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Abstract
Non-Rigid Structure from Motion (NRSfM) refers to the problem of reconstruct-

ing cameras and the 3D point cloud of a non-rigid object from an ensemble of im-
ages with 2D correspondences. Current NRSfM algorithms are limited from two
perspectives: (i) the number of images, and (ii) the type of shape variability they can
handle. These difficulties stem from the inherent conflict between the condition of
the system and the degrees of freedom needing to be modeled – which has hampered
its practical utility for many applications within vision. In this paper we propose a
novel hierarchical sparse coding model for NRSFM which can overcome (i) and
(ii) to such an extent, that NRSFM can be applied to problems in vision previously
thought too ill posed. Our approach is realized in practice as the training of an unsu-
pervised deep neural network (DNN) auto-encoder with a unique architecture that is
able to disentangle pose from 3D structure. Using modern deep learning computa-
tional platforms allows us to solve NRSfM problems at an unprecedented scale and
shape complexity. Our approach has no 3D supervision, relying solely on 2D point
correspondences. Further, our approach is also able to handle missing/occluded 2D
points without the need for matrix completion. Extensive experiments demonstrate
the impressive performance of our approach where we exhibit superior precision and
robustness against all available state-of-the-art works in some instances by an order
of magnitude. We further propose a new quality measure (based on the network
weights) which circumvents the need for 3D ground-truth to ascertain the confidence
we have in the reconstructability. We believe our work to be a significant advance
over state-of-the-art in NRSFM.
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Chapter 1

Introduction

Building an AI capable of inferring the 3D structure and pose of an object from a single image
is a problem of immense importance. Training such a system using supervised learning requires
a large number of labeled images, and how to obtain these labels is currently an open problem
for the vision community. Rendering [36] is problematic as the synthetic images seldom match
the appearance and geometry of the objects we encounter in the real-world. Hand annotation
is preferable, but current strategies rely on associating the natural images with an external 3D
dataset (e.g. ShapeNet [12], ModelNet [45], which we refer to as 3D supervision). If the 3D
shape dataset does not capture the variation we see in the imagery, then the problem is inherently
ill-posed.

Figure 1.1: The set of 3D shapes describing an object category (e.g.statue) is inherently non-
rigid, even though individual objects within the category may be rigid.

Non-Rigid Structure from Motion (NRSf M) offers computer vision a way out of this quandary
by recovering the pose and 3D structure of an object category solely from hand annotated 2D
landmarks with no need of 3D supervision. Classically [9], the problem of NRSf M has been ap-
plied to objects that move non-rigidly over time, such as the human body and face. But NRSf M
is not restricted to non-rigid objects; it can equally be applied to rigid objects with object cate-
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gories that deform non-rigidly [3, 27, 43]. Consider, for example, the four objects in Figure 1.1,
instances from the visual object category “statue.” Each object in isolation represents a rigid
statue, but the set of all 3D shapes describing “statue” is non-rigid. In other words, each object
instance can be modeled as a certain deformation from its category’s general shape.

NRSf M is well-noted in previous research as an ill-posed problem due to the non-rigidity.
This has been mainly addressed by imposing additional shape priors, e.g. low rank [9, 14], and
union-of-subspaces [3, 52]. Specifically, the low-rank assumption states that the non-rigid object,
a set of 3D shapes, can be approximated well by a linear combination of the same few dictionary
bases (see Figure 1.2 left). The union-of-subspaces assumes that when a non-rigid object is
complex, we can cluster the shape variations into clusters and apply a low-rank assumption in
each shape cluster. Though these two priors achieve great success, their drawbacks considerably
limit their applications: 1) low rank is only applicable to simple non-rigid objects with limited
deformations and 2) union-of-subspaces relies heavily on frame clustering, which has difficulty
scaling up to large image collections.

Valid Coefficient invalid coefficient valid bases

invalid bases

.

.
⇡ ⇡

Low-rank 3D assumption Block-sparsity 3D assumption

Figure 1.2: This thesis assumes a set of 3D shapes, stemming from a non-rigid 3D structure,
can be approximated well by a few (i.e. K) examples of elements from an unknown basis or
dictionary. Classical low-rank NRSf M makes a similar assumption but assumes that the same
K elements within the dictionary will be used to approximate all 3D shape instances (see left).
Our approach differs in this regard, where we allow for the employment of different K elements
within the dictionary for each 3D instance (see right).

This thesis proposes a similar assumption to classical low-rank NRSf M [9, 14], where we
assume each 3D shape instance can be described using only K dictionary bases, but a different
set of K basis vectors can be employed for each shape instance (see Figure 1.2 right). These
sets of 3D shape instances do not form a single linear subspace, they can instead be thought
of as existing in a union of

(
L

K

)
subspaces where L is the total number of basis vectors avail-

able. An obvious advantage of this compressible 3D structure assumption is the ability to model
a much broader set of 3D structures than both low-rank and union-of-subspaces. A drawback
to the assumption, however, is discovering which of the potentially very large number of

(
L

K

)
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subspaces best describes the actual 3D shape instance - solely from its 2D projection. In this
project, this assumption is referred to as the block-sparsity assumption. Chapter 3, describes
the block-sparsity assumption and proposes an innovative algorithm based on block sparse dic-
tionary learning to solve problems that were previously deemed intractable using the low-rank
assumption employed by current state-of-the-art methods [14, 23]. Chapter 4, proposes to use
the Alternating Direction Method of Multipliers (ADMMs) [8] with convex relaxation to further
improve the robustness and effectively optimize the dictionary learning objective.

Finally, to solve the difficulty of searching the best subspaces out of the large number of
candidates, this thesis proposes a novel shape prior using hierarchical block-sparsity. Compared
to the above block sparse prior, the hierarchical block-sparsity introduces additional layers; as
such, that the sparse code of current layer is represented by the subsequent dictionary sparsely.
These introduced additional layers, compared to single-layer sparse coding, are capable of con-
trolling the number of subspaces by learning from data so that invalid subspaces are removed
while sufficient subspaces remain for modeling shape variations. In other words, the number of
subspaces is not solely related to

(
L

K

)
but also adjusted by the additional dictionaries. Chapter 5

describes this prior and further builds a deep neural network to minimize the hierarchical block
sparse dictionary learning objective.

1.1 Contributions

• We propose a novel shape prior based on sparse coding and demonstrate that the 2D pro-
jections under weak perspective cameras can be represented by the dictionary in a 2 × 3

block-sparse way. Based on this insight, we re-interpret NRSf M as a block sparse dictio-
nary learning problem. We theoretically characterize the uniqueness of block sparse dic-
tionary learning. Further, we show how the uniqueness of block sparse dictionary learning
can be utilized to efficiently recover the camera motion and 3D structures.

• We propose to approximate the proposed objective by a convex relaxation and demonstrate
that the proposed objective can be optimized in an iterative manner using the Alternating
Direction Method of Multipliers (ADMMs) algorithm.

• We propose a novel shape prior based on hierarchical sparse coding and demonstrate that
the 2D projections under weak perspective cameras can be represented by the hierarchical
dictionaries in a block sparse way. Through recent theoretical innovations [32], we then
show how this problem can be reinterpreted as a feed-forward Deep Neural Network(DNN)
auto-encoder that can be efficiently solved through modern deep learning environments.
Our employment of DNNs moves from an opaque black-box to a transparent “glass-box”

3



in terms of its interpretability. Our deep NRSf M is capable of handling hundreds of thou-
sands of images and learning large parameterizations to model non-rigidity.

• Extensive experiments are conducted on the above three algorithms and our approach, es-
pecially the deep solution, outperforms state-of-the-art methods in the order of magnitude
on a number of benchmarks. Both quantitative and qualitative results demonstrate our
superior performance. Moreover, we propose a measure of model quality (using the coher-
ence of a learned dictionary), which helps to avoid over-fitting, especially when ground-
truth of training data are not available.
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Chapter 2

Background

Inferring the 3D geometry of objects and camera positions of a scene/object from an ensemble
of 2D projected points is known within the field of computer vision as ”structure from motion”
(Sf M). There are two core components associated with Sf M: (i) correspondence, and (ii) inver-
sion. Correspondence deals with the problem of determining the location of matching points
across semantically similar images (e.g. statues in Figure 1.1) while rejecting points that have no
matches, such as those arising from background, clutter, or occluding content. Once correspon-
dence has been established, the inverse problem of recovering the 3D structure from the 2D point
projections must be solved, requiring a priori constraints on the structure and camera (projection)
matrix. This thesis focuses on the latter problem (i.e.inversion).

The field of computer vision has made significant progress on this 3D reconstruction prob-
lem for rigid scenes/objects over the last three decades. It is now capable of reconstructing
entire cities using large-scale photo collections [2] and real-time visual SLAM on embedded
and mobile devices [37]. However, Non-Rigid Structure from Motion (NRSf M) has long been
a “poor cousin” to rigid Sf M. Unlike rigid Sf M, canonical NRSf M methods: (i) do not scale
well when applied to large datasets, (ii) are sensitive to noise in correspondence estimation, and
(iii) have found few useful applications beyond being a theoretical curiosity for computer vision.
This chapter starts by introducing a factorization-style algorithm, the Tomasi Kanade factoriza-
tion [38] and then from there goes through a representative NRSf M algorithm. Finally, the chap-
ter presents the mutual coherence, its applications in the uniqueness of sparse dictionary learning
and the recent progress on explaining deep neural network via convolutional sparse coding.
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2.1 Tomasi and Kanade’s factorization

Tomasi and Kanade’s celebrated work proposes to recover the shape and motion of a rigid object
under orthography without computing depth as an intermediate step. Suppose that we have F
images and each image has corresponding P key points across all images. Note that all these
points are visible in the image (i.e. there is no missing data in the current problem formulation).
We denote (ufp, vfp) as the image coordinates of p-th point on f -th image, from which we define
the measurement matrix in 2F × P as

W =



u11 u12 · · · u1P

v11 v12 · · · v1P

...
... . . . ...

uF1 uF2 · · · uFP

vF1 vF2 · · · vFP


. (2.1)

Further, we denote (xp, yp, zp) as the world coordinates of p-th point and then define the 3D
structure matrix in 3× P as

S =

x1 x2 · · · xP

y1 y2 · · · yP

z1 z2 · · · zP

 . (2.2)

Note that the Tomasi and Kanade algorithm focuses on rigid objects so the 3D structures are
identical across frames; as a result, the 3D structure matrix is not related to the frame of image
sequence.

Since Tomasi and Kanade focus on orthogonal projection, the camera projection for each
frame degenerates to a pure rotation. Formally, denote Rf in shape 2 × 3 as the projection
matrix. By concatenating all projection matrices together, we have

R =


R1

R2

...
RF

 (2.3)

By the projection equation, it is derived that

W = RS, (2.4)

which implies that the measurement matrix is factorized into two matrices. Since the number
of points and the number of frames are typically much greater than three, three dominates the
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rank of the measurement matrix. The observation that the rank of measurement matrix is no
greater than three is the heart of Tomasi and Kanade’s algorithm, which is different from bundle
adjustment or stereo recosntructions.

By Singular Value Decomposition (SVD), one can always factorize the measurement matrix
as

W = UΣVT . (2.5)

To maintain the rank-three of the measurement matrix, we can simply discard the singular values,
the elements on the main diagonal of Σ, except the first three. We use tilde to denote the new
factorization, i.e.

W ≈ ŨΣ̃ṼT , (2.6)

where Ũ ∈ R2F×3, Σ̃ ∈ R3×3, Ṽ ∈ RP×3.

By denoting

R̃ = Ũ
[
Σ̃
] 1

2
, (2.7)

S̃ =
[
Σ̃
] 1

2
ṼT , (2.8)

it is implied that

W ≈ R̃S̃. (2.9)

Until now, we have factorized the measurement matrix into two sub-matrices that have the
same dimension we want. However, the decomposition is not unique: any invertible 3×3 matrix
G could be inserted between the factorization and still maintain a valid decomposition i.e.

W ≈ R̃S̃ = R̃GG−1S̃ = R̂Ŝ. (2.10)

Moreover, the rotation matrix R is expected to satisfy orthonormal constraints:

RfR
T
f = I2, (2.11)

where I2 denotes the 2× 2 identity matrix. Next, we present the Tomasi and Kanade method to
recover the matrix G such that R̂ holds Equation 2.11.

We first divide the 2F ×3 matrix R̃ into 2×3 block and denote f -th block as R̃f . Therefore,
we want to find a G such that

R̃fGGT R̃T
f = I2, for f = 1, 2, · · · , F. (2.12)

By denoting

GGT = Q, (2.13)
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it is implied that

R̃fQR̃T
f = I2, for f = 1, 2, · · · , F. (2.14)

From the property of the Kronecker product and matrix vectorization, one can vectorize the both
sides of Equation 2.14 and have

(
R̃f ⊗ R̃f

)
q =


1

0

0

1

 , for f = 1, 2, · · · , F, (2.15)

where ⊗ is the Kronecker product and q ∈ R9 is the vectorization of Q. By concatenating all
equations for f = 1, 2, 3, · · · , F and solving the consequent linear system, one can obtain q.
Give q, Q can be estimated by reshaping q back to the matrix and then G could be solved by
SVD from Equation 2.13. Finally, the rotation matrix is

R̂ = R̃G (2.16)

and the 3D structure matrix is

Ŝ = G−1S̃. (2.17)

We summarize the Tomasi and Kanade’s algorithm below:

Algorithm 1: Tomasi and Kanade’s algorithm
Data: The 2D measurement matrix W defined in Equation 2.1
Result: The orthogonal camera matrix R defined in Equation 2.3 and the 3D structure

matrix S defined in Equation 2.2
1. Factorize W via SVD and keep the largest three singular value;
2. Compute R̃, S̃ via Equation 2.7 and 2.8;
3. Compute q by solving a linear system defined in Equation 2.15;
4. Compute G by factorizing Q;
return The rotation matrix R̂ = R̃G and structure Ŝ = G−1S̃;

There are two drawbacks of Tomasi and Kanade’s algorithm.

• The camera assumption has to be orthogonal projection, which is seldom in real world
application since scales and translations always exist in image projections. Even though
there is the potential to generalize to weak-perspective projection, scales dramatically hurt
the precision of the solution to the Equation 2.15.
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• Tomasi and Kanade assume that all points are visible, which is seldom true either. There
exists a high probability of occlusion, as well as mis-detected points during key point
detection or key point annotation.

2.2 Bregler’s non-rigid extension and Dai’s solution

The majority of videos online are about non-rigid objects, e.g.a moving person, cute pets, or
sports. This motivates researchers not only to reconstruct rigid objects from videos but also
to focus on non-rigid objects. However, non-rigid objects are more challenging. Inspired by
Tomasi and Kanade’s algorithm introduced in above section, Bregler et al. [9] extended the idea
of rank-three to low-rank. Formally, the 2D projection matrix is denoted as:

W =



u11 u12 · · · u1P

v11 v12 · · · v1P

...
... . . . ...

uF1 uF2 · · · uFP

vF1 vF2 · · · vFP


, (2.18)

the 3D structure as:

S =



x11 x12 · · · x1P

y11 y12 · · · y1P

z11 z12 · · · z1P

...
... . . . ...

xF1 xF2 · · · xFP

yF1 yF2 · · · yFP

zF1 zF2 · · · zFP


, (2.19)

and the camera rotations as:

R =


R1

R2

. . .

RF

 , (2.20)

where Rf for f = 1, 2, · · · , F are 2× 3 orthogonal matrix i.e.

RfR
T
f = I2. (2.21)

Therefore, the projection equation is
W = RS. (2.22)
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Bregler et al.proposed to reshape the structure matrix so that each row represents a single 3D
shape, where the reshaped structure matrix is

S] =


x11 y11 z11 x12 y12 z12 · · · x1P y1P z1P

...
...

...
...

...
... . . . ...

...
...

xF1 yF1 zF1 xF2 yF2 zF2 · · · xFP yFP zFP

 . (2.23)

In the case of a rigid object, 3D shapes are all identical across the shape. In other words, the rank
of S] is one. Bregler et al.therefore proposed that the rank of S] of a non-rigid object is K,

rank(S]) = K, (2.24)

where K is much smaller than the number of frames F and the number of points P . In other
words, the rank of S] is low. Therefore, the rank of S is expected to be 3K i.e.

rank(S) = 3K. (2.25)

This assumption is typically referred to as the low rank assumption in the field and inspires a
broad range of works achieving impressive success in NRSf M area.

Dai et al.utilize this assumption in their CVPR best paper [13] and assert that the low rank
assumption itself provides sufficient constraints so that no additional priors are needed to solve
a NRSf M algorithm. Dai et al.also propose an algorithm for it, which follows below.

First, by the low rank assumption, Dai et al.propose to represent the 3D structure by a local
subspace i.e. a set of k shape bases B1,B2, · · · ,BK , where Bi ∈ R3×P . Formally,

S =


c11I3 c12I3 · · · c1KI3

c21I3 c22I3 · · · c2KI3

...
... . . . ...

cF1I3 cF2I3 · · · cFKI3




B1

B2

...
BK

 (2.26)

By introducing the Kronecker product, and denoting the linear combination parameter matrix as
C and the shape bases matrix as B, it is identical to write

S = (C⊗ I3)B. (2.27)

By plugging Equation 2.27 into the projection matrix, we have

W = R(C⊗ I3)B. (2.28)

Define
Π = R(C⊗ I3), (2.29)
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and we can factorize the measurement matrix as

W = ΠB, (2.30)

where Π ∈ R2F×3K ,B ∈ R3K×P . Similar to Tomasi and Kanade’s algorithm, Dai et al. also
utilize SVD to factorize the matrix W and keep the greatest 3K singular values:

W ≈ Ŵ = Π̂B̂. (2.31)

One can see that Dai et al. also face the ambiguity of factorization; i.e. any invertible matrix
G ∈ R3K×3K could be inserted between Π and B so that

W = Π̂GG−1B̂ = ΠB. (2.32)

Dai et al. demonstrate that it is not necessary to recover G entirely, but only three columns are
sufficient to reconstruct the camera matrices, which is the key observation in their paper.

Denote the i-th doulb erows of Π̂ as Π̂2i−1:2i ∈ R2×3K and the k-th triplet column of G as
Gk ∈ R3K×3. It is implied that

Π̂2i−1:2iGk = Π = cikRi, for i = 1, 2, · · · , F, k = 1, 2, · · · , K. (2.33)

By the orthogonal constraint defined in Equation 2.21, it is expected that

Π̂2i−1:2iGkG
T
k Π̂

T

2i−1:2i = c2
ikRiR

T
i = c2

ikI2. (2.34)

By denoting Qk as
Qk = GkG

T
k , (2.35)

we have
Π̂2i−1:2iQkΠ̂

T

2i−1:2i = c2
ikI2. (2.36)

Similar to Tomasi and Kanade’s derivation, we denote qk as the vectorization of Qk and
utilize Kronecker product:

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)qk = i


c2
ik

0

0

c2
ik

 , (2.37)

Since the value of cik is unknown, the orthogonal constraint actually offers two linear equations
over Qk [

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(1, :)− (Π̂2i−1:2i ⊗ Π̂2i−1:2i)(4, :)

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(2, :)

]
qk =

[
0

0

]
, (2.38)
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where (Π̂2i−1:2i ⊗ Π̂2i−1:2i)(j, :) is the j-th row of (Π̂2i−1:2i ⊗ Π̂2i−1:2i). For conciseness, we
define capital 0 as vector filled with zero and

Ai =

[
(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(1, :)− (Π̂2i−1:2i ⊗ Π̂2i−1:2i)(4, :)

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(2, :)

]
, (2.39)

then it is written as
Aiqk = 0. (2.40)

By stacking all such equations for all frames i = 1, 2, · · · , F , we finally collect all equations
over qk that is 

A1

A2

...
AF

qk = Aqk = 0. (2.41)

By Equation 2.35, it is clear that the rank of Q is three i.e.

rank(Qk) = 3. (2.42)

However, optimization over a fixed rank is not an easy problem to solve. Therefore, Dai et al.propose
to relax the problem to a trace norm minimization objective. Formally,

min
Qk

trace(Qk)

s.t. Qk � 0,

Aqk = 0,

(2.43)

where � 0 denotes semi-definite matrix. Dai et al.propose to minimize this objective by off-the-
shell SDP solvers. For a higher precision, they utilize a non-linear optimization as a refinement
procedure whose objective is

min
Gk

F∑
i=1

(
1− (Π̂2i−1:2i ⊗ Π̂2i−1:2i)(4, :)

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(1, :)

)2

+

(
2

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(2, :)

(Π̂2i−1:2i ⊗ Π̂2i−1:2i)(1, :)

)2

. (2.44)

Once we obtain the corrective matrix i.e. Gk, Dai et al.demonstrate that it is sufficient to
recover camera matrices: for camera matrix on i-th image Ri

Π̂2i−1:2iGk = cikRi. (2.45)

Though sign ambiguity still remains, one can estimate the value of cik and the corresponding
rotation matrix Ri,

Until now, we are able to estimate the camera matrix R; the next job is to estimate the
structure matrix S. Dai et al.propose two algorithms to solve it.
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• Pointed by work [20], the Moore-Penrose pseudo-inverse solution

S = R†W (2.46)

is a unique solution that minimizes the nuclear norm i.e. ‖S‖1 as well as the solution to the
projection equation.

• Different from the above pseudo-inverse method minimizing the rank of S, Dai et al.propose
to minimize the rank of S]. Formally,

min
S

rank(S])

s.t. W = RS.
(2.47)

Then, Dai et al.relax the rank-minimization to nuclear-norm minimization and re-cast the
objective in Lagrangian form:

min
S
µ‖S]‖1 +

1

2
‖W −RS‖2

F , (2.48)

where µ is introduced as the continuation (homotopy) parameter which diminishes as the
algorithm iterates. Then Dai et al.utilize proximal gradient descent to minimize the objec-
tive iteratively.

We summarize the Dai et al.’s algorithm below:

Algorithm 2: Dai et al.’s algorithm
Data: The 2D measurement matrix W

Result: The orthogonal camera matrix R and the 3D structure matrix S

1. Factorize W into Π̂ and B̂ via SVD and keep the largest 3K singular value;
2. Compute q by solving a SDP problem defined in 2.43;
3. Compute corrective matrix G via SVD given Q;
4. Compute R via Equation 2.45;
5. Compute S via either pseudo-inverse or proximal gradient descent.;
return The rotation matrix and structure;

Dai et al.’s algorithm has two major problems:

1. The value of rank K has to be selected by cross validation. Given a novel sequence, one
has to try several possible K for experiments and then select the K corresponding to the
lowest 3D structure error. This is problematic, since in real-world applications, 3D ground
truth is never approachable, otherwise it is meaningless to solve. One alternative way
to cross validate is finding a K that minimizes 2D reprojection error. However, this is
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problematic too. There is a high possibility that the 2D reprojection error will decrease
with the increase of K because the system is less constrained and there is a higher degree
of freedom to model 2D measurement when K becomes bigger, while completely failing
to reconstruct the correct 3D structure.

2. The second drawback makes the first even worse; that is, Dai et al.’s algorithm is quite
slow. The long running time comes from the utility of non-linear optimization, which
serves an important functionality in a designed algorithm. This long running time for each
parameter configuration makes cross validation even less practical.

2.3 Trajectory reconstruction

The low-rank assumption can be applied not only to shape spaces but also to trajectory space,
generally considered as a dual space. One of the most representative works is Akhter et al. [6].
They propose that instead of imposing compactness (low-rank) on shape, they can impose the
compactness across time, in other words, on trajectory. Formally, define

Tx(i) =


x1i

x2i

...
xFi

 , (2.49)

Ty(i) =


y1i

y2i

...
yFi

 , (2.50)

Tz(i) =


z1i

z2i

...
zFi

 , (2.51)

as the X, Y, Z coordinates of the ith trajectory. Akhter then utilizes the low-rank assumption
into the trajectory space; that is, each trajectory component can be approximated by a linear
combination of a small number of trajectory basis:

Tx(i) =
K∑
j=1

axj(i)θ
j, (2.52)
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Ty(i) =
K∑
j=1

ayj(i)θ
j, (2.53)

Tz(i) =
K∑
j=1

azj(i)θ
j, (2.54)

where θj ∈ RF for j = 1, 2, ..., K are trajectory bases. To build up the relationship between
Akhter et al.’s method and Dai et al.’s method, we explicitly write these equations. For simplicity,
we define the 3D structure as

S =



x11 x12 · · · x1P

y11 y12 · · · y1P

z11 z12 · · · z1P

...
... . . . ...

xF1 xF2 · · · xFP

yF1 yF2 · · · yFP

zF1 zF2 · · · zFP


, (2.55)

the bases matrix as

Θ =


θ11I3 θ12I3 · · · θ1KI3

...
... . . . ...

θF1I3 θF2I3 · · · θFKI3

 , (2.56)

and the parameter matrix as

A =



ax1(1) ax1(2) · · · ax1(P )

ay1(1) ay1(2) · · · ay1(P )

az1(1) az1(2) · · · az1(P )
...

... . . . ...
axK(1) axK(2) · · · axK(P )

ayK(1) ayK(2) · · · ayK(P )

azK(1) azK(2) · · · azK(P )


. (2.57)

Therefore, from Equation 2.52, 2.53 and 2.54, we have

S = ΘA. (2.58)

Recall Dai et al.’s algorithm: Θ was considered as parameters while A as bases. In this trajectory
space, however, Θ are trajectory bases while A are parameters. Based on this observation,
Ahkter et al.propose that trajectory space and shape space form a certain type of duality.
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To solve the problem, Ahkter et al.move forward and introduce an additional prior, positing
that points moves smoothly and continuously in time. Based on this assumption, the point trajec-
tory Tx(i),Ty(i),Tz(i) for i = 1, 2, ..., P are considered as smooth and continuous. Therefore,
Ahkter et al.exploit the smoothness to predefine the trajectory basis—using the Discrete Cosine
Transform (DCT) basis. To demonstrate the performance of the DCT basis, they conduct exper-
iments to compare human motion trajectory to the DCT bases. We borrow this image from [6]
and shown in Figure 2.1.

Figure 2.1: The comparison of PCA (blue) and DCT (red) as the trajectory basis for the CMU
motion capture data. Here, we plot the 1st-6th, 21st-26th, and 41st-46th PCA and DCT basis.
The plot shows the close resemblance between the two, especially for initial PCA basis. Some
of the bases have been multiplied by -1 for better visual comparison.

With the help of DCT bases, Akhter et al. propose an algorithm similar to Dai et al.’s work.
They first multiply the camera matrix

R =


R1

R2

. . .

RF

 , (2.59)

to both sides of Equation 2.58, resulting in

W = RΘA = ΛA, (2.60)

where
Λ = RΘ (2.61)
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is a 3F × 3K matrix. The rank of W will be at most 3K similar to Dai et al.’s work. Then, by
using SVD, one can factorize W into two parts:

W = Λ̂Â. (2.62)

where Λ̂ ∈ R2F×3K and Â ∈ R3K×P . Again, this factorization is not unique and needs to
estimate a corrective matrix G such that

Λ = Λ̂G, (2.63)

A = G−1Â. (2.64)

Ahkter et al.propose that instead of estimating the entire matrix of G, actually the first three
columns of G are sufficient to reconstruct the entire Λ. Denote G||| as the first column triple of
the matrix G. Then we have

Λ̂G||| =


θ11R1

θ21R2

...
θF1RF

 . (2.65)

Since cameras are satisfied orthogonal constraint, i.e.

RiR
T
i = I2, for i = 1, 2, · · · , F, (2.66)

we have

Λ̂2i−1:2iG|||G
T
|||Λ̂

T

2i−1:2i = θ2
i1I2. (2.67)

Again, by the Kronecker product and its property, one can equally write this as

(Λ̂2i−1:2i ⊗ Λ̂2i−1:2i)q||| = θ2
i1


1

0

0

1

 , (2.68)

where

q||| = vec(G|||G
T
|||). (2.69)

Note that θi1 are known since they come from predefined DCT bases. By concatenating all equa-
tions across frames, one can solve q||| and consequently solve G|||. Given G|||, by Equation 2.65,
one can estimate R1,R2, ...RF . Therefore, given all camera matrices and predefined DCT bases
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θij , we can compute entire Λ by

Λ =


θ11R1 θ12R1 · · · θ1KR1

θ21R2 θ22R2 · · · θ2KR2

...
... . . . ...

θF1RF θF2RF · · · θFKRF

 (2.70)

Given Λ, one solves a linear system:

W = ΛA, (2.71)

to compute A. Once A are computed, the 3D structure S is obtained by

S = ΘA. (2.72)

We summarize Akhter et al.’s algorithm below:

Algorithm 3: Akhter et al.’s algorithm
Data: The 2D measurement matrix W

Result: The orthogonal camera matrix R and the 3D structure matrix S

1. Factorize W into Λ̂ and Â via SVD and keep the largest 3K singular value;
2. Compute q||| by solving a linear system defined in 2.68;
3. Compute corrective matrix G via SVD given q|||;
4. Compute R via Equation 2.65;
4. Compute Λ via Equation 2.70;
4. Compute A by solving a linear system defined in Equation 2.71;
return The rotation matrix R and structure S = ΛA;

Akhter et al.’s algorithm is very similar to Dai et al.’s in terms of algorithm design, but the
biggest difference is the additional prior—smoothness of motion—and from that the predefined
bases. One of advantages of these predefined bases is to increase the performance, especially
when solving a corrective matrix. Specifically, in Dai et al.’s algorithm, since shape parameters
cik for i = 1, 2, · · · , F and k = 1, 2, · · · , K are unknown, orthogonal constraints on each camera
defined in 2.37 solely offer two linear equations and therefore totally 2F equations. However,
in Akhter et al.’s algorithm, orthogonal constraints in 2.68 provide 3F equations totally. This
change is not just about adding more constraints but shifting the problem from finding the best
solution in null space (Dai et al.) to a simple pseudo-inverse (Akhter et al.). With the former, it
is hard to reach global optimal, but the latter has a closed-form global optimal solution.

However, introducing the predefined bases is not free food, which also brings drawbacks:
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1. Assuming the smoothness of object motion directly limits Akhter et al.’s algorithm into
reconstructing a single object from continuous video clips. Specifically, it is quite com-
mon to have several video clips about the same object, where reconstructing the 3D shape
holistically is the optimal solution. Further, as explained in the introduction, NRSf M is
not just about non-rigid objects but can also be equally applied to rigid objects (i.e. ob-
ject category, e.g. a set of tables). In the case of object category, Akhter et al.’s algorithm
completely fails.

2. Utilizing DCT bases to represent trajectory precisely requires sufficient high frequency ba-
sis components, while the low rank assumption, conversely, restricts the number of bases
that are used here. This conflict dramatically restricts the type of shape variation that
Akhter et al.could handle. Also, selecting proper bases via cross validation is also frustrat-
ing.

2.4 Complex Shape Recosntruction by Union of Subspaces

Figure 2.2: Borrowed from [52]. An example of complex non-rigid motion using a human body.
(a) A video sequence from the UMPM dataset[42] in which a subject sequentially performs
actions such as: raise hand (red), walk (green), sit (blue) and stand (magenta). 2D body joints
tracked in the videos are connected to form 2D skeletons in each frame. (b) Reconstructed and
clustered 3D skeletons using our method. Different color represents different clusters/subspaces
obtained by Zhu et al.’s method. (c) Projection of the 3D-skeletons in the local subspaces spanned
by the three largest principal components (PCs). Observe that the human poses stemming from
different actions adhere to separate local subspaces/clusters and the overall complex nonrigid
motion lies in a union of subspaces.

The above algorithms, including Bregler et al., Dai et al.and Akhter et al.’s work, are all
based on the low-rank shape assumption. From different perspectives, they demonstrate its ef-
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fectiveness in reconstructing non-rigid objects. However, representing shape variations via a
linear combination of a limited number of bases is obviously only capable of handling primitive
or simple motions, e.g. walking, sitting, or jumping. However, what if we have a sequence of
complex motions concatenating primitive motions together? Zhu et al. [52] ask this question and
extend the low-rank assumption to the union of subspaces.

An obvious solution is to first group video sequences into clusters and apply Dai et al.’s
algorithm in each cluster. Note that in each cluster, video frames are not necessarily continuous
and thus Akhter et al.’s work fails in this case. To illustrate this idea, we borrow an image
from [52] and show it in Figure 2.2. One can see that the sequence is divided into four clusters and
each cluster represents a primitive motion: raising a hand, walking, sitting, and standing. Based
on this idea, Zhu et al.conducted experiments to cluster video frames based on 2D annotated key
points. However, their experiments demonstrate that clustering based on 2D information is less
effective compared to 3D shape clustering. We also borrow one image from [52] to show the
experiment results in Figure 2.3. One can see that no matter whether one uses a static camera
or moving camera, 2D LLR Clustering has a substantial difference from the 3D LLR Clustering
that serves as ground truth. Zhu et al.pointed out that the confusion between cluster 2 and cluster
4 is potentially caused by the information loss after camera projection.

Figure 2.3: Clustering results from [52]. 3D LRR subspace clustering vs. 2D LRR subspace
clustering on complex nonrigid motion.

From the observation of the 2D clustering failure, Zhu et al. move forward and propose an
objective simultaneously minimizing the 3D based clustering error and 2D reprojection errors.
First, Zhu et al. assumes that all cameras are known and focus on reconstructing 3D structure.
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This is quite different from NRSf M work. Even though knowing the camera beforehand dramat-
ically simplifies the problem, the theoretical contribution of using the union of subspaces is of
specific interest to us. Formally, Zhu et al.defines

X =


x11 y11 z11 x12 y12 z12 · · · x1P y1P z1P

...
...

...
...

...
... . . . ...

...
...

xF1 yF1 zF1 xF2 yF2 zF2 · · · xFP yFP zFP

 , (2.73)

its reshape

X] =



x11 x12 · · · x1P

y11 y12 · · · y1P

z11 z12 · · · z1P

...
... . . . ...

xF1 xF2 · · · xFP

yF1 yF2 · · · yFP

zF1 zF2 · · · zFP


, (2.74)

and camera matrix

R =


R1

R2

...
RF

 . (2.75)

Inspired by the Local Rank Representation (LRR), Zhu et al. introduces an affinity matrix Z and
proposes to minimize the objective:

min
X,Z,E

‖Z‖∗ + γ‖X‖∗ + λ‖E‖1

s.t. X = XZ

W = RX] + E,

(2.76)

where λ and γ are penalty parameters for terms ‖X‖∗ and ‖E‖1. There are three terms in the
objective:

1. Union of subspaces term: By modeling the 3D shape

X = XZ, (2.77)

and at the same time forcing ‖Z‖∗ to be small, Zhu et al. want the 3D structure X to be
represented by a union of local subspaces. The division of subspaces and components are
recorded by the affinity matrix Z.
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2. Low-rank term: Along with the subspace prior, Zhu et al.also put a constraint on 3D
structure X] to make it low-rank by minimizing ‖X‖∗. The nuclear norm is the tightest
convex relaxation of matrix rank. However, I believe this term is theoretically unnecessary
for modeling 3D structures because simultaneously using the union of subspaces prior and
the low-rank prior makes the problems conflicted and does not model either prior well.
Due to not seeing any experiments from [52] demonstrating the functionality of this term,
we are not sure how much contribution it makes towards performance; however, I believe
that it might help to maintain the robustness of the system.

3. Reprojection error term: minimizing ‖E‖1 is to minimize the reprojection error (i.e.the
error between known 2D measurement and reprojected 3D reconstructions), which is com-
monly seen in NRSf M works. The norm here is suggested by Zhu et al. to use `1 norm,
i.e. the summation of absolute values of all elements; however, the performance difference
between `1 and the Frobenius norm is not clear. The motivation behind the `1 norm is
mentioned in the paper to boost the sparsity of error, even though it seems unconvincing.

To solve the problem, Zhu et al. utilize Augmented Lagrangian Methods (ALMs). They
first introduce an auxiliary variable H and then write the objective function into the Langrangian
formula:

LX,Z,E,H =‖Z‖∗ + γ‖X‖∗ + λ‖E‖1

+ < Γ1,X−XZ > +
µ1

2
‖X−XZ‖2

F

+ < Γ2,W −RH] − E > +
µ2

2
‖W −RH] − E‖2

F

+ < Γ3,X−H > +
µ3

2
‖X−H‖2

F ,

(2.78)

where Γ1,Γ2,Γ3 are Lagrangian variables sharing the same shape as X,E, and H respectively.
< ·, · > denotes the inner product between two matrices that is the summation of elements of the
element-wise multiplication between two matrices. µ1, µ2, µ3 are used to control the weights of
the Lagrangian terms, which are expected to diminished across iterations.

Then suggested by ALMs, Zhu et al.minimize the entire objective by solving each subprob-
lem:
• Minimizing over X: In the k-th iteration,

Xk+1 = argmin
X
L(X,Zk,Ek,Hk,Γk

1,Γ
k
2,Γ

k
3)

= γ‖X‖∗+ < Γk
1,X−XZk > +

µ1

2
‖X−XZk‖2

F

+ < Γk
3,X > +

µ3

2
‖X−Hk‖2

F .

(2.79)

This objective can be minimized by proximal gradient descent.
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• Minimizing over Z: In the k-th iteration,

Xk+1 = argmin
Z
L(Xk,Z,Ek,Hk,Γk

1,Γ
k
2,Γ

k
3)

= ‖Z‖∗− < Γk
1,X

kZ > +
µ1

2
‖Xk −XkZ‖2

F .
(2.80)

The objective can be minimized by proximal gradient descent.

• Minimizing over E: In the k-th iteration,

Ek+1 = argmin
E
L(Xk,Zk,E,Hk,Γk

1,Γ
k
2,Γ

k
3)

= λ‖E‖1− < Γk
2,E > +

µ2

2
‖W −R(Hk)] − E‖2

F .
(2.81)

This objective can be minimized in an element-wise way, where each element has a closed-
form solution.

• Minimizing over H: In the k-th iteration,

Hk+1 = argmin
H
L(Xk,Zk,Ek,H,Γk

1,Γ
k
2,Γ

k
3)

= − < Γk
2,RH] > +

µ2

2
‖W −RH] − Ek‖2

F

− < Γk
3,H > +

µ3

2
‖Xk −H‖2

F .

(2.82)

This objective can be directly solved by a pseudo-inverse.

• Updating Lagrangian variables: In the k-th iteration, each of the Lagrangian variables
can be updated by

Γk+1
1 = Γk

1 + µ1(Xk −XkZk), (2.83)

Γk+1
2 = Γk

2 + µ2(W −R(Hk)] − Ek), (2.84)

Γk+1
3 = Γk

3 + µ3(Xk −Hk). (2.85)

We summarize the entire procedure in Algorithm 4.
One of the advantages of Zhu et al.’s work is that the novel shape prior to the union of

subspaces, dramatically increases the shape variations that NRSf M can handle and provides a
novel insight to model large image collections. However, there are several drawbacks:

1. The work assumes that the camera matrix is known beforehand. This assumption is less
practical, especially when video clips originate from online and camera information is
lost. It might be argued that cameras can be reconstructed by Dai et al.’s work and then
applied to Zhu et al.’s work. This is also problematic because Dai et al.have difficulty
reconstructing complex motion sequences.
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Algorithm 4: Zhu et al.’s algorithm
Data: The 2D measurement matrix W, camera matrix R

Result: The 3D structure matrix X and the affinity matrix Z

while not converge do
- Xk+1 = argminX L(X,Zk,Ek,Hk,Γk

1,Γ
k
2,Γ

k
3);

- Zk+1 = argminZ L(Xk+1,Z,Ek,Hk,Γk
1,Γ

k
2,Γ

k
3);

- Ek+1 = argminE L(Xk+1,Zk+1,E,Hk,Γk
1,Γ

k
2,Γ

k
3);

- Hk+1 = argminH L(Xk+1,Zk+1,Ek+1,H,Γk
1,Γ

k
2,Γ

k
3);

- Update Γ1,Γ2,Γ3.
end
return 3D shape matrix X and affinity matrix Z;

2. The optimization process might take a long time to converge and has difficulty finding a
good local minimum. As one can see, Zhu et al.actually introduce two auxiliary variables:
E and H. Pointed by [10] that it tends to converge to a worse local minimum more slowly
when adding more auxiliary variables. Further, as one can see, two subproblems need
to use the proximal gradient descent to minimize, where the proximal gradient descent is
considered as a slow process. This results in an even slower convergence of the entire
algorithm.

3. Though the union of subspaces prior is capable of handling a complex motion sequence,
the proposed algorithm relying on an affinity matrix cannot. The affinity matrix Z is a
F × F matrix. Optimizing over such a matrix is not practical when the number of frames
F is more than tens of thousands. This mostly restricts Zhu et al.’s algorithm into a small-
scale problem and cannot scale to a large image collection.

2.5 Other Works

Quite different from what we already present above, another type of prior is the manifold as-
sumption [23, 33] which replaces the low-rank assumption with learning a non-linear manifold.
Most notable is the recent work of Gotardo and Martinez [23], who demonstrate how the “ker-
nel trick” could be employed to model a 3D shape as a non-linear subspace. A more recent
work [28] proposes an objective from a Grassmannian perspective to solve the NRSf M problem
in a dense scenario (i.e.the number of points is large). A drawback to these approaches, however,
was their reliance on additional priors, except this manifold assumption, which, for example [23]
further assumes k basis constraints and [28] assumes temporal consistency (i.e.shapes move con-
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tinuously along frames). These additional priors limit these approaches’ viability to real-world
application.

It is worth mentioning that there is some overlap between this manifold assumption and
Zhu et al.’s former union of subspaces prior, as it has been demonstrated [16] that the field of
manifold learning has a strong link to the recovery of compressed signals. Specifically, it has
been demonstrated that a set of K sparse signals forms a K-dimensional Riemannian manifold.
Further, it can be shown [16] that many manifold models can be expressed as an infinite union
of subspaces.

2.6 Deep Neural Network and Sparse Coding

Sparse dictionary learning can be considered as an unsupervised learning task and divided into
two sub-problems: (i) dictionary learning, and (ii) sparse code recovery. Let us consider sparse
code recovery problem, where we estimate a sparse representation z for a measurement vector x

given the dictionary D, i.e.

min
z
‖x−Dz‖2

2 s.t. ‖z‖0 < λ, (2.86)

where λ related to the trust region controls the sparsity of recovered code. One classical algorithm
to recover the sparse representation is Iterative Shrinkage and Thresholding Algorithm (ISTA) [7,
15, 34]. ISTA iteratively executes the following two steps with z[0] = 0:

v = z[i] − αDT (Dz[i] − x), (2.87)

z[i+1] = argmin
u

1

2
‖u− v‖2

2 + τ‖u‖1, (2.88)

which first uses the gradient of ‖x−Dz‖2
2 to update z[i] in step size α and then finds the closest

sparse solution using an `1 convex relaxation. It can be demonstrated that the second step has a
closed-form solution that is

z[i+1] = η(v; τ). (2.89)

where η represents a element-wise soft-thresholding operation, formally defined as

η(x; b) =


x− b if x > b,

x+ b if x < −b,
0 otherwise.

(2.90)

Therefore, ISTA can be summarized as the following recursive equation:

z[i+1] = η
(
z[i] − αDT (Dz[i] − x); τ

)
, (2.91)
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where τ is related to λ for controlling sparsity.
Recently, Papyan [32] proposed to use ISTA and sparse coding to reinterpret feed-forward

neural networks. They argue that feed-forward passing a single-layer neural network z =

η(DTx; b) can be considered as one iteration of ISTA in (2.91) when setting α = 1 and τ = b.
Based on this insight, the authors extend this interpretation to feed-forward neural network
with N layers

z1 = η(DT
1 x; b1)

z2 = η(DT
2 z1; b2)

...

zN = η(DT
NzN−1; bN)

(2.92)

as executing a sequence of single-iteration ISTA, serving as an approximate solution to the hier-
archical sparse coding problem: find {zi}Ni=1, such that

x = D1z1, ‖z1‖0 < λ1,

z1 = D2z2, ‖z2‖0 < λ2,

... ,
...

zN−1 = DNzN , ‖zN‖0 < λN ,

(2.93)

where the bias terms {bi}Ni=1 (in a similar manner to τ ) are related to {λi}Ni=1, adjusting the spar-
sity of recovered code. Furthermore, they reinterpret back-propagating through the deep neural
network as learning the dictionaries {Di}Ni=1. This connection offers a novel reinterpretation of
DNNs through the lens of hierarchical sparse dictionary learning. In this paper, we extend this
reinterpretation to the block sparse scenario and apply it to solving our NRSf M problem.
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Chapter 3

Block-sparse Non-Rigid Structure from
Motion

One can see that much of the research on low-rank NRSf M draws heavily upon the fact that one
can obtain a solution to the rank constrained factorization problem

argmin
Π,B

||W −ΠB||2F , s.t. rank(Π) = 3K (3.1)

through a Singular Value Decomposition (SVD). Even though the SVD returns a unique solu-
tion {Π̂, B̂} it is easy to demonstrate that this solution is just one of many possible solutions to
W = Π̂B̂ = Π̂GG−1B̂ = ΠB, where the corrective matrix G is any non-singular matrix. The
ambiguity of this factorization is problematic for NRSf M problems, as additional constraints are
required to obtain a unique solution.

For rigid NRSf M (i.e.K = 1), the application of camera constraints [38] is typically sufficient
in order to find a correction matrix G that gives a unique solution. Xiao et al. [47] famously
demonstrated for K > 1 that one cannot determine a unique G since the space of solutions lies
in a nullspace of rank 2K2 −K. Akhter et al. [4] additionally demonstrated that even though G

is not unique, any solution to G that satisfies the camera constraints returns a valid 3D shape
and camera motion pair. This chapter will explore whether moving away from canonical rank
constraints and instead assuming that Π is block-sparse could result in a far less ambiguous
factorization, thus resulting in an NRSf M algorithm that can circumvent current theoretical and
practical limitations.
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3.1 Uniqueness of Block Sparse Dictionary Learning

3.1.1 Uniqueness of Sparse Dictionary Learning

The uniqueness of the Sparse Dictionary Learning (SDL) is explored in literature [25]. In general
terms, the problem of SDL can be described as

argmin
D,Z

‖X−DZ‖2
F s.t. ‖zi‖0 = K, i = 1, ..., N (3.2)

where we are trying to recover the concatenation of a sparse coefficient matrix Z and the dic-
tionary basis D from a known set of signals in X ∈ RD×N . Specifically, the sparse coefficient
matrix is the concatenation of K−sparse coefficient vectors Z =

[
z1, . . . , zD

]
, and concatena-

tion of D =
[
d1, . . . ,dM

]
dictionary basis vectors. An important question to ask in the context

of applying SDL to NRSf M is: how unique is the solution to Equation 3.2?

Hillar et al. [25] recently characterized the theoretical answer to this question. The authors
define that if any valid solution {D̂, Ẑ} to the SDL objective in Equation 3.2 is ambiguous up
to a M ×M permutation matrix P and a diagonal invertible weighting matrix Λ such that D̂ =

DPΛ, and Ẑ = Λ−1PTZ, then X has a unique SDL. Moreover, they prove theoretically that,
given large enough N , the uniqueness of SDL is achieved if and only if the dictionary D satisfies
the spark condition1:

Dz1 = Dz2 for K-sparse z1, z2 ∈ RM ⇒ z1 = z2. (3.3)

Coherence as a proxy

The spark condition provides a complete characterization of the uniqueness of SDL. However,
verifying whether a matrix D satisfies the spark condition is an NP-hard problem, which has to
visit all

(
M

K

)
subspaces. It is preferable in practice to use properties of D that are easily com-

putable, such as mutual coherence, which measures the largest absolute inner product between
any two column vectors in the matrix, and with high probability is indicative of the spark con-
dition of the matrix. The experimental portion of this chapter demonstrates how the coherence
of a matrix can be utilized to predict the reconstructibility of a 3D structure solely from its 2D
projections.

1Refer to [25] for the proof and a lower bound of N
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3.1.2 Block Sparse Dictionary Learning and Uniqueness

As discussed in the next section, there is a strong connection between compressible NRSf M and
Block Sparse Dictionary Learning (BSDL). BSDL is a generalization of the SDL objective in
Equation 3.2:

argmin
D,Z

||X−DZ||2F s.t. ||Zi||0,α = K, i = 1, ..., N/β, (3.4)

where Zi ∈ RD×β is a submatrix of Z, i.e.Z =
[
Z1, ...,ZN/β

]
. Each Zi is divided into M/α

blocks of size α × β and ‖Zi‖0,α counts the number of blocks, of which at least one element is
non-zero. α and β need to be chosen such that D and M are perfectly divisible. Of particular
importance in our compressible NRSf M problem is 3× 2 block-sparsity, which we will describe
in more detail in the next section on compressible NRSf M.

Definition 1 If any valid solution {D̂, Ẑ} to the objective in Equation 3.4 is ambiguous only up

to a M ×M block permutation matrix Pα and a block-diagonal invertible weighting matrix Λα

such that

D̂ = DPαΛα, Ẑ = Λ−1
α PT

αZ, (3.5)

we say X has a unique BSDL.

The block permutation matrix is actually defined as Pα = P⊗Iα where P is an arbitrary (M/α)×
(M/α) permutation matrix and Iα is a α × α identity matrix. The block-diagonal invertible
weighting matrix Λα has a α × α block structure. We now ask the same question: what is the
sufficient and necessary condition for the uniqueness of BSDL?

Theorem 1 There existK
(
M/α

K

)2

K-block-sparse vectors Z1, ...,ZN/β , i.e.N = βK
(
M/α

K

)2

, such

that the uniqueness of BSDL holds if and only if the matrix D satisfies the block spark condition:

DZ1 = DZ2 for K-block-sparse Z1,Z2 ∈ RM×β ⇒ Z1 = Z2. (3.6)

3.1.3 Proof

Let’s first prove Theorem 1 in the case when β = 1 and once it is proven, the general case β > 1

is simple to handle. We can split sparse causes Zi into [zi1, · · · , ziβ], where zij ∈ RD×1 and then

DZi = D[zi1, · · · , ziβ] = D̂Ẑi = D̂[ẑi1, · · · , ẑiβ] (3.7)

is equivalent to Dzij = D̂zij , which degenerates to the situation where β = 1.
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A simple case when K = 1

To better understand Theorem 1 and prepare for the proof in full generality, let us start from a
simple case when K = 1. Denote eLi as a L-dimensional column vector that has one in its i-th
coordinate and zeros elsewhere. For convenience, let L = M/α. Now let us produce M block
vectors

zij = (eLi ⊗ eαj ), i = 1, · · · , L, j = 1, · · · , α, (3.8)

which denotes that its j-th coordinate in i-th block is one and zeros elsewhere, and L
(
α

2

)
block

vectors zijk = zijk + zijk, for any i and j 6= k.

Now we claim that the uniqueness of BSDL in this simple case can be achieved by these

M + L
(
α

2

)
block vectors, which is less than K

(
M/α

K

)2

, assuming M � α.

Proof: There exists a matrix D̂ and 1-block-sparse vector ẑij = (eLπ(i,j) ⊗ Iα)λij , for some
mapping π : {1, ..., L} × {1, ..., α} → {1, ..., L} and λij ∈ Rα, such that

Dzij = D(eLi ⊗ eαj ) = D̂ẑij = D̂(eLπ(i,j) ⊗ Iα)λij, (3.9)

We claim that π(i, j) is only dependent on i, not j. From Equation 3.9, we know that for any
j 6= k,

Dzijk = D(zij + zik) = Dzij + Dzik = D̂ẑij + D̂ẑik = D̂(ẑij + ẑik). (3.10)

Since zijk is 1-block-sparse, this implies that ẑij + ẑik should also be 1-block-sparse. Therefore,
π(i, j) = π(i, k), that is, π : {1, ..., L} → {1, ..., L} and

D(eLi ⊗ eαj ) = D̂(eLπ(i) ⊗ Iα)λij. (3.11)

Let us now prove that Λi = [λi1, . . . ,λiα] is invertible. Let Zi = [zi1, . . . , z
i
α] and Ẑi =

[ẑi1, . . . , ẑ
i
α]. From Equation 3.11, it follows that

DZi = D[zi1, . . . , z
i
α] = D[(eLi ⊗ eα1 ), ..., (eLi ⊗ eαα)] = D(eLi ⊗ Iα) (3.12)

and

DZi = D̂Ẑi = D̂(eLπ(i) ⊗ Iα)
[
λi1, ...,λiα

]
= D̂(eLπ(i) ⊗ Iα)Λi. (3.13)

Therefore,

D(eLi ⊗ Iα) = D̂(eLπ(i) ⊗ Iα)Λi. (3.14)

Due to the fact that D satisfies the block spark condition, rank(D(eLi ⊗ Iα)) = α. From Equa-
tion 3.14, rank(D̂(eLπ(i) ⊗ Iα)Λi) = α. We know that rank(XY) ≤ min(rank(X), rank(Y)),

for any matrix X,Y. So rank(Λi) ≥ α. As Λi ∈ Rα×α, rank(Λi) = α.
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Now, let us show π is necessarily injective. Suppose π(i) = π(j), with i 6= j, then from
Equation 3.14,

D(eLi ⊗ Iα) = D̂(eLπ(i) ⊗ Iα)Λi = D̂(eLπ(j) ⊗ Iα)ΛjΛ
−1
j Λi = D(eLj ⊗ Iα)Λ−1

j Λi. (3.15)

Since D satisfies the block spark condition, which implies D can never map two different 1-
block-sparse vectors to the same measurement, this is possible only if i = j. Thus, π is injective.

Let Pπ and D be generated by

Pπ =
[
eLπ(1) . . . eLπ(K)

]
,Λ =


Λ1 · · · 0
... . . . ...
0 · · · ΛL

 . (3.16)

Since π is injective, Pπ is a permutation matrix. Let us stack Equation 3.14 from left-to-right on
both sides, and it follows that on left sides,

[D(eL1 ⊗ Iα), . . . ,D(eLL ⊗ Iα)] = D, (3.17)

and on right sides,

[D̂(eLπ(1) ⊗ Iα)Λ1, . . . , D̂(eLπ(L) ⊗ Iα)ΛL] = D̂(Pπ ⊗ Iα)Λ. (3.18)

Hence, we proved Theorem 1 for the simple case, where K = 1.

Preparation

We use the same notation reported in [25]: Denote [L] as the set {1, . . . , L} and
(

[L]

K

)
as the

K-element subset of [L]. Moreover, let the dictionary D = [D1, . . . ,DL] with Di ∈ RD×α, and
denote span{DS} as a subspace expanded by Di, i ∈ S.

To prove Theorem 1 in general situations, we offer a lemma at first.

Lemma 1 Suppose that D satisfies the block spark condition and

κ :

(
[L]

K

)
→
(

[L]

K

)
(3.19)

is a mapping with the following property: for all S ∈
(

[L]

K

)
,

span{DS} = span{D̂κ(S)}. (3.20)

Then, there exists a permutation matrix Pκ ∈ RL×L and an invertible block diagonal matrix

Λ ∈ RM×M such that D = D̂(Pκ ⊗ Iα)Λ.
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Proof: Here we demonstrate, through induction, that if our K = 1 case holds, then the K > 1

case should also hold. First, let us show function κ is injective. Suppose that S,S ′ ∈
(

[L]

K

)
are

different and κ(S) = κ(S ′) holds. Then by Equation 3.20,

span{DS} = span{D̂κ(S)} = span{D̂κ(S′)} = span{DS′}. (3.21)

As D satisfies the block spark condition, all K+ 1 block columns of D are linearly independent.
From Lemma 2 (see below), it turns out that S = S ′, which implies κ is injective.

Denote η = κ−1 as the inverse of κ. Fix S = {i1, ..., iK−1} ∈
(

[L]

K − 1

)
, and set S1 = S ∪ {p}

and S2 = S ∪ {q} for some fixed p, q 6∈ S with p 6= q. Since K < L, L− (K − 1) > 1, thus, it
is always possible to find such p and q. From Equation 3.20, we obtain:

span{Dη(S1)} = span{D̂S1}, (3.22)

span{Dη(S2)} = span{D̂S2}. (3.23)

Let us intersect Equation 3.22 and Equation 3.23, and from Lemma 3 (see below), it follows that

span{D̂S1} ∩ span{D̂S2} = span{Dη(S1)∩η(S2)}. (3.24)

Since span{D̂S} ⊆ span{D̂S1} ∩ span{D̂S2}, it follows that span{D̂S} ⊆ span{Dη(S1)∩η(S2)}.
The number of the elements in η(S1) ∩ η(S2) is K − 1, since η(p) 6= η(q), with p 6= q, by
injectivity of η. Moreover, the number of the elements in S is also K − 1, which implies that

span{D̂S} = span{Dη(S1)∩η(S2)}. (3.25)

The association S → η(S1)∩η(S2) from Equation 3.25 defines a function σ :
(

[L]

K − 1

)
→
(

[L]

K − 1

)
,

with property that span{D̂S} = span{Dσ(S)}.
Finally, let’s show that σ is injective. Suppose S,S ′ ∈

(
[L]

K − 1

)
, and σ(S) = σ(S ′), it follows

that
span{D̂S} = span{Dσ(S)} = span{Dσ(S′)} = span{D̂S′}. (3.26)

As every K block columns of D are linear independent, and κ is injective, every K block
columns of D̂ are also linear independent. From Lemma 2, it follows that S = S ′, which
implies σ is injective. Hence, let ξ = σ−1, with properties: for all S ∈

(
[L]

K − 1

)
, span{DS} =

span{D̂ξ(S)}.

Lemma 2 If any set ofK+1 block columns of matrix D = [D1, . . . ,DL] are linear independent,

then for S,S ′ ∈
(

[L]

K

)
,

span{DS} = span{DS′} ⇒ S = S ′. (3.27)
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Proof: Suppose that S 6= S ′ ∈
(

[L]

K

)
satisfying span{DS} = span{DS′}. Then without loss

of generality, there is an i ∈ S with i 6∈ S ′, but atoms Di ∈ span{DS′}, which implies that
the K + 1 block columns indexed by S ′ ∪ {i} are not linear-independent, a contradiction to the
assumption.

Lemma 3 If matrix D satisfies the block spark condition, then for S,S ′ ∈
(

[L]

K

)
,

span{DS∩S′} = span{DS} ∩ span{DS′}. (3.28)

Proof: The inclusion “⊆” is trivial, so let us prove “⊇”. Suppose a block vector x ∈ span{DS}∩
span{DS2}. Express x as a linear combination of K atoms of D indexed by S and, separately,
as a combination of K atoms of D indexed by S ′. By the block spark condition, these linear
combinations must be identical. In particular, x was expressed as a linear combination of atoms
of D indexed by S ∩ S ′, and thus is in span{DS∩S′}

Proof of Theorem 1 when β = 1

First, we produce a set ofN = K
(
M/α

K

)2

vectors si ∈ RαK in general linear position (i.e.any sub-
set ofK of them are linearly independent). One possible strategy is to produce a “Vandermonde”
matrix [41]. Next, we form K-block-sparse vectors z1, ..., zN by taking si for the support value
of zi where each possible support set is representedK

(
M/α

K

)
times. We claim that these zi always

guarantee the uniqueness of BSDL.

Proof: Suppose there exists an alternate dictionary D̂ and a set of K-block-sparse vectors
ẑ1, ..., ẑN such that Dzi = xi = D̂ẑi. As there are K

(
M/α

K

)
xi for each support indexed by

S, the “pigeon-hole principle”2 implies that there are at least K vectors ẑi1 , ..., ẑiK using the
same support S ′. Thus, span{xi1 , ...,xiK} ⊆ span{D̂S′}. By the general linear position and the
block spark condition, span{xi1 , ...,xiK} = span{DS}. Therefore, span{DS} ⊆ span{D̂S′}.
As the dimension of span{D̂S′} is less and equal to K, span{DS} = span{D̂S′}.

By Lemma 1, Theorem 1 is proved.

2The pigeon-hole principle states that if n items are put into m containers, with n > m, then at least one
container must contain more than one item [11].
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3.2 Modeling via Block Sparsity

Let us assume that the unknown 3D structures S] are compressible, that is, the 3D structure
in each frame (each row of S]) can be approximated by only K basis shapes (K rows of B].)
Therefore, the factorization S] = C]B] results in a set of coefficients C] ∈ RF×L whose rows
are each K-sparse.

S] = C]B], s.t. ‖C]
i‖0 < K, (3.29)

where ‖ · ‖0 counts the number of active elements of argument vector/matrix and C]
i is the i-

th row of C]. Note that one never has access to the 3D structure S] a priori, only to the 2D
projections W. Interestingly, however, if we know S] is compressible, then from the projection
equation (i.e.Π = M(C] ⊗ I3)), Π must be 2× 3 block sparse as the camera matrix M is 2× 3

block-diagonal. It is this insight that forms the crucial component of our algorithm. From a
known measurement matrix W and desired K,L, one can factorize WT through a 3 × 2 block
sparse dictionary learning process. Note: for NRSf M W = ΠB, whereas for BSDL this would
be expressed as WT = BTΠT where X = WT ,D = BT , and Z = ΠT .

Theorem 2 If one can recover B̂ using a 3×2 BSDL such that D = B̂T satisfies the block spark

condition, then it can be shown that the transpose of B̂] satisfies the canonical spark condition,

where B̂] is an L× 3P reshape of B̂. Further, for such BSDL to be unique, K must be less than

or equal to P/3− 1.

Proof: Suppose two K-sparse vectors z1 and z2 such that (B̂])Tz1 = (B̂])Tz2. Then from the
reshape, it follows that B̂T (z1 ⊗ I3) = B̂T (z2 ⊗ I3). As B̂T satisfies the block spark condition,
it follows that z1 = z2; therefore, (B])T satisfies the canonical spark condition. Further, the
uniqueness of the BSDL factorization requires B̂T to satisfy the block spark condition. This
implies that any P × 3(K + 1) submatrices generated by concatenating K + 1 block columns
of B̂T need to be full column rank. Consider, a counterexample for contradiction: if K = 2,
and b1,b2,b3 are 3 linear dependent block columns of B̂T . In addition, suppose any 2 of them
are linear independent. Then the subspace spanned by {b1,b2} is identical to one by {b1,b3},
which breaks the block spark condition. ThereforeK needs to be less than or equal to P/3−1.

Theorem 2 actually tells us that the uniqueness of the BSDL factorization on 2D projections
automatically guarantees the uniqueness of the SDL factorization on the unknown 3D structures.
Interestingly, the converse is not always true. This result highlights a drawback in our proposed
approach; that is, we cannot recover all compressible structures but the subsets where Π̂ is
sufficiently sparse (K ≤ P/3− 1) and B̂ satisfies the block spark condition. In the experiments
section, we show a strategy that can be utilized in practice to improve the incoherence of B̂ and
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push it to satisfy the block spark condition.

3.3 Solving via Block Sparse Dictionary Learning

In this section, we describe our BSDL algorithm that adapts K-SVD [35], OMP [40] and FO-
CUSS [21] to the block sparse situation respectively. However, any valid BSDL method can be
employed here as long as it returns a valid factorization W = Π̂B̂.

3.3.1 Block K-SVD

The objective function that block K-SVD aims to solve is

min
D,X
‖Y −DX‖2

F

s.t. ‖Xi‖b0 ≤ T0, fori = 1, 2, ..., N.
(3.30)

where ‖ · ‖b0 counts the number of active blocks in the argument matrix.
Let’s first consider the block sparse coding stage, i.e.given D is fixed, and find the sparse

coefficient summarized in matrix X. By the definition of the Frobenius norm, the objective
function can be written as

‖Y −DX‖2
F =

N∑
i=1

‖Yi −DXi‖2
F . (3.31)

Therefore, the problem posed in (3.30) can be decoupled to N distinct problems of the form

min
Xi

‖Yi −DXi‖2
F

s.t. ‖Xi‖b0 ≤ T0, for i = 1, 2, . . . , N.
(3.32)

Each problem is adequately addressed by the pursuit algorithms, such as block-OMP.
We now turn to the second, and slightly more involved, process of updating the dictionary

together with the nonzero coefficients. Denote Dk as the k-th atom in the dictionary D, Xk
T

as the k-th block row in X, and Xk as the k-th block column in X. Returning to the objective
function (3.30), it can be rewritten as

‖Y −DX‖2
F =

∥∥∥Y − K∑
j=1

DjX
j
T

∥∥∥2

F

=
∥∥∥(Y −

∑
j 6=k

DjX
j
T

)
−DkX

k
T

∥∥∥2

F

=
∥∥∥Ek −DkX

k
T

∥∥∥2

F

(3.33)
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We have decomposed the multiplication DX into the sum of K low-rank matrices whose
rank depends on the size of block defined in problem (3.30). Among those, K − 1 matrices are
fixed and only one–k-th matrix–remains in question. The matrix Ek stands for the modelling
error for all N samples when the k-th atom is removed. Here it would be tempting to suggest
the use of SVD to find alternative Dk and Xk

T . The SVD finds the closest low-rank matrix (in
the Frobenius norm) that approximates Ek and this will effectively minimize the error defined in
3.33. However, such a step would be a mistake, because the new block vector Xk

T is very likely
to be filed, since in such an update of Dk we do not force the sparsity constraint. A remedy to
the above problem, however, is simple and also quite intuitive. Define ωk as the set of indices
pointing to the active block in Xk

T i.e.Thus,

ωk =
{
i|1 ≤ i ≤ K,Xk

T (i) is active
}
, (3.34)

where Xk
T (i) denotes the i-th block in Xk

T (i) denotes the size of block as p × q and |ωk| as the
number of active blocks. We then define Ωk as a matrix of size Nq × q|ωk| extracting the active
blocks from Xk

T i.e.
Xk
R = Xk

TΩk. (3.35)

This shrinks the block row vector Xk
T by discarding the zero blocks, resulting with the row vector

Xk
R of length q|ωk|. Similarly, the multiplication

YR
k = YΩk (3.36)

creates a matrix that includes a subset of the examples that are currently using the Dk atom. The
same effect happens with ER

k = EkΩk, implying a selection of error columns that correspond to
examples that use the atom Dk.

With this notation, we now return to (3.33), and suggest minimization with respect to both
Dk and Xk

T , but this time force the solution of X̃k
T to have the same support as the original Xk

T .
This is equivalent to the minimization of

‖EkΩk −DkX
k
TΩk‖2

F = ‖ER
k −DkX

k
R‖2

F (3.37)

and this time it can be done directly via SVD. Taking the restricted matrix ER
k , SVD decomposes

it to ER
k = U∆VT . We define the solution for D̃k as the first p columns of U, and the coefficient

vector X̃k
R as the first p rows of VT left multiplied by the top p× p sub-matrix in ∆. Note that,

in this solution, we necessarily have that:
• the atoms of D remain normalized,

• the support of representations either stays the same or gets smaller by the possible nulling
of terms.

The discussion about convergence and parallelism can be found in Rubinstein et al. [35].
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Implementation Issue

Just like the original K-SVD, the proposed block K-SVD algorithm is susceptible to local min-
imum traps. Our experiments show that improved results can be reached if the following varia-
tions are applied.

• When using approximation methods with a fixed number of coefficients, we found that
FOCUSS proves to be the best in terms of getting the best out of each iteration. However,
from a run-time point of view, OMP was found to lead to a far more efficient overall
algorithm. This is because FOCUSS is an iterative method to solve a re-weighted minimum
norm solution, which needs several iterations to converge. In addition, the regularization
parameter is decided by several FOCUSS attempts. However, OMP is a greedy method,
getting the sparse solution in exactly K iterations. Obviously, it saves time to run OMP, a
greedy method, than FOCUSS, an iterative method. On the other hand, as OMP is a greedy
method, there is no guarantee that an optimal solution is reached by it, while FOCUSS is
able to reach the optimal one with high possibility. Thus, OMP and FOCUSS is a balance
between preciseness and efficiency. In our experiments, the global minimum is a more
immersed need, such that preciseness is the very first thing to be considered. Thus, there
is no doubt that one should exploit FOCUSS in K-SVD instead of OMP.

• When a dictionary atom is not being used “enough” relative to the number of dictionary
atoms, the number of samples, and the sparsity of coefficients, it could be replaced with
the least-represented signal element after being normalized. This is also suggested by
Rubinstein et al.. Note that the size of dictionary atoms may differ from that of signal
elements. For example, if the size of the block in a signal element is 3 × 2, then the size
of the second dimension of a dictionary atom is 3, while the size of the second dimension
of a signal element is 2. In this case, we replace the first 2 columns of a dictionary atom
by the least represented signal element and fill the last column with a randomly-generated
vector. One should be careful that such a newly generated dictionary atom is supposed to
be normalized to 1, otherwise, it would never be used later.

3.3.2 Block OMP

To solve the block sparse approximation problem, we extend a regular Orthogonal Matching Pur-
suit (OMP) [40] to block OMP. Both of them are greedy algorithms, picking the first K atoms in
the dictionary describing the signal best. Specifically, in each iteration, block OMP computes the
inner product of residual and each dictionary atom left, and picks the atoms corresponding to the
least inner product value. Then it computes coefficients, associates with chosen atoms, updates
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residual and repeats until the number of chosen atoms hits the known number K. Block OMP
is efficient compared to block FOCUSS, but it succeeds only when the dictionary is sufficiently
incoherent.

3.3.3 Block FOCUSS

The FOcal Underdetermined System Solver (FOCUSS), proposed by Gorodnitsky et al. [21],
is an iterative method to solve the Sparse Coding problem. In experiments, FOCUSS is able
to recover sparse causes from signals generated by a non-ideal dictionary, while Orthogonal
Matching Pursuit (OMP) cannot. Here, to replace OMP with FOCUSS in K-SVD, we generalize
FOCUSS to the block sparse situation and call it block FOCUSS.

Recall of FOCUSS

We first discuss the basic form of FOCUSS without power l or additional weight matrix Wak,
summarized into Algorithm 5.

Algorithm 5: Basic FOCUSS
Data: the Dictionary A, a representation b

Result: a sparse signal x satisfying Ax = b

-Initialize x0 with blurred minimum norm solution;
while not converged do

-Wpk = diag(xk−1);
-qk = (AWpk)

†b;
-xk = Wpkqk;

end
return x = xk

The beauty of FOCUSS is to introduce the auxiliary variable q representing the sparse struc-
ture of vector x when converged: the element in q equals to 1 if the corresponding element in x

is active and 0 if non-active. To understand how the introduction of this auxiliary variable helps
to find the sparse solution, we consider the objective during iterations:

‖qk‖2
2 = ‖W†

pkxk‖2
2 =

∑
i,wi 6=0

(
xki
wki

)2

(3.38)

The relatively large entries in Wpk reduce the contribution of the corresponding elements of xk

to the above cost, and vice versa [21]. The value of entries in Wpk depends on xk−1, and thus
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it follows that some entries in xk become larger and larger but others smaller and smaller during
iterations. When the algorithm converges to a stationary point, certain entries of such a solution
must diminish to zero, which leads to a sparse solution.

Derivation of block FOCUSS

Denote A as the dictionary, B as the representation of signal X satisfying

AX = B, (3.39)

where signal X is an unknown block sparse vector and each block is in shape p × q. The basic
idea of block FOCUSS is to design a weight matrix Wpk forcing block vector Xk into block
sparse. A very intuitive idea is to make all elements in one block share one weight, which would
force the behaviour of these elements consistent to each other. Thus, we use the Frobenius norm
of the block as the weight shared by all elements inside the block. Block FOCUSS is summarized
into Algorithm 6.

Algorithm 6: Basic block FOCUSS
Data: the Dictionary A, a representation B

Result: a sparse signal X satisfying AX = B

-Initialize X0 with blurred minimum norm solution;
-Denote fXk as a vector whose i-th entry is the Frobenius norm of i-th block in Xk, and ⊗
as the Kronecker product;

while not converged do
-Compute fXk−1 from Xk−1;
-Wpk = diag(fXk−1 ⊗ Ip);
-Qk = (AWpk)

†B;
-Xk = WpkQk;

end
return X = Xk

In FOCUSS, the auxiliary variable qk actually represents the sparse structure of xk. Very
similar to that, Qk serves the same functionality in block FOCUSS. Specifically, denote fQk as
a vector whose i-th entry is the Frobenius norm of i-th block in Qk. From Algorithm 6, it is
implied that each block in Qk, denoted by Qk(i) satisfies that

Qk(i) = (W†
pkXk)(i) =

Xk(i)

fXk−1(i)
=

Xk(i)

‖Xk−1(i)‖F
. (3.40)
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When block FOCUSS converges, the entries in fQk , denoted by fQk (i)

fQk (i) =
‖Xk(i)‖F
‖Xk−1(i)‖F

(3.41)

are either one or zero, which indicates whether the corresponding block in Xk is active or not.
Further, the elements in Qk(i) are normalized entries describing how active the corresponding
element in each block is.

Implementation Issues

First, we discuss the stop criteria of block FOCUSS. There are many stop criteria we can pick
up; for instances, computing the change of Xk during each iteration, computing the change of
Qk during each iteration, etc. In our implementation, we use fQk to decide when to stop: when
all entries in fQk converge to one or zero, we say the block FOCUSS converges.

Algorithm 7: Complete block FOCUSS
Data: the Dictionary A, a representation B

Result: a sparse signal X satisfying AX = B

-Initialize X0 with blurred minimum norm solution;
-Denote fXk as a vector whose i-th entry is the Frobenius norm of i-th block in Xk, and ⊗
as the Kronecker product;

while fQk not converged do
-Compute fXk−1 from Xk−1;
-Wpk = diag

(
(fXk1)l ⊗ Ip

)
;

-Regularization: Qk = (AWakWpk)
†B;

-Compute fQk from QkWak;
-Hard Thresholding: Qk = H(Qk, f

Q
k );

-Xk = WakWpkQk;

end
return X = Xk

To improve the performance of the proposed block FOCUSS, we introduce two parameters:
some power l and an additional weight matrix Wak. The new algorithm is summarized in Algo-
rithm 6.The similar idea can also be found in [21]. Specifically, a good choice of l can accelerate
the convergence. The use of Wak makes it possible to incorporate a priori information, which
might extend the basin of the maximally sparse solution that we considered as the optimal solu-
tion. Note that a poorly designed Wak may damage the functionality of auxiliary variable. We
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define Wak as a block diagonal matrix where each block on the main diagonal is a scaled identity
matrix ciI, where the scale ci is the greatest absolute value of elements in i-th block column of
A. Therefore, by Algorithm 7, it is known that

Xk(i) = Wak(i)Wpk(i)Qk(i). (3.42)

Thus, it is followed that

Qk(i) =
Xk(i)

ci‖Xk−1(i)‖F
. (3.43)

By computing the limit of both sides, it is implied that

lim
k→∞
‖Qk(i)‖F =

1

ci
, (3.44)

which maintains the functionality of the auxiliary variable Q.

To accelerate the convergence, we introduce the hard thresholding operation. Denote ε as the
hard thresholding operation constant. The block in Qk will be truncated if corresponding entry
in fQk is less than ε during iterations. Consequently, since

Xk = WakWpkQk, (3.45)

the corresponding blocks in Xk are also truncated. This operation significantly saves compu-
tation, as well as provides better convergence and performance properties by eliminating the
diminishing blocks.

3.3.4 Initialization via ADMMs

The BSDL factorization itself is inherently an NP-hard problem, therefore it is important to
have a good initialization. We relax the BSDL objective using a block `1-norm, and solve the
relaxed problem by the Alternating Direction Method of Multipliers (ADMMs) [1, 8, 10, 18].
Even though the relaxed problem is not convex either, ADMM splits the objective into several
small convex sub-problems by introducing several auxiliary variables. A stationary point can be
achieved for our ADMM initialization through the judicious choice of parameters [10].

Given data matrix X, we want to reconstruct codebook A and code matrix B, such that B

has a p× q block sparse structure. Let’s express this problem into an optimization format:

min
A,B

1

2

∥∥X−AB
∥∥2

F
+ γ
∥∥B∥∥

21

s.t. ‖Ai‖F ≤ 1 for i = 1, . . . , L

(3.46)
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where X ∈ Rm×qn,A =
[
A1 A2 . . . AL

]
∈ Rm×pL,Ai ∈ Rm×p,B ∈ RpL×qn. In the block

matrix B, each block that is in shape p × q.
∥∥ · ∥∥

21
denotes `-21 norm, which first computes `2

norm of each block, and then computes the summation of them.

ADMMs allows us to employ the two dummy variables C,D into the optimization problem:

min
A,B,C,D

1

2

∥∥X−AB
∥∥2

F
+ γ
∥∥C∥∥

21

s.t. ‖Di‖F ≤ 1 for i = 1, . . . , L

A = D,

B = C.

(3.47)

At first glance, this objective seems to buy us nothing, except to complicate things. However, we
can form the augmented Lagrangian of the above objective, which becomes:

Lρ,µ(A,B,C,D,ΛA,ΛB) =
1

2

∥∥X−AB
∥∥2

F
+ γ
∥∥C∥∥

21
+
ρ

2

∥∥B−C
∥∥2

F
+
µ

2

∥∥A−D
∥∥2

F

+ vec(ΛA)Tvec(A−D) + vec(ΛB)Tvec(B−C)

where ΛA ∈ Rm×pL and ΛB ∈ RpL×qn are the Lagrange multipliers, ρ and µ are penalty weight-
ing for two auxiliary variables C and D, respectively.

ADMMs consists of the iterations

Ak+1 = argmin
A

Lρ,µ(A,Bk,Ck,Dk)

Bk+1 = argmin
B

Lρ,µ(Ak+1,B,Ck,Dk)

Ck+1 = argmin
C

Lρ,µ(Ak+1,Bk+1,C,Dk)

Dk+1 = argmin
D

Lρ,µ(Ak+1,Bk+1,Ck+1,D)

Λk+1
A = Λk

A + µ(Ak+1 −Dk+1)

Λk+1
B = Λk

B + ρ(Bk+1 −Ck+1)

(3.48)

Now, let’s detail each of the subproblems.

subproblem A:

A∗ = argmin
A

L(A; B,C,D,ΛA,ΛB)

= argmin
A

1

2

∥∥X−AB
∥∥2

F
+
µ

2

∥∥A−D
∥∥2

F
+ vec(ΛA)Tvec(A)

(3.49)
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Since Equation 3.49 is a quadratic problem, let’s directly find optimal points where the gradient
equals zero.

∂L
∂A

= (AB−X)BT + µ(A−D) + ΛA = 0, (3.50)

A∗ = (XBT + µD−ΛA)(BBT + µI)−1. (3.51)

subproblem B:

B∗ = argmin
B

L(B; A,C,D,ΛA,ΛB)

= argmin
B

1

2

∥∥X−AB
∥∥2

F
+
ρ

2

∥∥B−C
∥∥2

F
+ vec(ΛB)Tvec(B)

(3.52)

Since Equation 3.52 is a quadratic problem, let’s directly find optimal points where the gradient
equals zero.

∂L
∂B

= AT (AB−X) + ρ(B−C) + ΛB = 0, (3.53)

B∗ = (ATA + ρI)−1(ATX + ρC−ΛB). (3.54)

subproblem C:

C∗ = argmin
C

L(C; A,B,D,ΛA,ΛB)

= argmin
C

γ
∥∥C∥∥

21
+
ρ

2

∥∥B−C
∥∥2

F
− vec(ΛB)Tvec(C)

(3.55)

Since there is no rotation of C in Equation 3.55, each block Cij ∈ Rp×q of C can be solved
independently,

C∗ij = argmin
Cij

γ
∥∥Cij

∥∥
2

+
ρ

2

∥∥Bij −Cij

∥∥2

2
− vec((ΛB)ij)

Tvec(Cij) (3.56)

which has a closed form solution by the one-dimensional shrinkage (or soft thresholding) for-
mula:

C∗ij = max

{∥∥rij∥∥2
− γ

ρ
, 0

}
rij∥∥rij∥∥2

, (3.57)

where
rij := Bij +

1

ρ
(ΛB)ij. (3.58)

subproblem D:

D∗ =argmin
D

L(D; A,B,C,ΛA,ΛB)

=argmin
D

µ

2

∥∥A−D
∥∥2

F
− vec(ΛA)Tvec(D)

s.t. ‖Di‖F ≤ 1 for i = 1, . . . , Lp

(3.59)
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Since Equation 3.59 doesn’t contain any rotation, we could solve Di independently,

D∗i = argmin
Di

µ

2

∥∥Ai −Di

∥∥2

F
− (ΛA,i)

TDi

s.t. ‖Di‖F ≤ 1

(3.60)

Further, in the quadratic term in Equation 3.60, there is no matrix left multiply Di, so the iso-
contour of the objective function is isotropic. Hence, fortunately, we can solve the unconstrained
problem, and then project it into a feasible region.

D̃∗i = Ai +
1

µ
(ΛA,i) (3.61)

D∗i =
D̃∗i

max{
∥∥D̃∗i∥∥F , 1} . (3.62)

Penalty Update: Super linear convergence of the ADMMs may be achieved if µ, ρ→∞. In
practice, we lint the value of µ, ρ to avoid poor conditioning and numerical errors. Specifically,
we adopt the following update strategy:

µk+1 =

τµk if µk < µmax

µk otherwise
(3.63)

ρk+1 =

τρk if ρk < ρmax

ρk otherwise
(3.64)

3.3.5 Camera and Structure Recovery

As the scale of cameras and the sizes of structures are inherently relative, we simply set the
camera scale σ to unity, such that MfM

T
f = I2. Assuming that W = Π̂B̂ has a unique BSDL,

from Definition 1, the corrective matrix G must be of form G = (P⊗ I3)Λ. As the permutation
ambiguity has no bearing on camera motion and 3D structure, we set P to identity, therefore
G = Λ.

Denote Gj as j-th block on diagonal of G, and Π̂j,Πj ∈ R2F×3 as the j-th coloumn-triplet
of Π̂,Π respectively. From the structure of the corrective matrix, it follows that Πj = Π̂jGj ,
for j = 1, ..., L. Define Ωj as the set of indices pointing to the block Π̂ij ∈ R2×3 that is active,
i.e.Ωj = supp(Π̂j) = {i|1 ≤ i ≤ F, Π̂ij 6= 0}. If a certain Ωj is empty, it is implied that the
corresponding atom in the dictionary has never been used. We can then decrease L, and re-learn
the dictionary so that Ωj is never empty.
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From the projection equation (i.e.W = M(C]⊗I3)B = ΠB), it is known that Πij = cijMi,
where cij is ij−th elements of C]. Thus, since Ωj can never be empty, Π̂ijGj = Πij = cijMi,

for each i ∈ Ωj. From camera constraints, it follows that

Π̂ijGjG
T
j Π̂

T

ij = c2
ijMiM

T
i = c2

ijI2, i ∈ Ωj, (3.65)

and for convenience, let Qj = GjG
T
j . Since cij is unknown, let us eliminate it and rewrite

Equation 3.65 as

(Π̂ijQjΠ̂
T

ij)11 = (Π̂ijQjΠ̂
T

ij)22, (Π̂ijQjΠ̂
T

ij)12 = 0, (3.66)

where (·)ij denotes the (i, j)-th elements. Now, denote qj = vec(Qj) as the vectorization of
Qj . Let us rewrite Equation 3.66 in a compact way with the fact that vec(Π̂ijQjΠ̂ij) = (Π̂ij ⊗
Π̂ij)qj: [

Π̂ij ⊗ Π̂ij(1, :)− Π̂ij ⊗ Π̂ij(4, :)

Π̂ij ⊗ Π̂ij(2, :)

]
qj = Aijqj = 0, (3.67)

where Π̂ij ⊗ Π̂ij(k, :) denotes k-th row of Π̂ij ⊗ Π̂ij . Stacking all such equations for all i ∈ Ωj ,
we obtain

Ajqj = 0. (3.68)

Circumventing the nullspace

One benefit of Equation 3.68 is that Aj ∈ R2|Ωj |×9, where |Ωj| is the number of elements in set
Ωj , with the high possibility it will be overcomplete as F � L. This result is important, as it
circumvents the nullspace issue faced by low-rank NRSf M. This null space issue can be prob-
lematic in many practical scenarios due to its sensitivity to noise. Similar to Tomasi-Kanade’s
method [38], we simply pick up the eigenvector corresponding to the least eigenvalue of AT

j Aj

and then Qk ∈ S3
+ holds automatically.

Once Qj is estimated, the absolute value of cij can be computed by Equation 3.65. The sign
of cij , however, is not able to be determined, which actually is an inherent ambiguity without
assuming any temporal prior of camera or structures. Considering equation W = MS, any
block diagonal matrix blkdiag(±I3) can be inserted between M and S, but the compressibility
assumption and camera constraint still hold. Dai et al. [14] breaks their “prior-free” assertion by
restricting the camera movement between frames to at most ±90◦ to determine the sign of cij .
In our paper, however, we claim that the absolute sign of cij cannot be determined by the current
assumption, but the relative sign in each column can. Thus, the camera matrix and structures can
be recovered, but up to a sign ambiguity.
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Enforcing camera consistency

Let us consider the submatrix Gj in isolation,

Π̂ijGj = cijMi, for i ∈ Ωj. (3.69)

One can recover the camera matrices {Mi}i∈Ωj by solving the system of equations above. Fur-
ther, if one was to then choose another Gk where j 6= k, such that one or more indexes in Ωj

are shared with Ωk, one can equally recover the camera matrices {M∗
i }i∈Ωk . An inconsistency

arises, however, such that we cannot guarantee that

M∗
i = Mi, for i ∈ Ωj ∩ Ωk. (3.70)

This inconsistency does not just occur across pairs of submatrices within G, but actually
across all possible submatrices of G with overlapping active blocks. We attempt to resolve
this inconsistency in a recursive manner by solving for an orthonormal matrix Hk, such that
M∗

iHk = Mi. First, we choose an arbitrary Gj (typically the one with the most active blocks)
and solve for the cameras {Mi}i∈Γ, where we initially set Γ = Ωj . Then we choose a Gk whose
|Γ ∩ Ωk| is largest. We solve for the cameras {M∗

i }i∈Ωk , and then find an orthonormal Hk such
that,

argmin
Hk,η

∑
i∈Γ∩Ωk

‖Mi − ηiM∗
iHk‖F s.t. HT

kHk = I, ηi = {+1,−1}, (3.71)

where ηi contains the relative sign of elements in C] for Γ. For the element in C] that are not
explicitly defined through η, we set them arbitrarily to be positive. We then update Γ← Γ ∪ Ωk

and repeat the process until all cameras and relative signs in C] are known. The structure matrix
S is then recovered by (C] ⊗ I3)H−1G−1B, where H is a matrix with H1, ...,HL on main
diagonal.

3.4 Experiments

3.4.1 Compressibility

Our first experiment explores the compressibility of real 3D structures from the CMU Motion
Capture dataset, where we learned various dictionaries with different dictionary size L and spar-
sity level K. Figure 3.1 clearly shows that the real 3D structures are modeled well by our
compressibility assumption and the coherence of the learned dictionary is being controlled by
balancing the approximation error. This result offers a strategy to achieve a unique BSDL fac-
torization at the cost of approximating structures less precisely, which extends the application of
our method.
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Figure 3.1: The results of SDL factorization for Motion-4 by Subject-5 in CMU Motion Capture.
Left: The approximation error. Right: The coherence of a learned dictionary. With the decrease
of K and L, the coherence of the learned dictionary becomes better at the cost of approximating
structures less precisely.

3.4.2 Recovering temporal order

In Figure 3.2 we demonstrated that the sparse codes recovered using our method have a natural
temporal coherence. This indicates our prior-less approach could be useful for the recovery of
the temporal order of 3D structures in future applications. The full analysis of this phenomena is
outsize of the scope of this paper.

Figure 3.2: Top: 10 learned basis structures for Motion-4 by Subject-5 in CMU Motion Capture
when K = 2, L = 10. These bases are learned from 3D shape sequences and identical to those
learned from 2D image sequences, due to the uniqueness of BSDL. Bottom: The visualization
of coefficients. The coefficients of each atom vary gradually in a shape of Gaussian distribution,
which reveals the temporal information of video sequence. It is not used in NRSf M, but may be
useful for recovering the temporal order of 3D structure in future applications.

3.4.3 High-rank performance

To verify the performance of the proposed method on high-rank and full-rank structures, we
conducted experiments with synthetic data where the rank of structures is easily controlled. We
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utilized Dai et al.’s work as a baseline, which demonstrated that it outperforms other low-rank
NRSf M methods in [14]. Note that for a fair comparison, we visit all possible rank k for [14] to
ensure a best baseline estimation.

Figure 3.3: Left: The error of estimated camera matrix. Right: The error of estimated structures.
The error matrices follow [5, 14, 22]. Our methods obtained nearly perfect results irrespective to
the rank of structures.

The compressible structure S, with 100 frames and 30 points in each frame, are generated
by a random dictionary of size L, such that rank(S) = 3L. We repeat the proposed method
as well as Dai et al.’s method 50 times for each L from 3 to 12. The results are summarized
in Figure 3.3. It is seen that our method works perfectly and robustly on structures with any
rank, while the low-rank NRSf M fails in high-rank and full-rank situations. Moreover, even in a
low-rank situation, the proposed method outperforms the Dai et al.’s method.

3.4.4 Noise performance

To evaluate the performance under noise, we repeat the experiments on low-rank structures (with
L = 5) at different noise ratios, defined as ‖W−W0‖F

‖W0‖F
. Figure 3.4 demonstrates that our method

is sensitive to noise. However, it still works no worse than Dai et al.’s method even at high noise
ratios.
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Figure 3.4: Left: The error of estimated camera matrix. Right: The error of estimated structures.
Both x- and y-axis are in logarithm space. Our method is sensitive to noise, while it still works
no worse than the baseline even at high noise.

3.4.5 Practical performance

The proposed method is evaluated on real compressible structures: Motion-4, -5, -6, -7, -8 by
Subject-5, and Motion-2, -4 by Subject-1, Motion-5 by Subject-2, Motion-3, -4 by Subject-3 and
Motion-13 by Subject-6 in CMU Motion Captures, and a Shark sequence in [39]. The visual
evaluation shows that our method obtains impressive results in Figure 3.5, 3.6, 3.7, while it
fails in Figure 3.8. Actually, this failure is able to be forecast even without ground truth. The
coherence of the learned dictionary for sequence Shark is too poor to guarantee the uniqueness
of the BSDL factorization. This insight offers an effective way to predict the reconstructibility
of 3D structure when the ground truth structure is not available in practice.

Figure 3.5: Random Sampled frames from Motion-4,-5,-6 by Subject-5.

Figure 3.6: Random Sampled frames from Motion-3,-4 by Subject-3 and Motion-13 by Subject-
6.
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Figure 3.7: Random Sampled frames from Motion-2,-4 by Subject-1 and Motion-5 by Subject-2.

Figure 3.8: Random Sampled frames from Shark sequence.
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Chapter 4

Convex Relaxation and Alternating
Direction Method of Multipliers

This chapter introduces the method of Structure from Category (Sf C) to infer 3D structures of
objects in images stemming from the same object category. Sf C is built upon the insight that the
shape space describing an object category (e.g. aeroplane) is inherently non-rigid, even though
individual instances of the category may be rigid. In other words, the shape of each instance can
be modeled as a deformation from its category’s general shape. Based on this observation, we
frame Sf C through an augmented sparse shape-space model that estimates the 3D shape of an
object as a sparse linear combination of a set of rotated shape bases.

The proposed Sf C is a generic and prior-less 3D reconstruction algorithm. Unlike current
NRSf M methods, which are mainly limited to very few deformable objects (e.g. the human body
and face), Sf C can be generally applied on any object category, due to the non-rigid assumption
of objects’ shape space. Moreover, all parameters, including shape bases, sparse coefficients,
and (scaled) camera motion, are jointly learned though an iterative manner, with no constraint
on camera motion, 3D shape structure, temporal order, and deformation patterns (prior-less).
Being generic and prior-less with no learning procedure in advance offers robust, large-scale 3D
reconstruction for unseen object images and categories.

4.1 Problem Formulation

Inspired by the augmented sparse shape-space model [50], the 3D shape of instance f , Sf ∈
R3×P , can be well-approximated as a linear combination of a set of L rotated 3D shape bases
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{Bl}Ll=1:

Sf =
L∑
l=1

cflRflBl, (4.1)

where Bl ∈ R3×P , represented by the location of P key points in the 3D space, describe the
object’s shape space. Rfl ∈ R3×3 and cfl, respectively, refer to the rotation matrix and the
coefficient of the l-th shape base and the f -th instance.

Given a set of F instances of the same object category, Eq(4.1) can be written as :
S1

...
SF

 =


c11R11 · · · c1LR1L

...
...

...
cF1RF1 · · · cFLRFL




B1

...
BL

 . (4.2)

The projection of {Sf}Ff=1 into the image plane, {Wf}Ff=1, is computed by:
W1

...
WF

 =


KS1

...
KSF

+


T1

...
TF

 =


c11KR11 · · · c1LKR1L

...
...

...
cF1KRF1 · · · cFLKRFL




B1

...
BL

+


T1

...
TF

 , (4.3)

where we denote translation by Tf , and projection matrix by K. Wf ∈ R2×P contains the 2D
locations of P key points projected into the image plane. We consider weak-perspective cameras,
which is a reasonable assumption for objects whose variation in depth is small compared to their

distance from the camera; i.e.K =

[
1 0 0

0 1 0

]
.

Denoting Mfl = cflKRfl, Eq(4.3) can be written as:
W1

...
WF

 =


M11 · · · M1L

...
...

...
MF1 · · · MFL




B1

...
BL

+


T1

...
TF

 (4.4)

and more concisely in the matrix form as,

W = MB + T (4.5)

The goal of Sf C is to jointly compute M (projected rotation matrix), B (shape bases), and
T (translation), using W (location of corresponding key points in a set of 2D images). This is
performed by minimizing the projection error subject to the scaled orthogonality constraint on
each Mfl and the sparsity constraint on the number of shape bases activated for each instance,
which is framed as:
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min
M,B,T

1

2

∥∥∥Γ� (MB + T
)
−W

∥∥∥2

F
+ λ‖C‖1

s.t. MflM
T
fl = c2

flI2, f = 1, ..., F, l = 1, ..., L,

‖Bl‖F = 1, f = 1, ..., F,

(4.6)

where C = [cfl] and ‖C‖1 computes the summation of `1-norm of each row in C. ‖.‖F denotes
the Frobenius norm of a matrix, and Γ is a binary matrix that encodes the visibility (1) and
occlusion (0) of each key point. The objective in Eq(4.6) is non-convex due to the multiplication
of M and B and the orthogonality constraint on each Mfl. To make the problem more convex,
we utilize the relaxation strategy proposed by Zhou et al. [50] that eliminates the orthogonality
constraint by replacing it with a spectral norm regularization. In this case, Eq(4.6) is relaxed as:

min
M,B,T

1

2

∥∥∥Γ� (MB + T
)
−W

∥∥∥2

F
+ λ

∑
l,f

‖Mfl‖2

s.t. ‖Bl‖F = 1, l = 1, ..., L,

(4.7)

where ‖.‖2 here is the spectral norm of a matrix. The Alternating Direction Method of Multipliers
(ADMM) [8] will be utilized to solve the objective in Eq(4.7).

4.2 Optimization via ADMM

Our proposed approach for solving Eq(4.7) involves the introduction of two auxiliary variables
Z and A. In this case, Eq(4.7) can be identically expressed as:

min
M,B,T,Z,A

1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2

F
+ λ

∑
f,l

‖Mfl‖2

s.t. M = Z, A = B,

‖Al‖F = 1, l = 1, ..., L.

(4.8)

The augmented Lagrangian of Eq(4.8) is formulated as:

L(M,Z,B,A,T,Λ,Π) =
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2

F

+ λ
∑
f,l

‖Mfl‖2 +
µ

2

∥∥∥M− Z
∥∥∥2

F
+
ρ

2

∥∥∥A−B
∥∥∥2

F

+
〈
Λ,M− Z

〉
F

+
〈
Π,A−B

〉
F

s.t. ‖Al‖F = 1, l = 1, ..., L,

(4.9)

53



where Π,Λ are Lagrangian multipliers, and µ, ρ are penalty factors to control the convergence
behavior, and < ·, · >F is a Frobenius product of two matrices.

Particularly, we utilize the Alternating Direction Method of Multipliers (ADMM) to optimize
Eq(4.9). ADMM decomposes an objective into several sub-problems, and iteratively solves them
till convergence occurs [8]. We detail each of the sub-problem as follows:

Sub-problem M

M∗ = argminL(M; Z,B,A,T,Λ,Π)

= argminλ
∑
f,l

‖Mfl‖2 +
µ

2

∥∥∥M− Z
∥∥∥2

F
+
〈
Λ,M− Z

〉
F

(4.10)

Following [50], each Mfl can be computed by using soft-thresholding:

M∗
fl = Dλ/µ

(
Zfl −

1

µ
Λfl

)
(4.11)

Sub-problem Z

Z∗ = argmin L(Z; M,B,A,T,Λ,Π)

= argmin
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2

F
+
µ

2

∥∥∥M− Z
∥∥∥2

F
+
〈
Λ,M− Z

〉
F

(4.12)

Z∗ is updated iteratively by gradient descent several times, where the gradient is
(
Γ � Γ �(

ZB + T
)
−W

)
BT − Λ + µ(Z −M). If Γ is all ones (all key points are visible), we can

compute Z∗ easily by pseudo-inverse:

Z∗ =
(
BBT + µI

)†((
W −T

)
BT + Λ + µM

)
(4.13)

Sub-problem B

B∗ = argmin L(B; M,Z,A,T,Λ,Π)

= argmin
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2

F

+
〈
Π,A−B

〉
F

+
ρ

2

∥∥∥A−B
∥∥∥2

F

(4.14)

Each column of B, corresponded to each key point p, can be independently optimized as:

B∗p = argmin
1

2

∥∥∥ diag
(
Γp

)
ZBp + Γp �Tp −Wp

∥∥∥2

2

+
〈
Πp,Ap −Bp

〉
F

+
ρ

2

∥∥∥Ap −Bp

∥∥∥2

2

(4.15)
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We utilized a gradient descent solver to optimize Eq (4.15) when ρ is small (Eq (4.15) is poorly
conditioned). Once ρ becomes big enough, we solve Bp directly using a least square solver. If
all entries of Γ are one, i.e.. all key points are visible, B∗ can efficiently computed by:

B∗ =
(
ZTZ + ρI

)†(
ZT
(
W −T

)
+ Π + ρA

)
(4.16)

Sub-problem A

A∗ = argminL(A; M,Z,B,T,Λ,Π)

= argmin
〈
Π,A−B

〉
F

+
ρ

2

∥∥∥A−B
∥∥∥2

F

s.t.
∥∥Al

∥∥
F

= 1, l = 1, ..., L.

(4.17)

The optimal solution for Eq (4.17) can be obtained as [10],

A∗l =
Bl − 1/ρΠl∥∥Bl − 1/ρΠl

∥∥
F

(4.18)

Sub-problem T

T∗ = argminL(T; M,Z,B,A,Λ,Π) = argmin
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2

F
. (4.19)

Since all columns of T ∈ R2F×P , τ ’s, are identical, we compute a τ ∈ R2F×1 by minimizing
the above objective:

τ ∗ = argmin
1

2

P∑
p=1

∥∥∥∥∥Γp �
(
ZBp + τ

)
−Wp

∥∥∥∥∥
2

2

, (4.20)

and optimal τ is computed by:

τ ∗ =
( P∑
p=1

Wp −
P∑
p=1

Γp � Γp � ZBp

)
�
( P∑
p=1

Γp � Γp

)
(4.21)

where � denotes the element-wise division.

Lagrange Multiplier Update

The lagrange multipliers Π,Λ at each iteration are updated as,

Λ[i+1] = Λ[i] + µ
(
M[i+1] − Z[i+1]

)
Π[i+1] = Π[i] + ρ

(
A[i+1] −B[i+1]

) (4.22)
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Penalty Update

Superlinear convergence of ADMM may be achieved by µ, ρ → ∞. In practice, we limit the
value of µ, ρ to avoid poor conditions and numerical errors. Specifically, we adopt the following
update strategy:

µ[i+1] = min(µmax, β1µ
[i])

ρ[i+1] = min(ρmax, β2ρ
[i])

(4.23)

We found experimentally µ[0] = 10−2, ρ[0] = 10−1, β1(β2) = 1.1, and µmax(ρmax) = 105 to
perform well.

4.3 Experiments

4.3.1 Evaluation setup

This project compares the proposed method against the most notable NRSf M algorithms: the
Tomasi-Kanade factorization [38], and the state-of-the-art Dai et al.’s prior-less NRSf M method [14],
in terms of reprojection and reconstruction errors. The reprojection error measures the accuracy
of reprojected key points: 1

F

∑F
i=1 ‖Wi − Ŵi‖F . The reconstruction error, on the other hand,

evaluates the quality of estimated 3D shapes: 1
F

∑F
i=1 minκ ‖Si − κŜi‖F . κ (scalar) handles the

scale ambiguity in camera projection.

Extensive experiments are conducted to evaluate the performance of our framework using
both synthetic and natural images. For the synthetic images, we downloaded 70 CAD models
of aeroplane category from the Sketchup 3D warehouse 1, and manually annotated their 3D key
points. The synthetic images are simply generated by projecting random poses of these 3D
models under a weak-perspective camera into the image plane. The PASCAL3D+ dataset [46] is
used for the natural image experiment, which consists of 12 object categories, and each category
comes with a set of annotated 3D CAD models and corresponding natural images. We utilize
most of the images from all categories, except those displaying highly occluded objects. More
details of the PASCAL3D+ dataset can be found in [46].

The main differences between synthetic and PASCAL3D+ images come from the camera
projection and object occlusion. We utilize random weak-perspective projection to generate the
synthetic images of the aeroplane dataset, which follows the weak-projection assumption in this
paper, whilst the camera projection in the PASCAL3D+ is perspective. Moreover, all key points

1https://3dwarehouse.sketchup.com/

56



in synthetic images are visible, while some key points in the PASCAL3D+ may be occluded by
the object itself or other objects.

4.3.2 3D reconstruction from synthetic images

The first experiment evaluates the performance of the proposed method on synthetic images,
comparing it with the Tomasi-Kanade factorization [38] and Dai et al.’s prior-less NRSf M ap-
proaches [14]. The synthetic images are randomly generated from all 3D CADs of the aeroplane
dataset under weak perspective projection, and these approaches are applied to reconstruct the
3D shape of each image. The predicted shapes, then, are projected into the 2D plane to compute
the key points reprojection error. The result of this experiment is shown in Fig. 4.1 (top), demon-
strating the superior performance of our method to the other approaches. This evaluation shows
that the 3D shapes reconstructed by the proposed Sf C not only represent the actual geometry
of the objects in 3D space, but also preserve the objects’ spatial configuration when projected
in the image plane. The result also verifies the sensitivity of the low-rank factorization NRSf M
algorithm, e.g.Dai et al.’s method in the real-world uncontrolled circumstances, when the shape
of an object can not be modeled by very few shape bases [43].
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Figure 4.1: Comparing our method with the Tomasi-Kanade [38] and Dai et al. [14] methods
using the synthetic images. (left) The reconstruction and reprojection errors. (right) Noise per-
formance.

4.3.3 Noise performance

To analyse the robustness of our method against inaccurate key point detection, which is in-
evitable in real-world circumstances, we repeat the first experiment (using synthetic aeroplane
images) with different levels of Gaussian noise added to the ground truth 2D locations. The av-
erage reconstruction and reprojection errors of ten random runs for each noise ratio is reported in
Fig. 4.1 (bottom), showing that, compared to the other methods, the Sf C method is more robust
against inaccurate key point detections.
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4.3.4 3D reconstruction of PASCAL3D+ dataset

To evaluate the performance of our framework over perspective projection and missing key
points, we apply the proposed Sf C approach to reconstruct 3D shapes of the PASCAL3D+ natu-
ral images. There is no additional shape and camera motion assumption given in this experiment,
and images of all 12 object categories are taken under uncontrolled real-world circumstances. All
images and their corresponding ground truth 3D CAD models are represented by a set of 2D and
3D annotated key points, respectively, which, together with the predicted 3D structures and their
reprojected 2D key points, will be used to compute the reconstruction and reprojection errors.
Since the Tomasi-Kanade factorization and Dai et al.’s method are not capable of handling oc-
cluded objects, we utilize the non-convex matrix completion via iterated soft thresholding [31] to
predict the missing points for these approaches. This experiment is conducted over two different
settings. In the first setting, we use the ground truth key points of each image provided by the
PASCAL3D+. In the other setting, however, we adapt the SDM [48] approach for key point
detection, and the predicted points are used for 3D reconstruction.

Using ground truth key points

The reprojection and reconstruction errors for each object category are summarized in Table 4.1
and showed by Fig. 4.2, where our approach outperforms the competitors and achieves the lowest
reconstruction and reprojection error for each object category.
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Figure 4.2: The reprojection (left) and reconstruction (right) performance of the proposed
method, the Tomasi-Kanade factorization [38] and Dai et al.’s method [14] on natural images
(the PASCAL3D+ dataset) with ground truth key points.
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category key points
Reprojection Error Reconstruction Error

Tomasi
Kanade

Dai et al. Our method
Tomasi
Kanade

Dai et al. Our Method

aeroplane
GT 224.3925 67.7078 24.5695 0.6035 0.7631 0.5257

detected 364.7172 282.5179 251.0064 0.7986 0.7465 0.6223

boat
GT 202.9794 174.2009 11.1862 0.6892 0.7609 0.6061

detected 150.7320 171.5790 133.1670 0.7844 0.8531 0.7497

bicycle
GT 135.9651 41.8621 24.7112 0.6490 0.2568 0.2495

detected 295.2249 223.5721 207.6959 0.7327 0.6695 0.6351

bottle
GT 44.4231 6.4836 2.8315 0.6609 0.2865 0.2590

detected 108.4824 68.6833 69.7238 0.7087 0.4220 0.3812

bus
GT 304.8072 82.1719 56.0355 1.1427 1.3839 0.8396

detected 564.3329 311.0550 264.9117 1.4164 1.3924 1.1562

car
GT 173.6506 49.5333 35.4720 1.1062 0.5943 0.5808

detected 265.4429 173.8730 138.6603 0.9959 0.9636 0.8242

chair
GT 75.9437 91.5107 33.0905 0.3958 0.9887 0.3671

detected 194.7178 136.9023 117.6726 1.0985 1.0511 0.9338

motorbike
GT 150.6358 48.3516 27.1717 0.6096 0.5252 0.4344

detected 464.8820 280.3500 264.5549 0.7333 0.7185 0.6887

sofa
GT 274.9890 64.2714 30.0575 1.1561 0.7727 0.6438

detected 416.9723 253.0140 196.6783 1.1198 1.1617 1.0126

diningtable
GT 192.5072 130.5157 21.9391 0.8924 1.1084 0.6982

detected 258.3700 110.2296 103.4765 1.2404 1.1124 1.0107

train
GT 260.5996 61.7900 34.2347 1.1215 1.1316 0.8957

detected 457.0754 296.3881 213.2750 1.2568 1.2728 1.1799

tvmonitor
GT 119.8794 59.2110 6.6706 1.1740 1.1454 0.5653

detected 277.1977 100.6167 60.0780 0.9307 1.0412 0.7516

average
GT 180.0644 73.1342 25.6642 0.8501 0.8098 0.5554

detected 318.1790 200.7318 168.4084 0.9847 0.9504 0.8288

Table 4.1: Reprojection and Reconstruction errors obtained by the Tomasi Kanade factoriza-
tion [38], Dai et al.’s method [14], and our method using ground truth key points (GT) and
detected key points (detected).

Using predicted key points

We adapt the Supervised Descent Method (SDM) [48], originally proposed for the task of facial
landmarks alignment, to detect key points of generic objects within natural images. The main
assumption of the SDM is that training samples fall into a Domain of Homogeneous Descent
(DHD)2, due to their limited pose space and appearance variation [49]. This assumption, how-
ever, is rarely valid in an object category with large intra-class appearance and poses variations
that lie in multiple DHDs. To deal with this situation, we propose to employ a subset of training
images with homogeneous gradient directions to train an SDM in an “on-the-fly” manner. Par-

2A DHD refers to optimization spaces of a function that share similar directions of gradients.
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ticularly, given a test image, we use fc7 feature from the ConvNet [36] to retrieve its M most
similar samples from training images and use them to train an SDM. The training set is generated
by adding Gaussian noise to the ground truth locations. After training the SDM regressors, we
run them independently from M different initializations (the ground truth landmark locations of
the M retrieved samples). This returns M sets of predicted key points, which will be further
pruned by the mean-shift algorithm. More details of SDM training/testing can be found in [48].

The results are shown in Fig. 4.3 and Table 4.1. For both settings, using ground truth and
predicted key points, our method achieves the best reconstruction and reprojection performance.
The results also state that the performance of using ground truth key points is much better than
the detected key points. Some qualitative results are shown in Fig. 4.4, illustrating the 3D re-
construction of two instances of each object category using ground truth key points and detected
key points respectively. During the experiments, we observed that most of the failure cases are
caused by the severe perspective effect (e.g.train), missing key points (e.g.sofa), and inaccurate
key point detection (e.g.chair).
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Figure 4.3: The reprojection (left) and reconstruction (right) performance of the proposed
method, the Tomasi-Kanade factorization [38] and Dai et al.’s method [14] on natural images
(the PASCAL3D+ dataset) with detected key points.
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Figure 4.4: Visual evaluation of estimated structures for every category, including aeroplane,
bicycle, boat, bottle, bus, car, chair, dining table, motorbike, sofa, train, and T.V. monitor. The
first 3 columns use ground truth key points, while the last 3 columns use detected key points. In
each triplet columns, the left columns show the images, the projection of estimated 3D shapes,
the projection of estimated landmarks (green), and the ground truth landmarks (red, some are
missing due to occlusion). The middle ones show the estimated 3D shapes in the same viewpoint
as a camera; the right ones show a new viewpoint of the estimated 3D shapes. Two failure cases
are shown in red. Best viewed in color.
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Figure 4.5: Continue Figure 4.4.
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Chapter 5

Deep Non-Rigid Structure from Motion

5.1 Problem Formulation

In the context of NRSf M, the weak perspective projection model is a reasonable assumption
since the many of objects we deal with in vision applications have a much smaller depth varia-
tion compared to their distance from the camera. We shall start from the orthogonal projection
model in this section and then generalize to weak perspective projection in Section 5.4. Un-
der orthogonal projection, NRSf M deals with the problem of factorizing a 2D projection matrix
W ∈ RP×2, given P points, as the product of a 3D shape matrix S ∈ RP×3 and a camera matrix
M ∈ R3×2. Formally,

W = SM, (5.1)

W =


u1 v1

u2 v2

...
...

uP vP

 , S =


x1 y1 z1

x2 y2 z2

...
...

...
xP yP zP

 , MTM = I2, (5.2)

where (ui, vi) and (xi, yi, zi) are the image and world coordinates of the i-th point respectively.
The goal of NRSf M is to recover simultaneously the shape S and the camera M for each projec-
tion W in a given set W of 2D landmarks. In a general NRSf M including Sf C, this set W could
contain deformations of a non-rigid object or various instances from an object category.
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5.2 Modeling via hierarchical sparse coding

Kong et al. [26] argued that an effective solution for NRSf M can be found by assuming the
vectorization of S can be represented by a dictionary sparsely:

s = Dψ, ‖ψ‖0 < λ . (5.3)

This paper introduces additional layers and therefore a hierarchical sparse model is proposed:

s = D1ψ1, ‖ψ1‖0 < λ1,

ψ1 = D2ψ2, ‖ψ2‖0 < λ2,

... ,
...

ψN−1 = DNψN , ‖ψN‖0 < λN ,

(5.4)

where D1 ∈ R3P×K1 ,D2 ∈ RK1×K2 , . . . ,DN ∈ RKN−1×KN are hierarchical dictionaries and
ψ1 ∈ RK1 , ψ2 ∈ RK2 , . . . , ψN ∈ RKN are hierarchical sparse codes. In this prior, each non-
rigid shape is represented by a sequence of dictionaries and corresponding non-negative sparse
codes hierarchically. Each sparse code is determined by its lower-level neighbor and affects the
next-level. The additional layers introduced by this hierarchy increase the number of variables,
and thus increase the degree of freedom of the system. However, these additional layers actually
result in a more constrained and thus stable sparse code recovery process.

Sparse code recovery algorithms in general attempt to solve two problems: 1) select the best
subspace and 2) estimate the closest representation within the subspace. These two problems
could be solved simultaneously or alternatively, but the quality of recovered sparse code highly
relies on the former. If the desired subspace is given from oracle, then the sparse coding problem
degenerates to a linear system. However, without knowing the size of the desired subspace,
the number of valid subspaces in (5.3) is combinatorial to the number of dictionary atoms K
i.e.
∑K

n=1

(
K
n

)
. Selecting the best subspace out of such large number of candidates is considerably

difficult, especially when using over-complete dictionaries. This reveals the conflict between
the quality of sparse code recovery and the representing capacity of the dictionary, and further
explains the sensitivity of [26] to non-compressible sequences.

The additional layers introduced in this paper alleviate the dilemma. In (5.4), the sparse
code ψ1 is not completely free but represented by the subsequent dictionaries. Therefore, the
number of subspaces is not combinatorial to K1 but controlled by the subsequent dictionaries
{Di}Ni=2. If the subsequent dictionaries are learned properly, they could serve as a filter so that
only functional subspaces remain and redundant ones are removed. This directly breaks the
combinatorial explosion of the number of subspaces and consequently maintains the robustness
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of sparse code recovery. Based on this observation, we are able to utilize substantially over-
complete dictionaries to model a highly deformable object from a large scale image collection
with no worries about reconstructability and robustness.

5.2.1 Hierarchical Block Sparse Coding

Given the proposed hierarchical sparse coding model, shown in (5.4), we now build a conduit
from the 2D correspondences W to the proposed shape code {ψi}ki=1. Since s ∈ R3P in (5.4)
is the vectorization of S ∈ RP×3, it can be well modeled via i.e. S = D]

1(ψ1 ⊗ I3) where ⊗
is the Kronecker product and D]

1 ∈ RP×3K1 is a reshape of D1 ∈ R3P×K1 [14]. It is known
that AB ⊗ I = (A ⊗ I)(B ⊗ I) given two matrices A,B, and identity matrix I. Based on this
lemma, we can derive that

S = D]
1(ψ1 ⊗ I3), ‖ψ1‖0 < λ1,

ψ1 ⊗ I3 = (D2 ⊗ I3)(ψ2 ⊗ I3), ‖ψ2‖0 < λ2,

... ,
...

ψN−1 ⊗ I3 = (DN ⊗ I3)(ψN ⊗ I3), ‖ψN‖0 < λN .

(5.5)

Further, from (5.1), by right multiplying the camera matrix M ∈ R3×2 to the both sides of
(5.5) and denote Ψi = ψi ⊗M, we obtain that

W = D]
1Ψ1, ‖Ψ1‖(3×2)

0 < λ1,

Ψ1 = (D2 ⊗ I3)Ψ2, ‖Ψ2‖(3×2)
0 < λ2,

... ,
...

ΨN−1 = (DN ⊗ I3)ΨN , ‖ΨN‖(3×2)
0 < λN ,

(5.6)

where ‖ · ‖(3×2)
0 divides the argument matrix into blocks with size 3 × 2 and counts the number

of active blocks. Since ψi has active elements less than λi, Ψi has active blocks less than λi,
that is Ψi is block sparse. This derivation demonstrates that if the shape vector s satisfies the
hierarchical sparse coding prior described by (5.4), then its 2D projection W must be in the
format of hierarchical block sparse coding described by (5.6). We hereby interpret NRSf M
as a hierarchical block sparse dictionary learning problem, i.e. factorizing W as products of
hierarchical dictionaries {Di}Ni=1 and block sparse coefficients {Ψi}Ni=1.
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Figure 5.1: Architecture of our proposed deep NRSf M. The network can be divided into 1)
Encoder: from 2D correspondences W to the hidden block sparse code ΨN , 2) Bottleneck:
from hidden block sparse code ΨN to hidden regular sparse code ψN and camera, 3) Decoder:
from hidden regular sparse code ψN to 3D reconstructed shape S. The encoder and decoder
are intentionally designed to share convolution kernels (i.e. dictionaries) and form a symmetric
formulation. The symbol a× b, c→ d refers to the convolution layer using kernel size a× b with
c input channels and d output channels.

5.3 Deep Neural Network Solution

Before solving the hierarchical block sparse coding problem in (5.6), we first consider a single-
layer problem:

min
Z
‖X−DZ‖2

F s.t. ‖Z‖(3×2)
0 < λ. (5.7)

Inspired by ISTA, we propose to solve this problem by iteratively executing the following two
steps:

V = Z[i] − αDT (DZ[i] −X), (5.8)

Z[i+1] = argmin
U

1

2
‖U−V‖2

F + τ‖U‖(3×2)
F1 , (5.9)

where ‖ · ‖(3×2)
F1 is defined as the summation of the Frobenius norm of each 3× 2 block, serving

as a convex relaxation of the block sparsity constraint. Recall the regular sparse situation in
Section 2.6. Analogous to (2.89), we use an approximate solution to (5.9) for computational
efficiency, i.e.

Z[i+1] = η(V; b⊗ 13×2), (5.10)

where η represents a element-wise soft-thresholding operation defined in (2.90), 13×2 denotes a
3-by-2 matrix filled with one and b is a vector that controls the trust region for each block. Based
on this approximation, a single-iteration block ISTA with step size α = 1 can be represented by
:

Z = η(DTX; b⊗ 13×2), (5.11)
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5.3.1 Encoder

Recall from Section 2.6 that the feed-forward pass through a deep neural network can be con-
sidered as a sequence of single ISTA iterations and thus provides an approximate recovery of
hierarchical sparse codes. We follow the same scheme – sequentially using single-iteration block
ISTA – to solve the hierarchical block sparse coding problem (5.6) i.e.

Ψ1 = η((D]
1)TW; b1 ⊗ 13×2),

Ψ2 = η((D2 ⊗ I3)TΨ1; b2 ⊗ 13×2),

...

ΨN = η((DN ⊗ I3)TΨN−1; bN ⊗ 13×2),

(5.12)

where {bi}Ni=1 are learnable parameters, controlling the block sparsity. This formula composes
the encoder of our proposed deep neural network.

It is worth mentioning that setting {bi}Ni=1 as learnable parameters is crucial because in previ-
ous NRSf M algorithms – low-rank [14], union-of-subspaces [52], or block-sparsity [26] priors –
the weight associated with shape regularization (e.g.low-rank or sparsity) is determined through
a cumbersome and slow grid-search process. In our approach, this weighting is learned simulta-
neously with all other parameters, removing the need for irksome cross-validation.

5.3.2 Code and Camera Recovery

Recall that in Section 5.2.1, we define Ψ = ψ ⊗M. By denoting the k-th block in ΨN as Ψk
N

and the k-th element in ψN as ψk
N . we have

Ψk
N = ψk

NM. (5.13)

Now, we want to estimate the regular sparse hidden code ψN and camera M given ΨN . It is
obvious that if one of them is known beforehand, then the other one can be solved easily. For
example, if M is known, then ψk

N can be estimated by

ψk
N =

1

6

3∑
i=1

2∑
j=1

[Ψk
N ]ij

[M]ij
=

3∑
i=1

2∑
j=1

1

6[M]ij
[Ψk

N ]ij, (5.14)

where [·]ij denotes the ij-th element in the argument matrix. Note that actually a single element
in camera M and its correspondence in ΨN are sufficient to estimate the scalerψk

N , but, for robust
estimation, an average over all elements (3×2 block results in totally 6 elements) is utilized here.
Further, if ψN is known, then M can be estimated by

M =
1

KN

KN∑
k=1

Ψk
N

ψk
N

=

KN∑
k=1

1

KNψ
k
N

Ψk
N . (5.15)
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Note that a single element in ψN and a corresponding block in ΨN is again sufficient to estimate
M but, for robustness, we utilize an average across all blocks.

In the literature of the field [6, 14, 26], these two coupled variables are mainly solved by a
carefully designed algorithm that utilizes the orthonormal constraint to solve the camera first and
then the sparse hidden code. However, this heuristic is quite fragile and it is even worse when
the estimation of ΨN is bothered by noise. Further, it has difficulty deciding the sign ambiguity
of each sparse code. In this paper, we propose a novel relaxation, decoupling equations (5.14)
and (5.15) by introducing two learnable parameters β and γ, specifically,

ψk
N =

3∑
i=1

2∑
j=1

βij[Ψ
k
N ]ij, (5.16)

M =

KN∑
k=1

γkΨ
k
N . (5.17)

It is clear that ψ and M are intrinsically linked – but our proposed approach seems to ignore this
dependency. We resolve this inconsistency, however, by enforcing an orthonormal constraint for
the camera in our loss function shown in Section 5.3.4. This relaxation has the further advan-
tage of eliminating fragile heuristics and giving substantial computational savings. Figure 5.1
represents this process via convolutions for conciseness and descent visualization.

5.3.3 Decoder

Given the sparse hidden code ψN and hierarchical dictionaries {Di}Ni=1, the 3D shape vector s

could be recovered via (5.4). In practice, instead of forming a purely linear decoder, we preserve
soft-thresholding in each layer. This non-linear decoder is expected to further enforce sparsity
and improve robustness. Formally,

ψN−1 = η(DNψN ; b′N),

...

ψ1 = η(D2ψ2; b′2),

s = D]
1ψ1.

(5.18)

This portion forms the decoder of our deep neural network.

5.3.4 Loss Function

Until now, the 3D shape S is estimated via the proposed encoder and decoder architecture given
the hierarchical dictionaries, which is denoted as S

(
W|{Di}Ni=1

)
for simplicity. Further, the
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camera M is also estimated via the encoder and a linear combination given the dictionaries,
which is denoted asM

(
W|{Di}Ni=1

)
. Our loss function is thus defined as

min
{D}Ni=1

∑
W∈W

∥∥W − S
(
W|{Di}Ni=1

)
UV

∥∥
F

s.t. UΣVT =M
(
W|{Di}Ni=1

)
,

(5.19)

which is the summation of reprojection error. To ensure the success of the orthonormal constraint
on the camera, we introduce the Singular Value Decomposition (SVD) to hard code the singular
value of M to be exact ones. As mentioned in Section 5.3.2, reprojecting the estimated 3D shape
via the estimated camera (i.e. left multiplying M to S) implicitly re-build the bonds between the
camera M and the sparse hidden code ψN (in the form of 3D shape S).

5.3.5 Implementation Issues

The Kronecker product of identity matrix I3 dramatically increases the time and space complex-
ity of our approach. To eliminate it and make parameter sharing easier in modern deep-learning
environments (e.g. TensorFlow, PyTorch), we reshape the filters and features so that the matrix
multiplication in each step can be equivalently computed via multi-channel convolution (∗) and
transposed convolution (∗T ). We first reshape the 2D input correspondences W into a three-
dimensional tensor w ∈ R1×2×P , which can be considered in the deep-learning community as a
1 × 2 image with P channels. Then, we reshape the first dictionary D]

1 into a four-dimensional
tensor d]1 ∈ R3×1×K1×P , which can be interpreted as a convolutional kernel in size 3× 1 with K1

input channels and P output channels. Therefore, we have

(D]
1)TW = d]1 ∗T w, (5.20)

which helps us to maintain a uniform dictionary shape and is consequently easier to share pa-
rameters. We then reshape each dictionary Di other than the first one into a four-dimensional
tensor di ∈ R1×1×Ki×Ki−1 and the hidden block sparse code Ψi into a three-dimensional tensor
Ψi ∈ R3×2×Ki . Therefore, we have

(Di+1 ⊗ I3)TΨi = di+1 ∗T Ψi, (5.21)

which helps us to eliminate the Kronecker product. Finally, based on the above reshape, the
dictionary-code multiplication is simplified as

Diψi = di ∗ ψi. (5.22)
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As for the architecture design, we only control three hyper parameters: 1) the number of
dictionaries N , 2) the number of atoms in the first dictionary K1, and 3) the number of atoms
in the last dictionary KN . We then linearly sample K2, . . . , KN−1 between K1 and KN . As for
training, we implement our neural network via TensorFlow and train it using an Adam optimizer
with a learning rate exponentially decayed from 0.001.

5.3.6 Replacing Soft-thresholding via ReLU

Recall in Section 2.6, Papyan et al. replaced the soft-thresholding operator η by ReLU as a result
of the non-negativity constraint. Actually, it can easily be demonstrated that a linear (block)
sparse model can always be transferred equivalently to a model only using non-negative (block)
sparse code i.e.

W = DΨ =
[
D −D

] [ Ψ+

−Ψ−

]
. (5.23)

where Ψ+ and Ψ− are positive and negative parts of Ψ respectively and Ψ+ + Ψ− = Ψ. The
concatenation of Ψ+ and −Ψ− is still block sparse and now becomes non-negative. From this
observation, we introduce the non-negativity constraints without the loss of generality and relax
the dictionaries so that they are not bothered by mirrored structures. Interestingly, our proposed
method on estimating cameras in (5.17) is compatible with the change, i.e.

M =

KN∑
k=1

γkΨ
k
N =

KN∑
k=1

γk(Ψ
k
N)+

KN∑
k=1

−γk(−Ψk
N)−. (5.24)

All of these enable us to utilize ReLU to replace the soft-thresholding. ReLU is good because it is
closer to deep learning packages while soft-thresholding is more compact in size of parameters.
An experiment comparing between soft-thresholding and ReLU is in Section 5.5.3. It is demon-
strated that no discernible difference in the accuracy of reconstructions is observed. Therefore,
we decide to use ReLU for the remaining sections and experiments, making our approach closer
to leading techniques in deep learning and more accessible and approachable to the public.

5.4 Occlusion and Weak Perspective

5.4.1 Occlusion

It is commonly observed in real images that a certain portion of key points are occluded by other
objects or the object itself. For example, we typically see two wheels of a sedan instead of
four. An often-used strategy is to recover the missing entries in W by matrix completion before
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feeding it into the proposed pipeline. A commonly used shape prior for matrix completion is
low-rank, even for some union-of-subspaces algorithms [3]. This is problematic.

In this paper, we derive a solution from the ISTA to handle missing entries, which turns out
as a quite simple but well-functioning operation. We observe that missing entries break the first
layer of encoder but once Ψ1 is estimated, all other layers can execute with no trouble. Based
on this observation, we first introduce a diagonal matrix Ω ∈ RP×P , whose element on the main
diagonal is zero if the corresponding point in W is missing; otherwise, one and all other elements
except diagonal are zeros. With the help of the mask Ω, the objective function w.r.t the first layer
is

min
Ψ1

‖Ω(W −D]
1Ψ1)‖2

F s.t. ‖Ψ1‖(3×2)
0 < λ1. (5.25)

Following the same derivation in Section 5.3, a masked ISTA is to iteratively execute the follow-
ing two steps:

V = Ψ
[i]
1 − α(D]

1)TΩTΩ(D]
1Ψ

[i]
1 −W), (5.26)

Ψ
[i+1]
1 = argmin

U

1

2
‖U−V‖2

F + τ‖U‖(3×2)
F1 , (5.27)

By (5.10), it is implied that the single-iteration block ISTA with mask is

Ψ1 = η
(
(D]

1)TΩW − b⊗ I3×2

)
. (5.28)

This is equivalently to set missing entries to zero and then feed into the proposed deep neural
network.

5.4.2 Scale and Translation

The main difference between weak perspective and orthogonal projection is additional scale and
translation besides rotation. Due to the ambiguity between camera scale and 3D shape size,
we do not solve the camera scale explicitly, but consider the scale to be one and reconstruct
a scaled 3D shape. To alleviate the effect of the scale on optimization, we normalize the 2D
correspondences into a unit bounding box before feeding into the proposed neural network.

Translation is not a problem and can even be eliminated when all points are visible. This is
because one can always remove the camera translation by shifting the center of 2D correspon-
dences to the image origin. However, this is not true when some correspondences are missing.
Formally, i ∈ Ω denotes that the i-th point is visible and (ui, vi) is the image coordinate of the
i-th point. Shifting the center of all points (where missing entries are set to zero) to the origin
remains a translation residual

1

n

∑
i

[
ui

vi

]
− 1

n

∑
i∈Ω

[
ui

vi

]
=

1

n

∑
i 6∈Ω

[
ui

vi

]
. (5.29)
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When key points distribute closely in a cluster and a small portion of them are missing, the
residual translation could be treated as some sort of noise perturbation and consequently need no
further operation. Otherwise, we need to solve the translation explicitly.

Consider the camera projection with translation t, i.e.

W =


u1 v1

u2 v2

...
...

uP vP

 =


x1 y1 z1 1

x2 y2 z2 1
...

...
...

...
xP yP zP 1


[
M

tT

]
. (5.30)

We could introduce an auxiliary variable ε

W =


x1 y1 z1 ε

x2 y2 z2 ε
...

...
...

...
xP yP zP ε


[

M

tT/ε

]
= S̃M̃ (5.31)

such that S̃ satisfies the proposed hierarchical sparse model in (5.5) after appending ones to each
dictionary. Therefore, a similar neural network could be derived from a 4-by-2 block sparse
ISTA as M̃ ∈ R4×2.

5.5 Experiments

We conduct extensive experiments to evaluate the performance of our deep solution to solving
NRSf M and Sf C problems. For quantitative evaluation, we follow the metric normalized mean
3D error reported in [3, 5, 14, 23]. Our implementation, processed data, and pre-trained models
are publicly accessible for future comparison1.

5.5.1 IKEA Furniture

We first apply our method to a furniture dataset, IKEA dataset [30, 44]. The IKEA dataset con-
tains four object categories: bed, chair, sofa, and table. For each object category, we project the
3D ground-truth by the orthogonal cameras annotated from real images. Since fully annotated
images are limited, we thereby augment them with 2,000 projections under randomly generated
orthogonal cameras. The errors are evaluated only on frames using cameras from real images.
Numbers are summarized into Table 5.1. One can observe that our method outperforms baselines

1https://github.com/kongchen1992/deep-nrsfm
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in the order of magnitude, clearly showing the superiority of our model. For qualitative evalua-
tion, we randomly select a frame from each object category and show these frames in Figure 5.2
against ground-truth and baselines. As shown, our reconstructed landmarks effectively depict the
3D geometry of objects and our method is able to cover subtle geometric details.

Furnitures Bed Chair Sofa Table Average Relative

KSTA [23] 0.069 0.158 0.066 0.217 0.128 12.19

BMM [14] 0.059 0.330 0.245 0.211 0.211 20.12

CNR [29] 0.227 0.163 0.835 0.186 0.352 33.55

NLO [17] 0.245 0.339 0.158 0.275 0.243 23.18

RIKS [24] 0.202 0.135 0.048 0.218 0.117 11.13

SPS [26] 0.971 0.946 0.955 0.280 0.788 74.96

SFC [27] 0.247 0.195 0.233 0.193 0.217 20.67

OURS 0.004 0.019 0.005 0.012 0.010 1.00

Table 5.1: Quantitative Comparison against State-Of-The-Art Algorithms using IKEA Dataset
in Normalized 3D Error.

5.5.2 PASCAL3D+ Dataset

We then apply our method to the PASCAL3D+ dataset [46], which contains twelve object cate-
gories. Following the experiment setting reported in [3], we also utilize eight categories: aero-
plane, bicycle, bus, car, chair, dining table, motorbike and sofa. To explore the performance in
various situations, we design experiments with respect to
• Orthogonal or weak perspective projection?

• Complete or missing measurement?

• Clean data or Gaussian noise perturbed?

Totally, there are eight configurations. Specifically, for projection setting, we randomly generate
rotation matrices for orthogonal projection while additionally utilizing random scale and random
translation for weak perspective projection. For missing data, we randomly sample approxi-
mately 10% of points missing for each category. For noise, we corrupt 2D correspondences with
a zero mean Gaussian perturbation, following the same noise ratio in [3]. For the translation
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Figure 5.2: Qualitative evaluation on IKEA dataset. From top to bottom are tables, chairs, so-
fas and tables. From left to right are ground-truth and respectively reconstructions by ours,
RIKS [24], KSTA [23], NLO [17], SFC [27], CNS [29], BMM [14]. In each rendering, red
cubes are reconstructed points but the planes and bars are manually added for descent visualiza-
tion.

residual, we simply treat it as noise and handle it with a 3-by-2 block sparse model. In Table 5.2
and Table 5.3, we report the normalized mean 3D error of our proposed method and state-of-the-
arts: KSTA [23], RIKS [24], CNS [29], NLO [17], SFC [27], SPS [26], and BMM [14]. For
readers’ interest, one can compare our numbers against the Table 2 in [3] for more baselines.

From Table 5.2 and Table 5.3, one can observe that our proposed method achieves consid-
erably more accurate reconstructions for all cases, and for some cases, more than ten times the
amount of smaller 3D errors than state-of-the-arts. It clearly demonstrates the high precision of
our proposed deep neural network. By comparing between clean and noisy configurations, it is
shown that our proposed method has high robustness, where our method applied on noisy data
even outperforms state-of-the-arts on clean data. By comparing between orthogonal and weak
perspective projections, it is demonstrated that our proposed 3-by-2 block sparse model can
handle scale and translation properly, even with missing data. In the configuration with missing
measurement, KSTA, RIKS, BMM, CNS, and SPS use the matrix completion algorithm proposed
by [22] to recover missing entries first, but our proposed method, SFC, and NLO can directly op-
timize over partially-visible 2D measurements, which are more capable at handling missing data.
This is verified by Table 5.2 and Table 5.3, where OURS, SFC, and NLO sacrifice less perfor-
mance than others when handling missing data. For qualitative evaluation, we use “motorbike”

74



OURS KSTA RIKS CNS NLO SFC SPS BMM
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t 0.013 0.161 0.562 0.636 0.175 0.499 0.902 1.030

0.003 0.249 0.826 0.732 0.285 0.370 0.959 1.247
0.004 0.201 0.578 0.443 0.262 0.255 0.902 0.728
0.003 0.124 0.497 0.497 0.135 0.284 0.955 1.006
0.009 0.191 0.748 0.540 0.145 0.223 1.018 1.381
0.030 0.244 0.778 0.549 0.234 0.220 0.707 1.351
0.001 0.254 0.703 0.647 0.320 0.356 1.090 1.033
0.007 0.401 0.798 0.623 0.055 0.302 0.779 1.017

M
is

si
ng

M
ea
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re

m
en

t 0.033 0.533 0.515 0.693 0.348 0.496 1.076 1.154
0.021 0.584 0.540 0.854 0.106 0.376 1.112 1.372
0.018 0.357 0.316 0.517 0.317 0.254 1.273 0.728
0.010 0.400 0.334 0.598 0.089 0.286 0.918 1.014
0.024 0.599 0.581 0.601 0.102 0.228 1.184 1.242
0.040 0.554 0.473 0.602 0.171 0.224 1.264 1.414
0.009 0.539 0.501 0.729 0.177 0.366 0.892 1.117
0.015 0.573 0.567 0.728 0.911 0.301 1.214 1.171

W
ea

k
Pe

rs
pe

ct
iv

e
Pr

oj
ec

tio
n

C
om

pl
et

e
M

ea
su

re
m

en
t 0.034 0.402 0.460 0.667 0.192 0.500 1.123 1.055

0.008 0.576 0.817 0.707 0.595 0.373 1.172 1.301
0.017 0.480 0.582 0.458 0.205 0.251 1.380 0.743
0.015 0.369 0.573 0.504 0.175 0.284 1.090 1.051
0.013 0.621 0.832 0.540 0.197 0.224 0.970 1.220
0.025 0.647 0.829 0.533 0.428 0.220 0.927 1.447
0.003 0.614 0.739 0.662 0.180 0.359 1.406 1.069
0.022 0.609 0.792 0.632 0.070 0.295 0.976 0.980

M
is

si
ng

M
ea

su
re

m
en

t 0.102 0.461 0.531 0.727 0.670 0.502 1.162 1.150
0.048 0.499 0.572 0.875 0.115 0.372 1.312 1.279
0.066 0.356 0.341 0.553 0.091 0.250 0.912 0.752
0.027 0.402 0.403 0.637 0.093 0.280 0.949 0.954
0.077 0.484 0.485 0.607 0.118 0.227 1.107 1.263
0.091 0.463 0.465 0.594 0.174 0.232 1.210 1.229
0.056 0.561 0.656 0.779 0.201 0.367 1.119 1.125
0.066 0.529 0.615 0.728 0.081 0.311 1.730 1.150

Table 5.2: Quantitative Comparison against State-Of-The-Art Algorithms using PASCAL3D
Dataset with no noise perturbation. In each configuration, numbers from top to bottom are for
category aeroplane, bicycle, bus, car, chair, diningtable motorbike and sofa.
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OURS KSTA RIKS CNS NLO SFC SPS BMM
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t 0.026 0.175 0.583 0.626 0.167 0.518 0.761 1.177

0.009 0.253 0.779 0.715 0.916 0.367 1.065 1.424
0.012 0.196 0.450 0.442 0.320 0.253 1.096 0.754
0.012 0.162 0.557 0.496 0.192 0.285 0.879 0.915
0.028 0.190 0.668 0.554 0.107 0.224 0.927 1.251
0.040 0.238 0.721 0.521 0.450 0.219 0.968 1.420
0.004 0.251 0.722 0.629 0.168 0.366 0.938 1.029
0.020 0.333 0.725 0.627 0.064 0.297 1.041 1.315

M
is

si
ng
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m
en

t 0.065 0.434 0.514 0.707 0.382 0.493 0.815 1.199
0.028 0.566 0.560 0.835 0.459 0.372 1.201 1.286
0.057 0.364 0.323 0.526 0.079 0.245 0.791 0.743
0.023 0.391 0.299 0.587 0.111 0.285 1.077 1.244
0.066 0.571 0.479 0.593 0.103 0.229 1.153 1.274
0.050 0.494 0.408 0.587 0.177 0.228 1.019 1.098
0.032 0.523 0.528 0.730 0.154 0.363 1.100 1.157
0.039 0.576 0.590 0.727 0.080 0.307 1.252 1.017
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t 0.046 0.525 0.489 0.644 0.206 0.527 0.961 1.203

0.029 0.618 0.729 0.760 0.930 0.368 1.202 1.331
0.044 0.384 0.443 0.443 0.666 0.248 0.820 0.739
0.022 0.409 0.475 0.524 0.178 0.285 0.836 1.342
0.026 0.497 0.622 0.543 0.122 0.226 1.283 1.284
0.068 0.585 0.629 0.506 0.303 0.220 0.993 1.123
0.018 0.607 0.789 0.671 0.159 0.362 1.101 1.019
0.041 0.606 0.684 0.644 0.062 0.301 1.603 1.165
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ng
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t 0.157 0.449 0.571 0.737 0.742 0.493 0.984 1.220
0.084 0.668 0.708 0.895 0.141 0.375 1.003 1.405
0.091 0.383 0.365 0.557 0.139 0.253 0.985 0.752
0.081 0.355 0.358 0.619 0.109 0.293 1.023 1.063
0.122 0.522 0.434 0.601 0.123 0.224 1.037 1.263
0.136 0.558 0.528 0.612 0.173 0.225 1.151 1.510
0.051 0.544 0.585 0.763 0.191 0.369 1.039 1.017
0.082 0.543 0.548 0.730 0.156 0.299 0.890 1.146

Table 5.3: Quantitative Comparison against State-Of-The-Art Algorithms using PASCAL3D
Dataset with noise perturbation. In each configuration, numbers from top to bottom are for
category aeroplane, bicycle, bus, car, chair, diningtable motorbike and sofa.
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as an exemplar category and randomly select a frame from four configurations: 1) orthogo-
nal+complete+noise, 2) orthogonal+missing+noise, 3) weak perspective+complete+noise, and
4) weak perspective+missing+noise, showing in Figure 5.3. One can observe that our proposed
method outperforms KSTA, RIKS, CNS, and SPS obviously and beats NLO and SFC in recon-
struction details, e.g. handlebar. The figure also verifies that KSTA, RIKS, CNS, and SPS break
easily with missing points while ours, SFC, and NLO maintain a nice stability against missing
entries.

Figure 5.3: Qualitative evaluation on PASCAL3D dataset. From top to bottom are configurations
1) orthogonal projection with no missing points, 2) orthogonal projection with missing points, 3)
weak perspective projection with no missing points, 4) weak perspective projection with miss-
ing points. All these four configurations are perturbed by Gaussian noise. From left to right
are ground-truth, ours, KSTA [23], RIKS [24], CNS [29], NLO [17], SFC [27], SPS [26]. In
each rendering of reconstruction, red cubes are reconstructed points but the planes and bars are
manually added for visualization.

5.5.3 Large-Scale NRSfM on CMU Motion Capture

To evaluate the performance of our method on a large scale image sequence, we apply our method
to solving the problem of NRSf M, using the CMU motion capture dataset2. We randomly se-
lect 10 subjects out of 144, and for each subject, we concatenate 80% of motions to form large
image collections and leave the remaining 20% as unseen motions for testing generalization. In

2http://mocap.cs.cmu.edu/
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this experiment, each subject contains more than ten thousand frames under randomly generated
orthogonal projections. We compare our method against state-of-the-art methods, summarized
in Table 5.4. Due to the huge volume of frames, KSTA [23], BMM [14], MUS [3], RIKS [24],
and SFC [27] all fail and thus are omitted in the table. We also report the normalized mean 3D
error on unseen motions, labeled as UNSEEN. From Table 5.4, one can see that our method ob-
tains impressive reconstruction performance and outperforms all others again in every sequence.
Moreover, our network generalizes well with unseen data, which implies the potential utility
of our model to the application of single image 3D reconstruction. For qualitative evaluation,
we randomly select a frame from each subject and render the reconstructed human skeleton in
Figure 5.4, which visually verifies the impressive performance of our deep solution.

SUBJECT OURS CNS NLO SPS UNSEEN

1 0.176 0.613 1.218 1.282 0.362

5 0.221 0.657 1.160 1.122 0.331

18 0.082 0.542 0.917 0.954 0.438

23 0.054 0.604 0.999 0.880 0.388

64 0.082 0.543 1.219 1.120 0.174

70 0.040 0.473 0.837 1.010 0.090

102 0.116 0.582 1.145 1.079 0.413

106 0.114 0.637 1.016 0.958 0.195

123 0.041 0.479 1.009 0.828 0.092

127 0.095 0.645 1.051 1.022 0.389

Table 5.4: Quantitative Comparison aginst State-Of-The-Arts using CMU Motion Capture
Dataset in Normalized 3D Error

Robustness analysis

To analyze the robustness of our method, we retrain the neural network for Subject 70, using
projected points perturbed by Gaussian noise. The results are summarized in Figure 5.5. The
noise ratio is defined as ‖noise‖F/‖W‖F . One can see that the error increases slowly while
adding a higher magnitude of noise; when adding up to 20% noise to image coordinates, our
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Figure 5.4: Qualitative evaluation on CMU Motion Capture dataset. From top to bottom are
ground-truth, and respectively reconstructions by ours, CNS [29], SPS [26], NLO [17]. From
left to right are a randomly sampled frame from subjects 1, 5, 18, 23, 64, 70, 102, 106, 123, 127.
In each rendering, spheres are reconstructed landmarks but bars are for descent visualization. In
each reconstruction, 3D shapes are alighted to the ground-truth by a orthonormal matrix.

method in blue still achieves better reconstruction compared to the best baseline with no noise
perturbation (in red). This experiment clearly demonstrates the robustness of our model and its
high accuracy against state-of-the-art works.

Explicitly solve translation

In this experiment, we verify the performance of the proposed 4-by-2 block sparse model. We
focus on Subject 23, following the same experiment setting as above, except adding randomly
generated translation. To avoid removing translation, we do not normalize 2D correspondences.
We then apply the proposed 4-by-2 block sparse model to the data with translation and compare
it to the 3-by-2 block sparse model without translation. The normalized mean 3D error of the
4-by-2 model is 0.060, which is very close to the error without translation, i.e. 0.054, and lower
than state-of-the-arts without translation in the order of magnitude, as shown in Table 5.4. To
give a clearer sense of the quality of the reconstructed 3D shape, we draw two cumulative error
plots in Figure 5.6 that show the percentage of frames below a certain normalized mean 3D error.
The two plots are mostly identical, implying the success of our 4-by-2 model.
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Figure 5.5: Normalized mean 3D error on CMU Motion Capture dataset with Gaussian noise
perturbation. The blue solid line is ours while the red dashed line is CNS [29], the lowest error
of state-of-the-arts with no noise perturbation.
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Figure 5.6: Percentage below a certain normalized mean 3D error. The blue solid line is our
4-by-2 block sparse model, proposed to solve translation explicitly. The red dashed line is our
3-by-2 block sparse model, applied on zero-centered data. These two plots are mostly identical.

Missing points

In this experiment, we explore the capability of handling missing data. We focus on Subject 23
under orthogonal projection and sequentially train and test our proposed network on data with a
different percentage of missing points. Specifically, we control the maximum possible number
of missing points and evaluate the performance from one to seven out of 31 total points. For
example, when the maximum possible number of missing points is three, then each frame has
to have one, two, or three missing points in uniform distribution. We visualize the normalized
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mean 3D error in each case in Figure 5.7 and append the lowest error achieved by state-of-the-
arts under the complete measurement assumption as a baseline. One can see that the 3D error
increases when the maximum possible number of missing points grows. However, even making
approximately 20% (7/31) of points invisible, our proposed method still outperforms the best
baseline with no missing points, i.e. CNS 0.604 in Table 5.4.
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Maximum possible number of missing points
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Figure 5.7: Normalized mean 3D error v.s. maximum possible number of missing points. Maxi-
mum possible number of missing points equals to three denotes every frame has to have one, two,
or three missing points. The blue bar is our proposed network. The red bar is the best baseline
when all points are visible, i.e. CNS in Table 5.4.

Coherence as guide

Over-fitting is commonly observed in the deep learning community, especially in the NRSf M
area, where over-fitting to 2D correspondences will dramatically hurt the quality of reconstruc-
tions. To solve this problem, we borrow a tool from compressed sensing – mutual coherence [19].
Mutual coherence measures the similarity between atoms in a dictionary. It is often used to depict
the dictionary quality and build the bounds of sparse code reconstructability. During training for
each subject, we compute the normalized mean 3D error and the coherence of the last dictionary
in a fixed training iteration interval. By drawing the scatter plot of the error and the coherence,
we observe a strong correlation, shown in Figure 5.8. This implies that the coherence of the final
dictionary could be used as a measure of model quality.

Recall the proposed block sparse model in (5.6), wherein every block sparse code Ψi is
constrained by its subsequent representation and thus, the quality of code recovery depends not
only on the quality of the corresponding dictionary but also the subsequent layers. However, this
is not applicable to the final code ΨN , making it overly reliant upon the final dictionary DN .
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Figure 5.8: A scatter plot of the normalized mean 3D error v.s. the coherence of the final dic-
tionary. The blue line is fitted based on the red points. Shading presents the quality of linear
regression. From left to right are, respectively, for Subjects 5, 18, and 64.

From this perspective, the quality of the final dictionary measured by mutual coherence could
serve as a lower bound of the entire system. With the help of the coherence, we could avoid over-
fitting even when 3D evaluation is not available. This improves the utility of our deep NRSf M
in applications without 3D ground-truth.

ReLU v.s. Soft-thresholding

Theoretical analysis implies that using soft-thresholding or ReLU is expected to estimate a sim-
ilar reconstructions in terms of accuracy but soft-thresholding operator tends to result in a more
compact parameter size. We verify this on the large-scale dataset, CMU MoCap. We follow
the same experiment setting. Specifically, we change ReLU to soft-thresholding operator and
re-trained the neural network on Subject 23. Table 5.5 summarizes the normalized 3D error and
the number of parameters. One can see that compared to the best baselines CNS, 0.604, these
two networks show very subtle difference (0.01) in normalized 3D error while soft-thresholding
network has less learnable parameters, which verifies what we predict in theory.

ACTIVATION 3D ERROR # of PARAMETERS

ReLU 0.054 86787

Soft-thresholding 0.064 61351

Table 5.5: Quantitative Comparison between ReLU and soft-thresholding
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Figure 5.9: Qualitative evaluation on real images with hand-annotated 2D correspondences.
Some images have missing points, due to occlusion. From top to bottom are aeroplanes, bi-
cycles, chairs, and dining tables. For each pair, the left is an image with key points in red and
the right is our reconstruction. In each rendering of reconstruction, red cubes are reconstructed
points, but the planes and bars are manually added for descent visualization. Our method suc-
cessfully captures shape variations presented in the images, e.g. table width-length ratio, the
position of aeroplane wings, bicycle handlebar, and so forth.

5.5.4 Real Images

Our proposed network is designed for applications on large-scale image sequences of highly de-
formable objects, especially object categories. However, to our best knowledge, commonly-used
object datasets mostly contain less than one hundred images of reasonable quality, a number
which is greatly insufficient to train a neural network. For example, most objects in the PAS-
CAL3D dataset have more than 50% occluded points. To demonstrate the performance of our
proposed network, we apply the model pre-trained on synthetic images to real images with hand
annotated correspondences. Due to the absence of 3D ground-truth, we qualitatively evaluate
the reconstructed shapes and show them in Figure 5.9. One can see that our proposed neural
network successfully reconstructs the 3D shape for each image and impressively captures the
subtle shape variation presented in the image, e.g. the table width-length ratio, the position of
aeroplane wings, the bicycle handlebar and so forth.

83



84



Chapter 6

Discussion and Future Work

The major limitation of our proposed methods is the weak perspective projection. The reasons
for using weak perspective projection are:

1. Weak perspective projection is an appropriate approximation to perspective projection,
especially when the object of interest has depth variation much smaller than the camera
distance. This is fairly common in the scene of a non-rigid object, e.g. a moving person or
moving animals, and of object category, e.g. chairs, tables in indoor scenes, and aeroplanes
in outdoor scenes.

2. Weak perspective projection maintains a linear equation when projecting the 3D geometry
into 2D images. This is crucial to most existing NRSf M algorithms [3, 14, 51], and ours
are not exceptions.

We believe that the non-linear and cross-connected nature of perspective projection encour-
ages the use of an iterative or recurrent solution instead of a feed-forward neural network. A
lower fruit based on our propose method is to generalize our feed-forward auto-encoder to a
recurrent neural network. There are two potential candidates.

6.1 Global Recurrent NRSfM

Global recurrent NRSf M refers to adding a shortcut from the output 3D structure S to the in-
put 2D correpondences W, such that passing through the network includes a fixed number of
iterations or until convergence. The recurrent neural network caused by this shortcut could offer
several benefits:

• Scale feedback: If one knows the camera scale from oracle, we could remove it from the
projection via dividing the 2D coordinates of correspondences by the scale. A recurrent
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neural network allows us to obtain the camera scale from the output 3D structure S and
the output camera M. After eliminating the scale and passing the neural network again,
a more accurate estimation is expected. Such a procedure could be repeated by a fixed
number of times or until convergence.

• Linear perspective projection: The difficulty of perspective projection, non-linearly, is
mostly caused by the fact that object depth is unknown. If one knows the object depth
from oracle, then the perspective projection could be degenerated to a linear projection
equation. A recurrent neural network directly offers the depth of an object from the re-
construction. This allows us to utilize a local feed-forward neural network to reconstruct
the 3D structure and camera motions, and then correct the object depth. By repeating this
process by a fixed number of iterations or until convergence, we believe an object even
under perspective projection could be reconstructed with no additional prior information.

• Missing point estimation: The current strategy of recovering missing points—filling miss-
ing entries with zero and feeding into neural network—actually relies on the strong robust-
ness of the proposed neural network. Different from it, the introduced shortcut from the
output could provide a better guess of the missing correspondences. We believe that fill-
ing the missing entries with iteratively corrected 2D coordinates could help to increase the
reconstruction accuracy and, moreover, enable a powerful capability of handling missing
data.

6.2 Local Recurrent NRSfM

Recall in Chapter 5, we derived the architecture from the sparse code recovery algorithm, ISTA,
resulting in an iterative solution:

V = Z[i] − αDT (DZ[i] −X), (6.1)

Z[i+1] = argmin
U

1

2
‖U−V‖2

F + τ‖U‖(3×2)
F1 . (6.2)

By employing only the very first iteration, we have the expression of a single layer encoder.
It is demonstrated by our experiments that a concatenation of a single iteration of ISTA

successfully fulfills our task. However, an interesting question still remains open: that is, how
does the number of ISTA iterations affect the performance? We believe that additional iteration in
each encoder layer could help to recover more accurate sparse hidden features and consequently
increase the overall reconstruction performance.
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Chapter 7

Conclusion

This thesis focused on one particular problem: non-rigid structure from motion. Classic non-rigid
structure from motion focuses on the problem of reconstructing 3D shapes of non-rigid objects
and recovering camera motions from a sequence of images. This thesis first characterized that
non-rigid structure from motion could be equally applied to rigid objects, i.e. the object category.
Then we revisited several celebrated algorithms in this area, including Tomasi-Kanade’s algo-
rithm, Bregler’s low-rank assumption, Dai et al.’s prior-less algorithm, Akhter et al.’s trajectory
reconstruction, and Zhu et al.’s union of subspaces strategy. Their advantages and disadvantages
help readers to understand the motivation and contribution of the later-proposed algorithm.

Different from the aforementioned priors, this thesis proposed to use sparse coding as a novel
prior assumption to represent non-rigid objects or an object category. Compared with low-rank
priors and union-of-subspaces, the block sparse prior forms a union of a huge number of sub-
spaces so that a much broader set of 3D structures can be modeled successfully. Based on this
assumption, we demonstrated that a 3D structure under weak perspective projection could be
represented in a 2 × 3 block-sparse way, from which the non-rigid structure from motion prob-
lem could be reinterpreted as a block sparse dictionary learning problem. To demonstrate the
reconstructability, we first theoretically prove the uniqueness of block sparse dictionary learning
and then practically establish algorithms to simultaneously learn a shape dictionary and block
sparse representation. Once a unique 2 × 3 block sparse dictionary learning factorization of the
2D projections can be obtained, we showed that the 3D structure and camera motion can be
recovered solely by the assumption of sparse coding.

Though they offer considerable interesting insights to the problem, the algorithms based on
the uniqueness of block sparse dictionary learning are sensitive to noise in our experiments. This
could be caused by the fragile nature of the uniqueness. To alleviate the problem, this thesis
proposed an optimization strategy derived from alternating the direction method of multipliers to
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minimize the reprojection error and, at the same time, satisfy the camera orthogonal constraints
and maintain the sparsity of shape representation. Experiments demonstrate that the proposed
optimization algorithms are much more stable than the previous closed-form solution and out-
perform the previous algorithms on the object category dataset.

Next, this thesis theoretically explored the reason why block sparse prior results in a less
stable system compared to others and demonstrated that the major cause can be the large number
of subspaces, which makes selecting the correct subspaces substantially more difficult than low
rank algorithms. Based on this insight, we proposed to use hierarchical sparse coding, replac-
ing the regular sparse coding to represent a 3D deformable structure. From the recent progress
on understanding deep neural networks via convolutional sparse coding, we designed a deep
neural network serving as a hierarchical block sparse dictionary solver. Our proposed archi-
tecture is not a block-box but a transparent glass-box in terms of its interpretability. Extensive
experiments demonstrated our superior performance against all state-of-the-arts on various con-
figurations, including orthogonal projections, weak perspective projections, noise perturbations,
missing points, real images, and even unseen shape variations. Our proposed hierarchical block
sparse prior not only successfully avoids the previous sensitivity to noise, but also provides the
capacity and efficiency to handle unprecedented scale in terms of the number of images and the
types of shape variations. Finally, this thesis proposed to use the coherence of the learned dic-
tionary as a generalization measure, i.e. metrics of reconstructability, offering a practical way to
avoid over-fitting and ascertain the correctness of reconstructions in real-world applications.
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