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Figure 1. Illustration of a variety of image deformations: ghosted (a, b), stitched (c), montaged (d), and partially occluded (e) images.

Abstract

Humans can robustly learn novel visual concepts even
when images undergo various deformations and lose cer-
tain information. Mimicking the same behavior and syn-
thesizing deformed instances of new concepts may help vi-
sual recognition systems perform better one-shot learning,
i.e., learning concepts from one or few examples. Our key
insight is that, while the deformed images may not be vi-
sually realistic, they still maintain critical semantic infor-
mation and contribute significantly to formulating classi-
fier decision boundaries. Inspired by the recent progress of
meta-learning, we combine a meta-learner with an image
deformation sub-network that produces additional train-
ing examples, and optimize both models in an end-to-end
manner. The deformation sub-network learns to deform
images by fusing a pair of images — a probe image that
keeps the visual content and a gallery image that diversi-
fies the deformations. We demonstrate results on the widely
used one-shot learning benchmarks (miniImageNet and Im-
ageNet 1K Challenge datasets), which significantly out-
perform state-of-the-art approaches. Code is available at
https://github.com/tankche1/IDeMe-Net.

1. Introduction
Deep architectures have made significant progress in var-

ious visual recognition tasks, such as image classification
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and object detection. This success typically relies on super-
vised learning from large amounts of labeled examples. In
real-world scenarios, however, one may not have enough re-
sources to collect large training sets or need to deal with rare
visual concepts. It is also unlike the human visual system,
which can learn a novel concept with very little supervision.
One-shot or low/few-shot learning [4], which aims to build
a classifier for a new concept from one or very few labeled
examples, has thus attracted more and more attention.

Recent efforts to address this problem have leveraged a
learning-to-learn or meta-learning paradigm [25, 20, 28,
32, 31, 22, 33, 17, 5, 13]. Meta-learning algorithms train a
learner, which is a parameterized function that maps labeled
training sets to classifiers. Meta-learners are trained by sam-
pling a collection of one-shot learning tasks and the corre-
sponding datasets from a large universe of labeled examples
of known (base) categories, feeding the sampled small train-
ing set to the learner to obtain a classifier, and then comput-
ing the loss of the classifier on the sampled test set. The
goal is that the learner is able to tackle the recognition of
unseen (novel) categories from few training examples.

Despite their noticeable performance improvements,
these generic meta-learning algorithms typically treat im-
ages as black boxes and ignore the structure of the visual
world. By contrast, our biological vision system is very
robust and trustable in understanding images that undergo
various deformations [27]. For instance, we can easily rec-
ognize the objects in Figure 1, despite ghosting (Figure 1(a,
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b)), stitching (Figure 1(c)), montaging (Figure 1(d)), and
partially occluding (Figure 1(e)) the images. While these
deformed images may not be visually realistic, our key in-
sight is that they still maintain critical semantic information
and presumably serve as “hard examples” that contribute
significantly to formulating classifier decision boundaries.
Hence, by leveraging such modes of deformations shared
across categories, the synthesized deformed images could
be used as additional training data to build better classifiers.

A natural question then arises: how could we produce in-
formative deformations? We propose a simple parametriza-
tion that linearly combines a pair of images to generate the
deformed image. We use a probe image to keep the vi-
sual content and overlay a gallery image on a patch level to
introduce appearance variations, which could be attributed
to semantic diversity, artifacts, or even random noise. Fig-
ure 5 shows some examples of our deformed images. Im-
portantly, inspired by [30], we learn to deform images that
are useful for a classification objective by end-to-end meta-
optimization that includes image deformations in the model.

Our Image Deformation Meta-Network (IDeMe-Net)
thus consists of two components: a deformation sub-
network and an embedding sub-network. The deforma-
tion sub-network learns to generate the deformed images
by linearly fusing the patches of probe and gallery images.
Specifically, we treat the given small training set as the
probe images and sample additional images from the base
categories to form the gallery images. We evenly divide
the probe and gallery images into nine patches, and the de-
formation sub-network estimates the combination weight of
each patch. The synthesized images are used to augment the
probe images and train the embedding sub-network, which
maps images to feature representations and performs one-
shot classification. The entire network is trained in an end-
to-end meta-learning manner on base categories.

Our contributions are three-fold. (1) We propose
a novel image deformation framework based on meta-
learning to address one-shot learning, which leverages the
rich structure of shared modes of deformations in the visual
world. (2) Our deformation network learns to synthesize di-
verse deformed images, which effectively exploits the com-
plementarity and interaction between the probe and gallery
image patches. (3) By using the deformation network, we
effectively augment and diversify the one-shot training im-
ages, leading to a significant performance boost on one-shot
learning tasks. Remarkably, our approach achieves state-of-
the-art performance on both the challenging ImageNet1K
and miniImageNet datasets.

2. Related Work
Meta-Learning. Typically, meta-learning [25, 24, 20,
28, 32, 31, 22, 33, 17, 5, 13, 36, 15] aims at training
a parametrized mapping from a few training instances to

model parameters in simulated one-shot learning scenarios.
Other meta-learning strategies in one-shot learning include
graph CNNs [7] and memory networks [19, 1]. Attention is
also introduced in meta-learning, in ways of analyzing the
relation between visual and semantic representations [29]
and learning the combination of temporal convolutions and
soft attention [14]. Different from prior work, we focus on
exploiting the complementarity and interaction between vi-
sual patches through the meta-learning mechanism.
Metric Learning. This is another important line of work
in one-shot learning. The goal is to learn a metric space
which can be optimized for one-shot learning. Recent work
includes Siamese networks [11], matching networks [28],
prototypical networks [22], relation networks [23], and dy-
namic few-shot learning without forgetting [8].
Data Augmentation. The key limitation of one-shot learn-
ing is the lack of sufficient training images. As a com-
mon practice, data augmentation has been widely used to
help train supervised classifiers [12, 2, 34]. The standard
techniques include adding Gaussian noise, flipping, rotat-
ing, rescaling, transforming, and randomly cropping train-
ing images. However, the generated images in this way are
particularly subject to visual similarity with the original im-
ages. In addition to adding noise or jittering, previous work
seeks to augment training images by using semi-supervised
techniques [31, 18, 16] and utilizing relation between vi-
sual and semantic representations [3] , or directly synthe-
sizing new instances in the feature domain [9, 30, 21, 6] to
transfer knowledge of data distribution from base classes to
novel classes. By contrast, we also use samples from base
classes to help synthesize deformed images but directly aim
at maximizing the one-shot recognition accuracy.

The most relevant to our approach is the work of [30, 35].
Wang et al. [30] introduce a GAN-like generator to halluci-
nate novel instances in the feature domain by adding noise,
whereas we focus on learning to deform two real images
in the image domain without introducing noise. Zhang et
al. [35] randomly sample image pairs and linearly combine
them to generate additional training images. In this mixup
augmentation, the combination is performed with weights
randomly sampled from a prior distribution and is thus con-
strained to be convex. The label of the generated image
is similarly the linear combination of the labels (as one-
hot label vectors) of the image pairs. However, they ig-
nore structural dependencies between images as well as im-
age patches. By contrast, we learn classifiers to select im-
ages that are similar to the probe images from the unsu-
pervised gallery image set. Our combination weights are
learned through a deformation sub-network on the image
patch level and the combination is not necessarily convex.
In addition, our generated image preserves the label of its
probe image. Comparing with these methods, our approach
learns to dynamically fuse patches of two real images in



an end-to-end manner. The produced images maintain the
important patches of original images while being visually
different from them, thus facilitating training one-shot clas-
sifiers.

3. One-Shot Learning Setup

Following recent work [28, 17, 5, 22, 30], we establish
one-shot learning in a meta-learning framework: we have a
base category set Cbase and a novel category set Cnovel, in
which Cbase ∩ Cnovel = ∅; correspondingly, we have a base
dataset Dbase = {(Ii, yi) , yi ∈ Cbase} and a novel dataset
Dnovel = {(Ii, yi) , yi ∈ Cnovel}. We aim to learn a clas-
sification algorithm on Dbase that can generalize to unseen
classes Cnovel with one or few training examples per class.

To mimic the one-shot learning scenario, meta-learning
algorithms learn from a collection of N -way-m-shot clas-
sification tasks/datasets sampled from Dbase and are eval-
uated in a similar way on Dnovel. Each of these sampled
datasets is termed as an episode, and we thus have different
meta-sets for meta-training and meta-testing. Specifically,
we randomly sample N classes L ∼ Ck for a meta-training
(i.e., k = base) or meta-testing episode (i.e., k = novel).
We then randomly sample m and q labeled images per class
in L to construct the support set S and query set Q, re-
spectively, i.e., |S| = N × m and |Q| = N × q. During
meta-training, we sample S and Q to train our model. Dur-
ing meta-testing, we evaluate by averaging the classification
accuracy on query sets Q of many meta-testing episodes.

We view the support set as supervised probe images and
different from the previous work, we introduce an addi-
tional gallery image set G that serves as an unsupervised
image pool to help generate deformed images. To construct
G, we randomly sample some images per base class from
the base dataset, i.e., G ∼ Dbase. The same G is used
in both the meta-training and meta-testing episodes. Note
that since it is purely sampled from Dbase, the newly in-
troduced G does not break the standard one-shot setup as
in [22, 5, 17]. We do not introduce any additional images
from the novel categories Cnovel.

4. Image Deformation Meta-Networks

We now explain our image deformation meta-network
(IDeMe-Net) for one-shot learning. Figure 2 shows the ar-
chitecture of IDeMe-Net fθ(·) parametrized by θ. IDeMe-
Net is composed of two modules — a deformation sub-
network and an embedding sub-network. The deformation
sub-network adaptively fuses the probe and gallery images
to synthesize the deformed images. The embedding sub-
network maps the images to feature representations and
then constructs the one-shot classifier. The entire meta-
network is trained in an end-to-end manner.

4.1. Deformation Sub-network

This sub-network fθdef (·) learns to explore the interac-
tion and complementarity between the probe images Iprobe
((Iprobe, yprobe) ∈ S) and the gallery images Igallery ∈ G,
and fuses them to generate the synthesized deformed im-
ages Isyn, i.e., Isyn = fθdef (Iprobe, Igallery). Our goal
is to synthesize meaningful deformed images such that
ysyn = yprobe. This is achieved by using two strategies: (1)
ysyn = yprobe is explicitly enforced as a constraint during
the end-to-end optimization; (2) we propose an approach
to sample Igallery that are visually or semantically similar
to the images of yprobe. Specifically, for each class yprobe,
we directly use the feature extractor and one-shot classi-
fier learned in the embedding sub-network to select the top
ε% images from G which have the highest class probability
of yprobe. From this initial pool of images, we randomly
sample Igallery for each probe image (Iprobe, yprobe). Note
that during meta-training, both Iprobe and Igallery are ran-
domly sampled from base classes, so they might belong to
the same class. We find that further constraining them to
belong to different base classes has little impact on the per-
formance. During meta-testing, Iprobe and Igallery belong
to different classes, with Iprobe sampled from novel classes
and Igallery still from base classes.

Two branches, ANET and BNET, are used to parse
Iprobe and Igallery , respectively. Each of them is a residual
network [10] without fully-connected layers. The outputs
of ANET and BNET are then concatenated to be fed into a
fully-connected layer, which produces a 9-D weight vector
w. As shown in Figure 2, we evenly divide the images into
3×3 patches. The deformed image is thus simply generated
as a linearly weighted combination of Iprobe and Igallery on
the patch level. That is, for the qth patch, we have

Isyn,q = wqIprobe,q + (1− wq) Igallery,q. (1)

We assign the class label yprobe to the synthesized de-
formed image Isyn. For any probe image Iiprobe, we sample
naug gallery images from the corresponding pool and pro-
duce naug synthesized deformed images. We thus obtain an
augmented support set

S̃ =

{(
Iiprobe, y

i
probe

)
,
{(

Ii,jsyn, y
i,j
probe

)}naug

j=1

}N×m
i=1

. (2)

4.2. Embedding Sub-network

The embedding sub-network fθemb
(·) consists of a deep

convolutional network for feature extraction and a non-
parametric one-shot classifier. Given an input image I, we
use a residual network [10] to produce its feature represen-
tation fθemb

(I). To facilitate the training process, we intro-
duce an additional softmax classifier, i.e., a fully-connected
layer on top of the embedding sub-network with a cross-
entropy loss (CELoss), that outputs |Cbase| scores.



Figure 2. The overall architecture of our image deformation meta-network (IDeMe-Net).

4.3. One-Shot Classifier

Due to its superior performance, we use the non-
parametric prototype classifier [22] as the one-shot classi-
fier. During each episode, given the sampled S, Q, and G,
the deformation sub-network produces the augmented sup-
port set S̃. Following [22], we calculate the prototype vector
pcθ for each class c in S̃ as

pcθ =
1

Z

∑
(Ii,yi)∈S̃

fθemb
(Ii) · Jyi = cK , (3)

where Z = Σ(Ii,yi)∈S̃ Jyi = cK is the normalization factor.
J·K is the Iverson’s bracket notation: JxK = 1 if x is true, and
0 otherwise. Given any query image Ii ∈ Q, its probability
of belonging to class c is computed as

Pθ (yi = c|Ii) =
exp

(
−‖fθemb

(Ii)− pcθ‖
2
)

∑N
j=1 exp

(
−
∥∥∥fθemb

(Ii)− pjθ
∥∥∥2) , (4)

where ‖ · ‖ indicates the Euclidean distance. The one-shot
classifier P thus predicts the class label of Ii as the highest
probability over N classes.

5. Training Strategy of IDeMe-Net
5.1. Training Loss

Training the entire IDeMe-Net includes two subtasks:
(1) training the deformation sub-network which maximally
improves the one-shot classification accuracy; (2) building
the robust embedding sub-network which effectively deals
with various synthesized deformed images. Note that our
one-shot classifier has no parameters, which does not need
to be trained. We use the prototype loss and the cross-
entropy loss to train these two sub-networks, respectively.
Update the deformation sub-network. We optimize the
following prototype loss function to endow the deformation
sub-network with the desired one-shot classification ability:

minθEG,L∼Dbase
ES,Q∼L

 ∑
(Ii,yi)∈Q

−logPθ (yi | Ii)

 , (5)

Algorithm 1 Meta-training procedure of our IDeMe-Net
fθ. G is the fixed gallery constructed from Cbase.

1: procedure META-TRAIN EPISODE
2: The procedure of one meta-training episode
3: L← randomly sample N classes from Cbase
4: S ← randomly sample instances belonging to L
5: //sample the support set
6: Q← randomly sample instances belonging to L
7: //sample the query set
8: train the prototype classifier P from fθemb

(S)
9: S̃ ← S . initialize the augment support set

10: for c in L do . enumerate the chosen classes
11: pool←use P to select ε% images inG that have

the highest class probability of c
12: for (Iprobe, c) in Sc do
13: for j = 1 to naug do
14: Igallery ← randomly sample instances

from pool
15: Isyn ← fθdef (Iprobe, Igallery)

16: S̃ ← S̃ ∪ (Isyn, c)
17: end for
18: end for
19: end for
20: train the prototype classifier P̃ from fθemb

(S̃)
21: use P̃ to classify fθemb

(Q) and obtain the prototype
loss

22: use the softmax classifier to classify fθemb
(S̃) and

obtain the CELoss
23: update θemb with the CELoss
24: update θdef with the prototype loss
25: end procedure

where Pθ (yi | Ii) is the one-shot classifier in Eq. (4). Using
the prototype loss encourages the deformation sub-network
to generate diverse instances to augment the support set.
Update the embedding sub-network. We use the cross-
entropy loss to train the embedding sub-network to directly
classify the augmented support set S̃. Note that with the
augmented support set S̃, we have relatively more training



instances to train this sub-network and the cross-entropy
loss is the standard loss function in training a supervised
classification network. Empirically, we find that using the
cross-entropy loss speeds up the convergence and improves
the recognition performance than using the prototype loss
only.

5.2. Training Strategy

We summarize the entire training procedure of our
IDeMe-Net on the base dataset Dbase in Algorithm 1. We
have access to the same, predefined gallery G from Dbase

for both meta-training and meta-testing. During meta-
training, we sample the N -way-m-shot training episode to
produce S and Q from Dbase. The embedding sub-network
learns an initial one-shot classifier on S using Eq. (4). Given
a probe image Iprobe, we then sample the gallery images
Igallery ∼ G and train the deformation sub-network to gen-
erate the augmented support set S̃ using Eq. (1). S̃ is fur-
ther used to update the embedding sub-network and learn
a better one-shot classifier. We then conduct the final one-
shot classification on the query set Q and back-propagate
the prediction error to update the entire network. During
meta-testing, we sample the N -way-m-shot testing episode
to produce S and Q from the novel dataset Dnovel.

6. Experiments

Our IDeMe-Net is evaluated on two standard bench-
marks: miniImageNet [28] and ImageNet 1K Challenge [9]
datasets. miniImageNet is a widely used benchmark in one-
shot learning, which includes 600 images per class and has
100 classes in total. Following the data split in [17], we use
64, 16, 20 classes as the base, validation, and novel category
set, respectively. The hyper-parameters are cross-validated
on the validation set. Consistent with [28, 17], we evaluate
our model in 5-way-5-shot and 5-way-1-shot settings.

For the large-scale ImageNet 1K dataset, we divide the
original 1K categories into 389 base (Dbase) and 611 novel
(Dnovel) classes following the data split in [9]. The base
classes are further divided into two disjoint subsets: base
validation set Dcv

base (193 classes) and evaluation set Dfin
base

(196 classes) and the novel classes are divided into two sub-
sets as well: novel validation set Dcv

novel (300 classes) and
evaluation set Dfin

novel (311 classes). We use the base/novel
validation set Dcv for cross-validating hyper-parameters
and use the base/novel evaluation setDfin to conduct the fi-
nal experiments. The same experimental setup is used in [9]
and the reported results are averaged over 5 trials. Here we
focus on synthesizing novel instances and we thus evaluate
the performance primarily on novel classes, i.e., 311-way-
m-shot settings, which is also consistent with most of the
contemporary work [28, 22, 17].

6.1. Results on ImageNet 1K Challenge

Setup. We use ResNet-10 architectures for ANET and
BNET (i.e., the deformation sub-network). For a fair com-
parison with [9, 30], we evaluate the performance of using
ResNet-10 (Table 1) and ResNet-50 (Table 2) for the em-
bedding sub-network. Stochastic gradient descent (SGD)
is used to train IDeMe-Net in an end-to-end manner. It
gets converged over 100 epochs. The initial learning rates
of ANET, BNET, and the embedding sub-network are set
as 3 × 10−3, 3 × 10−3, and 10−1, respectively, and de-
creased by 1/10 every 30 epochs. The batch size is set as
32. We randomly sample 10 images per base category to
construct the gallery G and we set ε as 2. Note that G is
fixed during the entire experiments. ANET, BNET, and the
embedding sub-network are trained from scratch on Dbase.
Our model is evaluated on Dnovel. naug is cross-validated
as 8, which balances between the computational cost and
the augmented training data scale. In practice, we perform
stage-wise training to overcome potential negative influ-
ence caused by misleading training images synthesized by
the initial deformation sub-network. Specifically, to make
the training more robust, we first fix the deformation sub-
network and train the embedding sub-network with real and
deformed images. Here the deformed images are synthe-
sized by linearly combining two images on a patch level
with a randomly sampled weight vector w. Note that these
two images are sampled from the same category. Then we
fix the embedding sub-network and learn the deformation
sub-network to reduce the discrepancy between synthesized
and real images. Finally, we train the embedding and defor-
mation sub-networks jointly (i.e., the entire IDeMe-Net) to
allow them to cooperate with each other.
Baselines and Competitors. We compare against several
baselines and competitors as follows. (1) We directly train a
ResNet-10 feature extractor on Dbase and use it to compute
features on Dnovel. We then train standard supervised clas-
sifiers on Dnovel, including neural network, support vec-
tor machine (SVM), logistic regression (LR), and prototype
classifiers. The neural network classifier consists of a fully-
connected layer and a softmax layer. (2) We compare with
state-of-the-art approaches to one-shot learning, such as
matching networks [28], generation SGM [9], prototypical
networks [22], Cosine Classifier & Att. Weight Gen (Cos
& Att.) [8], CP-ANN [6], PMN, and PMN w/ H [30]. (3)
The data augmentation methods are also compared — flip-
ping: the input image is flipped from left to right; Gaussian
noise: cross-validated Gaussian noise N (0, 10) is added
to each pixel of the input image; Gaussian noise (feature
level): cross-validated Gaussian noise N (0, 0.3) is added
to each dimension of the ResNet feature for each image;
Mixup: using mixup [35] to combine probe and gallery im-
ages. For fair comparisons, all these augmentation methods
use the prototype classifier as the one-shot classifier.



Method m = 1 2 5 10 20

Baselines

Softmax – / 16.3 – / 35.9 – / 57.4 – / 67.3 – / 72.1
LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8
SVM 15.9/36.6 22.7/48.4 31.5/61.2 37.9/69.2 43.9/74.6
Prototype Classifier 17.1/39.2 24.3/51.1 33.8/63.9 38.4/69.9 44.1/74.7

Competitors

Matching Network [28] – / 43.0 – / 54.1 – / 64.4 – / 68.5 – / 72.8
Prototypical Network [22] 16.9/41.7 24.0/53.6 33.5/63.7 37.7/68.2 42.7/72.3
Generation SGM [9] – / 34.3 – / 48.9 – / 64.1 – / 70.5 – / 74.6
PMN [30] – / 43.3 – / 55.7 – / 68.4 – / 74.0 – / 77.0
PMN w/ H [30] – / 45.8 – / 57.8 – / 69.0 – / 74.3 – / 77.4
Cos & Att. [8] – / 46.0 – / 57.5 – / 69.1 – / 74.8 – / 78.1
CP-AAN [6] – / 48.4 – / 59.3 – / 70.2 – / 76.5 – / 79.3

Augmentation

Flipping 17.4/39.6 24.7/51.2 33.7/64.1 38.7/70.2 44.2/74.5
Gaussian Noise 16.8/39.0 24.0/51.2 33.9/63.7 38.0/69.7 43.8/74.5
Gaussian Noise (feature level) 16.7/39.1 24.2/51.4 33.4/63.3 38.2/69.5 44.0/74.2
Mixup [35] 15.8/38.7 24.6/51.4 32.0/61.1 38.5/69.2 42.1/72.9

Ours IDeMe-Net 23.1/51.0 30.1/60.9 39.3/70.4 42.7/73.4 45.0/75.1

Table 1. Top-1 / Top-5 accuracy (%) on novel classes of the ImageNet 1K Challenge dataset. We use ResNet-10 as the embedding
sub-network. m indicates the number of training examples per class. Our IDeMe-Net consistently achieves the best performance.

Method m = 1 2 5 10

Softmax – / 28.2 – / 51.0 – / 71.0 – / 78.4
SVM 20.1/41.6 29.4/57.7 42.6/72.8 49.9/79.1
LR 22.9/47.9 32.3/61.3 44.3/73.6 50.9/78.8
Proto-Clsf 20.8/43.1 29.9/58.1 42.4/72.3 49.5/79.0

G-SGM [9] – / 47.3 – / 60.9 – / 73.7 – / 79.5
PMN [30] – / 53.3 – / 65.2 – / 75.9 – / 80.1
PMN w/ H [30] – / 54.7 – / 66.8 – / 77.4 – / 81.4
IDeMe-Net (Ours) 30.3/60.1 39.7/69.6 47.5/77.4 51.3/80.2

Table 2. Top-1 / Top-5 accuracy (%) on novel classes of the Im-
agenet 1K Challenge dataset. We use ResNet-50 as the embed-
ding sub-network. m indicates the number of training examples
per class. Proto-Clsf and G-SGM denote the prototype classifier
and generation SGM [9], respectively.

Results. Tables 1 and 2 summarize the results of using
ResNet-10 and ResNet-50 as the embedding sub-network,
respectively. For example, using ResNet-10, the top-5 accu-
racy of IDeMe-Net in Table 1 is superior to the prototypical
network by 7% when m = 1, 2, 5, showing the sample effi-
ciency of IDeMe-Net for one-shot learning. With more data
(e.g.,m = 10, 20), while the plain prototype classifier base-
line performs worse than other baselines (e.g., PMN), our
deformed images coupled with the prototype classifier still
have significant effect (e.g., 3.5 point boost when m = 10).
The top-1 accuracy demonstrates the similar trend. Using
ResNet-50 as the embedding sub-network, the performance
of all the approaches improves and our IDeMe-Net consis-
tently achieves the best performance, as shown in Table 2.
Figure 3(a) further highlights that our IDeMe-Net consis-

tently outperforms all the baselines by large margins.

6.2. Ablation Study on ImageNet 1K Challenge

We conduct extensive ablation studies to evaluate the
contribution of each component in our model.
Variants of IDeMe-Net. We consider seven different vari-
ants of our IDeMe-Net, as shown in Figure 3(b) and Ta-
ble 3. (1) ‘IDeMe-Net - CELoss’: the IDeMe-Net is trained
using only the prototype loss without the cross-entropy loss
(CELoss). (2) ‘IDeMe-Net - Proto Loss’: the IdeMe-Net is
trained using only the cross-entropy loss without the pro-
totype loss. (3) ‘IDeMe-Net - Predict’: the gallery im-
ages are randomly chosen in IDeMe-Net without predict-
ing their class probability. (4) ‘IDeMe-Net - Aug. Testing’:
the deformed images are not produced in the meta-testing
phase. (5) ‘IDeMe-Net - Def. Network’: the combination
weights in Eq. (1) are randomly generated instead of us-
ing the learned deformation sub-network. (6) ‘IDeMe-Net -
Gallery’: the gallery images are directly sampled from the
support set instead of constructing an additional Gallery. (7)
‘IDeMe-Net - Deform’: we simply use the gallery images to
serve as the deformed images. As shown in Figure 3(b), our
full IDeMe-Net model outperforms all these variants, show-
ing that each component is essential and complementary to
each other.

We note that (1) Using CELoss and prototype loss to
update the embedding and deformation sub-networks,
respectively, achieves the best result. As shown in
Figure 3(b), the accuracy of ‘IDeMe-Net - CELoss’ is
marginally lower than IDeMe-Net but still higher than the
prototype classifier baseline, while ‘IDeMe-Net - Proto



Method m = 1 2 5 10 20

Baselines
LR 18.3/42.8 26.0/54.7 35.8/66.1 41.1/71.3 44.9/74.8
Prototype Classifier 17.1/39.2 24.3/51.1 33.8/63.9 38.4/69.9 44.1/74.7

Variants

IDeMe-Net - CELoss 21.3/50.0 28.0/58.3 37.7/69.4 41.3/71.6 44.3/74.3
IDeMe-Net - Proto Loss 15.3/36.7 21.4/50.4 31.7/62.0 37.9/69.0 43.7/73.7
IDeMe-Net - Predict 17.0/39.3 24.0/50.7 33.6/63.5 38.0/69.2 43.7/73.8
IDeMe-Net - Aug. Testing 17.0/39.1 24.30/51.3 33.5/63.8 38.0/69.1 43.8/74.5
IDeMe-Net - Def. Network 15.9/38.0 24.1/50.1 32.6/63.3 38.2/68.9 42.4/73.1
IDeMe-Net - Gallery 17.5/39.4 24.2/51.4 33.5/63.7 38.7/70.3 44.4/74.5
IDeMe-Net - Deform 15.7/37.8 22.7/49.8 31.9/62.6 38.0/68.7 43.5/73.8

Patch Size

IDeMe-Net (1× 1) 16.2/39.3 24.4/52.1 32.9/63.0 38.8/69.5 42.7/73.2
IDeMe-Net (5× 5) 24.1/51.7 30.3/61.2 39.6/70.4 42.4/73.2 44.3/74.6
IDeMe-Net (7× 7) 23.8/52.1 30.2/61.3 39.1/70.2 42.7/73.1 44.5/74.7
IDeMe-Net (pixel level) 17.3/39.0 23.8/51.2 34.1/63.7 38.5/70.2 43.9/74.5

Ours IDeMe-Net 23.1/51.0 30.4/60.9 39.3/70.4 42.7/73.4 45.0/75.1

Table 3. Top-1 / Top-5 accuracy (%) of the ablation study on novel classes of the ImageNet 1K Challenge dataset. We use ResNet-10
as the embedding sub-network. m indicates the number of training examples per class. Our full model achieves the best performance.

Loss’ underperforms the baseline. (2) Our strategy for
selecting the gallery images is the key to diversify the
deformed images. Randomly choosing the gallery im-
ages (‘IDeMe-Net - Predict’) or sampling the gallery im-
ages from the support set (‘IDeMe-Net - Gallery’) obtains
no performance improvement. One potential explanation
is that they only introduce noise or redundancy and do not
bring in useful information. (3) Our improved perfor-
mance mainly comes from the diversified deformed im-
ages, rather than the embedding sub-network. Without
producing the deformed images in the meta-testing phase
(‘IDeMe-Net - Aug. Testing’), the performance is close
to the baseline, suggesting that training on the deformed
images does not obviously benefit from the embedding
sub-network. (4) Our meta-learned deformation sub-
network effectively exploits the complementarity and in-
teraction between the probe and gallery image patches,
producing the key information in the deformed images.
To show this point, we investigate two deformation strate-
gies: randomly generating the weight vector w (‘IDeMe-
Net - Def. Network’) and setting all the weights to be 0
(‘IDeMe-Net - Deform’); in the latter case, it is equiva-
lent to purely using the gallery images to serve as the de-
formed images. Both strategies perform worse than the
prototype classifier baseline, indicating the importance of
meta-learning a deformation strategy.

Different division schemes. In the deformation sub-
network and Eq. (1), we evenly split the image into 3 × 3
patches. Some alternative division schemes are compared in
Table 3 and Figure 3(c). Specifically, we consider the 1×1,
5×5, 7×7, and pixel-level division schemes and report the
results as IDeMe-Net (1× 1), IDeMe-Net (5× 5), IDeMe-
Net (7× 7), and IDeMe-Net (pixel level), respectively. The
experimental results suggest the patch-level fusion, rather
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Figure 3. Ablation study on ImageNet 1K Challenge dataset:
(a) highlights the comparison with several competitors; (b) shows
the impact of different components on our IDeMe-Net; (c) ana-
lyzes the impact of different division schemes; (d) shows how the
performance changes with respect to the number of synthesized
deformed images. Best viewed in color with zoom.

than image-level or pixel-level fusion in our IDeMe-Net.
The image-level division (1 × 1) ignores the local image
structures and deforms through a global combination, thus
decreasing the diversity. The pixel-level division is particu-
larly subject to the disarray of the local information, while



(a) Gaussian Baseline (b) IDeMe-Net - Deform (c) IDeMe-Net

Figure 4. t-SNE visualization of 5 novel classes. Dots, stars,
and triangles represent the real examples, the probe images, and
the synthesized deformed images, respectively. (a) Synthesis by
adding Gaussian noise. (b) Synthesis by directly using the gallery
images. (c) Synthesis by our IDeMe-Net. Best viewed in color
with zoom.

the patch-level division (3 × 3, 5 × 5, and 7 × 7) consid-
ers image patches as the basic unit to maintain some local
information. In addition, the results show that using a fine-
grained patch size (e.g., 5 × 5 division and 7 × 7 division)
may achieve slightly better results than our 3×3 division. In
brief, our patch-level division not only maintains the critical
region information but also increases diversity.

Figure 5. Examples of the deformed images during meta-testing.
1st row: probe images of novel classes. 2nd: gallery im-
ages of base classes. 3rd: synthesized images. The probe-
gallery image pairs from left to right: vase–jellyfish, vase–
oboe, vase–garbage bin, vase–soup pot, golden retriever–poodle,
golden retriever–walker hound, golden retriever–walker hound,
and golden retriever–poodle. Best viewed in color with zoom.

Number of synthesized deformed images. We also show
how the top-5 accuracy changes with respect to the number
of synthesized deformed images in Figure 3(d). Specifi-
cally, we change the number of synthesized deformed im-
ages naug in the deformation sub-network, and plot the 5-
shot top-5 accuracy on the Imagenet 1K Challenge dataset.
It shows that when naug is changed from 0 to 8, the per-
formance of our IDeMe-Net is gradually improved. The
performance saturates when enough deformed images are
generated (naug > 8).
Visualization of deformed images in feature space. Fig-
ure 4 shows the t-SNE [26] visualization of 5 novel classes
from our IDeMe-Net, the Gaussian noise baseline, and the

Method
miniImageNet (%)

1-shot 5-shot

MAML [5] 48.70±1.84 63.11±0.92
Meta-SGD [13] 50.47±1.87 64.03±0.94

Matching Network [28] 43.56±0.84 55.31±0.73
Prototypical Network [22] 49.42±0.78 68.20±0.66

Relation Network [23] 57.02±0.92 71.07±0.69
SNAIL [14] 55.71±0.99 68.88±0.92

Delta-Encoder [21] 58.7 73.6
Cos & Att. [8] 55.45±0.89 70.13 ±0.68

Prototype Classifier 52.54±0.81 72.71±0.73
IDeMe-Net (Ours) 59.14±0.86 74.63±0.74

Table 4. Top-1 accuracy (%) on novel classes of the
miniImageNet dataset. “±” indicates 95% confidence intervals
over tasks.

‘IDeMe-Net - Deform’ variant. For the Gaussian noise
baseline, the synthesized images are heavily clustered and
close to the probe images. By contrast, the synthesized
deformed images of our IDeMe-Net scatter widely in the
class manifold and tend to locate more around the class
boundaries. For ‘IDeMe-Net - Deform’, the synthesized
images are the same as the gallery images and occasionally
fall into manifolds of other classes. Interesting, comparing
Figure 4(b) and Figure 4(c), our IDeMe-Net effectively de-
forms those misleading gallery images back to the correct
class manifold.
Visualization of deformed images in image space. Here
we show some examples of our deformed images on novel
classes in Figure 5. We can observe that the deformed im-
ages (in the third row) are visually different from the probe
images (in the first row) and the gallery images (in the sec-
ond row). For novel classes (e.g., vase and golden retriever),
our method learns to find visual samples that are similar
in shape and geometry (e.g., jelly fish, garbage bin, and
soup pot) or similar in appearance (e.g., poodle and walker
hound). By doing so, the deformed images preserve im-
portant visual content from the probe images and introduce
new visual contents from the gallery images, thus diversify-
ing and augmenting the training images in a way that max-
imizes the one-shot classification accuracy.

6.3. Results on miniImageNet

Setup and Competitors. We use a ResNet-18 architecture
as the embedding sub-network. We randomly sample 30
images per base category to construct the gallery G. Other
settings are the same as those on the ImageNet 1k Challenge
dataset. As summarized in Table 4, we mainly focus on
three groups of competitors: (1) meta-learning algorithms,
such as MAML [5] and Meta-SGD [13]; (2) metric learning
algorithms, including matching networks [28], prototypical
networks [22], relation networks [23], SNAIL [14], delta-



encoder [21], and Cosine Classifier & Att. Weight Gen (Cos
& Att.) [8].
Results. We report the results in Table 4. Impressively,
our IDeMe-Net consistently outperforms all these state-of-
the-art competitors. This further validates the general effec-
tiveness of our proposed approach in addressing one-shot
learning tasks.

7. Conclusion
In this paper, we propose a conceptually simple yet

powerful approach to address one-shot learning that uses a
trained image deformation network to generate additional
examples. Our deformation network leverages unsuper-
vised gallery images to synthesize deformed images, which
is trained end-to-end by meta-learning. The extensive
experiments demonstrate that our approach achieves
state-of-the-art performance on multiple one-shot learning
benchmarks, surpassing the competing methods by large
margins.
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