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Abstract
Our surrounding world is highly structured. Humans have a great capacity of understanding

and leveraging those structures to generalize to novel scenarios and to predict the future. The thesis
studies how computer vision systems benefit from a similar process – leveraging inherent structures
in data to improve generalization and prediction capacity. It focuses on two specific aspects: zero-shot
recognition using categorical structures which is explicitly specified by knowledge graphs; video
predictions by leveraging the implicit physical structures among entities. Both methods are based
on the scalable machine learning framework, graph neural network, to directly learn structures from
large-scale data. In zero-shot recognition, we have shown that accuracy improves significantly and is
more robust due to external knowledge in the knowledge graph. In video prediction, we have found
the long-term prediction is significantly sharper when factoring the structure among entities.
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Chapter 1

Introduction

Humans have great inductive capability of drawing relationship from the structured world and
leveraging those structures to learn and infer efficiently [54]. On the other hand, in most of the current
visual algorithms, entities are learned independently. In classification task, the model considers
categories living in n-simplex, i.e. each class is represented as an independent one-hot vector. Bur for
human, categories never exists independently [2]. Take the example of the class “okapi”, which is
“zebra-striped four legged animal with a brown torso and a deer-like face”. Humans can immediately
generate a good visual classifiers just based on the description, with no need to seeing massive okapis
before. (Test your self on Figure 1.1). Knowing the class okapi is closely related to deer and zebra
gives us enough knowledge to solve the puzzle.

Figure 1.1: Can you find “okapi” in these images? Okapi is ” zebra-striped four legged animal with a
brown torso and a deer-like face”. In chapter 2, we focus on the problem of zero-shot learning where
visual classifiers are learned from semantic embeddings and relationships to other categories.

Not only do humans leverage the relationships on top of abstract categories, humans can also
reason on the relationships on top of more concrete distinct entities. For example, in Figure 1.2, humans
can tell much more than the top scene is comprised of three objects and the bottom scene depicts a
person. They can easily articulate that the yellow block is supporting the blue one thus as the yellow
one topples, the blue block will fall as well. Likewise, as the person at the bottom pulls up his arm, the
torso and legs will follow the motion but his elbows will remain at the same place.

The ability to generalize across categories with few or even no samples requires leveraging relation-
ships among them; the ability to predict multiple entities in long-term and in details should benefit
from understanding the relationships among entities. The thesis proposes to leverage structures in
those two aspects: structures among categories and structures among entities.
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Figure 1.2: Given a still image with entities (objects or joints), human can articulate the future based on
relationship among entities. In chapter 3, we proposes a compositional method to predict a sequence
of future frames. We visualize two frames from the predicted sequence for the given inputs.

In chapter 2, we focuses on zero-shot learning task to generate visual classifiers for the novel
categories without training images [85]. We build upon the recently introduced Graph Convolu-
tional Network (GCN) to leverage the categorical relationships which are both explicitly specified by
knowledge graphs and implicitly specified by languages. Given a learned knowledge graph (KG), our
approach takes as input semantic embeddings for each node (representing visual category). After a
series of graph convolutions, we predict the visual classifier for each category. During training, the
visual classifiers for a few categories are given to learn the GCN parameters. At test time, these filters
are used to predict the visual classifiers of unseen categories. We show that our approach is robust to
noise in the KG. More importantly, our approach provides significant improvement in performance
compared to the current state-of-the-art results (from 2 ∼ 3% on some metrics to whopping 20% on a
few).

In chapter 3, we focuses on the task of video prediction, especially on multi-entities prediction [96].
We observe that a scene is comprised of distinct entities that undergo motion and present an approach
that operationalizes this insight by implicitly predicting future states of independent entities while
reasoning about interactions among them, and composing future video frames using predicted states.
We overcome the inherent multi-modality of the task using a global trajectory-level latent random
variables, and show this allow us to sample more diverse and plausible futures compared to commonly
used per-timestep latent variables models. We empirically validate our approach against alternate
representations choices and ways of incorporating multi-modality. We examine two datasets, one
comprising of stacked objects that may fall, and another containing videos of humans performing
activities in a gym, and show that our approach allows realistic stochastic video prediction across
these diverse settings.
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Chapter 2

Zero-Shot via Explicit Semantic
Structure among Categories

2.1 Introduction
Consider the animal category “okapi”. Even though we might have never heard of this category or
seen visual examples in the past, we can still learn a good visual classifier based on the following
description: ”zebra-striped four legged animal with a brown torso and a deer-like face”. On the other
hand, our current recognition algorithms still operate in closed world conditions: that is, they can only
recognize the categories they are trained with. Adding a new category requires collecting thousands
of training examples and then retraining the classifiers. To tackle this problem, zero-shot learning is
often used.

The key to dealing with the unfamiliar or novel category is to transfer knowledge obtained from
familiar classes to describe the unfamiliar classes (generalization). There are two paradigms of trans-
ferring knowledge. The first paradigm is to use implicit knowledge representations, i.e. semantic
embeddings. In this approach, one learns a vector representation of different categories using text data
and then learns a mapping between the vector representation to visual classifier directly [25,63]. How-
ever, these methods are limited by the generalization power of the semantic models and the mapping
models themselves. It is also hard to learn semantic embeddings from structured information.

The alternative and less-explored paradigm for zero-shot learning is to use explicit knowledge
bases or knowledge graphs. In this paradigm, one explicitly represents the knowledge as rules or
relationships between objects. These relationships can then be used to learn zero-shot classifiers for
new categories. The simplest example would be to learn visual classifiers of compositional categories.
Given classifiers of primitive visual concepts as inputs, [62] applies a simple composition rule to
generate classifiers for new complex concepts. However, in the general form, the relationships can be
more complex than simple compositionality. An interesting question we want to explore is if we can
use structured information and complex relationships to learn visual classifiers without seeing any
examples.

In this paper, we propose to distill both the implicit knowledge representations (i.e. word embed-
ding) and explicit relationships (i.e. knowledge graph) for learning visual classifiers of novel classes.
We build a knowledge graph where each node corresponds to a semantic category. These nodes
are linked via relationship edges. The input to each node of the graph is the vector representation
(semantic embedding) of each category. We then use Graph Convolutional Network (GCN) [44] to
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transfer information (message-passing) between different categories. Specifically, we train a 6-layer
deep GCN that outputs the classifiers of different categories.

We focus on the task of image classification. We consider both of the test settings: (a) final test classes
being only zero-shot classes (without training classes at test time); (b) at test time the labels can be either
the seen or the unseen classes, namely “generalized zero-shot setting” [11,30,90]. We show surprisingly
powerful results and huge improvements over classical baselines such as DeVise [25] , ConSE [63]
,and current state-of-the-art [10]. For example, on standard ImageNet with 2-hop setting, 43.7% of the
images retrieved by [10] in top-10 are correct. Our approach retrieves 62.4% images correctly. That is
a whopping 18.7% improvement over the current state-of-the-art. More interestingly, we show that
our approach scales amazingly well and giving a significant improvement as we increase the size of
the knowledge graph even if the graph is noisy.

2.2 Related Work
With recent success of large-scale recognition systems [75], the focus has now shifted to scaling these
systems in terms of categories. As more realistic and practical settings are considered, the need for
zero-shot recognition – training visual classifiers without any examples – has increased. Specifically,
the problem of mapping text to visual classifiers is very interesting.

Early work on zero-shot learning used attributes [20, 37, 47] to represent categories as vector
indicating presence/absence of attributes. This vector representation can then be mapped to learn
visual classifiers. Instead of using manually defined attribute-class relationships, Rohrbach et al. [67,68]
mined these associations from different internet sources. Akata et al. [1] used attributes as side-
information to learn a semantic embedding which helps in zero-shot recognition. Recently, there have
been approaches such as [66] which trys to match Wikipedia text to images by modeling noise in the
text description.

With the advancement of deep learning, most recent approaches can be mapped into two main
research directions. The first approach is to use semantic embeddings (implicit representations). The
core idea is to represent each category with learned vector representations that can be mapped to
visual classifiers [9, 10, 25–27, 34, 46, 48, 70, 74, 87, 100, 101]. Socher et al. [74] proposed training two
different neural networks for image and language in an unsupervised manner, and then learning
a linear mapping between image representations and word embeddings. Motivated by this work,
Frome et al. [25] proposed a system called DeViSE to train a mapping from image to word embeddings
using a ConvNet and a transformation layer. By using the predicted embedding to perform nearest
neighbor search, DeViSE scales up the zero-shot recognition to thousands of classes. Instead of training
a ConvNet to predict the word embedding directly, Norouzi et al. [63] proposed another system named
ConSE which constructs the image embedding by combining an existing image classification ConvNet
and word embedding model. Recently, Changpinyo et al [9] proposed an approach to align semantic
and visual manifolds via use of ‘phantom’ classes. They report state-of-the-art results on ImageNet
dataset using this approach. One strong shortcoming of these approaches is they do not use any
explicit relationships between classes but rather use semantic-embeddings to represent relationships.

The second popular way to distill the knowledge is to use knowledge graph (explicit knowledge
representations). Researchers have proposed several approaches on how to use knowledge graphs
for object recognition [14, 15, 21, 53, 57, 59, 64, 69, 72, 84, 89]. For example, Salakhutdinov et al. [72]
used WordNet to share the representations among different object classifiers so that objects with
few training examples can borrow statistical strength from related objects. On the other hand, the
knowledge graph can also be used to model the mutual exclusion among different classes. Deng et
al. [15] applied these exclusion rules as a constraint in the loss for training object classifiers (e.g. an
object will not be a dog and a cat at the same time). They have also shown zero-shot applications
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Figure 2.1: An example of our Graph Convolutional Network. It takes word embeddings as inputs
and outputs the object classifiers. The supervision comes from the ground-truth classifiers w2 and w3

highlighted by green. During testing, we input the same word embeddings and obtain classifier for x1
as ŵ1. This classifier will be multiplied with the image features to produce classification scores.

by adding object-attribute relations into the graph. In contrast to these methods of using graph as
constraints, our approach used the graph to directly generate novel object classifiers [3, 18, 62].

In our work, we propose to distill information both via semantic embeddings and knowledge graphs.
Specifically, given a word embedding of an unseen category and the knowledge graph that encodes
explicit relationships, our approach predicts the visual classifiers of unseen categories. To model the
knowledge graph, our work builds upon the Graph Convolutional Networks [44]. It was originally
proposed for semi-supervised learning in language processing. We extend it to our zero-short learning
problem by changing the model architecture and training loss.

2.3 Approach
Our goal is to distill information from both implicit (word-embeddings) and explicit (knowledge-
graph) representations for zero-shot recognition. But what is the right way to extract information? We
build upon the recent work on Graph Convolutional Network (GCN) [44] to learn visual classifiers.
In the following, we will first introduce how the GCN is applied in natural language processing for
classification tasks, and then we will go into details about our approach: applying the GCN with a
regression loss for zero-shot learning.

2.3.1 Preliminaries: Graph Convolutional Network
Graph Convolutional Network (GCN) was introduced in [44] to perform semi-supervised entity
classification. Given object entities, represented by word embeddings or text features, the task is to
perform classification. For example, entities such as “dog” and “cat” will be labeled as “mammal”;
“chair” and “couch” will be labeled “furniture”. We also assume that there is a graph where nodes are
entities and the edges represent relationships between entities.

Formally, given a dataset with n entities (X,Y ) = {(xi, yi)}ni=1 where xi represents the word
embedding for entity i and yi ∈ {1, ..., C} represents its label. In semi-supervised setting, we know
the ground-truth labels for the first m entities. Our goal is to infer yi for the remaining n−m entities,
which do not have labels, using the word embedding and the relationship graph. In the relationship
graph, each node is an entity and two nodes are linked if they have a relationship in between.

We use a function F (·) to represent the Graph Convolutional Network. It takes all the entity word
embeddings X as inputs at one time and outputs the SoftMax classification results for all of them
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as F (X). For simplicity, we denote the output for the ith entity as Fi(X), which is a C dimension
SoftMax probability vector. In training time, we apply the SoftMax loss on the first m entities, which
have labels as

1

m

m∑
i=1

Lsoftmax(Fi(X), yi). (2.1)

The weights of F (·) are trained via back-propagation with this loss. During testing time, we use the
learned weights to obtain the labels for the n−m entities with Fi(X), i ∈ {m+ 1, ..., n}.

Unlike standard convolutions that operate on local region in an image, in GCN the convolutional
operations compute the response at a node based on the neighboring nodes defined by the adjacency
graph. Mathematically, the convolutional operations for each layer in the network F (·) is represented
as

Z = ÂX ′W (2.2)

where Â is a normalized version of the binary adjacency matrix A of the graph, with n×n dimensions.
X ′ is the input n× k feature matrix from the former layer. W is the weight matrix of the layer with
dimension k× c, where c is the output channel number. Therefore, the input to a convolutional layer is
n×k ,and the output is a n×cmatrix Z. These convolution operations can be stacked one after another.
A non-linear operation (ReLU) is also applied after each convolutional layer before the features are
forwarded to the next layer. For the final convolutional layer, the number of output channels is the
number of label classes (c = C). For more details, please refer to [44].

2.3.2 GCN for Zero-shot Learning
Our model builds upon the Graph Convolutional Network. However, instead of entity classification,
we apply it to the zero-shot recognition with a regression loss. The input of our framework is the set of
categories and their corresponding semantic-embedding vectors (represented byX = {xi}ni=1). For the
output, we want to predict the visual classifier for each input category (represented byW = {wi}ni=1).

Specifically, the visual classifier we want the GCN to predict is a logistic regression model on the
fixed pre-trained ConvNet features. If the dimensionality of visual-feature vector is D, each classifier
wi for category i is also a D-dimensional vector. Thus the output of each node in the GCN is D
dimensions, instead of C dimensions. In the zero-shot setting, we assume that the first m categories in
the total n classes have enough visual examples to estimate their weight vectors. For the remaining
n −m categories, we want to estimate their corresponding weight vectors given their embedding
vectors as inputs.

One way is to train a neural network (multi-layer perceptron) which takes xi as an input and learns
to predict wi as an output. The parameters of the network can be estimated using m training pairs.
However, generally m is small (in the order of a few hundreds) and therefore, we want to use the
explicit structure of the visual world or the relationships between categories to constrain the problem.
We represent these relationships as the knowledge-graph (KG). Each node in the KG represents a
semantic category. Since we have a total of n categories, there are n nodes in the graph. Two nodes are
linked to each other if there is a relationship between them. The graph structure is represented by the
n × n adjacency matrix, A. Instead of building a bipartite graph as [44, 94], we replace all directed
edges in the KG by undirected edges, which leads to a symmetric adjacency matrix.

As Fig. 2.1 shows, we use a 6-layer GCN where each layer l takes as input the feature representation
from previous layer (Zl−1) and outputs a new feature representation (Zl). For the first layer the input is
X which is an n× k matrix (k is the dimensionality of the word-embedding vector). For the final-layer
the output feature-vector is Ŵ which has the size of n×D; D being the dimensionality of the classifier
or visual feature vector.
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Loss-function: For the first m categories, we have predicted classifier weights Ŵ1...m and ground-
truth classifier weights learned from training imagesW1...m. We use the mean-square error as the loss
function between the predicted and the ground truth classifiers.

1

m

m∑
i=1

Lmse(ŵi, wi). (2.3)

During training, we use the loss from the m seen categories to estimate the parameters for the
GCN. Using the estimated parameters, we obtain the classifier weights for the zero-shot categories. At
test time, we first extract the image feature representations via the pre-trained ConvNet and use these
generated classifiers to perform classification on the extracted features.

Hit@k (%)
Test Set Model 1 2 5 10

High Value

ConSE(5) 6.6 9.6 13.6 19.4

Edges

ConSE(10) 7.0 9.8 14.2 20.1
ConSE(431) 6.7 9.7 14.9 20.5
Ours 9.1 16.8 23.2 47.9

All Edges

ConSE(5) 7.7 10.1 13.9 19.5
ConSE(10) 7.7 10.4 14.7 20.5
ConSE(616) 7.7 10.5 15.7 21.4
Ours 10.8 18.4 33.7 49.0

Table 2.1: Top-k accuracy for different models in different settings.

2.3.3 Implementation Details

Our GCN is composed of 6 convolutional layers with output channel numbers as 2048 → 2048 →
1024 → 1024 → 512 → D, where D represents the dimension of the object classifier. Unlike the
2-layer network presented in [44], our network is much deeper. As shown in ablative studies, we
find that making the network deep is essential in generating the classifier weights. For activation
functions, instead of using ReLU after each convolutional layer, we apply LeakyReLU [55, 91] with
the negative slope of 0.2. Empirically, we find that LeakyReLU leads to faster convergence for our
regression problem.

While training our GCN, we perform L2-Normalization on the outputs of the networks and
the ground-truth classifiers. During testing, the generated classifiers of unseen classes are also L2-
Normalized. We find adding this constraint important, as it regularizes the weights of all the classifiers
into similar magnitudes. In practice, we also find that the last layer classifiers of the ImageNet pre-
trained networks are naturally normalized. That is, if we perform L2-Normalization on each of the last
layer classifiers during testing, the performance on the ImageNet 2012 1K-class validation set changes
marginally (< 1%).

To obtain the word embeddings for GCN inputs, we use the GloVe text model [65] trained on the
Wikipedia dataset, which leads to 300-d vectors. For the classes whose names contain multiple words,
we match all the words in the trained model and find their embeddings. By averaging these word
embeddings, we obtain the class embedding.
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2.4 Experiment
We now perform experiments to showcase that our approach: (a) improves the state-of-the-art by
a significant margin; (b) is robust to different pre-trained ConvNets and noise in the KG. We use
two datasets in our experiments. The first dataset we use is constructed from publicly-available
knowledge bases. The dataset consists of relationships and graph from Never-Ending Language
Learning (NELL) [7] and images from Never-Ending Image Learning (NEIL) [14]. This is an ideal
dataset for: (a) demonstrating that our approach is robust even with automatically learned (and noisy)
KG; (b) ablative studies since the KG in this domain is rich, and we can perform ablations on KG as
well.

Our final experiments are shown on the standard ImageNet dataset. We use the same settings as
the baseline approaches [9,25,63] together with the WordNet [61] knowledge graph. We show that
our approach surpasses the state-of-the-art methods by a significant margin.

2.4.1 Experiments on NELL and NEIL
Dataset settings. For this experiment, we construct a new knowledge graph based on the NELL [7]
and NEIL [14] datasets. Specifically, the object nodes in NEIL correspond to the nodes in NELL. The
NEIL dataset offers the sources of images and the NELL dataset offers the common sense knowledge
rules. However, the NELL graph is incredibly large 1: it contains roughly 1.7M types of object entities
and around 2.4M edges representing the relationships between every two objects. Furthermore, since
NELL is constructed automatically, there are noisy edges in the graph. Therefore, we create sub-graphs
for our experiments.

The process of constructing this sub-graph is straightforward. We perform Breadth-first search
(BFS) starting from the NEIL nodes. We discover paths with maximum length K hops such that the
first and last node in the path are NEIL nodes. We add all the nodes and edges in these paths into
our sub-graph. We set K = 7 during BFS because we discover a path longer than 7 hops will cause
the connection between two objects noisy and unreasonable. For example, “jeep” can be connected to
“deer” in a long path but they are hardly semantically related.

Note that each edge in NELL has a confidence value that is usually larger than 0.9. For our
experiments, we create two different versions of sub-graphs. The first smaller version is a graph
with high value edges (larger than 0.999), and the second one used all the edges regardless of their
confidence values. The statistics of the two sub-graphs are summarized in Table 2.2. For the larger
sub-graph, we have 14K object nodes. Among these nodes, 704 of them have corresponding images in
the NEIL database. We use 616 classes for training our GCN and leave 88 classes for testing. Note that
these 88 testing classes are randomly selected among the classes that have no overlap with the 1000
classes in the standard ImageNet classification dataset. The smaller knowledge graph is around half
the size of the larger one. We use the same 88 testing classes in both settings

All NEIL Nodes
Dataset Nodes (Train/Test) Edges
High Value Edges 8819 431/88 40810
All Edges 14612 616/88 96772

Table 2.2: Dataset Statistics: Two different sizes of knowledge graphs in our experiment.

1http://rtw.ml.cmu.edu/
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Figure 2.2: Left: We randomly drop 5% to 50% of the edges in the “All Edges” graph and show the
top-1, top-5 and top-10 accuracies. Right: We compute the minimum Euclidean distances between
predicted and training classifiers. The distances are plotted by sorting them from small to large.

Training details. For training the ConvNet on NEIL images, we use the 310K images associated with
the 616 training classes. The evaluation is performed on the randomly selected 12K images associated
with the 88 testing classes, i.e. all images from the training classes are excluded during testing. We
fine-tune the ImageNet pre-trained VGGM [12] network architecture with relatively small fc7 outputs
(128-dimension). Thus the object classifier dimension in fc8 is 128. For training our GCN, we use the
ADAM [41] optimizer with learning rate 0.001 and weight decay 0.0005. We train our GCN for 300
epochs for every experiment.

Baseline method. We compare our method with one of the state-of-the-art methods, ConSE [63],
which shows slightly better performance than DeViSE [25] in ImageNet. As a brief introduction, ConSE
first feedforwards the test image into a ConvNet that is trained only on the training classes. With the
output probabilities, ConSE selects top T predictions {pi}Ti=1 and the word embeddings {xi}Ti=1 [60]
of these classes. It then generates a new word embedding by weighted averaging the T embeddings
with the probability 1

T

∑T
i=1 pixi. This new embedding is applied to perform nearest neighbors in the

word embeddings of the testing classes. The top retrieved classes are selected as the final result. We
enumerate different values of T for evaluations.

Quantitative Results. We perform evaluations on the task of 88 unseen categories classification. Our
metric is based on the percentage of correctly retrieved test data (out of top k retrievals) for a given
zero-shot class. The results are shown in Table 2.1. We evaluate our method on two different sizes of
knowledge graphs. We use “High Value Edges” to denote the knowledge graph constructed based on
high confidence edges. “All Edges” represents the graph constructed with all the edges. We denote
the baseline [63] as “ConSE(T)” where we set T to be 5, 10 and the number of training classes.

Our method outperforms the ConSE baseline by a large margin. In the “All Edges” dataset, our
method outperforms ConSE 3.6% in top-1 accuracy. More impressively, the accuracy of our method
is almost 2 times as that of ConSE in top-2 metric and even more than 2 times in top-5 and top-10
accuracies. These results show that using knowledge graph with word embeddings in our method
leads to much better result than the state-of-the-art results with word embeddings only.
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From small to larger graph. In addition to improving performance in zero-shot recognition, our
method obtains more performance gain as our graph size increases. As shown in Table 2.1, our method
performs better by switching from the small to larger graph. Our approach has obtained 2 ∼ 3%
improvements in all the metrics. On the other hand, there is little to no improvements in ConSE
performance. It also shows that the KG does not need to be hand-crafted or cleaned. Our approach is
able to robustly handle the errors in the graph structure.

Resilience to Missing Edges We explore how the performance of our model changes if we randomly
drop 5% to 50% of the edges in the “All Edges” graph. As Fig. 2.2(Left) shows, by dropping from 5% to
10% of edges, the performance of our model changes negligibly. This is mainly because the knowledge
graph can have redundant information with 14K nodes and 97K edges connecting them. This again
implies that our model is robust to small noisy changes in the graph. As we start deleting more than
30% of the edges, the accuracies drop drastically. This indicates that the performance of our model is
highly correlated to the size of the knowledge graph.

Random Graph? It is clear that our approach can handle noise in the graph. But does any random
graph work? To demonstrate that the structure of the graph is still critical we also created some trivial
graphs: (i) star model: we create a graph with one single root node and only have edges connecting
object nodes to the root node; (ii) random graph: all nodes in the graph are randomly connected.
Table 2.3 shows the results. It is clear that all the numbers are close to random guessing, which means a
reasonable graph plays an important role and a random graph can have negative effects on the model.

Hit@k (%)
Test Set Trivial KG 1 2 5 10

All Edges
Star Model 1.1 1.6 4.8 9.7
Random Graph 1.0 2.2 5.6 11.3

Table 2.3: Top-k accuracy on trivial knowledge graphs we create.

How important is the depth of GCN? We show that making the Graph Convolutional Network
deep is critical in our problem. We show the performance of using different numbers of layers for
our model on the “All Edges” knowledge graph shown in Table 2.4. For the 2-layer model we use 512
hidden neurons, and the 4-layer model has output channel numbers as 2048 → 1024 → 512 → 128.
We show that the performance keeps increasing as we make the model deeper from 2-layer to 6-layer.
The reason is that increasing the times of convolutions is essentially increasing the times of message
passing between nodes in the graph. However, we do not observe much gain by adding more layers
above the 6-layer model. One potential reason might be that the optimization becomes harder as the
network goes deeper.

Hit@k (%)
Test Set Model 1 2 5 10

All Edges
Ours (2-layer) 5.3 8.7 15.5 24.3
Ours (4-layer) 8.2 13.5 27.1 41.8
Ours (6-layer) 10.8 18.4 33.7 49.0

Table 2.4: Top-k accuracy with different depths of our model.
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Figure 2.3: t-SNE visualizations for our word embeddings and GCN output visual classifiers in the
“All Edges” dataset. The test classes are shown in red.

Is our network just copying classifiers as outputs? Even though we show our method is better than
ConSE baseline, is it possible that it learns to selectively copy the nearby classifiers? To show our
method is not learning this trivial solution, we compute the Euclidean distance between our generated
classifiers and the training classifiers. More specifically, for a generated classifier, we compare it with
the classifiers from the training classes that are at most 3-hops away. We calculate the minimum
distance between each generated classifier and its neighbors. We sort the distances for all 88 classifiers
and plot Fig. 2.2(Right). As for reference, the distance between “wooden spoon” and “spoon” classifiers
in the training set is 0.26 and the distance between “wooden spoon” and “optimus prime” is 0.78. We
can see that our predicted classifiers are quite different from its neighbors.

Hit@k (%)
Test Set Model ConvNets 1 2 5 10 20

2-hops

ConSE [9] Inception-v1 8.3 12.9 21.8 30.9 41.7
ConSE(us) Inception-v1 12.4 18.4 25.3 28.5 31.8
SYNC [9] Inception-v1 10.5 17.7 28.6 40.1 52.0
EXEM [10] Inception-v1 12.5 19.5 32.3 43.7 55.2
Ours Inception-v1 18.5 31.3 50.1 62.4 72.0
Ours ResNet-50 19.8 33.3 53.2 65.4 74.6

3-hops

ConSE [9] Inception-v1 2.6 4.1 7.3 11.1 16.4
ConSE(us) Inception-v1 3.2 4.9 7.6 9.7 11.4
SYNC [9] Inception-v1 2.9 4.9 9.2 14.2 20.9
EXEM [10] Inception-v1 3.6 5.9 10.7 16.1 23.1
Ours Inception-v1 3.8 6.9 13.1 18.8 26.0
Ours ResNet-50 4.1 7.5 14.2 20.2 27.7

All

ConSE [9] Inception-v1 1.3 2.1 3.8 5.8 8.7
ConSE(us) Inception-v1 1.5 2.2 3.6 4.6 5.7
SYNC [9] Inception-v1 1.4 2.4 4.5 7.1 10.9
EXEM [10] Inception-v1 1.8 2.9 5.3 8.2 12.2
Ours Inception-v1 1.7 3.0 5.8 8.4 11.8
Ours ResNet-50 1.8 3.3 6.3 9.1 12.7

(a) Top-k accuracy for different models when testing on only
unseen classes.

Hit@k (%)
Test Set Model ConvNets 1 2 5 10 20

2-hops

DeViSE [25] AlexNet 0.8 2.7 7.9 14.2 22.7

(+1K)

ConSE [63] AlexNet 0.3 6.2 17.0 24.9 33.5
ConSE(us) Inception-v1 0.2 7.8 18.1 22.8 26.4
ConSE(us) ResNet-50 0.1 11.2 24.3 29.1 32.7
Ours Inception-v1 7.9 18.6 39.4 53.8 65.3
Ours ResNet-50 9.7 20.4 42.6 57.0 68.2

3-hops

DeViSE [25] AlexNet 0.5 1.4 3.4 5.9 9.7

(+1K)

ConSE [63] AlexNet 0.2 2.2 5.9 9.7 14.3
ConSE(us) Inception-v1 0.2 2.8 6.5 8.9 10.9
ConSE(us) ResNet-50 0.2 3.2 7.3 10.0 12.2
Ours Inception-v1 1.9 4.6 10.9 16.7 24.0
Ours ResNet-50 2.2 5.1 11.9 18.0 25.6

All

DeViSE [25] AlexNet 0.3 0.8 1.9 3.2 5.3

(+1K)

ConSE [63] AlexNet 0.2 1.2 3.0 5.0 7.5
ConSE(us) Inception-v1 0.1 1.3 3.1 4.3 5.5
ConSE(us) ResNet-50 0.1 1.5 3.5 4.9 6.2
Ours Inception-v1 0.9 2.0 4.8 7.5 10.8
Ours ResNet-50 1.0 2.3 5.3 8.1 11.7

(b) Top-k accuracy for different models when testing on both
seen and unseen classes (a more practical and generalized
setting).

Table 2.5: Results on ImageNet. We test our model on 2 different settings over 3 different datasets.
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Are the outputs only relying on the word embeddings? We perform t-SNE [56] visualizations to
show that our output classifiers are not just derived from the word embeddings. We show the t-
SNE [56] plots of both the word embeddings and the classifiers of the seen and unseen classes in
the “All Edges” dataset. As Fig. 2.3 shows, we have very different clustering results between the
word embeddings and the object classifiers, which indicates that our GCN is not just learning a direct
projection from word embeddings to classifiers.

2.4.2 Experiments on WordNet and ImageNet
We now perform our experiments on a much larger-scale ImageNet [71] dataset. We adopt the same
train/test split settings as [25, 63]. More specifically, we report our results on 3 different test datasets:
“2-hops”, “3-hops” and the whole “All” ImageNet set. These datasets are constructed according to
how similar the classes are related to the classes in the ImageNet 2012 1K dataset. For example,
“2-hops” dataset (around 1.5K classes) includes the classes from the ImageNet 2011 21K set which are
semantically very similar to the ImageNet 2012 1K classes. “3-hops” dataset (around 7.8K classes)
includes the classes that are within 3 hops of the ImageNet 2012 1K classes, and the “All” dataset
includes all the labels in ImageNet 2011 21K. There are no common labels between the ImageNet 1K
class and the classes in these 3-dataset. It is also obvious to see that as the number of class increases,
the task becomes more challenging.

As for knowledge graph, we use the sub-graph of the WordNet [61], which includes around 30K
object nodes2.

Training details. Note that to perform testing on 3 different test sets, we only need to train one set of
ConvNet and GCN. We use two different types of ConvNets as the base network for computing visual
features: Inception-v1 [76] and ResNet-50 [31]. Both networks are pre-trained using the ImageNet
2012 1K dataset and no fine-tuning is required. For Inception-v1, the output feature of the second
to the last layer has 1024 dimensions, which leads to D = 1024 object classifiers in the last layer. For
ResNet-50, we have D = 2048. Except for the changes of output targets, other settings of training GCN
remain the same as those of the previous experiments on NELL and NEIL. It is worthy to note that
our GCN model is robust to different sizes of outputs. The model shows consistently better results as
the representation (features) improves from Inception-v1 (68.7% top-1 accuracy in ImageNet 1K val
set) to ResNet-50 (75.3%).

We evaluate our method with the same metric as the previous experiments: the percentage of
hitting the ground-truth labels among the top k predictions. However, instead of only testing with
the unseen object classifiers, we include both training and the predicted classifiers during testing, as
suggested by [25,63]. Note that in these two settings of experiments, we still perform testing on the
same set of images associated with unseen classes only.

Testing without considering the training labels. We first perform experiments excluding the classi-
fiers belonging to the training classes during testing. We report our results in Table. 2.5a. We compare
our results to the recent state-of-the-art methods SYNC [9] and EXEM [10]. We show experiments
with the same pre-trained ConvNets (Inception-v1) as [9, 10]. Due to unavailability of their word
embeddings for all the nodes in KG, we use a different set of word embeddings (GloVe) ,which is
publicly available.

Therefore, we first investigate if the change of word-embedding is crucial. We show this via the
ConSE baseline. Our re-implementation of ConSE, shown as “ConSE(us)” in the table, uses the GloVe

2http://www.image-net.org/explore

12



whereas the ConSE method implemented in [9, 10] uses their own word embedding. We see that both
approaches have similar performance. Ours is slightly better in top-1 accuracy while the one in [9, 10]
is better in top-20 accuracy. Thus, with respect to zero-shot learning, both word-embeddings seem
equally powerful.

We then compare our results with SYNC [9] and EXEM [10]. With the same pre-trained ConvNet
Inception-v1, our method outperforms almost all the other methods on all the datasets and metrics.
On the “2-hops” dataset, our approach outperforms all methods with a large margin: around 6%
on top-1 accuracy and 17% on top-5 accuracy. On the “3-hops” dataset, our approach is consistently
better than EXEM [10] around 2 ∼ 3% from top-5 to top-20 metrics.

By replacing the Inception-v1 with the ResNet-50, we obtain another performance boost in all
metrics. For the top-5 metric, our final model outperforms the state-of-the-art method EXEM [10] by a
whooping 20.9% in the “2-hops” dataset, 3.5% in the “3-hops” dataset and 1% in the “All” dataset.
Note that the gain is diminishing because the task increases in difficulty as the number of unseen
classes increases.

Word Hit@k (%)
Model Embedding 1 2 5 10 20
[97] GloVe 7.8 11.5 17.2 21.2 25.6
Ours GloVe 18.5 31.3 50.1 62.4 72.0
[97] FastText 9.8 16.4 27.8 37.6 48.4
Ours FastText 18.7 30.8 49.6 62.0 71.5
[97] GoogleNews 13.0 20.6 33.5 44.1 55.2
Ours GoogleNews 18.3 31.6 51.1 63.4 73.0

Table 2.6: Results with different word embeddings on ImageNet (2 hops), corresponding to the
experiments in Table 2.5a.

Sensitivity to word embeddings. Is our method sensitive to word embeddings? What will happen
if we use different word embeddings as inputs? We investigate 3 different word embeddings including
GloVe [65] (which is used in the other experiments in the paper), FastText [40] and word2vec [60]
trained with GoogleNews. As for comparisons, we have also implemented the method in [97] which
trains a direct mapping from word embeddings to visual features without knowledge graphs. We use
the Inception-v1 ConvNet to extract visual features. We show the results on ImageNet (with the 2-hops
setting same as Table 2.5a). We can see that [97] highly relies on the quality of the word embeddings
(top-5 results range from 17.2% to 33.5%). On the other hand, our top-5 results are stably around
50% and are much higher than [97]. With the GloVe word embeddings, our approach has a relative
improvement of almost 200% over [97]. This again shows graph convolutions with knowledge graphs
play a significant role in improving zero-shot recognition.

Testing with the training classifiers. Following the suggestions in [25, 63], a more practical setting
for zero-shot recognition is to include both seen and unseen category classifiers during testing. We test
our method in this generalized setting. Since there are very few baselines available for this setting of
experiment, we can only compare the results with ConSE and DeViSE. We have also re-implemented
the ConSE baselines with both Inception-v1 and ResNet-50 pre-trained networks. As Table 2.5b
shows our method almost doubles the performance compared to the baselines on every metric and
all 3-datasets. Moreover, we can still see the boost in of performance by switching the pre-trained
Inception-v1 network to ResNet-50.
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Test Image Test ImageConSE (10) Ours ConSE (10) Ours
robin (train)
bulbul (train)
linnet (train)
erolia alpina (train)
egretta albus (train)

nightingale (test)
thrush (test) 
robin (train)
bulbul (train) 
finch (test) 

panthera tigris(train) 
tiger cat (train) 
felis onca (train) 
leopard (train) 
tiger shark (train)

tigress (test) 
bengal tiger (test) 
panthera tigris (train) 
tiger cub (test) 
tiger cat (train) 

croquet ball (train) 
golf ball (train) 
tennis ball (train) 
ball (test) 
soccer ball (train)

croquet ball (train) 
croquet equip (test) 
ball (test) 
plunger (train) 
hand tool (test) 

rock beauty (train) 
ringlet (train) 
flagpole (train) 
large slipper (test) 
yellow slipper (train)

butterfly fish (test) 
rock beauty (train) 
damselfish (test) 
atoll (test) 
barrier reef (test) 

teapot (train) 
bell (train) 
horn (train) 
coffeepot(train) 
mouth harp (train)

brass (test) 
french horn (train) 
trombone (train) 
horn (train) 
coffeepot (train) 

tractor (train) 
reaper (train) 
thresher (train) 
trailer truck (train) 
motortruck (test)

tracked vehicle (test) 
tractor (train) 
propelled vehicle (test) 
reaper (train) 
forklift (train)

Figure 2.4: Visualization of top 5 prediction results for 3 different images. The correct prediction
results are highlighted by red bold characters. The unseen classes are marked with a red “test” in the
bracket. Previously seen classes have a plain “train” in the bracket.

Lastly, we provide a comprehensive comparison for alternative choices of visual feature and word
embedding in table 2.7 2.8. We replace the input word embedding GloVe [65] with the recent proposed
FastText [40] while replacing Inception-v1 with ResNet-50. We show that our GCN model is robust to
different word embedding inputs while all methods benefits from better visual features.

Visualizations. We finally perform visualizations using our model and ConSE with T = 10 in Fig.
2.4 (Top-5 prediction results). We can see that our method significantly outperforms ConSE(10) in
these examples. Although ConSE(10) still gives reasonable results in most cases, the output labels are
biased to be within the training labels. On the other hand, our method outputs the unseen classes as
well.

2.5 Discussion
We have presented an approach for zero-shot recognition using the semantic embeddings of a category
and the knowledge graph that encodes the relationship of the novel category to familiar categories. Our
work also shows that a knowledge graph provides supervision to learn meaningful classifiers on top
of semantic embeddings. Our results indicate a significant improvement over current state-of-the-art.
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Word Hit@k (%)
Test Set Model ConvNets Embedding 1 2 5 10 20

2-hops

ConSE [9] Inception-v1 word2vec 8.3 12.9 21.8 30.9 41.7
ConSE(us) Inception-v1 GloVe 12.4 18.4 25.3 28.5 31.8
ConSE(us) Inception-v1 FastText 11.0 16.5 25.9 31.8 39.0
SYNC [9] Inception-v1 word2vec 10.5 17.7 28.6 40.1 52.0
EXEM [10] Inception-v1 word2vec 12.5 19.5 32.3 43.7 55.2
Ours Inception-v1 GloVe 18.5 31.3 50.1 62.4 72.0
Ours Inception-v1 FastText 18.7 30.8 49.6 62.0 71.5
Ours ResNet-50 GloVe 19.8 33.3 53.2 65.4 74.6
Ours ResNet-50 FastText 19.4 32.3 52.6 65.4 74.6

3-hops

ConSE [9] Inception-v1 word2vec 2.6 4.1 7.3 11.1 16.4
ConSE(us) Inception-v1 GloVe 3.2 4.9 7.6 9.7 11.4
ConSE(us) Inception-v1 FastText 3.1 4.9 8.4 11.7 15.5
SYNC [9] Inception-v1 word2vec 2.9 4.9 9.2 14.2 20.9
EXEM [10] Inception-v1 word2vec 3.6 5.9 10.7 16.1 23.1
Ours Inception-v1 GloVe 3.8 6.9 13.1 18.8 26.0
Ours Inception-v1 FastText 3.7 6.7 12.8 18.6 25.7
Ours ResNet-50 GloVe 4.1 7.5 14.2 20.2 27.7
Ours ResNet-50 FastText 4.0 7.3 13.8 20.1 27.7

All

ConSE [9] Inception-v1 word2vec 1.3 2.1 3.8 5.8 8.7
ConSE(us) Inception-v1 GloVe 1.5 2.2 3.6 4.6 5.7
ConSE(us) Inception-v1 FastText 1.5 2.4 4.2 5.9 8.0
SYNC [9] Inception-v1 word2vec 1.4 2.4 4.5 7.1 10.9
EXEM [10] Inception-v1 word2vec 1.8 2.9 5.3 8.2 12.2
Ours Inception-v1 GloVe 1.7 3.0 5.8 8.4 11.8
Ours Inception-v1 FastText 1.6 2.9 5.6 8.2 11.7
Ours ResNet-50 GloVe 1.8 3.3 6.3 9.1 12.7
Ours ResNet-50 FastText 1.8 3.2 6.1 9.0 12.8

Table 2.7: Results on ImageNet. Top-k accuracy for different models when testing on only unseen
classes.
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Word Hit@k (%)
Test Set Model ConvNets Embedding 1 2 5 10 20

2-hops

DeViSE [25] AlexNet word2vec 0.8 2.7 7.9 14.2 22.7

(+1K)

ConSE [63] AlexNet word2vec 0.3 6.2 17.0 24.9 33.5
ConSE(us) Inception-v1 GloVe 0.2 7.8 18.1 22.8 26.4
ConSE(us) Inception-v1 FastText 0.1 7.7 19.2 26.5 33.4
ConSE(us) ResNet-50 GloVe 0.1 11.2 24.3 29.1 32.7
ConSE(us) ResNet-50 FastText 0.1 8.7 21.5 29.2 36.3
Ours Inception-v1 GloVe 7.9 18.6 39.4 53.8 65.3
Ours Inception-v1 FastText 8.1 18.6 39.1 53.3 64.9
Ours ResNet-50 GloVe 9.7 20.4 42.6 57.0 68.2
Ours ResNet-50 FastText 9.8 20.1 41.9 56.6 68.2

3-hops

DeViSE [25] AlexNet word2vec 0.5 1.4 3.4 5.9 9.7

(+1K)

ConSE [63] AlexNet word2vec 0.2 2.2 5.9 9.7 14.3
ConSE(us) Inception-v1 GloVe 0.2 2.8 6.5 8.9 10.9
ConSE(us) Inception-v1 FastText 0.1 2.4 6.6 10.0 14.1
ConSE(us) ResNet-50 GloVe 0.2 3.2 7.3 10.0 12.2
ConSE(us) ResNet-50 FastText 0.1 2.8 7.5 11.3 15.7
Ours Inception-v1 GloVe 1.9 4.6 10.9 16.7 24.0
Ours Inception-v1 FastText 1.9 4.6 10.7 16.6 23.8
Ours ResNet-50 GloVe 2.2 5.1 11.9 18.0 25.6
Ours ResNet-50 FastText 2.3 5.1 11.8 18.0 25.7

All

DeViSE [25] AlexNet word2vec 0.3 0.8 1.9 3.2 5.3

(+1K)

ConSE [63] AlexNet word2vec 0.2 1.2 3.0 5.0 7.5
ConSE(us) Inception-v1 GloVe 0.1 1.3 3.1 4.3 5.5
ConSE(us) Inception-v1 FastText 0.0 1.2 3.4 5.2 7.5
ConSE(us) ResNet-50 GloVe 0.1 1.5 3.5 4.9 6.2
ConSE(us) ResNet-50 FastText 0.1 1.4 3.9 5.9 8.4
Ours Inception-v1 GloVe 0.9 2.0 4.8 7.5 10.8
Ours Inception-v1 FastText 0.9 2.0 4.7 7.4 10.8
Ours ResNet-50 GloVe 1.0 2.3 5.3 8.1 11.7
Ours ResNet-50 FastText 1.0 2.3 5.3 8.1 11.9

Table 2.8: Results on ImageNet. Top-k accuracy for different models when testing on both seen and
unseen classes (a more practical and generalized setting).
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Chapter 3

Video Prediction via Implicit Physical
Structure among Entities

3.1 Introduction
A single image of a scene allows us humans to make a remarkable number of judgments about the
underlying world. For example, consider the two images on the left in Fig 1.2. We can easily infer
that the top image depicts some stacked blocks, and the bottom shows a human with his arms raised.
While these inferences showcase our ability to understand what is, even more remarkably, we are
capable of predicting what will happen next. For example, not only do we know that there are stacked
blocks in the top image, we understand that the blue and yellow ones will topple and fall to the left.
Similarly, we know that the person in the bottom image will lift his torso while keeping his hands in
place. In this work, we aim to build a model that can do the same – from a single (annotated) image of
a scene, predict at a pixel level, what the future will be.

A key factor in the ability to make these predictions is that we understand scenes in terms of
‘entities’, that can move and interact e.g. the blocks are separate objects that move; the human body’s
motion can similarly be understood in terms of the correlated motion of the limbs. We operationalize
this ideology and present an approach that instead of directly predicting future frames, learns to
predict the future locations and appearance of the entities in the scene, and via these composes a
prediction of the future frame. The modeling of appearance and the learned composition allows our
method to leverage the benefits of independent per-entity representations while allowing for reasoning
in pose changes or overlap/occlusions in pixel space.

Although our proposed factorization allows learning models capable of predicting the future
frames via entity-based reasoning, this task of inferring future frames from a single input image is
fundamentally ill-posed. To allow for the inherent multi-modality of the prediction space, we propose
to use a trajectory-level latent random variable that implicitly captures the ambiguities over the whole
video and train a future predictor conditioned of this latent variable. We demonstrate that modeling
the ambiguities using this single latent variable instead of per-timestep random variables allows us to
make more realistic predictions as well as sample diverse plausible futures.

We validate our approach using two datasets where the ‘entities’ either represent distinct objects, or
human body joints, and demonstrate that the same method allows for predicting future frames across
these diverse settings. We demonstrate: (a) the benefits of our proposed entity-level factorization;
(b) ability of the corresponding learned decoder to generate future frames; (c) capability to sample

17



Figure 3.1: Our model takes as input an image with known/detected location of entities. Each entity
is represented as its location and an implicit feature. Given the current entity representations and a
sampled latent variable, our prediction module predicts the representations at the next time step. Our
learned decoder composes the predicted representations to an image representing the predicted future.
During training, a latent encoder module is used to infer the distribution over the latent variables
using the initial and final frames.

different futures.

3.2 Related Work
Modeling Physical Interaction. Many recent works [5, 8, 33, 43, 73, 86] study modeling multiple
objects in physical systems. Similar to us, they reason using the relationship between objects, and
can predict the trajectories over a long time horizon. However, these approaches typically model
deterministic processes under simple visual (or often only state based) input, while often relying
on observed sequences instead of a single frame. Although some recent works take raw image as
input [23, 86], they also only make prediction in state, and not pixel space. In contrast to these
approaches, while we also use insights based on modeling physical interaction, we show results for
video frame generation in a stochastic setup, and therefore also need to (implicitly) reason about
other properties such as shape, lighting, color. Lastly, a related line of work is to predict stability of
configurations [29, 39, 49–51]. Our video forecasting task also requires this understanding, but we do
not pursue this as the end goal.
Video Factorization. It is challenging to directly predict pixels due to high dimensionality of the
prediction space, and several methods have been used to factorize this output space [17, 78, 79, 81].
The main idea is to separate dynamic foreground from static background and generate pixels corre-
spondingly. While these approaches show promising results to efficiently model one object motion,
we show the benefits of modeling multiple entities and their interactions.

Another insight has been to instead model the output space differently, e.g. optical flow [52,82],
or motion transformation [13, 22, 38, 92]. This enables generating more photo-realistic images for
shorter sequences, but may not be applicable for longer generation as new content becomes visible,
and we therefore pursue direct pixel generation. Another line of work proposes to predict future in a
pre-defined structured representation space, such as human pose [80,83]. While our approach also
benefits from predicting an intermediate structured representations, it is not our end goal as we aim
to generate pixels from this representation.
Object-centric video prediction. A line of work explicitly enumerates the state of each object as
location, velocity, mass, etc, then applies planning algorithm to unroll movement under reward [35,45],
or leverage Newtonian dynamics [88, 95]. However, these explicit representation based methods may
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not be applicable when the state space is hard to define, or pixel-wise predictions are not easily inferred
given such a state e.g. human motions on complex background.
Stochastic prediction. Predicting the future is an inherently multi-modal task. Given a still image
or a sequence of frames, there are multiple plausible futures that could happen. The uncertainty is
usually encoded as a sequence of latent variables, which are then used in a generative model such as
GAN [28] based [13,58,78, 81], or, similar to ours, VAE [42] based [16,82]. These methods [16,24,93]
often leverage an input sequence instead of a single frame, which helps reduce the ambiguities. Further,
the latent variables are either per-timestep [16], or global [4, 93] whereas our model leverages a global
latent variable, which in turn induces per-timestep variables.

3.3 Approach
Given an input image along with (known or detected) locations of the entities present, our goal is
to predict a sequence of future frames. Formally, given a starting frame f0 and the location of N
entities {b0n}Nn=1, we aim to generate T future frames f1, f2, ..., fT . This task is challenging mainly for
two reasons: a) the scene may comprise of multiple entities, making it necessary to account for their
different dynamics and interactions, and b) the inherently multi-modal nature of the prediction task.

To overcome the first challenge, our insight is that instead of modeling how the scene changes
as a whole, we should pursue prediction by modeling how the entities present change. We do so
using an entity predictor that predicts per-entity representations: {xtn}Nn=1 ≡ {(btn, atn)}Nn=1, where btn
denotes the predicted location, and atn denotes predicted features that implicitly capture appearance
for each entity. While this factorization allows us to efficiently predict the future in terms of these
entities, an additional step is required to infer pixels. We do so using a frame decoder that is able to
retain the properties of each entity, respect the predicted location, while also resolving the conflicts
e.g. occlusions when composing the image.

To account for the fundamental multi-modality in the task, we incorporate a global random latent
variable u that implicitly captures the ambiguities across the whole video. This latent variable u, in
turn deterministically (via a learned network) yields per-timestep latent variables zt which aid the
per-timestep future predictions. Concretely, the predictorP takes as input the per-entity representation
{xtn} along with the latent variable zt, and predicts the entity representations at the next timestep
{xt+1

n } ≡ P({xtn}, zt). The decoder D, using these predictions (and the initial frame f0 to allow
modeling background), composes the predicted frame f t ≡ D({xtn}, f0).

We train our model to maximize the likelihood of the training sequences, comprising of terms for
both the frames and the entity locations. As is often the case with optimizing likelihood in models
with unobserved latent variable models e.g. VAEs [42], directly maximizing likelihood is intractable,
and we therefore maximize a variational lower bound. Towards this, we train another module, a latent
encoder, which predicts a distribution over the latent variable u using the target video. Note that the
annotation of future frames/locations, as well as the latent encoder, are all only used during training.
During inference, however, as illustrated in Fig 3.1, we take in input only a single frame along with
(predicted/known) locations of the entities present, and can generate multiple plausible future frames.
We first describe the predictor, decoder, and encoder modules in more detail, and the present the
overall training objective.

3.3.1 Entity Predictor
Given per-entity locations and implicit appearance features {xtn}Nn=1 ≡ {(btn, atn)}Nn=1, the predictor
outputs the predictions for the next time step using the latent variable zt. An iterative application of this
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predictor therefore allows us to predict the future frames for the entire sequence using the encodings
from the initial frame. To obtain this initial input to the predictor i.e. the entity encodings at the
first time step {x0n}Nn=1, we use the known/detected entity locations {b0n}, and extract the appearance
features {a0n} using a standard ResNet-18 CNN [32] on the cropped region from f0.

While the predictor P infers per-entity features, the prediction mechanism should also allow for
the interaction among these entities rather than predicting each of them independently e.g. a block
may or may not fall depending on the other ones around it. To enable this, we leverage a model
in the graph neural network family, in particular based on ‘Interaction Networks’ which take in a
graph G = (V,E) with associated features for each node, and update these via iterative message
passing and message aggregation. See [6] for a more detailed review. Our predictor P that infers
{xt+1

n } from ({xtn}, zt) comprises of 4 interaction blocks, where the first block takes as input the entity
encodings concatenated with the latent feature: {xtn⊕zt}Nn=1. Each of these blocks performs a message
passing iteration using the underlying graph, and the final block outputs predictions for the entity
features for the next timestep {xtn}Nn=1 ≡ {(btn, atn)}Nn=1. This graph can either be fully connected as
with our synthetic data experiments, or more structured e.g. skeleton in our human video prediction
experiments. See appendix for more details on the message passing operations.

Although our prediction module falls under the same umbrella as Interaction Networks(IN) [5],
which are in turn related to Graph Convolution Networks(GCN) [43], there are subtle differences, both
in the architecture and application. While [5] use a single interaction block to update node features,
we found that stacking multiple interaction blocks for each timestep is particularly helpful. In contrast
to GCNs which use a predefined mechanism to compute edge weights and use linear operations for
messages, we find that using non-linear functions as messages allows better performance. Finally, while
existing approaches do apply variants of GNNs for future prediction, these are restricted to predefined
state-spaces as opposed to pixels, and do not account for uncertainties using latent variables.

3.3.2 Frame Decoder
The decoder aims to generate pixels of the frame f t from a set of predicted entity representations. While
the entity representations capture the moving aspects of the scene, we also need to incorporate the
static background, and additionally use the initial frame f0 to do so. Our decoderD, as depicted in Fig
3.2, therefore predicts f t ≡ D({xtn}, f0). To compose frames from this factored input representation,
there are several aspects that our decoder must consider: a) the predicted location of the entities
should be respected, b) the per-entity representations may need to be fused e.g. when entities occlude
each other, and c) different parts of background may become visible as objects move.

To account for the predicted location of the entities when generating images, we propose to decode
a normalized spatial representation for each entity, and warp it to the image coordinates using the
predicted 2D locations. To allow for the occlusions among entities, we predict an additional soft mask
channel for each entity, where the value of masks are supposed to capture the visibility of the entities.
Lastly, we overlay the (masked) spatial features predicted via the entities onto a canvas containing
features from the initial frame f0, and then predict the future frame pixels using this composed feature.

More formally, let us denote by φbg the spatial features predicted from the frame f0 (using a CNN
with architecture similar to UNet), and let {(φ̄n, M̄n) = g(an)}Nn=1 denote the features and spatial
masks decoded per-entity using an up-convolutional decoder network g. We first warp, using the
predicted locations bn, these features and masks into image coordinates at same resolution as φbg.
Denoting byW a differentiable warping function e.g. in Spatial Transformer Networks [36], we can
obtain the entity features and masks in the image space:

φn =W(φ̄n, bn); Mn =W(M̄n, bn) (3.1)
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Figure 3.2: Our frame decoder takes in the initial frame f0 and the predicted entity representations at
time t, and outputs the frame corresponding to the predicted future f t.

Note that the warped mask and features (φn,Mn) for each entity are zero outside the predicted
bounding box bn, and the mask Mn can further have variable values within this region. Using these
independent background and entity features, we compose frame level spatial features φ by combining
these via a weighted average. Denoting by Mbg a constant spatial mask (with value 0.1), we obtain the
composed features as:

φ =
φbg �Mbg ⊕

∑
n φn �Mn

Mbg ⊕
∑

nMn
(3.2)

These composed features φ incorporate information from all entities at the appropriate spatial locations,
allow for occlusions using the predicted masks, and incorporate the information from background.
We then decode the pixels for the future frame from these composed features. Note that one has a
choice over the spatial level where this feature composition happens e.g. it can happen in feature
space at near the image resolution (late fusion), or even directly at pixel level (where the variables φ
all represent pixels), or alternatively at a lower resolution (mid/early fusion). We find that late fusion
in implicit (and not pixel) space yields most promising results, and also find that the inferred masks
end up correspond to instance segmentations.

3.3.3 Latent Representation
We described in Sec 3.3.1 how our prediction module is conditioned on a latent variable u, which in
turn generates per-timestep conditioning variables zt that are used in each prediction step – this is
depicted in Fig 3.3(a). Intuitively, the global latent variable would capture video-level ambiguities
e.g. where the blocks fall, the variables zt resolve the corresponding ambiguities in the per-timestep
motions. While previous approaches for future prediction similarly use latent variables to resolve
ambiguities (see Fig 3.3(c-d)), the typical idea is to use independent per-timestep random variables,
whereas in our model the zt’s are all correlated.

During training, instead of marginalizing the likelihood of the sequences over all possible values of
the latent variable u, we instead minimize the variational lower bound of the log-likelihood objective.
This is done via training another module, a latent encoder, which (only during training) predicts a
distribution over u conditioned on the ground-truth video. In practice, we find that simply conditioning
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Figure 3.3: Our encoder (a) and baseline encoder (b-d). At test time, variables in blue are sampled
randomly. At training, encoders model the posterior by all xs connected with dotted lines.

on the first and last frame of the video (using a feed-forward neural network) is sufficient, and denote by
q(u|f0, f̂T ) the distribution predicted. Given a particular u sampled from this distribution, we recover
the {zt} via a one-layer LSTM which, using u as the cell state, predicts the per-timestep variables for
the sequence.

3.3.4 Training Objective
Overall, our training objective can be thought of as maximizing the log-likelihood of the ground-truth
frame sequence {f̂ t}Tt=1. We additionally also use training-time supervision for the locations of the
entities {{b̂tn}Nn=1} T

t=1. While this objective has an interpretation of log-likelihood maximization, for
simplicity we describe it as a loss L composed of different terms, where the first Lpred encourages the
future frame and location predictions to match the ground-truth:

Lpred =

T∑
t=1

(‖D({xtn}, f0)− f̂ t‖1 + λ1

N∑
n=1

‖btn − b̂tn‖2)

The second component corresponds to enforcing an information bottleneck on the latent variable
distribution:

Lenc = KL[q(u) ‖ N (0, I)]

Lastly, to further ensure that the decoder generates realistic composite frames, we add an auto-encoding
loss that enforces it generates the correct frame when given entities representations {x̂tn} extracted
from f̂ t (and not the ones predicted) as input.

Ldec =

T∑
t=0

‖D({x̂tn}, f0)− f̂ t‖1

The total loss is therefore L = Ldec + Lpred + λ2Lenc with hyper-parameter λ2 determining the trade-
offs among accurate predictions and information bottleneck in random variable. See appendix for
additional details. We will release our code for reproducibility.

3.4 Experiment
We aim to show qualitative and quantitative results highlighting the benefits of various components
(predictor, decoder, and latent representation) used in our approach, and aim to highlight that our
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Figure 3.4: Quantitative evaluation of different variants of the entity predictor. Left: Average location
error for predicted entities over time; Right: Average perceptual error of predicted frames.

approach is general to accommodate various scenarios. See generated videos in supplementary.

3.4.1 Experiment Setup
Dataset. We demonstrate our results on both the synthetic (ShapeStacks [29]) and real (Penn Ac-
tion [99]) dataset. Shapestacks is a synthetic dataset comprised of stacked objects that fall under gravity
with diverse blocks and configurations. The blocks can be cubes, cylinders, or balls with different
colors. In addition to evaluating generalization ability, we further test with similar setups with videos
comprised of 4, 5 or 6 blocks.

Penn Action [99] is a real video dataset of people playing various indoor and outdoor sports with
annotations of human joint locations. The Penn Action dataset is challenging because of a) diverse
backgrounds, view angles, human poses and scales b) noise in annotations, and c) multiple activity
classes with different dynamics. We use a subset of the categories related to gym activities because
most videos in these classes do not have camera motion and their backgrounds are similar within
these categories. We adopt the recommended train/test split in [99]. Beyond that, we argue it is not
impractical to assume known locations – we substitute ground truth annotation b̂tn with key-points
location from off-the-shelf detector [19] in both training and testing.

In both scenarios, we train our model to generate video sequence of 1 second given an initial frame,
using exactly the same architecture despite the two diverse scenarios – entities correspond to objects
in Shapestacks and correspond to joints of human body in Penn Action.

Evaluation Metrics. In both of these settings, we evaluate the predicted entity locations using average
mean square error and the quality of generated frames using the Learned Perceptual Image Patch
Similarity (LPIPS) [98] metric. A subtle detail in the evaluation is that at inference, the prediction
is dependent on a random variable u, and while only a single ground-truth is observed, multiple
predictions are possible. To account for this, we draw 100 samples of latents and record the best scores
as in [16]. When we ablate non-stochastic modules (e.g. decoders), we use the mean u predicted by the
latent encoder (after seeing the ‘ground-truth’ video). Without further specification, the curves are
plotted in the ‘best of 100’ setup; the qualitative results visualize the best predictions in terms of LPIPS.

23



Figure 3.5: Video prediction results using our prediction module compared to baselines. We visualize
the generated sequence after every 3 time steps.

Baselines. There are three key components in our model, i.e. the entity predictor, frame decoder,
and latent representation. Various baselines are provided to highlight our choices in each of the
components. Among them, some variant specifically points to previous approaches as the following:
• No-Factor [49] only predicts on the level of frames. Here we provide supervision from entity

locations and pixels instead of segmentation masks;
• LP [16] implements the stochastic encoder module in SVG-LP to compare different dependency

of latent variables;
• Pose Knows [83] is most related to our Penn Action setting which also predicts poses as inter-

mediate representation, but it predicts location jointly and generates videos in a different way.

Besides the above which are strongly connected to previous works, we also present other baselines
whose details are discussed in Section 3.4.2.

3.4.2 Analysis using Shapestacks
We use Shapestacks to validate the different components of the proposed approach i.e. the entity
predictor, frame decoder, and the modeling choices for the latent variables.
Entity Predictor. We aim to show that our proposed predictor, which is capable of factorizing
prediction over per-entity locations and appearance, as well as allowing reasoning via GNNs, improves
prediction. Towards this, we compare against two alternate models: a) No-Factor [49] and b) No Edge.
The No-Factor model does not predict a per-entity appearance but simply outputs a global feature
that is decoded to foreground appearance and mask. To ensure the use of the same supervision as box
locations, the No-Factor model also takes as input (and outputs) the per-entity bounding boxes, but
these are not used via the decoder. The No-Edge model does not allow for interactions among entities
when predicting the future. See appendix for details.

Figure 3.5 shows the prediction using our model and the baselines. The No-Factor baseline generates
plausible frames at the beginning and performs well for static entities. However, at later time steps,
entities with large range of motion diffuse because of the uncertainty. In contrast, entities generated
by our method have clearer boundary over time. The No-Edge baseline does not accurately predict
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Figure 3.6: Above: Quantitative evaluation of the entity predictor when generalized to different
number of blocks. The number in the bracket indicates the number of blocks in the subset. Below:
Video prediction results using our prediction modules compare to baselines. We visualize the middle
and last step.

block orientations as it requires more information about relative configuration, and further changes
the colors over time. In contrast, blocks generated by our approach gradually rotate and fall over and
colors are learned to remain the same. In Figure 3.4, we report quantitative evaluations, and similarly
observe the benefits of our approach.

Figure 3.6 shows the results when the model generalizes to different number of entities (4, 5, and 6)
at test time. The No-Factor uses fully connected layers to predict which cannot be directly adapted to
variable number of blocks. We show methods that are able to accommodate the number of entities
changes, i.e. No-Edge and ours. Our method predicts locations closer to the truth with more realistic
appearance, and is able to retain the blocks color across time. Note that we train all models with only
three blocks.
Primitive Decoder. While the No-Factor baseline above shows the benefits of composing different
features for each entity while accounting for their predicted spatial location, we ablate here whether
this composition should directly be at a pixel-level or at some implicit feature level (early, mid, or late).
Across all these ablations, the number of layers in the decoder remain the same; only the level at which
features from entities are composed differs.

25



Figure 3.7: Qualitative results for composing entity representations into a frame. We visualize the
outputs from variants of the decoder performing Late/Mid/Early fusion in feature space, or directly
in pixel space. The first row depicts decoding of the initial representation; the second row depicts
decoding of the predicted entities at a later time step.

Figure 3.8: Left: Average Perceptual error for predicted frames via variants of the decoder. Right:
Visualization of the composition of the foreground masks predicted for the entities. We observe the
our model gradually learns to separate foreground and background without direct supervision.

The qualitative result are shown in Fig 3.7 where the first row visualizes decodings from the initial
frame, and the second row demonstrates decoding from predicted features for a later timestep. While
both late/pixel-level fusion reconstructs the initial frame faithfully, the pixel-level fusion introduces
artifacts for future frames. The mid/early fusion alternates do not capture details well. We also observe
similar trends in the quantitative results visualized in Figure 3.8. Note the latent u is encoded by the
ground truth videos.

To further analyze the predictions from the decoder, we visualize the generated soft masks in
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Figure 3.9: Error for location prediction (Left) and frame prediction (Right) using our encoder and
baselines. For each sequence, we compute the error using the best of 100 random samples.

Figure 3.10: Visualization of five randomly sampled future predictions by our method and other
baselines. We show the predicted centers of entities over time overlayed on top of the initial frame.

Figure 3.8. The values indicate the probability of the pixel belongs to a foreground of the entity. Note
that this segmentation emerges despite not providing any direct supervision, but only using location
and frame-level supervision.
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Latent Representation. Our choice of the latent variables in the prediction model differs from the
common choice of using a per-timestep random variable zt. We compare our approach (Figure 3.3a)
with such other alternatives (Figure 3.3 b-e). The No-Z baseline (Figure 3.3b) directly uses u across
every time step, instead of predicting a per-timestep zt from it. In both Fixed Prior (FP) and Learned
Prior(LP) [16] baselines, the random variables are sampled per time step, either independently (FP), or
depending on previous prediction (LP). During training, both FP and LP models are trained using an
encoder similar to ours, but this encoder that predicts zt using the frames f t and f t+1 (instead of our
approach using f0 and fT to predict u).

Figure 3.11: Video prediction results with best LPIPS latent using our approach compared to baselines.
The last column visualizes results when the entity (joints) locations are replaced by the detection in
both training and testing. Videos are in supplementary.

We visualize using five random samples in form of trajectories of entity locations in Figure 3.10.
We notice that the direction of trajectories from No-Z model do not change across samples. The
FP model has issues maintaining consistent motions across time-steps as during each timestep, an
independent latent variable is sampled. The LP method performs well compared to FP, but still has
similar issues. Compared to baselines, the use of a global latent variable allows us to sample and
produce consistent motions across a video sequence, while also allowing diverse predictions across
samples. The quantitative evaluations in Figure 3.9 show similar benefits where our method does well
for both location error and frame perceptual distance over time.

3.4.3 Penn Action
Our model used in this dataset is exactly the same as that in the Shapestacks scenario, with the
modification that the graph used for the interactions in the predictor is based on the human skeleton,
and not fully-connected. Note that while the graph depends on the skeleton, the interaction blocks are
the same across each edge. See supplementary for generated videos.

We also compare with Pose-Knows [83] which leverages entities as intermediate representation
and generates pixel-level prediction. However, they a) do not predict feature for appearance but only
location of each entity (joint); b) do not involve interaction mechanism; c) adopt a different generation
method (GAN) where they stick sequence of rendered pose figures to the initial frame, and fuse them
by a spatial-temporal 3D convolution network [77]. In their paper, the adversarial loss is posed to
improve realism. We present that our method also benefits from the adversarial loss (Ours+Adv).

Figure 3.11 and Figure 3.13 show qualitative and quantitative results using the best latent variable
u among 100 samples. The No-Factor baseline cannot directly generate plausible foreground while
the No-Edge baseline does not compose well. Our results improve to be sharper if adversarial loss is
added (Ours+Adv). The location error also decreases because better location predictions contribute to
plausible generated videos.
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Figure 3.12: Visualization of joint positions in three randomly sampled future predictions by our
method. The initial skeletons are plotted as white. Skeletons at time 0.25s, 0.5s, and 1s are plotted as
yellow, orange, and red, respectively.

Figure 3.13: Error for location prediction (Left) and frame prediction (Right) using our model and
baseline methods. For each sequence, we compute the error using the best of 100 random samples.

We also visualize predictions when, during both training and inference, annotated key-points are
replaced with detected key-points using [19]. We note that the performance is competitive to the
setting using annotated key-point locations, indicating that our method is robust to annotation noise. It
also indicates that the requirement of entity locations is not a bottle-neck, since automatically inferred
location suffice in our experiment.

Figure 3.12 visualizes different sample futures using the predicted joint locations across time. Our
model learns the boundary of the human body against the background as well as how the entities
compose the human body even when they heavily overlap. More interestingly, the model learns
different types of dynamics for different sports. For example, in pull ups, the legs move more while

29



the hands are still; in clean and jerk, the legs almost remain at the same place.

3.5 Discussion
In this work we proposed a method that leverages compositionality across entities for video prediction.
However, the task of video prediction in a general setting is far from being solved, and many challenges
still remain. In particular, we rely on supervision of the entity locations, either from human or automatic
annotations. It would be interesting to relax this requirement and allow the entities to emerge as
pursued in some recent works [8, 33], although in simpler settings. Additionally, GAN-based auxiliary
losses have been shown to improve image synthesis quality, and these could be explored in conjunction
with our model. Lastly, developing metrics to evaluate the diversity and accuracy of video predictions
is also challenging due to the multi-modal nature of the task, and we hope some future efforts will
also focus on this aspect.
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Chapter 4

Conclusion

We have presented that leveraging categorical structures improves zero-shot recognition in robustness
and generalization; leveraging entity structures benefits long-term predictions particularly in scenes
comprised of multiple entities. The structures can either be explicitly pre-defined such as knowledge
graph and human skeleton, or implicitly learned from data. We use the family of graph neural
networks, the scalable machine learning techniques, to learn from the structured data. In both tasks,
we have achieved state-of-the-art results.

Looking forward, there are several limitations to improve in our work. It will be interesting to
let detection of entities and structures emerge from the data with minimal supervision or from self
supervision. There is also limited study on how those techniques would be affected by noises in the
structure, e.g. inaccurate knowledge graph or massive false positive entity detection. Additionally, it
is also interesting to pursue dynamic structures which changes over time. It might help us understand
temporal axis in videos.

In long-term, leveraging structures may improve generalization ability, prediction capacity, and
even interpretability. A probably more inherent reason is that, everything in the structured world we
live in does not exist independently. Therefore, we want to pursue a visual system not only capable of
pointing out what the entities are, but also capable of leveraging and reasoning about the structures
underneath them.
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