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Abstract

The autonomous landing of a drone is an important part of autonomous flight.
One way to have a high certainty of safety in landing is to return the drone to
the same location it took-off from. Current implementations of the return-to-home
functionality fall short when relying solely on GPS or odometry as inaccuracies in
the measurements and drift in the state estimate guides the drone to a position with
a large offset from the initial position. This situation can be particularly dangerous
if the drone took-off next to something like a body of water. Current work on pre-
cision landing relies on localizing to a known landing pattern, which requires the
pilot to carry a landing pattern with them. We propose a method using a down-
ward facing fisheye lens camera to accurately land a UAV from where it took off
on an unstructured surface, without a landing pattern. Specifically, this approach
uses a position estimate relative to the take-off path of the drone to guide the drone
back to its original starting point. With the large field-of-view provided by the fish-
eye lens, our algorithm can provide visual feedback starting with a large position
error at the beginning of the landing, until 1 m above the ground at the end of the
landing. This algorithm empirically shows it can correct the drift error in the state
estimation and land with an accuracy of 40 cm.
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAV) are becoming more capable with research efforts
today and more useful in industry. Some use cases of them include warehouse
inventory checking, package delivery, and building inspection. Even with various
use cases, one of the difficulties for autonomous UAVs is landing. Many incidences
of bad landings or landing in bad areas occur for these vehicles. For example, a
drone hitting a tree while landing or landing into a lake. One way to safely land a
quadrotor is to designate a safe landing zone. Much research has gone into landing
a drone onto a designated landing pattern, such as a helipad that is level and sturdy
for the UAV to land on. Another method is to have the drone return back to its initial
position. It’s a reasonable assumption that the spot the drone started at is safe to
land back on, and that the environment has not changed much so it is still safe.
Given this, an accurate and precise return to home method would be an effective
means for safely landing the drone. Additionally, the UAV returning back to where
it took off from is a desirable trait as it can make the process of retrieval and storage
of the drone easier.

Majority of small low cost UAVs currently rely on GPS based state-estimation
for return to home landing, but there is still fairly high error in the low cost GPS
on light weight drones and the state-estimation systems are unreliable if in a GPS
denied environment. Given this, a drone cannot reliably land in the same spot and
could potentially attempt to land in an unforgiving location, such as a nearby tree.
Given the small size and low price point of these UAVs, more powerful sensors like
RTK GPS and 2-D or 3-D lidar are not an option for assisting in the return to home
functionality. A sensor suite that is small enough and cheap enough to add in ad-
dition to the current setup is a camera and laser range finder. With the additional
scene understanding provided by the camera the drone can return home safely.
Specifically, this work addresses the challenge of precision landing using a down-
ward facing fisheye camera and downward facing laser range finder to improve the

2



safety and robustness of landing. This is done by re-traversing the proven takeoff
path back to the quadrotor’s starting position. We are able to precisely land the
drone with this method.

Tree in the way of
landing

"
s

Landing on small
stone

Figure 1.1: Precision Landing Demonstration: the takeoff path (black), and the
landing path (orange). The key challenges are for the drone to safely and precisely
land. This equates to the drone avoiding the tree that was avoided during takeoff,
and landing on the stone the drone started on. Our algorithm successfully accom-
plishes both challenges.

As mentioned previously, majority of current work on precision landing focuses
on landing in a known structured environment (helipad or runway), such as the one
depicted in Fig. [.2][16]. Given a known landing pattern, these algorithms are able
to identify the target and use its geometry to robustly estimate the relative state of
the drone. Much work has gone into different landing pattern designs to enable ac-
curate pose estimation [23,27,28]. While these methods result in accurate landings,
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they require the drone to land on a specific type of landing pattern. This would re-
quire drone operators to physically carry a landing pattern with them in order to
ensure the safe return and landing of their drone. Furthermore, there are prob-
lems with the field-of-view (FoV) for downward facing cameras, since not much
is seen by the camera when closer to the ground. To overcome these issues these
techniques use either more complex landing patterns, or attach additional cameras.
Our work focuses on a new area, landing at the UAVs starting position in an un-
structured and unknown environment. This enables drones to be autonomously
deployed in the field and to return to their starting position while following the
takeoff path in reverse. This allows UAVs to land in a wider variety of scenarios
and does not require any structure (e.g. landing pad) to be put in place. This could
assist with faster deployment of UAV systems in the field and increase their popu-
larity and efficiency. Additionally, the fisheye camera assists in addressing the FoV
problem faced by previous work, resulting in an overall simpler hardware solution.

Figure 1.2: Example Landing Pattern.

1.2 Challenges Contributions

In order to accurately land a quadrotor in an unstructured environment, without
prior knowledge of the takeoff location several challenges must be addressed. First,
the drone must be able to localize relative to where it has taken off from. Second,
it must be able to guide itself to ensure a safe landing. Third, it must be able to
continue to localize as the drone approaches the ground and the area seen by the
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FoV decreases. This work addresses them with a light weight sensor suite meant
for small UAVs that are meant to be sold at a lower price point.

This work addresses these problems with a method inspired by Visual Teach
and Repeat (VIR) [8]. During the takeoff a set of images are recorded. During
landing, the drone localizes to these images and descends along a similar path back
toitsinitial position, as seen in Fig. The approach improves the safety of landing
twofold, by landing in the same starting position, there is a high likelihood of the
location still being safe, and by taking a path similar to the one from takeoff, the
drone can avoid obstacles that were avoided during takeoff. With a fisheye camera,
the area seen when the drone is close to the ground is sufficient for landing, and is
wide enough at the start of descent to correct for error from the GPS. To the best of
our knowledge, we present the first algorithm for precision landing of a drone in
unstructured environments, such as those in Fig. with an average accuracy of
40cm. In summary, the contributions of this chapter are described below:

Figure 1.3: Landing locations: depicted are two of the landing locations used dur-
ing testing.

e An algorithm for safe precision landing of quadrotors in unstructured envi-
ronments.

e Experimental results on precision landing in various environments with base-
line comparisons.

e Experimental comparison of a pinhole and fisheye lens based camera for the
task.



Chapter 2
Related Work

2.1 Related Work

This section will go over work done in the area of precision landing and adjacent
tields that have influenced the proposed method. Specifically, the related work
covers precision landing in structured environments, visual servoing, visual teach
and repeat, and image comparison techniqeus for structure.

2.2 Precision Landing

Within the area of precision landing for vertical takeoff and landing (VTOL) vehi-
cles, much work has focused on using helipad design. Specifically, helipads with
concentric circles and with an "H” in the center are common along with other cus-
tom designed helipads [16]. Approaches using helipads with either an "H” or T
on them use pretrained neural networks to identify the letter and then using the
known geometry of either the letter or the surrounding circle to estimate 6-DoF
pose relative to the landing pattern [23,27,28]. A shortcoming of these methods is
losing information on the landing pattern during the approach. Based on the size
of the landing pattern and the fov of the camera, the quad-rotor will no longer be
able to see the landing pattern and be unable to estimate it’s pose.

Approaches using simpler geometric based methods also exist. These landing
pads are generally made of varying concentric circles or combinations of unique
shapes and color [2,[12,]15]. For these approaches, the method of landing pattern
identification generally use Gaussian blurring and dilation to reduce noise, and
then use tools such as Hough Transforms, Canny Edge Detection, or contour de-
tection. The FoV issue still remains in these approaches and each has a different
approach for handling it. Some of the landing patterns use unique circular pat-
terning with varying size to ensure good recognition and pose estimation close up
and far away [2,5,/18]. Another approach is to use two different cameras, one for
approaching from a distance and another once close up [1]. Finally, one method
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has looked at using cadiotropic lens, such that the camera can see the landing pad
even when close to it [15]. As mentioned before though, these methods require
there to be a landing pattern of known size to be able to successfully perform an
accurate landing. This is because they tend to rely on 6-degree-of-freedom (6-DoF)
Perspective-n-Point (PnP) pose estimate. Without a landing pattern, other tech-
niques and assumptions must be applied to recognize the area and land.

2.3 Visual Teach and Repeat

One method that has been used in similar scenarios to relatively localize and tra-
verse long distances using a monocular camera is VIR. Primarily focusing on ground
robots, this technique will “teach” a path to a robot via piloted traversal of the path,
and then be able to robustly and accurately traverse the path using a monocular
camera and other base level sensors for odometry [8,9]. In order to estimate a 6-
DoF pose estimate, the algorithm must first recognize the image from the teach pass
that it is nearest to and then estimate the pose. The pose estimation is enabled with
a monocular camera with the assumption of local ground planarity. After the robot
re-localizes itself, it relies upon visual odometry to take it to the next keyframe in
the path.

Recent work has begun to expand this concept to quad-rotors [19}20]. The first
of these papers shows a proof of concept for VIR with a drone equipped with a
downward facing camera and laser range finder. This approach builds a local 3D
map is during the teach pass that the drone then localizes to during the repeat
pass. The approach shows promising results, but did not look into how the tech-
nique would be affected by varying altitudes. The second paper proposes a more
tully developed VTR for drones, but uses a forward facing camera and a qualitative
position estimation. From these various approaches to VIR, we have developed the
proposed method for precision landing, using a similar architecture, but a different
method for generation of motion command and transitioning between keyframes.

2.4 Visual Servoing

The premise of visual servoing is to to directly control the robot using vision [6}/7].
The two primary kinds of visual servoing are image-based visual servoing (IBVS)
and position-based visual servoing (PBVS). For both techniques the goal is for a
robot with a camera attached to it, or looking at it to move from a current position,
to a new desired position. The new desired position is represented by an image
that the camera can see if moved into the correct location.

For IBVS, the control inputs are generated by pixel the measured pixel error
between a current image and a desired image. For PBVS, the control inputs are
generated by 3-D points rather than the projected 2-D image points. This control
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strategy can be represented in a similar manner and is shown below. PBVS s similar
in nature to the methods used landing patterns where a model is known. In the
proposed work, there is no model of the position from which the drone took off,
but a planarity assumption for the ground from which the quad-rotor took off can
be made. From this assumption, we can estimate pose from one camera frame to
another if the height at each position is known. With the scale being known, a
method similar to PBVS can be used for the controller input.

Both of these methods require some form of comparison between the two im-
ages in order to generate the command inputs. There are various image comparison
methods for gaining information about the structure of the environment. The next
portion of the related work goes over different major approaches to this problem.

2.5 Image Comparison for Structure

There are many ways to compare images to gain structural information about the
environment. Two primary approaches are sparse and dense methods. Sparse
methods use feature based techniques that extract a relatively small subset of key
points from an image with descriptors describing them. These can then be com-
pared and matched with key points and descriptors from another image and the
point correspondences can be used to estimate structure between the images. For
dense methods the pixel values are used rather than key points. All the pixels or
a large portion of them are used to estimate some form of transformation between
the two images, such as a homography.

For feature based image comparison strategies, there are various hand crafted
and learned features that could be used. Popular techniques available on OpenCV
include SIFT, SURF, FAST, and ORB.

Scale-Invariant Feature Transforms (SIFT) provides descriptors for features that
are invariant to scale and rotation [17]. It finds features by finding the difference
of Gaussians (DoG) several times. Specifically, a DoG is the difference of an image
blurred with a Gaussian of a set o by the same image blurred by a Gaussian with a
different o. It then looks for local maximas across the different DoGs to determine
key points, rejecting some based on an intensity difference threshold and others
based on an edge threshold. This ensures the features are scale invariant and not
edges. Then the descriptors are extracted with 16x16 descriptor that includes an
orientation histogram for rotational invariance. While SIFT provides highly robust
features, the run-time to extract features and match their descriptors with that of
another image can be computationally expensive, making SIFT often less ideal for
real-time algorithms. Speeded-up Robust Features (SURF) looks to achieve simi-
lar robustness to SIFT, with scale and rotational invariant features, but at a higher
speed [4]. SURF performs similar operations to SIFT, but rather than using a DoG,
box filters are applied. Additionally, wavelet transforms are used to find a domi-
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nant direction to add rotational invariance. Overall, SURF has similar robustness
to the features, but a faster run time.

Even with SURF’s faster run time, it is not always the best option. Features
from Accelerated Segment Test (FAST) is another quick method to extract features
using a decision tree based method that looks at a ring of 16 surrounding pixels
thresholds if they are darker, similar, or brighter than the center pixel and uses this
information with the decision tree to quickly compute key points [21]. This method
is less robust than the SURF and SIFT, but much faster. Oriented FAST and Rotated
BRIEF (ORB) is another fast feature extraction method [22]. ORB features, as the full
name implies uses a modified version of FAST features that incorporates rotational
invariance, and BRIEF descriptors that allow for rotation to be incorporated into
the descriptor. ORB claims to have faster run-time than SIFT and SURF and better
performance than SURF.

For dense methods one of the popular dense methods available for image com-
parison is the inverse compositional Lucas-Kanade [3]. In the original Lucas-Kanade
method, a warp is estimated to transform an image to match a template image. This
is accomplished by reducing the sum of squared errors of the difference between
the warped image and the template image.

> (W (x;p) - T(x)] (2.1)

T

In order to do this the gradient of the image is warped and then the Jacobian and
Hessian are evaluated from this the direction of steepest descent is found and an
update is for the warp is found. This process is done iteratively, which is compu-
tationally expensive since the Hessian must be calculated each time. The inverse
compositional Lucas-Kanade method reverses the roles of the image and template,
allowing for the Hessian to be computed once at the start of the process and held
constant for each iteration. This method has proven to be very useful and per-
forms well in estimating homographies and other warps between images. One of
the downsides of Lucas-Kanade and other dense methods is that they need to be
seeded well in order to converge to the correct minima since these methods rely on
gradient descent and the problem is non-convex.



Chapter 3

Approach

The approach is inspired by VTR [8], where the takeoff is the teach pass and the
landing is the repeat pass. In this section, we will discuss the rationale and details
of this method: the teach pass (takeoff), repeat pass (landing), position estimation,
recovery, and control will be explained. The entire pipeline can be seen in Fig.
which runs at 15 Hz onboard on an NVIDIA Jetson TX2.

3.1 Design Rationale

There were many critical design decisions in this method’s approach which this
section will go over. In Section it stated that some of the main challenges of
precision landing in an unstructured environment include determining the starting
position, estimating the position error between the current position and the starting
position, handling the FoV challenge, and controlling the drone back to its initial
position. The primary design decisions are made by determining the requirements,
creating a morphological chart and performing trade studies on the various items in
the morphological chart. The requirements of the system can be classified into two
categories: functional requirements, which are actions that the system must be able
to perform, and non-functional requirements, which the system does not perform
but must satisfy. Below are the functional and non-functional requirements on the
system.

Functional Requirements:

e Sense the environment
e Collect data on takeoff position

e Navigate back to takeoff position consistently given the drone starts within
GPS error of the takeoff location

e Give commands to control drone to takeoff position
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e Recover if blown off course
Non-Functional Requirements:

e L.ow cost

Light weight

Simple hardware setup

Seen does not contain planted structure
e Low compute

Given these requirements, a morphological chart can be created that gives op-
tions for the various functional requirements. The morphological chart can be seen
in Table The largest amount of options are contained in the “Sense” category.
For sensing, all items are assumed to have a IMU since the drones need to have
an IMU attached. GPS was out-ruled for previously mentioned reasons, as GPS
error is too large. The LIDAR option cannot be considered as LIDAR systems are
too expensive and heavy for the system and would not satisfy the non-functional
requirements. This leads to camera based options remaining. Monocular camera
options were considered over the stereo based options as they have less hardware
complexity, and monocular cameras are easier to calibrate than stereo cameras are,
simplifying the setup and decreasing the cost. For the direction of the camera, the
downward facing camera is selected as it provides the best information regarding
the axes parallel to the ground. To assist with the vertical axes, pairing the camera
with a laser range finder was selected as it provides useful additional information
and doesn’t increase cost or complexity by much. Finally, not shown in Table
the option of fisheye lens and pinhole lens for the monocular camera is considered.
The fisheye camera was selected based on the wide FoV, but a comparative analysis
is done between the two options to verify the choice

The next column focuses how to collect data during the takeoff, which is heav-
ily tied with the next column, how to navigate to the initial position. The three
options can be summarized as relying on localization, relying on full SLAM with
loop closure, or relying on relative localization to data from takeoff (VTR). In con-
sidering these three options, the first two rely on explicitly identifying the takeoff
location, which is difficult to do as the downward facing camera does not provide
much information until the drone has lifted off. Additionally, localization has drift
build up that is undesirable. Full SLAM with loop closure can be computation-
ally expensive. This leaves collecting sensor readings to be used later for relative
localization. For relative localization, there are many ways to estimate the transfor-
mation between two images including the method of image comparison, and how
the transformation is calculated. Many of the options for image comparison were
presented in Section The dense methods are not considered as the the initial
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Sense Collect Data at Takeoff |Navigate to Initial Position |Control Recover

Record state-estimate |Compare state-estimate
at intial position positions

Build map and record
initial state-estimate at
inital position

Collect sensor data at |Compare current sensor
variable points during [readings to individual ones
takeoff from takeoff

GPS PID Fly up

Single Forward
Facing Camera

Perform loop-closure and |Adaptive |Restart
compare state-estimate Control landing

Single Downward
Facing Camera

Single Downward
Facing Camera and
Laser

Stereo Camera

LIDAR

Table 3.1: Morphological chart comparing various approaches to functional archi-
tecture.

error between images can be quite high and the registration methods are likely to
fall into a local minima. For sparse methods, an appropriate feature was needed
to be selected. While SIFT is very robust, its computationally expensive. Other
teature-based techniques are also computationally expensive, such as learned fea-
tures or features for spherical images, which hinder the low compute requirement
and slows the algorithm speed. ORB features are fast and robust and are selected
for these reasons.

For control the two primary techniques looked into PID control and adaptive
control strategies. Adaptive control strategies have been used in previous precision
landing with structure research and show to be effective as the controller responds
well to system noise and environmental disturbances, but is more complicated and
requires a model of the UAV. Due to this additional complexity, a PID controller
was initially used for this work to prove the validity of the approach. Future work
will look into incorporating an adaptive control strategy.

Finally, to accomplish recovery two strategies were considered: flying upward
or restarting the landing. The idea of recovery is that if the UAV is blown off-course
by wind that it can still navigate back to the takeoff position. Flying upwards would
increase the area seen by the camera potentially allowing the camera to overlap with
an image from takeoff and begin landing again. Restarting the landing procedure
by navigating with GPS back to the starting position of the landing sequence would
be reliable, but would take more time. The strategy to fly upward was selected as
the primary strategy as it has the possibility to recover faster and avoids using the
GPS.
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3.2 Takeoff & Landing

During takeoff, a set of images is recorded in regular intervals with a fisheye lens
camera. The wide FoV of the fisheye provides key information at the start of the
takeoff when the camera is very close to the ground and good information at higher
altitudes. Images are recorded at a higher rate while the drone is close to the ground
(every 0.1m in the first 2 meters) and at a slower rate as the drone ascends higher
(every 0.25m until 7.5m). This is done to compensate for the fact that the ground
seen by the UAV changes much more drastically when initially ascending. Details
on the image recording rate and other parameters used for the method can be found
here. Once all of the images are recorded, key points are found and ORB descriptors
are extracted and saved to be used during the landing phase. This process only
takes seconds. Furthermore, it allows for faster run-time during landing, since the
features extracted do not need to be recalculated during the landing procedure. In
addition to the images, a downward facing laser range finder is used to record the
height of the drone and an on-board Inertial Measurement Unit (IMU) is used to
estimate and record the current roll and pitch of the drone. These measurements
are recorded for each image taken.

For landing, since this method is for the final portion of a return home function,
the drone starts nearby the final position from takeoff at 8 m height. Then the cur-
rent image is compared with the image taken at an altitude just below the current
altitude of the drone, which comes from the laser range finder. This image is close
enough in height such that the scale change does not negatively effect the ORB fea-
ture matching process. A relative position estimate to the image from takeoff is
estimated in the form of a 2-D rigid body transform. The method to find the 2-D
rigid body is explained in Section This estimate is then used to command the
drone towards that position via a position controller. While the drone approaches
the position of the image from takeoff, it constantly descends. Once the drone goes
below the height of the current takeoff image being compared to, the next closest
image is used. A simplified version of this sequence can be seen in Fig. This
process commands the drone along a similar path from takeoff back to it’s original
position.

Once the drone is 1m above the ground it stops descending until the estimated
position error with the image from 1m during the takeoff is below a certain thresh-
old. Once this occurs the UAV will enter into a final descent mode and rely on state
estimation to finish the landing going straight down.

13
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Takeoff Pose Estimation &
Control
Fisheye Image Undistort [N Select image
Camera Image based on height
Laser Range Height
Finder

Raw Image

Save Key points
and Descriptors

Select image Compensate for

Find Feature

from takeoff Matches rotation and project
based on height points to 3D

Generate . -
Undistort Extract Key points Velocity Estimate ngld.Body
Image and Descriptors oGS Transformation

Figure 3.1: Pipeline of algorithm with steps during takeoff having orange arrows
and steps during landing having blue arrows. Additionally, a sample of a raw im-
age, undistorted image, and matched images are shown. In the matched image
sample above the Pose Estimation and Control section shows how matches are
found on the image and a resultant white arrow displays the motion required to
minimize the position error.

3.3 Position Error Estimation

To initialize the landing process, the drone uses its state-estimate to fly above where
it started. Once the drone is in position it needs to be able to localize. In order to
accomplish this task we used a downward facing fisheye camera, a set of images
as well as height and angle measurements collected during takeoff. A 180° FoV
tisheye lens was selected as it provides much more information about the ground
below the drone than a pinhole lens. This is particularly beneficial at the start and
end of the landing, allowing for a larger offset at the start, 8m above ground, and
for more reliable motion commands close to the ground. The primary steps for
the position error estimation pipeline include: image undistortion, key point and
descriptor extraction, key point matching, angle correction and scale recovery, and
error estimation, which can be seen in Fig.

Due to the large radial distortion of a fisheye lens, standard feature extraction
methods will not work well across the image. There are feature extraction based
methods that are invariant to this radial distortion, but have slower run times [29].
The camera can be calibrated with the radial distortion being taken into account
with the following equation

P, Pl
P,| =X p; (3.1)
P, ag + azp® + azp® + aqsp’
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Where P is the point in 3-D space, p' is the point in the fisheye image, p = /p,* + p,?,
and ay_4 are constants estimated during the camera calibration [24]. Given this
model for the camera, the image can be undistorted and have estimated pinhole
camera parameters associated with the new image. Given this, the images are pro-
jected to a flat image plane [13|14] and ORB features are extracted from the drone’s
current image and matched the descriptors from the corresponding image from
takeoff in order to localize during the descent [22]. ORB features were selected
over learned neural network features and features made for spherical images as lit-
erature shows that they are much slower [26,29], which would hinder the speed of
the control loop.

Once features are matched, the pose is estimated relative to an image from take-
off. This could be done in many ways including estimating the homography of the
ground plane or finding the fundamental or essential matrix for the image pair and
estimating pose from these matrices, but since most drones are equipped with an
IMU, less parameters need to be estimated. In fact, with the roll and pitch of each
image known, there are two fewer parameters to estimate. Additionally, with the
assumption of a flat ground plane and the measured height of the drone, the height
is known removing the scale ambiguity. This results in only needing to estimate
the horizontal position and yaw. Given this information the following method is
used to estimate the position of the drone. First, the feature points” position is cor-
rected using the estimated roll and pitch. Then they are projected into 3-D space
using a planar assumption, the measured height, and intrinsic camera parameters.
These two steps can be accomplished by rearranging the rotational flow correction
equation from [11] and use it for correcting the rotation of an individual point and
project it into 3-D space:

P, = Z cos(0,) cos(6y) (3.2)
P, — (—pz — Si;l(ey)f)Pz (3.3)
Py _ (_py + Sl}l(em)f)l)z (34)

Where Z is the measured height from the laser range finder, 0 is the current esti-
mated roll and pitch of the drone, P is a feature point’s metric coordinates in 3D
with respect to the drone’s current position, p is the feature point’s position in the
camera frame, and f is the estimated focal length of the camera. Once both sets of
points are projected onto the ground plane, a 2-D rigid body transformation can
be calculated and give a metric relative position error. The 2-D rigid body trans-
formation can be calculated in the following manner. First, the centroid of the each
image features sets are found.
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1
Pc,centroid = g Z pc,i (35)
=0
1
Pt.centroid = E Z P (36)
=0

Where p_ represent points from the current image and p, represent points from
the image from takeoff. Next, the rotation between the two sets of points can be
determined with the orthogonal Procrustes Problem [25]. This method finds the
covariance between the two sets of points in order to determine the rotation be-
tween them in the following manner.

Peo = Pe = Pecentroid (3.7)
P:o = Pt = Pt centroid (3.8)
M = Pt,oPcT,o (3.9)
[U,%,V] = SVD(M) (3.10)
R = vU? (3.11)

Finally, the translation can be found by applying the rotation to the current set of
points and then taking the difference between the centroid of the rotated current
set of points to the set of points from takeoff.

1

Precentroid = E Z RPC,'L’ (3.12)
=0

T= pt,centroid - prc,centroid (313)

Given this estimation method, random sample consensus (RANSAC) is used to re-
ject outliers while finding the rigid body transform. Since the rigid body transfor-
mation estimation only has three parameters that it is estimating for, fewer itera-
tions of RANSAC are needed to be performed in order to have a confident estima-
tion. The equation for this is seen below [10].

log(1 — P)
— — 3.14
log(1 —w™) (3.14)
Where k is the number of iterations, P is the probability that one of the iterations
does not contain an outlier, w is the expected percentage of inliers, and n is the
number of samples per iteration. Given, w = 60%, P = 99%, and n = 3, only 18
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iterations are necessary for a confident estimation. Given a lower number of inliers
in the data set such as w = 30%, only 169 iterations are necessary. This is far less
than just estimating the essential matrix since 5 points are needed, which would be
57 or 1893 iterations respectively. Overall, this pipeline runs at 15 Hz on-board the
a NVIDIA Jetson TX2 on the drone.

3.4 Recovery

If the drone is descending and is pushed off course by a gust of wind, there is a
chance that the current image may no longer align with the image from takeoff.
If this happens then the position estimation will no longer be valid. This scenario
can be detected through the position estimation method though. When two images
are compared from differing scenes the feature matches between them tend to be
poor sporadic matches. Given this, there will be a low consensus during RANSAC
(< 30%), which can be used to detect this scenario. If this occurs, the drone ascends
to increase its FoV until it can again match with the image from takeoff.

3.5 Control

Once the position error is estimated, it is used as an input to a PI position controller.
This generates a velocity command that is sent to an attitude controller on-board
the X-Star Premium Quadcopter using the drone’s on-board state-estimate. The
drone receives velocity commands in the horizontal axes from the position con-
troller during the descent and a constant descent speed at 15Hz until it is 1m above
the ground. Here the horizontal velocity commands are sent from the position con-
troller while the drone hovers at a constant altitude. Once the drone aligns with the
concurring image from takeoff it performs a final descent only receiving a down-
ward velocity command. The control strategy uses this simple PI position control
as a baseline approach as it is very simple to implement and fairly effective. No
derivative gain was used as the derivative tended to be quite noisy. Future work
will focus on improving this aspect of the project by looking into adaptive control
methods that can better take environmental errors into account.
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Chapter 4

Results

In this section, we discuss the experimental setup, experiments, and results. Ini-
tial experiments were done in simulation to initially test the algorithm. Next, we
perform a drone landing experiment to demonstrate the performance and robust-
ness of our precision landing algorithm, as well as present a baseline comparison to
landing using only GPS-IMU based state estimate. Additionally, data is collected
and presented for comparison of the efficacy of both fisheye and pinhole camera
lens.

A second experiment was performed to test the algorithm’s robustness to scene
change. Landing tests were performed with a van next to the drone for takeoff, and
before landing, the van was moved to a set further distances as shown in Fig.
The setup for our experiments can be seen in Fig.|4.1|and all the data collected can
be found here.

4.1 Simulation Experimental Setup

For the simulation experiments used AirSim by Microsoft, which uses Unreal En-
gine for photo-realistic images. A simulated quadrotor with a downward facing
pinhole camera was used for the experiment. The ground truth of the altitude,
roll, and pitch of the simulated quadrotor were used for position estimation and a
PID position controller sent velocity commands to a built in velocity controller that
comes with the package.

4.2 Simulation Results
The experiments were performed in a free simulation environment provided by
Unreal Engine in a mountain area. A video displaying the environment and exam-

ple of the experiment can be found The drone would be commanded along
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https://docs.google.com/spreadsheets/d/1B0PWLLst6nxReMfFUuT7tf6IOBGgeZB98uR-gwwRZTU/edit?usp=sharing

X, (M) Y, (M) X akeort (M) Y koo (M) X‘andmg (m) Y‘andmg (m) X (M) Y e (M) Final Error (m)
0.054 -0.001 2.400 1.600 3.00 2.00 0.225 0.131 0.216
0.024 0.002 2.400 1.600 1.00 0.00 0.053 0.139 0.139
0.014 0.029 4.000 4.000 5.00 5.00 -0.104 0.277 0.275
-0.007 0.008 2.400 3.200 3.00 4.00 0.102 -0.063 0.130
0.000 0.000 2.400 3.200 2.00 2.00 0.075 -0.064 0.099

Table 4.1: Precision-Landing Simulation Results

a diagonal path to a position 10 m above the ground. The final image to be used
during landing was recorded at 8 m, which means there was a horizontal and verti-
cal offset between the final image recorded during takeoff and the starting position
for landing. This was done purposely to help simulate the potential GPS error that
would occur when the drone would return to the final takeoff position. Once the
quadrotor finished the ascent, the landing was started. After the landing the final
position was recorded. The results can be seen in Table The average accuracy
was 17 cm, which gave us confidence in moving forward to experimenting on the
hardware system.

4.3 Hardware Experimental Setup

Experiments were conducted with the X-Star Premium Quadcopter by Autel Robotics,
seen in[4.1] For sensing, an embedded computing device (NVIDA Jetson TX2), ueye
camera equipped with a Lenssagon BF10M198285118 C fisheye camera lens, and
SF30 laser range finder are equipped to the drone. A ueye camera with a S-Mount
lens Lensagon B10M5022512 pinhole camera is attached for the comparison to the
tisheye. The Jetson TX2 has Ubuntu 16.02 installed on it with ROS Kinetic, OpenCYV,
and Eigen libraries. The Jetson TX2 is connected to the X-Star Premium’s embedded
computing device in order send velocity commands to the drone. A second ueye
camera is attached with a pinhole lens for offline comparison against the fisheye
lens. The fisheye camera records monochrome images at a rate of 15 Hz, while the
pinhole records them at 10 Hz. The recording difference was due to the bandwidth
available across the USB connection to the computer. The fisheye camera has a res-
olution of 1100x1100, and the pinhole camera has a resolution of 1280x1024. There
are a few additional tunable parameters for the algorithm. They can be seen
in the Experiment Parameters sheet and include: Image recording threshold (ini-
tal rate and final rate), ORB feature count, image size, and ratio test setting. These
parameters were selected prior to experimenting and held constant throughout the
various scenes. The primary trade-off in selecting the parmeters is run-time speed
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Figure 4.1: Hardware experimental setup with sensors equipped.

and accuracy in position estimation. For example, the number of ORB features
will increase the time to find and match features, but provide greater robustness in
position estimation. The numbers were selected based on prior experimental trials.

4.4 Landing Experiments and Comparisons

The objective of the landing experiments was to verify the accuracy and precision
of the landing algorithm and compare it against the UAV’s GPS-IMU based state

Method Environment Nu?:;;“ Accuracy (cm) Desvtiiggﬁr((::m) Win((iﬁ/g;eed Max Gust (m/s)
Precision Landing Patio 18 23
Precision Landing Grass 1 17
Precision Landing Turf 10
Precision Landing Grass 2 10
State Estimate Patio 10
State Estimate Grass 1 10

Table 4.2: Precision-Landing and State-Estimate Landing Results
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Figure 4.2: Comparison of Fisheye and Pinhole camera lens for the task of localiza-
tion. Each bar displays the percentage of bad position estimations during landing
across various trials in the different environments. The fisheye camera has fewer
bad matches than pinhole camera.

estimate used for landing. Additionally, data for a comparison between the per-
formance of the fisheye lens and a pinhole lens was collected during these experi-
ments. The experimental procedure is as follows. First, an environment is selected
and the drone is placed in its initial position. For measurement purposes, the drone
is placed next to either a natural landmark, such as a corner of a tile, or an artificial
landmark, such as a golf tee in the grass. Second, the drone is manually piloted
with varying paths taken (i.e. straight, diagonally, curved, etc.). Once the take-
off is completed, it is flown in a random direction in varying distances (approxi-
mately 1-3m). This is to simulate the error from GPS that may occur from a drone’s
state-estimate returning to the take-off position. Finally, the landing procedure is
initiated and the drone autonomously lands. After the drone has landed, measure-
ments are taken for the drone’s displacement from the initial position. This test
was performed both with the precision landing algorithm using a fisheye lens, and
using a GPS & IMU based Extended Kalman Filter (EKF) state-estimation running
on-board the X-Star Premium Quadcopter. This test has been performed in a wide
range of environments, grass, turf, and stone tiling. Examples of the experiment
and a short summary of the method can be seen here. Wind speeds are recorded
from METAR report from the Allegheny County Airport (KAGC) to observe the
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https://www.youtube.com/watch?v=radCdpIhz6k

algorithms robustness to high wind speeds and gusty weather. The performance
for the proposed method and the GPS-IMU based EKF can be seen in Table
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Figure 4.3: Results from scene change experiments. Each box-and-whisker plot
shows the resulting accuracy across the three scene change tests. Short-Med means
the van moved from 4ft from the drone to 16ft from the starting point. For Short-
Long, the van moves from 4ft away to 41ft. For Med-Long the van moves from 16ft
to 41ft.

Data is recorded from both the fisheye and pinhole cameras and analyzed offline
to determine the reliability of position estimation for each lens type. The algorithm
is ran on the data and if RANSAC cannot determine a consensus on a rigid body
transform, the image instance is considered a failed localization. The percentage of
failed localizations across multiple trials can be seen in Fig. This shows that the
fisheye lens can localize well even when close to the ground and has a lower failure
rate throughout the landing than the pinhole.

4.5 Scene Change Experiments

The experimental procedures for the scene change experiments are the same as the
landing with the addition that a van moves from a set initial position to a new set
position further away. Three sets of five experiments were ran with each set having
a different starting and ending offset of the van from the drone’s initial position.
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Figure 4.4: Displays three scene change experiments. From left to right in image
pairs is each experiment: Short-Med, Short-Long, and Med-Long, with the take-off
location in red and landing in yellow.

Specifically, the three sets of positions are defined as short-medium (the van starts
4ft away from the drone and moves to 16ft after take-off), short-long (the van starts
4 ft away and moves to 41 ft away after take-off), and medium-long (the van starts
16 ft away and moves to 41 ft away). The objective of these three distances was to
put the van either within the drone’s central view the entire time, the edge view
throughout the take-off, or mostly out of view for the full take-off and see how
moving the van to these various positions affects the performance of the algorithm.
The results can be seen in Fig.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The results from the experiments show that our algorithm can safely and accurately
land a quadrotor to its original takeoff position in various environments, and that it
outperforms the IMU-GPS EKF state-estimate by a statistically significant margin.
This is likely due to taking more rich data from the camera into account in measur-
ing the position of the drone during landing. Additionally, our algorithm proves
to be robust to wind as the results do not vary with the wind conditions. This is
likely due to the wide FoV of the fisheye lens as well as the recovery behavior of the
algorithm allowing wind to push the drone off-course, but still have the view from
takeoff in view or be able to gain more FoV quickly in the recovery behavior mode.
There have been three observed failure cases, if the ground plane has a sudden
large change in height, when there is an aggressive roll or pitch during the takeoff
and an image is recorded, and when the scene has a large amount of change. When
there is a large change in height the planar assumption is no longer valid and an
accurate rigid body transform cannot be calculated. Additionally, a large amount
of data from the takeoff is missed because the key frames recorded during the take-
off is based on change in height. When there is an aggressive roll or pitch during
takeoff, images recorded may be blurred, causing the feature matching to fail. For
scene change the effects are further explored with the scene change experiment.
From the fisheye and pinhole camera lens comparisons, we conclude that the
fisheye lens, although having high radial distortion, provides more information
for the task of autonomous precision landing. This is particularly useful in two
scenarios. Firstly, when a drone initially starts its descent. This can be seen in the
results when there is a large offset from the end of the takeoff to the beginning of the
landing. Overall, this results in a more robust landing capability as the drone relies
less on the state-estimate since it can have a larger position error when starting the
landing algorithm and still have overlap with the final image from takeoff, whereas
the pinhole camera may not have enough initial overlap to start the landing given
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a starting position with a large offset to the final takeoff position. Secondly, if the
drone is pushed off course by wind when it is closer to the ground, the fisheye
will likely have enough overlap to maintain a position estimate, but the pinhole
lens may have no overlap at all. In essence, due to the fisheye lens’ greater FoV,
even if pushed off-course by wind when close to the ground, it maintains visual
of the image from takeoff and can recover, whereas the pinhole camera will loose
overlap between the images and be unable to estimate position error. This shows
that the fisheye lens based cameras can help solve the FoV issue seen in many other
precision landing based works and reduce the necessary hardware to an individual
camera instead of two cameras.

The scene change experiment demonstrated the effects of a change in the envi-
ronment for the landing algorithm with three different scenarios. The first where
a large object that provides many of the features in the images moves to a new po-
sition relatively close to where it started. This causes the landing algorithm to be
drawn off course and land close to the area with the highest number of the original
features. This short coming gives interesting insight on potential other uses for the
proposed method. One, landing on a moving landing pattern. If the landing pat-
tern is highly textured, even if the landing pad were moving in the environment,
the drone would be drawn towards it. Second, if a highly textured landing pat-
tern was used, the drone could change where is lands relatively easily. This shows
potential for this algorithm to not only work for precision landing in unstructured
environments, but structured ones as well. The other two scenarios where the van
moved far from its initial position resulted in accurate landings. Each of these sce-
narios had one edge case of the drone following the van, likely because the van was
not far enough away to be out of the drone’s FoV. From these two results it can be
seen that if strong features are removed, the drone can still land accurately since
there will still be features in the area from takeoff that the landing algorithm can
match to.

5.2 Future Work

There are several interesting areas to be explored for future work including further
exploring the capabilities of the proposed method, improving the controls of the
algorithm, completely removing dependence of GPS, and developing methods to
further improve the robustness of the algorithm. One way to further explore the ca-
pabilities of this algorithm is landing on a highly textured surface, both stationary
and moving. This would be interesting to observe to see if the current algorithm
can be used in various scenarios for landing. Additionally, if the added structure in
the environment would assist in the overall accuracy of the landing as there would
be good features for matching during the final portion of the landing. For controls
work, several authors of previous precision landing papers for precision landing in
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structured environments use an adaptive controller [2,[15] rather than a standard
PID controller. Particularly something like Adaptive Disturbance Rejection Con-
troller (ADRC) that can take into account disturbances such as wind or noise in
state-estimation could be used to improve the overall landing and the final portion
of the landing where images are no longer used for the position estimation. For
removing the need for GPS in the algorithm switching to a visual or visual-inertial
based state estimate would be useful. This would be beneficial for the algorithm as
it could then work in GPS denied environments and potentially have better state-
estimate while close to the ground.

For improving robustness of the algorithm there are several avenues that can
be taken. The change in the control strategy and state-estimation strategy previ-
ously mentioned would both likely improve the performance of the algorithm. Two
methods to improve the takeoff procedure of the algorithm include using a change
in FoV calculation to determine when to record the data to be used for landing, as
well as using the angular rate from the IMU to filter out blurry images. Both of
these should result in the algorithm being more robust to more aggressive takeoffs
as more useful data will be collected during the takeoff. Particularly in the case of
takeoffs with more horizontal motion, as the change FoV would incorporate that.
Additionally, in takeoffs with more aggressive horizontal motions as those images
that are blurry would not be recorded. For improving the robustness of the landing
portion of the algorithm potentially including a machine learning based element to
detect objects and use those for estimating position error, as well as using those to
identify if the objects in the scene have moved. This could be useful to prevent the
drone from being drawn off-course as seen in the scene change experiment as the
object of the van could be detected as moving in relation to other features or objects
and therefore ignored during the relative position error estimation.

Finally, the last major piece of future work is to incorporate this algorithm into
a larger intelligence stack to create a fully autonomous drone. For this to happen
there would need to be a way to combine the precision landing algorithm with
other various algorithms such as exploration, go-to functionalities, etc.
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