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Abstract

Anticipatory human intent modeling is important for robots operating along-
side humans in dynamic or crowded environments. Humans often telegraph intent
through posture cues, such as torso or head cues. In this paper, we describe a com-
putationally lightweight approach to human torso pose recovery and forecasting
with a view towards limited sensing for easy on-board deployment. Our end-to-
end system combines RGB images and point cloud information to recover 3D
human pose, bridging the gap between learning-based 2D pose estimation meth-
ods and the 3D nature of the environment that robots and autonomous vehicles
must reason about, with minimum overhead. In addition to pose recovery, we
use a simple filter-and-polynomial fit method to forecast torso pose. We focus on
rapidly generating short horizon forecasts, which is the most relevant scenario for
autonomous agents that iteratively alternate between data gathering and planning
steps in highly dynamic environments. While datasets suited to benchmarking
multi-person 3D pose prediction in real-world scenarios are scarce, we describe
an easily replicable evaluation method for benchmarking in a near real-world set-
ting. We then assess the pose estimation performance using this evaluation pro-
cedure. Lastly, we evaluate the forecasting performance quantitatively on the
Human3.6M motion capture dataset. Our simple 3D pose recovery method adds
minimum overhead to 2D pose estimators, with comparable performance to 3D
pose estimation baselines from a computer vision alternative. Furthermore, our
uncomplicated forecasting algorithm outperforms complicated recurrent neural
network methods while also being faster on the torso pose forecasting task.
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Chapter 1

Introduction

Perceiving and anticipating human motion is increasingly important and relevant as mobile

autonomous systems are steadily deployed in highly dynamic and cluttered environments

with imperfect information about their surroundings. In real-world settings, a crucial aspect

of human-robot interaction (HRI) is real-time anticipatory modeling of human motion. Fluid

tasks such as collaborative assembly, handovers, and navigating through moving crowds re-

quire timely prediction of probable future human motion.

Consider the case where a mobile, transportation hub robot meets visitors who have re-

quested assistance. First, it must rendezvous with the human. A strong cue that a particular

human is ready for interaction is when they turn to face the oncoming robot. Second, the robot

must navigate past other humans without crossing their path in a rude manner [5, 21]. Finally,

the robot needs to orient itself properly as it approaches the person [3]. Timely perception of

human torso pose is important for all of these steps.

More generally, to be accepted by society, mobile robots deployed in public settings need

to behave in expected and predictable ways. To meet this goal, robots need to reason not only

about individual humans in various trajectories, but about social groups and personal spaces

for which, again, body orientation is an important feature [43].

In support of these, and similar interactions, we present a new human torso pose estimation

and anticipation model. We focus specifically on the case of mobile robots with limited

computational and sensing resources, operating in highly dynamic environments. The typical

sensing-perceiving-acting loop in such scenarios involves alternating between data gathering
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and action or motion re-planning steps in rapid iterations. We show that a simple filter and

polynomial fit model outperforms deep neural networks for short-to-medium horizon (under

1 s) predictions, which is the most important case for mobile robots expected to rapidly gather

data and re-plan. We also show this method to be much faster, allowing it to be deployed for

low-cost on mobile systems since it does not require significant and expensive computation.

Both torso pose recovery and forecasting are challenging problems, so prior approaches

have involved computationally expensive solutions. As an illustration, consider that one of

the preeminent 2D articulated full-body human pose detectors [4] can perform at around 18Hz

using 2x Nvidia 1080 Ti GPUs [13]. Additionally, real world human perception requires the

knowledge of 3D pose rather over 2D pose. We attempt to efficiently bridge this 2D to 3D

gap with a focus on limited-compute, real-time operation, as well as demonstrate suitability

for pose forecasting. Full body articulated human pose forecasting is also challenging due

to the associated high dimensional, non-linear dynamics and inherent stochasticity of human

motion.

To make the problem more tractable, researchers have approached the forecasting problem

by restricting the scope to a particular part of the body relevant to the task, thereby reduc-

ing the dimensionality of the problem space. For example, some predictively model human

reaching motions for a shared workspace assembly task [28], while others predict future hand

locations in egocentric video to allow anticipatory motion planning and assistance [25]. We

draw inspiration from this strategy and restrict the problem to modeling the spatio-temporal

behaviour of the human torso. Specifically, we aim to detect and forecast the human torso

plane position and orientation, the latter being an important cue correlated with motion intent

and social engagement [43].

Our algorithm uses multi-modal visual input data, namely RGB with scene depth data, to

estimate and forecast a 3D torso plane. This in contrast to most previous body pose forecasting

work (e.g., [8, 12, 19, 29]) that either use 2D or 3D articulated pose, often with initial joint

configurations obtained directly from a motion capture system. Such multi-modal sensing not

only helps overcome depth ambiguity [18], but also allows us to use monocular 2D body pose

estimators (which are more accurate than monocular 3D pose estimators) and project these

estimations to 3D easily using an RGB image in conjunction with a registered point cloud.
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All of our algorithmic design choices are made to prioritize fast running times on generic,

portable hardware, such as barebones PCs or embedded systems.

Additionally, we describe a useful evaluation procedure for single-view 3D pose estima-

tion in crowded scenes which can be used by the community for benchmarking. It is difficult

to obtain ground truth pose estimates from single-view sensing in real-world scenarios due to

occlusions and prior work has tended to use marker-driven motion capture data for these pur-

poses, which inherently contains only clutter and occlusion free scenarios which are artificial.

We work around this for evaluation purposes by simulating single viewpoint visual sensing in

cluttered scenes using the publicly available Panoptic Studio dataset [20].

1.1 Contributions

In this thesis, we describe a computationally light-weight end-to-end 3D torso pose estimation

and forecasting system combining both depth and color visual data.

Further, we show that a simple filtering and polynomial fitting algorithm outperforms more

complicated recurrent neural network based pose forecasting approaches and is 45× faster,

trading off speed and accuracy for pose granularity. We evaluate the pose forecasting system

quantitatively on the Human 3.6M (H3.6M) dataset [17]. We show superior performance for

short-to-medium term forecasts and competitive results for longer term forecasts, especially

for predictable activities such as Walking motions in H3.6M.

1.2 Outline

This thesis is organized as follows: The second chapter gives an overview of previous work in

related areas including human pose estimation and intent prediction, especially in the context

of pedestrians. In the third chapter, we introduce our simple pose recovery approach as well as

our filter and spline extrapolation based torso pose forecasting method. We then present our

experimental results evaluating the aforementioned methods and describe several baselines

used to perform comparative quantitative evaluations. We then discuss the limitations of

current evaluation datasets for properly evaluating our work in the context of pose-conditioned

pedestrian forecasting and discuss future work to address this issue.
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Chapter 2

Related work

Human modeling for robotics has taken various forms including estimating [4, 27, 37, 45] and

forecasting [12, 19, 29] human pose from visual data, modeling human motion trajectories

individually [46, 48] and in groups [44], as well as predicting human intent [23].

To this end, previous works have utilized the intrinsic kinematics of the human anatomy

[15], eye gaze [1, 16], semantic information of the scene [22], and spatio-temporal structure

of the task space [23]. These methods have used graphical models such as Markov Decision

Processes or Conditional Random Fields to encode constraints and spatio-temporal relation-

ships. None of these works combine a mobile robot’s viewpoint with realtime forecasting.

2.1 Pedestrian intent prediction

Pedestrian tracking, modeling and trajectory prediction algorithms come in many flavors

which do not always involve an autonomous agent navigation centric approach. It is com-

mon for such algorithms to take for granted information that would not be easily available to

a mobile robot, such as a bird’s eye view of it’s surroundings or oracular annotated trajectory

information [26, 36].

Among such works, sequence-to-sequence learning has emerged as a viable candidate for

modeling multi-human scenarios in a predictive fashion [2, 44]. Maximal entropy inverse

reinforcement learning approaches [22, 24, 48] have also been used to forecast pedestrian

trajectories.
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While these propose sophisticated models of human-human interactions or exploit avail-

able semantic information, they do not reflect the various challenges an on-board view from

a mobile robot will experience, including incomplete scene information, imperfect data due

to sensor error or occlusions, etc. Instead, we aim to study the problem using an input data

distribution closer to the one expected from a mobile robot.

2.2 Pedestrian detection and tracking

Among on-board perception methods, most approaches combine 2D and 3D scene informa-

tion to build a 3D, human-aware map of the autonomous agent. Some systems fuse hand-

crafted features from LIDAR and Histogram-of-Gradient features from vision to detect pedes-

trians [11]. Others align point clusters from two LIDARs and pedestrian detection bounding

boxes from three RGB cameras to obtain 3D pedestrian estimates [33]. Such methods prior-

itize active depth sensors. Our method is agnostic to the source of the depth data and can be

used with any source that provides spatial correspondences between an RGB image and points

in space, including passive sensors. In our qualitative evaluation we use a stereo camera, the

Stereolabs ZED.

2.3 3D Human pose estimation

Markerless human pose recovery from visual data is a challenging but useful capability that

has recently seen tremendous success in the computer vision community. The focus has

mostly been on joint keypoint localization using a single RGB camera in pixel space (2D pose

estimation) [27] of a single individual [34, 38, 45] and, more recently, multiple individuals

[4, 7, 37]. The most successful models have employed graphical or neural network models

trained on large datasets.

Unlike 2D pose, large-scale data is difficult annotate for 3D pose (predictions in metric

space) without dense instrumentation of the environment [20] or of the humans [17], both

leading to artificial restrictions on the humans. Despite this, significant interest in 3D pose

estimation exists, owing to its numerous applications. Several end-to-end models have been

trained on this task that regress the individual skeletal keypoints [31, 32, 35, 40, 41, 47]. More
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complex methods may predict 2D and 3D methods jointly. Even though these algorithms have

the advantage of being able to work with inexpensive RGB cameras, these are monocular 3D

pose estimators and, as such, suffer from depth and scale ambiguities that allow multiple

plausible 3D pose hypotheses given a 2D pose estimate [18]. This is best shown by the fact

that these works perform evaluation by aligning each predicted 3D pose to its corresponding

ground truth 3D pose by either translating the predicted pose so that the root nodes are aligned

(say, the tailbone for each skeleton) or applying a Procrustes transform (aligning both poses

upto a combination of translation, rotation and uniform scaling). Moreover, the real-time

methods among these, such as V-Nect [30, 32], can only produce single-person pose estimates

and require tracked bounding boxes for each person, making it unsuitable for use in dynamic

crowds.

In this paper, we compare against a strong baseline based on the better-performing real-

time method [30]. Note that these methods are not trained to account for global translation

and rotation. Our baseline provides global rectification to their method in order to overcome

this.

Closest to our work is [49], where the authors use a Kinect V2 sensor and a voxel-based

neural network to provide 3D poses in metric space. This method achieves impressive results

but is not real time and places an explicit requirement on a single type of depth sensor, which

we do not. We omit discussion of multi-view pose estimation since it is not relevant to the use

case of a single mobile robot in the wild.

2.4 Human pose forecasting

With human pose estimation a well-studied problem with accurate, real-time solutions in

specialized use cases, predictive modeling of human pose has received considerable interest

in the literature. This section covers works that forecast human pose and motions in more

generic cases than the pedestrian prediction in the previous sub-section. Much work in human

pose forecasting predicts articulated human poses without considering the acquisition of the

pose skeletons themselves. For example, [12, 19, 29] all model and forecast human motion

using recurrent neural networks (RNNs). However, these methods do not model the global

position of their subjects, instead focusing on generating a continuation of observed human
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motion in a coordinate frame attached to the body. For forecasting, these works are the closest

to ours and we compare against the best performing method in this paper [29].

The graphics community also uses deep recurrent neural networks, primarily for character

motion synthesis conditioned on human user input. For example, these methods have been

used to animate game characters [14].

While each of these methods generate realistic human motions, they fail to match ground

truth human poses and suffer from discontinuity artifacts between the ground truth instances

and first predicted instance.

In general, the intrinsic stochasticity of human motion does not allow for accurate fore-

casting of complete human poses over long horizons (> 1s) [29]. For the short horizon case,

forecasts are more accurate but still suffer from unrealistic discontinuities at the beginning

of the forecast. This is hypothesized to be due to the use of quantitative loss functions in

training these models that penalize average error, without imposing temporal smoothness or

anatomical constraints in the loss function. For this paper, we refer to short-term forecasting

(<= 400ms) as just “forecasting” unless otherwise stated.

There has been sparse investigation of how pose estimation can benefit pedestrian per-

ception. The autonomous and assisted driving community has also investigated the use of

pedestrian pose-based features for intent prediction with encouraging results. These works

restrict intent to higher-level classes such as “cross/no-cross” [9] or “start/stop/cross/bend”

[10] for curbside pedestrians. These methods also use 2D pose instead of 3D which removes

the ability of these systems to reason about absolute pose, which is adequate for their appli-

cation, but we wish to investigate the use of finer-grained pose information.

None of the aforementioned works study real-time human pose forecasting with the sens-

ing and computation restrictions of a typical mobile system, as we do in this paper.
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Chapter 3

Approach

Keeping with our earlier example of the perception system of a mobile robot that interacts

with humans, such a system would require both real-time performance and an output signal

that allows human attention/intent prediction.

For both these reasons, we choose to use human torso pose as the perception output.

Acquiring accurate, articulated full-body 3D pose in real-time is challenging given the con-

straints of on-board sensing, which is prone to occlusions because only a single view-point is

available. Hence, we restrict ourselves to 3D torso pose, comprising the global Cartesian co-

ordinates of the torso center-of-mass and the torso plane angles. Torso pose also evolves less

rapidly than head pose [42], hence mitigating information loss at lower temporal sampling

rates, which in turn allows lower hardware design costs.

This also allows us to incorporate a smooth temporal constraint in our model of human

pose, which is a non-trivial consideration since previous learning-based methods such as [12,

19, 29], suffer from discontinuity artifacts at the beginning of the forecast, as shown in [29],

which are inconsistent with human anatomical limits. For example, see the relatively large

error at the start of each error graph in Figs. 5.1, 5.2, and 5.3 corresponding to the HMP

method from [29].

Our end-to-end system comprises a torso pose recovery module followed by a forecasting

module. The algorithm requires registered RGB and depth inputs with proper calibration. In

its most basic form, it is agnostic to the data source. For instance, in the evaluation in Tables

5.2 and 5.1 we used a Kinect v2 (active sensing) as the input source, while our end-to-end
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qualitative system demonstration used a ZED camera (stereo). This allows flexibility for sys-

tem designers to trade-off the requirements for their particular scenario. For example, higher

fidelity 3D maps can be obtained with a 3D LIDAR at the cost of higher power consumption

and overall expense.

3.1 Torso pose parametrization

Figure 3.1: The torso pose is represented by the Least-Squares plane fit to the torso points set

τ . Here, the relevant torso points are marked in green.

We parameterize torso pose by the position (x, y, z of torso center) and orientation (plane

azimuth: α and elevation: θ) of an estimated torso plane. Given a pose skeleton, the torso

plane is defined as the plane that minimizes sum of squared distances from each of the 3D

torso joint locations. At a given pose skeleton this plane is given by:

n∗, c∗ = argmin
n,c

|τ |∑
i=1

|n · xi + c| (3.1)

where n · xi + c = 0 defines the torso plane (n is the plane normal and c is a constant, both

in R3) and xi ∈ τ ⊂ R3 is the set of all torso joint locations in 3D space.
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Figure 3.2: Torso pose from 3D joints. (Left) Normal to the torso plane is shown in solid

black and its projection to the horizontal plane in dashed gray. Torso center is plotted in

fluorescent green. (Right) The plane azimuth (α) and plane elevation (θ) are shown in blue

and red, respectively.

Hence, the torso center is:

Ctorso =

∑|τ |
i=1 xi
|τ |

(3.2)

Once τ is constructed, the plane is calculated using Equation 3.1, giving the plane azimuth

(α) and elevation (θ) directly (Fig. 3.2).

α = arctan
ny
nx

(3.3)

θ = arccos
nz
||n||2

(3.4)

3.2 Torso pose recovery

We use an off-the-shelf 2D human pose detection system [4] in conjunction with registered

depth information in a two-step process. The input to the 2D pose detector is an RGB image,
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which is used to obtain joint locations for humans in the scene. Once 2D joint locations are

known, they are projected onto a registered point cloud obtained by triangulation in a separate

step, giving us 3D joint locations.

For our method, we compose the set τ comprising solely the torso points available from

the 2D pose detector. For annotated ground-truth skeletons from the datasets used in our

evaluation, τ contains the shoulder joints, two hip joints, the mid-spine, and the tip of the

tailbone (see Fig 3.1). In this formulation, the registered point-cloud is constructed at every

time-step and the points xi corresponding to the detected joints in the RGB image are picked

from the corresponding point cloud. Hence, xis are in metric 3D space. For each xi, tempo-

ral consistency is enforced by discarding values that deviate over 10 cm between consecutive

time-steps, lending some robustness to temporary occlusion. The discarded values are re-

placed by the corresponding xi from the previous time-step. See Fig. 3.3 for an overview of

this method.

3.3 Torso pose forecasting

For forecasting, we predict elevation, azimuth, and absolute position of the torso plane for a

variable time lookahead, from a 2 s history. Once the torso plane is acquired from the pose

estimation module, we apply a low pass filter to the two orientation components. This is

followed by fitting an N th order polynomial smoothing spline, which is used to extrapolate

Registration

2D pose 
estimation

Depth registered 
color image

RGB image

Depth image
3D pose recovery 

views
Point cloud 

(metric space)

3D pose 
estimation

Torso Plane 
Forecasting

2D
 pose vector

Figure 3.3: 3D torso pose estimation algorithm overview. For details see Section 3.2.
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a forecast for each individual component in a univariate fashion. For more details about this

univariate spline fit, please see Section 3.3.2. Error analyses across various orders of the fitted

polynomial (N ) as well as several baselines (see Section 4.1.2) are presented in Table 5.3 .

3.3.1 Low-pass filter

The low-pass filter is a standard second-order Butterworth filter, with the cutoff frequency

empirically set to 5Hz. A low pass filter was chosen so that we model only the macro-level

orientation of a human subject, which is the most relevant signal for many activities. We also

wish to avoid jitter in the torso pose since regression-like methods such as the polynomial fit

are sensitive to outliers. We choose a Butterworth filter since it guarantees maximal flatness

in the passband of the frequency response.

This is an essential step, as can be seen from the ablation in Tables 5.4 and 5.5 where the

unfiltered signal is used directly to fit the spline and extrapolate for forecasting, leading to

exploding error.

Figure 3.4: Overview of the pose forecasting paradigm, for the azimuth (α) component of

torso pose. The same paradigm applies to all other components. See Algorithm 1 for an

algorithmic overview and Section 3.3.2 for mathematical details
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3.3.2 Smoothing spline fit

The individual components of the torso pose forecasting system are then fit via a smoothing

spline.

A smoothing spline is chosen over other spline fit methods because smoothing splines

often result in similar fits to other more complex fitting methods, such as kernel regression, but

are much more efficient [6]. This efficiency comes from bypassing the knot selection problem

and using the input points, directly, as knots. However, since this may lead to overfitting, the

smoothing spline uses a regularization term to counteract this.

We cover the forecasting procedure below in detail for one of the torso pose components,

the torso plane azimuth, α. This procedure is similar for the other 4 components: elevation

(θ), and the three position components (x, y, z).

To reiterate the aforementioned forecasting method mathematically, we first observe the

torso pose signal samples, α(t) for a history of discrete time steps t = −(To − 1),−(To −

2), . . . ,−1, 0. These observed poses are referred to as the conditioning ground truth, which

consists of To samples. In our Human3.6M dataset experiments in Section 4, the conditioning

window is 2 seconds long with samples drawn at 25 Hz. Hence, in this cases To = 50

We then fit a spline, α̂(t) to this observed data and then extrapolate to compute the forecast

for all samples in the future, t > 0. The spline function, α̂(t) which is of order n may be

represented as a sum of normalised B-splines:

α̂(t) =

M∑
i

ciBi,n(t) where n is the B-spline order (3.5)

The number of basis functions used, Nb depends on the order of the polynomial and the

number of knots. For a sequence of knots (arranged in ascending order), k1, k2, ..., kM the

B-spline of order 1 is given by:

Bi,1(t) =

 1 if ki ≤ t < ki+1

0 else
(3.6)

A B-spline of order n+ 1 is defined recursively as:

Bi,n+1(t) =
t− ki

ki+n − ki
Bi,n(t) +

ki+n+1 − t
ki+n+1 − ki+1

Bi+1,n(t) (3.7)
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The relationship between the number of spline basis functions, Nb, the polynomial order,

n, and the number of knots, M is given by:

Nb = M − (n+ 1) (3.8)

So, our azimuth spline, of order n, may similarly be represented as a linear combination

of B-splines:

α̂(t) =

Nb∑
i

ciBi,n(t) (3.9)

Then, all that remains to find the unique spline that best fits a given set of data points is to

find the coefficients of the linear combination by optimizing an objective function.

We use the following standard smoothing spline objective[6], which is minimized to obtain

the coefficients.

J(c) =

0∑
t=−(To−1)

w(t) ∗ (α(t)− (α̂(t)))2 + λ

∫
(α̂′′(t))2dt (3.10)

=

0∑
t=−(To−1)

w(t) ∗

(
α(t)−

(∑
i

ciBi,n(t)

))2

+ λ

∫
(α̂′′(t))2dt (3.11)

Here, λ is a smoothing hyperparameter (we use λ = 1) and the second term is a roughness

penalty which is used to control the smoothness of the spline. This term is relevant only for

higher order splines (n > 3). For lower orders, this objective reduces to just a least-squares

problem with a solution that can be obtained efficiently via SVD and the smoothing spline

reduces to an interpolating spline. For higher orders, the solution can also be found in a

closed form [6] and is presented here for convenience:

C = (BTB + λΩ)−1BTα (3.12)

Here, C is the column vector of all coefficients, cis. The matrix B is defined as Bi,j =

Bj,n(ti) and α is th column matrix of all observed poses αt∀t ∈ [−(Tp − 1), . . . ,−1, 0]. The

matrix Ω encompasses the penalty terms coming from the second term in the objective funci-

ton, from Eq 3.10.

Additionally, this formulation allows us to incorporate different levels of confidence in

different torso pose detections directly into the forecast, by weighing the importance of the
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different input points in proportion to their detected confidences (wt in Eq 3.10). This will

result in the spline giving more importance to the torso poses detected with higher confidence

and less to those with lower detection confidences. For our evaluation experiments in Chapter

4 we used uniform weighting across all input points. This is done because the conditioning

torso poses are all acquired from ground truth motion capture rather than detected from the

real world via some algorithm.

Note that the two orientation components (azimuth and elevation), require a phase un-

wrapping step at the end, since we have treated them as linear variables while performing

the spline fit and extrapolation. Phase unwrapping is performed by correcting the sequence

of forecasted angles by adding multiples of ±2π when absolute jumps between consecutive

elements are greater than or equal to π radians.
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We presented a filter-and-fit method to forecast torso pose components, individually, in a

univariate fashion that is summarized in the following algorithm:

Algorithm 1: Azimuth forecasting via spline fit
Input: α(t): α−To+1, . . . , α−1, α0

/* Require history of torso plane azimuth angles */

Output: α̂(t): ∀t > 0

/* Forecast of torso plane azimuth angles */

begin
Low-pass filter the obtained pose angles αfilt(t) = b(α(t))

Set knots at all input points, α−To+1, . . . , α−1, α0;

Use knots and minimize
∑0

t=−To+1wt ∗
(
α(t)−

(∑
i ciBi,n(t)

))2 for all ci to fit

spline

Compute the forecast α̂(t) =
∑

i ciBi,n(t)∀t > 0

Correct the obtained α̂(t) for phase by phase unwrapping
end

17





Chapter 4

Experimental setup

4.1 Evaluation procedures

4.1.1 Torso pose recovery

To evaluate this component of our algorithm, we wanted to simulate single view-point visual

sensing (e.g. a mobile robot with on-board sensing) by using inputs from a single Kinect

v2 RGB-D sensor in the Panoptic Studio [20]. This allows us to test pose recovery in the

presence of occlusions, which is important for applications like dynamic pedestrian tracking

in busy environments.

For each frame during a sequence, the pose recovery component of the algorithm in

Fig. 3.3 is used. Ground truth articulated pose (which is reconstructed with a combination

of over 500 camera views and a 2D pose estimation method [4, 20]) is used to compute the

ground truth torso plane, as in Equation 3.1. The body center-of-mass and plane angle errors

are shown in Table 5.3.

As a competitive baseline, we use the method of [30]. This is a 4-layer shallow neural

network trained on the Human 3.6M dataset [17] to “lift” a given 2D pose detection into 3D

space. Being a 4-layer neural network with relatively low dimensional inputs and outputs,

this only takes about 5 ms per forward pass, making it suitable for real-time deployment,

as opposed to other more computationally intensive 3D human pose predictors discussed in

Section 2.3. Comparing against this method is also fair since it also tries to bridge the gap
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between 2D and 3D pose estimation rather than attempting monolithic 3D pose estimation.

In the method from [29], the 3D poses are not guaranteed to be recovered in global-scale.

To transform their output pose into the global coordinate frame, we find and apply the best

least-squares rigid transform between the 3D predicted pose and 3D ground truth pose. Note

that this represents an unattainable gold-standard performance for this method, since ground-

truth pose is never available in a real-world setting.

4.1.2 Torso pose forecasting

For quantitative evaluation on Human 3.6M, we used the same train-test split as [12, 19, 29]

and compared against [29] since it is the quantitatively best performing model of the three.

In [29], the MoCap data was down-sampled to 25 Hz. During testing, skeletal poses over

a 2 s sample (50 frames) were fed to a recurrent neural network (single-layer), which then

generated samples over a forecast window of 400ms (10 frames) sample. The initial 50 frames

are referred to as the conditioning ground truth. Their method also has the advantage over

previous work [12, 19] in that it trains one-model across all actions in the dataset. We retain

this advantage by using the same set of filter parameters for the entire dataset, eliminating the

need to tune for every individual action.

The choice of the 400ms forecasting method follows from previous work [12, 19, 29].

Further, to properly characterize the properties of our method and HMP [29] as well as to

enable comparison of the two, we present the analysis for multiple forecast windows.

The aforementioned methods do not estimate the 3D pose of a human from visual data.

Rather, they acquire the ground truth 3D poses directly obtained from the MoCap data ac-

companying Human3.6M. For evaluating our pose forecasting method in this experiment, our

pose estimation module was bypassed to keep the quantitative comparison of our forecasting

system with [29] fair.

Since our method focuses on torso planes rather than full body articulated pose, we must

obtain ground truth planes from the MoCap data. This was done by fitting a least squares

plane to hip, shoulder, and neck joints of an articulated pose obtained from the MoCap data,

as described in Equation 3.1.

Additionally, instead of using the Euclidean distance in Euler angle space for all body
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joints (as in previous work [29]), we computed the angle error of the plane orientation forecast.

We chose this measure since it is most indicative of the macro-level expression of torso pose.

See Table 5.3 for average azimuth and elevation angle error for each of the 15 Human3.6M

activities as well as within the subcategories described in section 4.2.

Baseline methods

We use the following torso pose forecasting baselines:

1. Human motion prediction (HMP) [29]: A seq-to-seq GRU based method, that condi-

tions a model on an observed pose sequence to generate a forecasted pose sequence.

2. Zero velocity: The last observed torso pose during the conditioning window is pre-

dicted for the entire prediction window.

3. Constant velocity (full 2s window): The average velocity over the entire conditioning

window is integrated during the forecasting window to get torso pose.

4. Constant velocity (0.4s window): The average velocity over the last 0.4s of the condi-

tioning window is integrated during the forecasting window to get torso pose.

4.2 Datasets

We evaluated the two modules, pose recovery and forecasting, on two datasets respectively:

• Panoptic Studio [20]: We used this for quantitative evaluation of the pose recovery

system. It contains RGB-D inputs and multi-person scenarios, representing the closest

available data to our target application.

• Human 3.6M [17]: We used this for quantitative evaluation of the pose forecasting

system. 3D pose in world-coordinates can directly be obtained from their marker-based

MoCap system. The lack of RGB-D views prevents us from testing the system end-to-

end.
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While we would ideally evaluate our work end-to-end, most datasets with grounding for

3D pose are marker-based and do not have associated RGBD data. The Panoptic Studio does

have marker-less grounding for 3D pose but the contained activities (e.g. ”Office”:sitting at

a desk or ”Range of Motion”: arm movements that keep the torso mostly stationary) are un-

suited to evaluation of a torso pose forecasting method, hence we perform modular evaluation.

The motivation of this work is to provide a fast method to recover and forecast multi-

person 3D pose in the real world, with a focus towards social navigation. Hence, ideal evalu-

ation would be data-driven and with said data collected in the wild. However, instrumenting

to recover accurate 3D pose in such scenarios is difficult due to financial, computational, and

privacy concerns. Unfortunately, 3D pose datasets with multiple, simultaneous humans and

RGBD inputs are rare.

The best effort in this domain is the Panoptic Studio [20], which uses advances in 2D pose

recognition with 500 RGB cameras and 10 Kinect sensors to recover the 3D pose of observed

humans accurately. While still being an artificial environment, housed in a geodesic sphere of

diameter 5.49m, it solves the occluded pose recovery problem by dense instrumentation of the

environment rather than equipping humans, allowing for more naturalistic movement. This

dataset has the added benefit of multi-person capture sequences that present several types of

occlusion challenges likely to also be found in dynamic crowds. We use relevant sequences

with Kinect inputs and ground-truth 3D human pose present. This amounts to about 100

minutes of data at 30 Hz.

Although it seems that this dataset is highly appropriate for evaluating our end-to-end

system, most of these sequences involve largely stationary participants involved in social

activities such as meetings and lunches. This would make any forecasting evaluation on such

data unrepresentative of performance on dynamic scenarios where forecasting is most useful.

Hence, we restrict ourselves to pose recovery evaluation on the Panoptic Studio data, rather

than end-to-end (recovery and forecasting) evaluation. An additional consideration is that the

input sensor is always stationary, as opposed to being on a mobile robot.

To evaluate the pose forecasting module we chose the Human 3.6M [17] dataset. This

is currently the largest publicly available dataset of motion capture data, containing 7 actors

performing 15 varied activities such as walking, taking photos or giving directions, with only
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a single person per task. We group the tasks into three categories: Pedestrian, Constrained,

and High Variance. The Pedestrian group contains Walking, Walking Dog, Walking Together

activities. The Constrained group comprises of Eating, Smoking, Phoning, Sitting, Sitting

Down which all involve the person’s torso being constrained in some fashion (e.g. by being

placed in a rotating chair). The High Variance group comprises of all other activities such

as Taking Photo, Posing. etc which have mostly stochastic motion where very little intent is

telegraphed. In our opinion this is not really relevant to evaluate forecasting models since the

premise of motion history based forecasting is that consecutive motions are correlated and

motion intent is telegraphed. Nevertheless we perform evaluation for comparative purposes.

Once 3D torso pose is acquired, our analysis is local and does not consider inter-person

effects, meaning single-person sequences are equivalent to multi-person scenarios for evalu-

ation purposes. Prior pose forecasting work [19, 29] has also evaluated on this data. Conse-

quently, an evaluation procedure exists for articulated pose forecasting which we adapted to

the torso pose scenario. While this data seems like an ideal candidate for end-to-end system

evaluation, lack of registered RGB and depth views render it unusable for that purpose.
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Chapter 5

Results

5.1 Quantitative results

5.1.1 Torso pose recovery

Tables 5.1 and 5.2 show the results of our pose estimation method and a baseline using a

state-of-the-art, learned, 3D pose predictor[30]. These results show that learning for 3D pose

estimation may need more improvement before it can be used for accurate, real-time perfor-

mance suitable for robot deployment.

We see comparable performance for our method and that of [30]. Since, the latter has

access to information about ground truth rotation and translation (as a rigid transform), which

Table 5.1: Torso plane X,Y,Z estimation errors on Panoptic studio [20] data (centime-

tres/degrees). Note that a rigid ground-truth transform (GTT) is applied to [30] and these

numbers are unattainable in real-world settings. For more details, see Chapter 3

Activity Torso Center X (cm) Torso Center Y (cm) Torso Center Z (cm)

Ours [30] + GTT Ours [30] + GTT Ours [30] + GTT

Range of Motion 7.64 4.46 3.91 12.26 15.59 4.73

Office 5.83 12.11 2.85 11.41 12.52 14.85
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Table 5.2: Torso plane orientation estimation errors on Panoptic studio [20] data (centime-

tres/degrees). Note that a rigid ground-truth transform (GTT) is applied to [30] and these

numbers are unattainable in real-world settings. For more details, see Chapter 3

Activity Plane Azimuth (deg) Plane Elevation (deg)

Ours [30] + GTT Ours [30] + GTT

Range of Motion 30.25 33.98 14.44 8.24

Office 24.95 41.47 10.60 9.70

is not available in real world scenarios, we assert that our method enables 3D pose recovery

with far less overhead.

In terms of computational performance, our bottleneck lies in the 2D pose estimation step.

We are able to achieve a performance of 10 Hz using an Nvidia 1080Ti. However, our method

is not tied to a particular type of 2D pose estimator. A faster pose estimator, such as the recent

work in [39] (180 Hz on similar GPU with similar accuracy, real-time performance on CPU)

can significantly speed up performance without sacrificing accuracy.

5.1.2 Torso pose forecasting

Table 5.3 shows the results of pose forecasting methods, including polynomials of degreeN =

1 and 2, state-of-the-art human motion predictor (HMP, the quantitatively best performing

method for on Human3.6M) [29], and a constant prediction baseline (N = 0) (where the

last ground-truth torso plane orientation is predicted for the entire forecast window). The

results also show the importance of the filtering step (see last row, where we omit the filter

and directly fit an N th order polynomial to unfiltered data.)

Tables 5.4 and 5.5 show the breakdown of torso plane orientation error by individual action

type in the Human3.6M dataset.

A visual representation of the error as it evolves with the forecasting extent across time is

shown in Figures 5.1, 5.2, and 5.3.
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Figure 5.1: Average forecasting error (across ”Pedestrian” test sequences) vs. forecasting

time extent for various categories of Human3.6M data (lower is better). The plots show our

recommended method (Order 1), two baselines (Order 0 and 2), and the RNN-based method

from HMP [29].
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Figure 5.2: Average forecasting error (across ”High Variance” test sequences) vs. forecasting

time extent for various categories of Human3.6M data (lower is better). The plots show our

recommended method (Order 1), two baselines (Order 0 and 2), and the RNN-based method

from HMP [29].
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Figure 5.3: Average forecasting error (across ”Constrained” test sequences) vs. forecasting

time extent for various categories of Human3.6M data (lower is better). The plots show our

recommended method (Order 1), two baselines (Order 0 and 2), and the RNN-based method

from HMP [29].
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Table 5.3: Torso plane orientation forecasting errors for various forecasting windows on

H3.6M [17] data (degrees)

Forecast time→ 400 ms 1 s 2 s

Activity ↓ Const N = 1 N = 2 HMP[29] Const N = 1 N = 2 HMP[29] Const N = 1 N = 2 HMP[29]

Plane Azimuth

Constrained 4.24 2.87 2.92 7.13 9.83 5.49 5.37 11.48 18.98 13.11 13.11 22.32

HV 10.87 9.38 9.1 8.45 19.13 11.01 11.03 15.72 26.32 21.98 38.92 28.98

Pedestrian 4.4 2.17 2.09 5.02 10.46 4.82 3.22 11.45 18.23 11.32 16.69 22.83

All 7.36 5.77 5.64 7.33 14.3 7.93 7.58 13.45 22.26 16.89 25.87 25.53

All (no filter) 7.36 5.4 13.56 7.33 14.3 14.15 50.81 13.45 22.26 27.2 155.87 25.53

Plane Elevation

Constrained 2.32 1.45 1.54 8.13 4.62 3.24 1.99 10.83 6.77 6.63 8 13.06

HV 3.59 2.79 2.81 7.21 5.3 4.32 3.53 7.09 6.68 8.48 11.65 7.69

Pedestrian 2.81 1.6 1.68 6.53 4.86 2.6 2.34 8.02 6.25 5.61 8.4 8.55

All 3.01 2.11 2.16 7.38 4.98 3.62 2.78 8.52 6.63 7.29 9.79 9.65

All (no filter) 3.01 3.26 16.35 7.38 4.98 8.84 67.58 8.52 6.63 17.33 202.66 9.65
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Table 5.4: Torso plane azimuth forecasting (400ms) errors on H3.6M [17] data (degrees)

Action Plane Azimuth (Degrees)

HMP[29] Const N = 1 N = 2 N = 3 CVel (2s) CVel (0.4s)

walking 4.44 2.39 2.45 2.76 2.59 3.45 2.78

eating 4.48 0.97 0.99 1.11 2.94 2.21 1.49

smoking 1.43 0.89 0.74 0.83 17.49 1.53 0.96

discussion 3.13 3.79 4.7 5.53 4.43 3.99 5.92

directions 2.66 1.62 1.3 1.34 4.45 2.64 2.22

greeting 12.68 11.24 10.14 10.24 4.18 17.1 10.93

phoning 7.44 7.38 7.53 8.46 6.54 7.06 8.04

posing 9.65 6.81 7.22 7.69 13.25 10.24 6.16

purchases 18.85 14.4 13.25 14.33 22.44 21.63 13.57

sitting 2.49 1.79 2.01 2.28 2.93 2.42 2.3

sittingdown 5.36 3.32 3.33 3.62 5.76 5.82 3.51

takingphoto 2.14 4.13 5.24 5.5 5.88 3.8 2.73

waiting 26.96 23.68 21.87 22.97 4.509 27.96 23.16

walkingdog 4.89 3 2.6 2.97 9.34 7.43 2.69

walkingtogether 3.88 1.13 1.21 1.28 3.13 2.93 1.82

All (average) 7.36 5.77 5.64 6.06 7.32 8.01 5.88
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Table 5.5: Torso plane elevation forecasting (400ms) errors on H3.6M [17] data (degrees)

Action Plane Elevation (Degrees)

HMP[29] Const N = 1 N = 2 N = 3 CVel (2s) CVel (0.4s)

walking 1.91 1.32 1.25 1.28 4.29 1.91 1.76

eating 1.13 1.01 1.05 1.09 3.78 1.21 1

smoking 1.77 1.19 1.19 1.25 7.77 2.02 1.42

discussion 1.42 0.83 0.79 0.84 4.22 1.64 1.31

directions 2.12 1.89 2.04 2.1 5.97 2.16 1.75

greeting 3.35 3.41 3.29 3.34 4.23 3.43 3.29

phoning 1.63 1.41 1.6 1.66 8.37 1.49 1.61

posing 5.46 3.61 4.16 4.38 8.33 5.32 4.3

purchases 6.54 4.17 4.08 4.26 9.81 7.6 5.21

sitting 3.21 1.87 1.98 2.1 10.79 3.12 2.44

sittingdown 3.85 1.79 1.88 1.98 9.91 4.12 2.67

takingphoto 3.17 2.89 2.76 2.92 10.73 3.78 2.37

waiting 3.05 2.77 2.52 2.58 7.16 3.92 3.46

walkingdog 4.75 2.21 2.57 2.75 12.46 4.66 1.91

walkingtogether 1.77 1.25 1.22 1.25 2.84 1.82 1.67

All (average) 3.00 2.11 2.16 2.25 7.38 3.21 2.41
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Figure 5.4: Qualitative torso pose recovery results on a furniture assembly task. The input

sensor is a consumer stereo (ZED) camera

5.2 Qualitative results

For qualitative analysis of our pose recovery system, we collected data in the real world on

a furniture assembly task, in which a human subject followed print instructions to assemble

an IKEA ottoman. We chose this task to illustrate the capabilities and limitations of the

system. We saw realistic 3D pose estimates in the output and included the results in a video

demonstration. Some sample poses are shown in Figure 5.4 and the video demonstration can

be viewed at this link.

5.3 Discussion

A few trends can be seen in Table 5.3 and the error graphs in Figs. 5.1, 5.2, and 5.3.

First, the plane azimuth is harder to predict than the elevation, given the higher error rates

across all 15 activity sequences and various methods. However, the best average error for both

torso orientation components is under 5 degrees. This is small enough to not cause ambiguity

in most real-world activities.

Second, the filtering step is essential. Without it, we see larger errors in the polynomial

fitting and the errors tend to explode in the larger forecasting windows (Table 5.3). This sug-

gests that the forecast becomes unstable for higher order approximations due to susceptibility
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to high frequency components in the pose variation.

Third, the recurrent neural network model from HMP[29] tends to make much larger

errors than our simple 1st degree (linear) polynomial fit, especially over the short-to-medium

term (i.e., 400 ms-1s) and over all windows for the Pedestrian group of activities. The HMP

errors also show higher variability across tasks than our method.

This suggests that such models are either over-fitting or that the error they are trained

to minimize is unsuitable for our task. That is, recurrent neural network based methods try

to minimize a quantitative loss without reasoning about the temporal smoothness of human

motion. Thus, these methods can suffer from unrealistic discontinuities. This is reinforced by

the observation that these errors are larger in the High Variance tasks such as “Taking Photo”

(both upright and kneeling poses) or “Directions” (high variance poses).

Fourth, the constant velocity baselines described in Section 4.1.2 and seen in Figs. 5.1,

5.2, and 5.3 come very close to the first order spline. In particular, the need for the low pass

filter is further emphasized by the exploding error on averaging

Our forecasting algorithm is inexpensive to compute while being faster and more accurate

(for short horizons) than previous work. The method described in [29] (HMP) takes about

35ms for one forward pass on a dedicated Nvidia Titan X GPU. This translates to a maximum

sampling rate of 28 Hz, assuming desktop-level hardware is available on-board. Note that this

is the computational cost of just the HMP forecasting method. This is significant since it my

be an additional bottleneck if used in conjunction with another 2D/3D pose recovery method

for end-to-end pose recovery and forecasting over our forecasting method. Our method takes

approximately 0.715 ms on an Intel i7-6700HQ CPU (laptop processor). This makes our

method about 45× faster on cheaper and more accessible hardware.

It is important to note that HMP forecasts full body articulated 3D pose using about

34000× as many learned parameters, while we only model the torso plane. This makes the

45× running time speed-up less surprising. However, this difference in pose information

demonstrates the power of our forecasting technique. Since HMP models the torso with more

granularity and parameters than our method, it is reasonable to expect much better perfor-

mance in the medium to long term. This is however not always the case, as can be seen from

Table 5.3
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Chapter 6

Conclusion

6.1 Summary

We propose a novel end-to-end torso pose estimation and forecasting system which is rele-

vant for rapid perception and re-planning loops of robot decision making in highly dynamic

environments, such as the case of social navigation in an autonomous mobile, service robot.

We parameterized torso pose uniquely by the position and orientation of a torso plane

(Equation 3.1). We evaluated the pose estimation quantitatively and compare against a state-

of-the-art monocular approach, showing comparable results against a strong baseline. The

evaluation was performed in a replicable manner using a publicly available dataset while

also simulating the single viewpoint sensing of a mobile robot, thus allowing fair and easy

benchmarking in the future.

In addition to torso pose estimation, our approach predictively models absolute torso po-

sition. We present a comparative quantitative evaluation and show that our simple filter and

fit method outperforms complex recurrent neural network methods for the short-to-medium

horizon case while being competitive over the long horizon case. For walking motions, it also

accurately predicts the torso facing direction (plane azimuth) which is an important predictive

cue of pedestrian trajectory intent. In this context, larger models or more complex model-

ing has not lead to better forecasting performance. Further, our method is approximately 45×

faster on the torso plane forecasting task, implying suitability to navigation in human environ-

ments. We also identified a need for more realistic pedestrian datasets to evaluate pedestrian
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pose and trajectory detection and forecasting systems.

6.2 Future work

In future work, we would like to apply our method to tasks that require multi-person pose

perception, like social navigation, to measure the intent prediction capability of torso pose.

We imposed several constraints on this work, including a focus solely on the torso plane (as

opposed to full-body), which we will provide more validation for, via a downstream task

such as planning for social navigation, in future work. Comparing the two pose representa-

tions in this manner would quantify the difference in intent-prediction capability, allowing an

informed trade-off of computational load vs performance. This requires the collection of a

dataset with naturalistic pedestrian motions, on-board robot point-of-view sensing which is

calibrated to instrumentation around the robot to generate pose annotations for pedestrians

around the robot in a global frame. We plan to collect such a dataset.
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Appendix A

Appendix

A.1 Human 3.6M

A.1.1 Categorization of Human 3.6M Activities

The categories used in Chapter 3 are composed of the following actions:

Pedestrian Constrained High Variance

Walking Eating Posing

Walking Together Smoking Purchases

Walking Dog Phoning Discussion

Sitting Directions

Sitting Down Greeting

Taking Photo

Waiting

Table A.1: Categorization of Human 3.6M dataset
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