistically safe control policies

using model-free methods for autonomous driving in slippery environments. This

work is part of a larger effort to safely learn policies for autonomous drifting.

Our work involved manipulating the control frequency to produce more robust

policies for sim-to-real transfer. Specifically, we observed that reducing the control

frequency at which our simulation runs during training time while testing with a

higher control frequency minimized jerk (first derivative to acceleration) in both

simulation and the real world. This allowed policies to be successfully transferred to

the real world.

In addition, to the best of our knowledge, we are the first to use Constrained Policy

Optimization (CPO) to train control policies on real world tasks. We observed that the

ability to create a distance constraint while rewarding high velocities allowed the agent

to robustly learn drifting behaviors, which was not easily possible if the constraint

was combined with the reward function with our baseline algorithm. Furthermore,

CPO is a step into the direction of safe policy learning. CPO provides probabilistic

37

guarantees on the number of safety constraint violations that are made throughout

training.

4.2 Future Work

The next step for this work is to show the viability of using CPO to learn drifting

maneuvers in the real world. Drifting results in this thesis were limited to simulation

results, and the gap between our simulation and the real world caused direct transfer

of the policy to the real world to be unsuccessful. One approach is to conduct an

investigation into model parameters such as moment of inertia and friction coefficients.

An alternative is to take advantage of the model-free aspect of CPO and directly

train in the real world.

Another aspect lacking in this work is comparison to other baseline methods.

In the contribution minimizing jerk via reducing the control frequency in training,

it would be helpful to compare this method against constraining actions during

training, or penalizing large action changes during training. In the contribution

towards drifting, it would be beneficial to compare performance with other methods

mentioned in Chapter 2, most of which use model-based methods to learn drifting.

Finally, towards the safety end, potential next steps include integrating neural

network verification into training. This could involve either verifying the policy

network at each step in training, or simply verifying the trained policy network after

training. In addition, integrating a runtime safety monitor during test time (or even

during training at each step to guide learning) could provide stronger guarantees on

safety.

38

Appendix A

State Space Derivations

See Figure 3.3 for a visualization of the geometric relations between the input absolute

state
(
x, y, ψ, ẋ, ẏ, ψ̇

)
and the output relative state

(
∆x, θ, ∆̇x, θ̇

)
for circle following.

Given that the current state is
(
x, y, ψ, ẋ, ẏ, ψ̇

)
. Trivially, we see that

∆x =
√
x2 + y2 − r (A.1)

where r is the radius of the circle the agent is following. To determine an expression

for θ, we use properties of perpendicular lines:

y

x
· tan(ψ + θ) = −1

tan(ψ + θ) = −x
y

θ + ψ = tan−1

(
−x
y

)
=⇒ θ = tan−1

(
−x
y

)
− ψ

Note that due to the periodicity of the tangent function, the value of θ depends on

39

the direction the agent is moving. This can be summarized below:

θ =

atan2(−x, y)− ψ if moving clockwise

atan2(−x, y) + π − ψ if moving counter-clockwise
(A.2)

To determine an expression for ∆̇x and θ̇, we find the total derivative of each with

respect to the time t.

∆̇x =
d

dx

dx

dt
(∆x) +

d

dy

dy

dt
(∆x)

= ẋ
d

dx
(∆x) + ẏ

d

dy
(∆x)

=
xẋ√
x2 + y2

+
yẏ√
x2 + y2

(A.3)

θ̇ =
d

dx

dx

dt
(θ) +

d

dy

dy

dt
(θ) +

d

dψ

dψ

dt
(θ)

= ẋ
d

dx
(θ) + ẏ

d

dy
(θ) + ψ̇

d

dψ
(θ)

= − yẋ

x2 + y2
+

xẏ

x2 + y2
− ψ̇ (A.4)

In summary, an absolute state is converted using the equations above to convert

the state into a relative state, which is fed into the neural network policy.

40

Appendix B

Experiment Parameters

B.1 RC Car Specifications

The components used to build the RC car can be found in Table B.1. More information

on the RC car can be found at https://github.com/jsford/FFAST.

Component Manufacturer & Model No.
Car chassis & drivetrain MST FXX-D
Sensored BLDC motor MST XBLS 601012

Servo motor Savox SAVSB2274SG
Battery Multistar 3S 11.1V 5200mAh

Voltage regulator Icstation LM2596 XL6009
Single-board computer NVIDIA Jetson TX2

IMU Variense VMU931
LIDAR Hokuyo URG-04LX-UG01

ESC VESC 4.12

Table B.1: Components of vehicle

B.2 Initial State Distribution

For each trajectory rollout, an initial state is randomly chosen so that the agent can

learn to follow the target trajectory from a wide range of state distributions. The

41

https://github.com/jsford/FFAST

ranges that we use for circle following and straight line following are different. We

specify the ranges that we used for training both types of policies below.

B.2.1 Straight Line Following

For training policies to be run on the RC car:

x = 0

y ∈ [−0.25, 0.25]

ψ ∈
[
−π

3
,
π

3

]
ẋ ∈ [0, 1.3]

ẏ ∈ [−0.6, 0.6]

ψ̇ ∈ [−2.0, 2.0]

For training policies to be run on the MRZR:

x = 0

y ∈ [−0.25, 0.25]

ψ ∈
[
−π

3
,
π

3

]
ẋ ∈ [0, 2.0]

ẏ ∈ [−0.6, 0.6]

ψ̇ ∈ [−0.3, 0.3]

B.2.2 Circle Following

Note that for circle following, we place the agent around the point (−R, 0), with

the agent tasked with following a circle centered at (0, 0) with radius R and target

velocity vf .

42

For training policies to be run on the RC car:

x ∈ [−0.25, 0.25]−R

y = 0

ψ ∈
[
−π

3
,
π

3

]
+

3π

2

ẋ ∈ [0, 2vf]

ẏ ∈ [−0.6, 0.6]

ψ̇ ∈ [−2.0, 2.0]

Since it was infeasible to run these policies on the MRZR due to space constraints,

no policies were trained with MRZR parameters.

B.3 Simulation Parameters

Parameter RC Car MRZR
m (kg) 2.5960 879.0
lf (m) 0.1150 1.364
lr (m) 0.1420 1.364
Fzf (N) 14.0711 4307.1
Fzr (N) 11.3956 4307.1
Cx (N) 103.9400 13782.0
Cα (N) 56.4000 68912
Iz 0.0558 1020.0
µ 1.3700 1.3700
µs 1.9600 1.9600

Table B.2: Estimated values used to model RC Car and MRZR in simulation. Values
for the MRZR were not estimated rigorously, and all values can significantly improved
via better system identification.

B.4 Hyperparameters

The hyperparameters were used to train all policies in this document can be seen in

Table B.3.

43

Hyperparameter Value
Non-linearity tanh

Number of Hidden Layers 2
Number of Hidden Units 32

Batch Size 600
Horizon Length 100
Discount Factor 0.99

Step Size 0.01
λ (GAE) 0.95

Safety λ (GAE) 1
dt (for CPO) 0.2

Table B.3: Hyperparameters

44

Appendix C

Code

rllab (https://github.com/rll/rllab) was used as our reinforcement learning

framework. High-quality implementations of both TRPO and CPO were found online.

ROS (https://www.ros.org) was used to interface with our robot.

Use the following links to view robust code implementations used for this thesis:

• Code for our custom simulation environments as well as training scripts used

to train policies: https://github.com/r-pad/aa_simulation

• Code for running trained policies on our robot using ROS: https://github.

com/r-pad/aa_planner

45

https://github.com/rll/rllab
https://www.ros.org
https://github.com/r-pad/aa_simulation
https://github.com/r-pad/aa_planner
https://github.com/r-pad/aa_planner

46

Bibliography

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 22–31. JMLR. org, 2017. 2.3, 3.1, 3.2.4

[2] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018. 2.4

[3] Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimiza-
tion with safety constraints: safe and automatic parameter tuning in robotics.
arXiv preprint arXiv:1602.04450, 2016. 2.3

[4] Mark Cutler and Jonathan P How. Autonomous drifting using simulation-aided
reinforcement learning. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 5442–5448. IEEE, 2016. 2.2

[5] Brian Goldfain, Paul Drews, Changxi You, Matthew Barulic, Orlin Velev, Pana-
giotis Tsiotras, and James M Rehg. Autorally: An open platform for aggressive
autonomous driving. IEEE Control Systems Magazine, 39(1):26–55, 2019. 2.2

[6] David Held, Zoe McCarthy, Michael Zhang, Fred Shentu, and Pieter Abbeel.
Probabilistically safe policy transfer. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 5798–5805. IEEE, 2017. 2.3

[7] Ronald A Howard. Dynamic programming and markov processes. 1960. 3.1

[8] Sham Kakade and John Langford. Approximately optimal approximate rein-
forcement learning. In ICML, volume 2, pages 267–274, 2002. 3.2.3

[9] Sham M Kakade. A natural policy gradient. In Advances in neural information
processing systems, pages 1531–1538, 2002. 3.2.3

[10] Steven Lovegrove Nima Keivan and Gabe Sibley. A holistic framework for
planning, real-time control and model learning for high-speed ground vehicle
navigation over rough 3d terrain. In IROS, 2012. 2.2

[11] Tak Kit Lau and Yun-hui Liu. Stunt driving via policy search. In 2012 IEEE

47

International Conference on Robotics and Automation, pages 4699–4704. IEEE,
2012. 2.2

[12] Zachary C Lipton, Kamyar Azizzadenesheli, Abhishek Kumar, Lihong Li, Jian-
feng Gao, and Li Deng. Combating reinforcement learning’s sisyphean curse
with intrinsic fear. arXiv preprint arXiv:1611.01211, 2016. 2.3

[13] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan,
Evangelos Theodorou, and Byron Boots. Agile off-road autonomous driving
using end-to-end deep imitation learning. arXiv preprint arXiv:1709.07174, 2017.
2.2

[14] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-to-real transfer of robotic control with dynamics randomization. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 1–8.
IEEE, 2018. 2.4

[15] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business
Media, 2011. 2.1.1, 2.1.2

[16] Y Hindiyeh Rami. Dynamics and control of drifting in automobiles. Doctor
degree thesis Stanford University, 2013. 2.1.1, 2.1.2

[17] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011. 2.2

[18] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on
Machine Learning, pages 1889–1897, 2015. 3.2.3

[19] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 3.2.2

[20] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems, pages 1057–1063, 2000.
3.2.2

[21] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoff-
mann, et al. Stanley: The robot that won the darpa grand challenge. Journal of
field Robotics, 23(9):661–692, 2006. 1.2

[22] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ International Conference

48

on Intelligent Robots and Systems (IROS), pages 23–30. IEEE, 2017. 2.4

[23] Chris Urmson, J Andrew Bagnell, Christopher Baker, Martial Hebert, Alonzo
Kelly, Raj Rajkumar, Paul E Rybski, Sebastian Scherer, Reid Simmons, Sanjiv
Singh, et al. Tartan racing: A multi-modal approach to the darpa urban challenge.
2007. 1.2

[24] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
1989. 3.2.2

[25] Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A
Theodorou. Aggressive driving with model predictive path integral control. In
2016 IEEE International Conference on Robotics and Automation (ICRA), pages
1433–1440. IEEE, 2016. 2.2

[26] Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown:
Learning a universal policy with online system identification. arXiv preprint
arXiv:1702.02453, 2017. 2.4

49

	1 Introduction
	1.1 Motivation
	1.2 Current Challenges and Scope
	1.3 Contributions and Organization

	2 Background and Related Work
	2.1 Vehicle Models
	2.1.1 Kinematic Bicycle Model
	2.1.2 Dynamic Bicycle Model

	2.2 Autonomous Rallying
	2.3 Safe Policy Learning
	2.4 Sim-to-Real

	3 Model-free Control
	3.1 Introduction
	3.2 Related Work
	3.2.1 Preliminaries
	3.2.2 Policy Gradient Algorithms
	3.2.3 Trust Region Policy Optimization
	3.2.4 Constrained Policy Optimization

	3.3 Simulation Environment
	3.4 Problem Formulation
	3.5 Varying Simulation Sensor Delay for Stability
	3.5.1 Real World Results

	3.6 Learning Policies with CPO
	3.6.1 Straight Line Following
	3.6.2 Circle Following at Target Velocity
	3.6.3 Circle Following at High Velocities
	3.6.4 Real World Results

	4 Conclusions
	4.1 Contributions
	4.2 Future Work

	A State Space Derivations
	B Experiment Parameters
	B.1 RC Car Specifications
	B.2 Initial State Distribution
	B.2.1 Straight Line Following
	B.2.2 Circle Following

	B.3 Simulation Parameters
	B.4 Hyperparameters

	C Code

