
Environment Generalization in Deep

Reinforcement Learning

Wenxuan Zhou

CMU-RI-TR-19-59

July 25, 2019

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Abhinav Gupta

David Held
Lerrel Pinto

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright c© 2019 Wenxuan Zhou. All rights reserved.

Abstract

A key challenge in deep reinforcement learning (RL) is environment
generalization: a policy trained to solve a task in one environment often
fails to solve the same task in a slightly different test environment. A
common approach to improve inter-environment transfer is to learn policies
that are invariant to the distribution of environments. However, we argue
that instead of being invariant, the policy should identify the specific
nuances of an environment and exploit them to achieve better performance.

In this work, we propose the “Environment-Probing” Interaction (EPI)
policy, which allows the agent to probe a new environment to extract
an implicit understanding of that environment’s behavior. Once this
environment-specific information is obtained, it is used as an additional in-
put to a task-specific policy that can now perform environment-conditioned
actions to solve a task. To learn these EPI-policies, we present a reward
function based on transition predictability. Specifically, a higher reward
is given if the trajectory generated by the EPI-policy can be used to
better predict transitions. We experimentally show that EPI-conditioned
task-specific policies significantly outperform commonly used environment
generalization methods on novel testing environments.

iii

iv

Acknowledgments

First, I would like to express my great appreciation to my advisor Professor
Abhinav Gupta for his support over my Master’s study. His insightful
research advice made this work possible. More importantly, his passion
and his vision in the field of artificial intelligence have deeply influenced
me.

I would like to thank my collaborators, Lerrel Pinto and Deepak Pathak.
They provided valuable insights and guidance in time whenever I faced
difficulties in research. I also want to extend my appreciations to all the
amazing people I met at the Robotics Institute, especially everyone in
our lab. Besides, I would also thank Professor David Held for being my
committee member.

Finally, many thanks my parents for their continuous love and support,
and especially for their respect to all my decisions. I also wish to thank
my boyfriend for his companion and encouragement over years which
made me more determined to become a researcher.

v

vi

Contents

1 Introduction 1

2 Related Work 5
2.1 Domain Adaptation . 5
2.2 System Identification . 6
2.3 Prediction and Intrinsic Reward . 7

3 Environment-Probing Interaction Policies (EPI) 9
3.1 Overview . 9
3.2 Background . 9

3.2.1 Reinforcement learning . 9
3.2.2 Conditioned Policies . 10

3.3 Learning Environment-Probing Interactions 11
3.3.1 Transition Prediction Models 11
3.3.2 EPI Reward Formulation . 12
3.3.3 Additional Training Details 13

3.4 Learning task-specific policies . 14

4 Results 15
4.1 Experiment Setup . 15
4.2 Performance of Task Policy . 17
4.3 Environment Embedding . 19
4.4 Analysis on Generalizability . 20
4.5 Ablative Experiments . 20

5 Conclusions 23

A Appendix 25
A.1 Environment Descriptions . 25
A.2 Randomized Environment Parameters 26
A.3 Training Details . 26
A.4 Training Details of Baselines . 27

Bibliography 29

vii

List of Figures

3.1 We illustrate the architecture for learning the EPI-Policy. Trajectories
τepi generated from the EPI policy are passed through an embedding
network to obtain the environment embeddings ψ. The difference in
performance between a simple prediction model f and the embedding-
conditioned prediction model fepi is used to train the EPI-policy. . . . 11

4.1 Striker Environment: (a) Illustration of the environment (b) Training
curves of the EPI-policy comparing to baselines. The x-axis shows
training iterations for TRPO. The y-axis shows the average reward of
an episode.(c) Two-dimensional environment embedding of the EPI-
policy after training. Embeddings from the same environment have
the same color. 18

4.2 Hopper Environment: (a) Illustration of the environment (b) Training
curves of the EPI-policy comparing to baselines. The x-axis shows
training iterations. The y-axis shows the average reward of an episode.
(c) t-SNE of the 8-dimensional Environment embedding of the EPI-
policy after training. To visualize, the color is given by (R,G,B) where
R:average of mass, G:friction, B:average of damping. 18

4.3 Generalizability of the EPI-policy on Hopper. The grey area represents
the training range while the rest represents testing environments. . . 20

viii

List of Tables

4.1 Comparison of testing results. Hopper is evaluated by the accumulated
reward in one episode. Higher reward implies better performance.
Striker is evaluated by the final distance between the object and the
goal. A smaller distance implies a better performance. 19

ix

x

Chapter 1

Introduction

Over the last few years deep reinforcement learning (RL) has shown tremendous

progress. From beating the world’s best at Go [38] to generating agile and dexterous

motor policies [23, 30, 37], deep RL has been used to solve a variety of sequential

decision-making tasks. However, one key issue that deep RL faces is transfer: a policy

trained in one environment is extremely dependent on the specific parameters of

that environment [33] and fails to generalize to a new environment. Because of this,

training agents that can generalize to novel environments has become an active area

of research [29, 32, 33, 47].

The most common approach for environment generalization is to train a single

policy over a variety of different environments [29, 33], thus allowing the policy network

to learn invariances to the underlying environmental factors. However, a monolithic

policy that works on multiple environments often ends up being conservative since

it is unable to exploit the dynamics of a given environment. We argue that instead

of learning a policy that is invariant to environment dynamics we need a policy

that adapts to its environment. One approach for this is to first perform explicit

system identification of the environment, and then use the estimated parameters to

generate an environment specific policy [47]. However, there are three reasons why

this approach might be infeasible:

• It is based on the structural assumption that only a known set of parameters

matter;

1

CHAPTER 1. INTRODUCTION

• Estimating those parameters from few observations is an extremely challenging

problem;

• These approaches require access to environment parameters during training

time, which might be impractical.

So, is it possible to learn an environment dependent policy without estimating

every environment parameter?

When humans are tasked to perform in a new environment, we do not explicitly

know what parameters affect performance [3]. Instead, we probe the environment

to gain an intuitive understanding of its behavior. The purpose of these initial

interactions is not to complete the task immediately, but to extract information about

the environment. This process facilitates learning in that environment. Inspired

by this, we present a framework in which the agent first performs “environment-

probing” interactions that extract information from an environment, then leverages

this information to achieve the goal with a task-specific policy. This setup entails

three challenges:

• How should an agent interact with an environment?

• How can information be extracted from such interactions?

• How can the extracted information be used to learn a better policy?

One way to interact is by executing random actions in the environment. However,

this may not expose the nuances of an environment. Another way is to use samples

from the task-specific policy to infer the environment [47]. However, a good task-

specific policy may not be optimal for understanding an environment. Instead, we

separately optimize an “Environment-Probing” Interaction policy (EPI-policy) to

extract environment information. To assign rewards to the EPI-policy, our key

insight is that the agent’s ability to predict transitions in an environment can be

used as a metric of its understanding of that environment. If an “environment-

probing” trajectory can help in predicting transitions, then it should be a good

trajectory. More specifically, we use the “environment-probing” trajectory to generate

an environment embedding vector. This compact embedding vector is passed to a

prediction model that provides higher rewards to the trajectories that are useful in

estimating environment-dependent transitions.

Once we have learned the EPI-policy, we can use the generated environment

2

CHAPTER 1. INTRODUCTION

embedding as an input to the task-specific policy. Since this task-specific policy is

conditioned on the information from the environment, it can now produce actions

dependent on the nuances of the specific environment.

We evaluate the effectiveness of using EPI on Hopper and Striker from OpenAI

Gym [4] with randomized mass, damping and friction coefficients. In both of these

environments, the performance of our policies is better than several commonly used

techniques and is even comparable to an oracle policy that has full access to the

environment information. These results, along with a detailed ablation analysis,

demonstrates that implicitly encoding the environment using EPI-policies improves

task performance in unseen testing environments.

This thesis will first review the current state-of-the-art methods for environment

generalization in deep reinforcement learning in Chapter 2. Then, Chapter 3 will pro-

vide detailed explanation of training and using the Environment Probing Interaction

Policy we proposed. It will be followed by empirical evaluations in Chapter 4 and

conclusions and discussions in Chapter 5.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Related Work

2.1 Domain Adaptation

Developing generalizable machine learning models is a longstanding challenge. One

approach to transfer models across different input distributions is domain adaptation.

Duan et al. [8] along with several others [16, 21, 24] domain-adapt visual models.

With the onset of deep learning, several works have investigated finetuning (retraining)

pre-trained networks in different target domains [22, 42, 45].

In reinforcement learning, Gupta et al. [13] learns different encoders for different

environments that share a common feature space to enable transfer. Improving the

generalizability of models can also be formulated as a meta-learning problem. Finn

et al. [11] and Yu et al. [46] finetune the models in new environments. We argue that

agents should have the capacity to generalize without updating their policy. Duan

et al. [10] and Wang et al. [44] optimize the policy over multiple episodes and use RNN

to implicitly model the underlying changing dynamics in the hidden states. Hausman

et al. [14] purposes to learn an embedding in a supervised manner by performing

variational inference on task ids. These methods are based on model-free meta-RL,

while Sæmundsson et al. [36] and Clavera et al. [6] investigate in model-based meta-RL.

Sæmundsson et al. [36] infers latent variables using Gaussian Process. In contrast, we

use neural networks to create an embedding and experimented with more complex

high-dimensional continuous control problems. Concurrent work Clavera et al. [6]

proposes to train a dynamics model that adapts online using either gradient based

5

CHAPTER 2. RELATED WORK

method [11] or recurrent based method [10]. The most important difference is that

we have a separate policy to probe the environment instead of using the trajectories

from the execution of the task.

Another stream of research that is relevant to our work is simulation-to-real

transfer, which is an important extension of domain adaptation in robotics research.

Here the goal is to train a policy in a physics simulator and then transfer that policy

to a real robot. The challenge here is to bridge the “Reality Gap” between the real

world and the simulator. Rusu et al. [34] attempt to do this via architectural novelty

for visual domain adaptation. Pinto et al. [31], Sadeghi and Levine [35], Tobin et al.

[40] and James et al. [17] perform domain randomization on the inputs during training

to learn a transferable policy. These methods target the mismatch of observation

space. However, we target the mismatch in the dynamics of the environment. Peng

et al. [29] proposes domain randomization of the environment parameters and learning

an LSTM policy to implicitly learn the environment. We compare our method to

this approach and show that a separate process that extracts the nuances of an

environment is vital for better generalization. Rajeswaran et al. [33] and Pinto et al.

[32] also target generalization to environments, however they do not incorporate

environment information and hence are only able to learn a conservative policy.

2.2 System Identification

The traditional approach of system identification [1, 2, 12, 25] aims to explicitly

estimate the varying environment parameters. Yu et al. [47] propose the UP-OSI

framework that can perform online system identification and takes the estimated

environment parameters as additional input to the policy. This works well when the

number of parameters to estimate is few. However, explicit identification of every

environment parameter is a extremely challenging. Denil et al. [7] trains an policy to

gather information about physical properties through interactions in intuitive physics

to answer questions, while we are trying do dealt with a more complex continuous

control setting.

6

CHAPTER 2. RELATED WORK

2.3 Prediction and Intrinsic Reward

A recent approach by Pathak et al. [27, 28] uses errors in prediction models as an

intrinsic reward [5] to improve exploration in RL. The strategy is to take actions to

reach the states that maximize the error in the learned prediction model. In contrast,

our method selects actions that reduce the prediction error on the heldout prediction

dataset of task policy trajectories.

7

CHAPTER 2. RELATED WORK

8

Chapter 3

Environment-Probing Interaction

Policies (EPI)

3.1 Overview

Our objective is to learn a generalizable policy that is trained on a set of training

environments, but can succeed across unseen testing environments. To this end,

instead of a single policy, we have two separate policies: (a) an Environment-Probing

Interaction policy (EPI-policy) that efficiently interacts with an environment to

collect environment-specific information, and (b) a task-specific policy that uses this

additional environment information (estimated via EPI-policy) to achieve high rewards

for a given task. In the following section, we will first introduce the background of

reinforcement learning, and then present our methodology for learning these two

policies.

3.2 Background

3.2.1 Reinforcement learning

We use the framework of reinforcement learning to learn the interaction policy and

the final task target policy. This section contains brief preliminaries for reinforcement

9

CHAPTER 3. ENVIRONMENT-PROBING INTERACTION POLICIES (EPI)

learning. Note that a more comprehensive exposition can be found in Kaelbling et al.

[18] and Sutton and Barto [39].

We model our problem as a continuous space Markov Decision Process represented

as the tuple (S,A,P , r, γ, S), where S is a set of continuous states of the agent, A is

a set of continuous actions the agent can take at a given state, P : S ×A×S → R is

the transition probability function, r : S × A → R is the reward function, γ is the

discount factor, and S is the initial state distribution.

The goal for an agent is to maximize the expected cumulative discounted reward∑T−1
t=0 γ

tr(st, at) by performing actions according to its policy πθ : O → A. Here, θ

denotes the parameters for the policy π which takes action at given observation ot

at timestep t. There are various techniques to optimize πθ. The one we use in this

paper is a policy gradient approach, TRPO [37].

3.2.2 Conditioned Policies

A common way to learn generalizable policies is by giving the policy more information

than just the state st at some time t. For partially observable environments, several

works have used a sequence of additional last k observations as input, i.e. at =

π([ot, ot−1, ...ot−k]) [26, 43]. Instead of using only a fixed length of past observations,

one can also employ a recurrent neural network (RNN) to use the entire length of the

episode as input, i.e. at = π(RNN([ot, ot−1, ...o0])) [9, 15, 43]. Peng et al. [29] also use

these recurrent policies to learn in unknown environments.

Instead of being conditioned on histories of observations, policies can be con-

ditioned on information about the environment, i.e. at = π(ot; E), where E is the

information about the environment. Yu et al. [47] uses explicit parameters of envi-

ronment variables as E . However, we argue that obtaining this explicit parameters via

system identification is often too challenging and also infeasible since exact parameters

are not always accessible in training time. In this work, we learn an embedding of

the environment instead of the explicit parameters.

10

CHAPTER 3. ENVIRONMENT-PROBING INTERACTION POLICIES (EPI)

⌧epi

EP
I-

Tr
aj

ec
to

ry

Embedding
Network

st

at

fepi dst+1

f

Transition
Dataset

st+1

Lepi pred

Rp(⇡epi)

Environment

at stTrajectory
Generation

EPI-Policy
(⇡epi)

Lpred

Rewards for EPI-Policy

st

at
dst+1

Figure 3.1: We illustrate the architecture for learning the EPI-Policy. Trajectories
τepi generated from the EPI policy are passed through an embedding network to
obtain the environment embeddings ψ. The difference in performance between a
simple prediction model f and the embedding-conditioned prediction model fepi is
used to train the EPI-policy.

3.3 Learning Environment-Probing Interactions

To learn the EPI-policy, we introduce a reward formulation based on the prediction

models (Fig. 3.1). The key insight here is that a good EPI-policy generates trajectories

in an environment from which predicting transitions in that environment is easier.

To quantify this notion of how easy or difficult it is to predict transitions, we use the

error transition prediction models.

3.3.1 Transition Prediction Models

To train our prediction models, a dataset of transition data (st, at, st+1) is collected

in the training environments using a pre-trained task policy (Sec. 3.3.3). This data

is split into a training set and a validation set. With the training set, we train

two prediction models: (a) a vanilla prediction model f(st, at) that predicts the

next state st+1 given the current state st and action at, and (b) an EPI-conditioned

prediction model fepi(st, at;ψ(τepi)), which takes the embedded EPI-trajectory ψ(τepi)

as an additional input. Here τepi is a trajectory in the environment which contains a

small fixed number of observations and actions generated by πepi. ψ(τepi) is the low

11

CHAPTER 3. ENVIRONMENT-PROBING INTERACTION POLICIES (EPI)

dimensional embedding of the trajectory τepi. We can now quantify the reward for

πepi as the difference between their performance. The intuition behind this is that if

an interaction trajectory generated from πepi is informative, fepi will be able to use it

to give smaller prediction error than f .

To train the prediction models, we use a mean squared error loss, i.e the loss for

f is:

Lpred =
1

N

N∑

i=1

‖f(st, at)− st+1‖22 (3.1)

Here st+1 is the target next state and ‖·‖2 is the L2 norm. Similarly, the loss for

fepi is:

Lepi pred =
1

N

N∑

i=1

‖f(st, at;ψ(τepi))− st+1‖22 (3.2)

During training, gradients are back-propagated to train both the prediction model

fepi and the embedding network ψ. The embedding network ψ will be then directly

used for the task-specific policy.

3.3.2 EPI Reward Formulation

The reward for the EPI-policy is computed as the difference in performance between

the simple prediction model f and the EPI dependent prediction model fepi over the

validation transition dataset. For a given training environment, the trajectory τepi

generated by EPI-policy πepi is fed into fepi to calculate the prediction loss Lepi pred.
The simple prediction loss Lpred is calculated using f . This leads us to the prediction

reward function:

Rp(πepi) =τepi∼πepi [Lepi pred(τepi)]− Lpred (3.3)

Note that this formulation is different from the ”curiosity” reward proposed

by Pathak et al. [27] which encourages the policy to visit unexplored regions of the

state space. Our reward function is to encourage the policy to extract information to

improve prediction, rather than explore.

12

CHAPTER 3. ENVIRONMENT-PROBING INTERACTION POLICIES (EPI)

3.3.3 Additional Training Details

Collecting transition dataset: To collect the transition dataset, we first train a

task policy over a fixed environment. This policy is then executed with an ε-greedy

strategy over the training environments to generate the transition data. To make

this dataset more environment-dependent, we collect more data by setting different

environments to the same state and executing the same action, following the Vine

method [37]. Different environments would cause different observations in the next

timestep, thus forcing the prediction model to use environment information given

by the interaction. The dataset is kept fixed throughout the updates of the EPI-policy.

Regularization via Separation: An additional regularization can be added to

the loss function of the EPI-conditioned prediction model fepi. We implement a

separation loss back-propagated from the outputs of the embedding network ψ(τepi).

The idea is to additionally force the embeddings from different environments to be

apart from each other when the interaction trajectories are not yet informative enough

for prediction. To calculate this loss, we assume the knowledge of which trajectory

is from the same environment. We then fit a multivariate Gaussian distribution

over the embeddings in an environment Ei and encourage the mean vector µi of

one environment to be at least a fixed distance away from every other environment

µj 6=i. In addition, we encourage the diagonal elements of the covariance matrix to be

reasonably small.

Interleaved training: Since the EPI-policy and the prediction model depend on

each other, they are optimized in an alternating fashion. The prediction model

is first trained using a randomly initialized EPI-policy. Then the EPI-policy is

optimized using TRPO for a few iterations with rewards from the learned prediction

model. After that, the prediction model is updated again using a batch of trajectories

generated from the EPI-policy. This cycle of alternating optimization is repeated

until the EPI-policy converges. Details on the exact parameters used can be found in

Appendix A.3.

13

CHAPTER 3. ENVIRONMENT-PROBING INTERACTION POLICIES (EPI)

3.4 Learning task-specific policies

After the EPI-policy and the embedding network are optimized, they are fixed and

used for training the task-specific policy. For each episode, the agent first follows

the EPI-policy to generate a trajectory τI . The trajectory is then converted to

an environment embedding ψ(τI) using the trained embedding network ψ from the

prediction model. After the interaction stage, the agent starts an episode to achieve

its goal. This environment embedding ψ(τI) is now a part of the observation for

each time step of the task-specific policy πtask(ot, ψ(τI)). The task-specific policy is

then optimized using TRPO. During testing, the agent follows the same procedure:

it first executes the EPI-policy to get the environment embedding, followed by the

task-specific policy to achieve the goal.

14

Chapter 4

Results

4.1 Experiment Setup

We now present experimental results to demonstrate how the EPI-policy helps the

agent understand the environment, and allows the task-specific policy to general-

ize better to unseen test environments. Code is available at https://github.com/

Wenxuan-Zhou/EPI.

Environments: To evaluate the EPI-policy, we need appropriate simulation environ-

ments that are sensitive to environment parameters. For this, we use the Striker and

the Hopper MuJoCo [41] environments from OpenAI Gym [4]. Both of the agents

are torque-controlled. For Striker, the goal is to strike an object on the table with a

robot arm to make the object reach at a target position when it stops. The mass and

damping of the object are varied (2 parameters). The goal of Hopper is to move as

fast as possible in the forward direction without falling. Here, we vary the mass of

four body parts, the damping of three joints and the friction coefficient of the ground

(8 parameters). During training, each parameter is randomized uniformly among five

values from its range at the beginning of an episode. During testing, the parameters

are sampled from a set of unseen environment parameters. Details can be found in

Appendix A.1 and Appendix A.2.

Baselines: To show that the EPI-policy improves generalization, we compare our

15

https://github.com/Wenxuan-Zhou/EPI
https://github.com/Wenxuan-Zhou/EPI

CHAPTER 4. RESULTS

results with three categories of baselines. Training details for the baselines can

be found in Appendix A.4. First, we show the importance of extra environment

information:

• Simple Policy: a MLP (Multi-Layer Perceptron) policy at = π(ot) trained only

in one fixed environment of fixed parameters. This is how RL tasks are normally

formulated.

• Invariant Policy (inv-pol): a MLP policy at = π(ot) trained across the ran-

domized environments similar to Rajeswaran et al. [33]. This policy will be

more robust than Simple Policy since it encounters various environments during

training. However, it is only able to output the same action from the same

input in different environments.

• Oracle Policy: a MLP policy takes explicit environment parameters as additional

input: at = π(ot, ρ), where ρ is a vector of the environment parameters such

as mass, friction and damping. This baseline has full information of the

environment, thus this is meant to put our results in context with the best

possible task-specific policy.

In the second category of baselines, we want to demonstrate the necessity of

learning a separate interaction policy:

• Random Interaction Policy: takes 10 timesteps of random interactions as

additional input. It covers the possibility that random actions are good enough

to capture environment nuances.

• History Policy: takes 10 timesteps of most recent observations and actions as

additional input. Mnih et al. [26] adopts similar idea where it stacks 3 to 5

most recent frames as input. It covers the possibility that the trajectories from

the task-specific policy are informative.

• Recurrent Policy (lstm-pol): using a LSTM layer instead of MLP. This baseline

is similar to Peng et al. [29]. LSTM is supposed to encode the past trajectories,

so it serves the same idea as the History Policy but from a different approach.

• System Identified Policy: This baseline is implemented based on Yu et al. [47].

It first trains an Oracle Policy. Then it performs explicit system identification

that estimates environment parameters using a history of observations and

16

CHAPTER 4. RESULTS

actions from the Oracle Policy. Finally, the estimated value are fed into the

trained Oracle Policy during test time.

Finally, to show that the prediction reward is an appropriate proxy for the EPI-

policy update, we implemented the following baseline that directly updates the

EPI-policy:

• Direct Reward Policy: this baseline evaluates the interactions by directly taking

the final reward of the following task-specific policy trajectory instead of the

prediction reward.

4.2 Performance of Task Policy

The training curves for the EPI Policy and three representative baselines are presented

in Fig. 4.1(b) and Fig. 4.2(b). The final performance of the best Oracle Policy

across random seeds is plotted as a dotted line as an upper bound. Average curves

are plotted for other policies with standard deviation across seeds. We observe that

for both the Hopper and the Striker environments, the EPI Policy achieves better

performance than the baselines and is comparable to the performance of the Oracle

Policy. To further validate our results, we test our final learned task polices πtask on

heldout test environments and present these results in Table. 4.1. For Hopper, our

method achieves an average episode reward of 1303± 173, at least 14.0% better than

all the baselines. For Striker, our method achieves a final distance of 0.162± 0.015(m)

to the goal, at least 37.5% more accurate than all the baselines.

The baselines under-perform due to multiple reasons. Without any information

of the environment, Simple Policy and Invariant Policy are not able to adapt to the

different testing environments. The Random Interaction Policy, the History Policy

and the Recurrent Policy, are all able to use environment information and are hence

better than the invariant Policy. However, the EPI Policy can learn a lot more

efficiently since it has a separate policy that explicitly probes the environment.

Even though a System Identified Policy has extra access to true environment

parameters during training time, its performance will be limited when the number of

changing parameters increases. To further verify this, we trained System Identified

Policy for Hopper when only 2 variables are changing. It achieves a low mean squared

17

CHAPTER 4. RESULTS
Dimension 1Iterations

Av
er

ag
e

R
ew

ar
d

Av
er

ag
e

R
ew

ar
d

D
im

en
si

on
 2

D
im

en
si

on
 2

Dimension 1Iterations

Hopper

Striker

(a) (b) (c)

(a) (b) (c)

Figure 4.1: Striker Environment: (a) Illustration of the environment (b) Training
curves of the EPI-policy comparing to baselines. The x-axis shows training iterations
for TRPO. The y-axis shows the average reward of an episode.(c) Two-dimensional
environment embedding of the EPI-policy after training. Embeddings from the same
environment have the same color.

Dimension 1Iterations

Av
er

ag
e

R
ew

ar
d

Av
er

ag
e

R
ew

ar
d

D
im

en
si

on
 2

D
im

en
si

on
 2

Dimension 1Iterations

Hopper

Striker

(a) (b) (c)

(a) (b) (c)

Figure 4.2: Hopper Environment: (a) Illustration of the environment (b) Training
curves of the EPI-policy comparing to baselines. The x-axis shows training iterations.
The y-axis shows the average reward of an episode. (c) t-SNE of the 8-dimensional
Environment embedding of the EPI-policy after training. To visualize, the color is
given by (R,G,B) where R:average of mass, G:friction, B:average of damping.

error of 10−5 for environment parameter estimation. However, when 8 parameters

of the Hopper are changing, the mean squared error is around 10−2. Furthermore,

this baseline still relies on the assumption that the task-specific policy will capture

environment nuances just like the History Policy. This may limit the performance in

Striker even when only 2 parameters are changing.

Finally, the Direct Reward Policy learns slowly and is hence worse than using

18

CHAPTER 4. RESULTS

Table 4.1: Comparison of testing results. Hopper is evaluated by the accumulated
reward in one episode. Higher reward implies better performance. Striker is evaluated
by the final distance between the object and the goal. A smaller distance implies a
better performance.

METHOD Hopper(↑) Striker(↓)

Baselines

Simple Policy 414± 313 1.660± 2.010
Invariant Policy 1025± 49 0.297± 0.068
Random Interaction Policy 1101± 27 0.410± 0.047
History Policy 1143± 156 0.259± 0.038
Recurrent Policy 917± 180 0.418± 0.051
System Id Policy 1033± 81 1.113± 0.106
Direct Reward 1057± 310 0.458± 0.004

Ours EPI + Task-specific Policy 1303± 173 0.162± 0.015

Ablations
No Vine Data 1214± 138 0.293± 0.018
No Regularization 1203± 397 0.308± 0.019
No Vine and No Regularization 1237± 78 0.324± 0.057

Oracle Oracle Policy 1474± 205 0.133± 0.034

EPI-policies. We attribute this to the added difficulty in credit assignment, i.e. a

high reward for the task-specific policy is not necessarily caused by a good interaction,

but the interaction policy would still receive the high reward.

4.3 Environment Embedding

To understand what the EPI-policy learns, we visualize the embeddings given by

interactions. We run interactions over the randomized environments and plot the

output embedding in Fig. 4.1(c) for the Hopper and in Fig. 4.2(c) for the Striker.

The embedding shows a correspondence to environment parameters with similar

environments being closer to each other. This means that the agent learns to

disentangle transition differences induced by different environment parameters. This

also demonstrates that it has learned to generate distinguishable trajectories in

differing environments.

19

CHAPTER 4. RESULTS

Damping Coefficient Friction Coefficient Mass Scale

Av
er

ag
e

R
ew

ar
d

Av
er

ag
e

R
ew

ar
d

Av
er

ag
e

R
ew

ar
d

Figure 4.3: Generalizability of the EPI-policy on Hopper. The grey area represents
the training range while the rest represents testing environments.

4.4 Analysis on Generalizability

To evaluate the generalizability of the EPI-policy, we further analyze the performance

of Hopper when only damping, friction or mass is changing in Fig. 4.3. During the

analysis of one parameter, the other parameters are set to default values. Grey area

represents training range, while the rest of the values is only seen in testing range.

From the figure we can see that our policy outperforms the invariant policy in almost

every setting.

4.5 Ablative Experiments

Effect of Vine-Method for Initial Dataset: Vine method allows the transition

prediction model to not overfit on samples based on their observations. Training

without the Vine method, leads to dropping performance by about 89 reward points

on Hopper and 0.13m accuracy on Striker. This is still better than all baselines for

Hopper. This shows that the vine method is important for certain environments like

Striker, but it is not necessary.

Effect of Regularization: The only thing the additional regularization loss does is

trying to cluster embeddings from the same environment. It does not serve for the

EPI-policy updates as prediction loss does. However, even without separation loss,

EPI is significantly better than the Invariant policy baseline by 178 points on Hopper.

Similar to Vine method, separation loss is necessary for Striker but not for Hopper

20

CHAPTER 4. RESULTS

to beat baselines. In addition, we did experiments without either Vine-Method or

Regularization. Hopper performs 66 points worse than following the full method,

while still beating all the baselines. Striker performs 0.162m worse than the full

method. Although it still beats 5 of the 7 baselines, this is a significant loss in per-

formance and highlights the importance of using both the Vine data and regularization.

Experimental Setup: Our method probes the environment using the EPI-policy

followed by solving the task itself. During task-solving, the agent starts from the same

initial states as baselines (using reset). While in most cases, this might be a feasible

assumption, initial environment probing might not be allowed and resets might not

be available in some scenarios. Therefore, we also performed experiments when the

EPI-policy probes the environment for the first 10 steps and then the task-policy

takes over from where the EPI-policy left. This essentially leads to a larger range of

initial states for the task-specific policy than all the baselines. Even in these strict

conditions, EPI-policy is quite useful. For Hopper, we achieve a reward of 1193± 304,

outperforming all the baselines as shown in Table. 4.1. Even in the case of Striker we

perform on par with invariant policy and outperform all other baselines.

21

CHAPTER 4. RESULTS

22

Chapter 5

Conclusions

To help environment generalization problem in deep reinforcement learning, we have

presented an approach to extract environment behavior information by probing it

using an EPI-policy. To learn the EPI-policy we use a reward function which prefers

trajectories that improve environment transition predictability. We show that such a

reward objective enables the agent to perform meaningful interactions and extract

implicit information (environment embedding) from the environment. Given unseen

test environments on Hopper and Striker, we show that our embedding conditioned

task policies improve generalization to unseen test environments.

The main contribution of this work is to propose a system identification method

that is implicit and active, by learning the embedding and a policy at the same time.

Due to the nature of prediction reward, this method requires minimum additional

domain knowledge of the task to perform system identification and it works across

different tasks without modification.

For future extensions to this work, it would be interesting to use EPI for Sim-to-

Real transfer on robot platforms. One could train both EPI policy and task policy in

simulation and perform interaction policy in the real world. Since EPI takes states

such as positions and velocities of objects as observations, this experiment would

require instrumentation or state estimation over the scene. Thus, another extension

to this work would be using image observations instead of states. This may require

extra computational resources and extra effort in designing the architecture.

23

CHAPTER 5. CONCLUSIONS

24

Appendix A

Appendix

A.1 Environment Descriptions

We used Hopper and Striker environments from OpenAI Gym [4]. We will describe

the details of the environments in this section.

Hopper: Hopper consists of four body parts and three joints. It has an 3-dimensional

action space including motor commands for all the joints. The observation space

is 11-dimensional, inluding joint angles, joint velocities, y,z positions of the torso

and x,y,z velocities of the torso. The initial positions and velocities are randomized

over ±0.005. The reward function is r(s, a) = vx + 1 − 0.001‖a‖2. The first term

is to encourage the agent to move forward. The second term is a reward for being

alive. The third term is to disencourage unnecessary movements. The criteria for

being alive is that the height of the torso should be larger than 0.7 and the angle of

the torso should be smaller than 0.2 with respect to the horizontal plane. It has a

maximum length of 1000 timesteps for each episode. If it falls down and breaks the

alive condition, the episode will end immediately.

Striker: Striker environment has a 7-dof robot arm and a table. There is a ball and

a goal location marker on the table. The action space is 7-dimensional, including

the motor commands for each joints on the robot. The 23-dimensional observation

space consists of the joint angles, joint velocities, the end-effector (hand) position, the

25

APPENDIX A. APPENDIX

object position and the goal position. The initial conditions randomize the velocity

of all the joints over ±0.1. The reward is given by r(s, a) = −3 ‖sobject − sgoal‖ −
0.1‖a‖2 − 0.5‖sobject − shand‖2. The first term is to encourage the object to reach the

goal and stay at the goal. The second term is to disencourage unnecessary movements.

The third term is to encourage the hand to hit the object. After the end-effector hits

the object, shand will be replaced by the hitting location of the end-effector. It has a

fixed length of 200 timesteps for each episode.

A.2 Randomized Environment Parameters

Every environment parameter is randomized among 5 evenly spread discrete values.

Striker has 2 varying parameters which create 25 possible environment. Hopper is

varying 8 parameters, so there are 58 possible environments. In order to calculate

separation loss for Hopper, we sample 100 environments from all 58 possible environ-

ment to train the EPI-policy. Otherwise it will not be able to cluster the embeddings

from the same environment. Note that when training task policy with interactions,

the environment is still randomized from all possible combinations.

During testing, all environment parameters are sampled from a set of discrete

values that the policy has never seen in any stage of training. For example, if mass is

sampled from {1.0, 2.0, 3.0, 4.0, 5.0}, it is sampled from {1.5, 2.5, 3.5, 4.5, 5.5} during

testing.

A.3 Training Details

An EPI-trajectory contains 10 steps of observations and actions for both Hopper

and Striker. The embedding network ψ that inputs an EPI-trajectory τepi and

outputs environment embedding ε has two fully connected layers with 32 neurons

each and followed by ReLU [20]. The prediction models fpred and fepi pred has four

fully connected layers with 128 neurons each. The prediction model is optimized

by Adam [19]. Both the EPI-policy πepi and the final goal policy πg are optimized

using TRPO [37] with rllab implementation [9]. The prediction model is trained

from scratch every 50 policy updates. Training from scratch is to avoid overfitting

26

APPENDIX A. APPENDIX

which will lead to unintended increasing reward for the EPI-policy. The EPI-policy is

trained for 200∼400 iterations in total with a batch size of 10000 timesteps. The task

policy will then use the trained EPI-policy and the embedding network to update for

1000 iterations with a batch size of 100000 timesteps.

A.4 Training Details of Baselines

All MLP baselines have the same network architecture as the task policy: two hidden

layers with 32 hidden units each with ReLU activations. They are trained with the

same batch size, optimizer, number of iterations and other hyperparameters as the

task policy. We made sure that all training curves saturate before the final iteration.

• Simple Policy: a MLP policy trained only in one fixed environment of fixed

parameters. All the other baselines are trained across the randomized environ-

ments.

• Invariant Policy (inv-pol): a default MLP policy at = π(ot).

• Oracle Policy: a MLP policy takes explicit environment parameters as additional

input: at = π(ot, ρ), where ρ is a vector of the environment parameters such as

mass, friction and damping.

• Random Interaction Policy: a MLP policy that takes 10 timesteps of random

interactions as additional input. at = π(ot, oi0, ai0, oi1, ai1...oi9, ai9), where oin

and ain are from a random policy.

• History Policy: a MLP policy that takes 10 timesteps of most recent states and

actions as additional input. Mnih et al. [26] adopts similar idea where it stacks

3 to 5 most recent frames as input. at = π(ot, ot−1, at−1, ot−2, at−2...ot−10, at−10).

When t < 10, ot−j are filled by zeros for j > t.

• Recurrent Policy (lstm-pol): The Recurrent baseline is using an LSTM with 32

hidden units from rllab. at = πLSTM(ot).

• System Identified Policy: This baseline is implemented based on Yu et al. [47].

We first trains an Oracle Policy at = π(ot, ρ) as we described above, which

is called the Universal Policy (UP) in their paper. To train Online Sytem

Identification (OSI) model, we collect trajectories on randomized environments

27

APPENDIX A. APPENDIX

following the Oracle Policy. With the trajectories, we trained the OSI model,

which is a regression model that inputs a history of states and actions and

outputs ρ. The network architecture strictly follows the paper. Then the

estimated ρ are fed into the trained Oracle Policy at = π(ot, ρ) to collect more

trajectories for training OSI again. We followed the original paper and trained

OSI for 5 times.

• Direct Reward Policy: takes the first 10 steps of actions as additional input.

In this way, these steps are taking the future reward of the whole trajectory.

at = π(ot, o0, a0, o1, a1...o9, a9). When t < 10, oj are filled by zeros for j > t.

28

Bibliography

[1] B. Armstrong. On finding ’exciting’ trajectories for identification experiments
involving systems with non-linear dynamics. In Proceedings. 1987 IEEE Inter-
national Conference on Robotics and Automation, volume 4, pages 1131–1139,
March 1987. doi: 10.1109/ROBOT.1987.1087968. 2.2

[2] Josh C Bongard and Hod Lipson. Nonlinear system identification using coevolu-
tion of models and tests. IEEE Transactions on Evolutionary Computation, 9
(4):361–384, 2005. 2.2

[3] Daniel A Braun, Ad Aertsen, Daniel M Wolpert, and Carsten Mehring. Learn-
ing optimal adaptation strategies in unpredictable motor tasks. Journal of
Neuroscience, 29(20):6472–6478, 2009. 1

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016. 1, 4.1, A.1

[5] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically
motivated reinforcement learning. In Advances in neural information processing
systems, pages 1281–1288, 2005. 2.3

[6] Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey
Levine, and Chelsea Finn. Learning to adapt: Meta-learning for model-based
control. arXiv preprint arXiv:1803.11347, 2018. 2.1

[7] Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Battaglia, and
Nando de Freitas. Learning to perform physics experiments via deep reinforcement
learning. arXiv preprint arXiv:1611.01843, 2016. 2.2

[8] Lixin Duan, Dong Xu, and Ivor Tsang. Learning with augmented features for
heterogeneous domain adaptation. arXiv preprint arXiv:1206.4660, 2012. 2.1

[9] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. In International
Conference on Machine Learning, pages 1329–1338, 2016. 3.2.2, A.3

[10] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter

29

Bibliography

Abbeel. Rl2 : Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016. 2.1

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400, 2017. 2.1

[12] Michel Gevers et al. System identification without lennart ljung: what would
have been different? Forever Ljung in System Identification, Studentlitteratur
AB, Norrtalje, 2006. 2.2

[13] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Learning invariant feature spaces to transfer skills with reinforcement learning.
arXiv preprint arXiv:1703.02949, 2017. 2.1

[14] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and
Martin Riedmiller. Learning an embedding space for transferable robot skills.
2018. 2.1

[15] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-
based control with recurrent neural networks. arXiv preprint arXiv:1512.04455,
2015. 3.2.2

[16] Judy Hoffman, Sergio Guadarrama, Eric S Tzeng, Ronghang Hu, Jeff Donahue,
Ross Girshick, Trevor Darrell, and Kate Saenko. Lsda: Large scale detection
through adaptation. In Advances in Neural Information Processing Systems,
pages 3536–3544, 2014. 2.1

[17] Stephen James, Andrew J Davison, and Edward Johns. Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage task. arXiv
preprint arXiv:1707.02267, 2017. 2.1

[18] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 1996. 3.2.1

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. A.3

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS 2012. A.3

[21] Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get:
Domain adaptation using asymmetric kernel transforms. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1785–1792.
IEEE, 2011. 2.1

[22] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Re-
visiting batch normalization for practical domain adaptation. arXiv preprint
arXiv:1603.04779, 2016. 2.1

[23] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

30

Bibliography

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 1

[24] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning trans-
ferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791,
2015. 2.1

[25] Mario Milanese, John Norton, Hélène Piet-Lahanier, and Éric Walter. Bounding
approaches to system identification. Springer Science & Business Media, 2013.
2.2

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015. 3.2.2, 4.1, A.4

[27] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In International Conference on
Machine Learning (ICML), volume 2017, 2017. 2.3, 3.3.2

[28] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen,
Yide Shentu, Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell.
Zero-shot visual imitation. arXiv preprint arXiv:1804.08606, 2018. 2.3

[29] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-to-real transfer of robotic control with dynamics randomization. arXiv
preprint arXiv:1710.06537, 2017. 1, 2.1, 3.2.2, 4.1

[30] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deep-
mimic: Example-guided deep reinforcement learning of physics-based character
skills. arXiv preprint arXiv:1804.02717, 2018. 1

[31] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and
Pieter Abbeel. Asymmetric actor critic for image-based robot learning. arXiv
preprint arXiv:1710.06542, 2017. 2.1

[32] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust
adversarial reinforcement learning. ICML, 2017. 1, 2.1

[33] Aravind Rajeswaran, Sarvjeet Ghotra, Sergey Levine, and Balaraman Ravindran.
Epopt: Learning robust neural network policies using model ensembles. ICLR,
2017. 1, 2.1, 4.1

[34] Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu,
and Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets.
arXiv preprint arXiv:1610.04286, 2016. 2.1

[35] Fereshteh Sadeghi and Sergey Levine. (cad)2rl: Real single-image flight without
a single real image. arXiv preprint arXiv:1611.04201, 2016. 2.1

31

Bibliography

[36] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta
reinforcement learning with latent variable gaussian processes. arXiv preprint
arXiv:1803.07551, 2018. 2.1

[37] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on
Machine Learning, pages 1889–1897, 2015. 1, 3.2.1, 3.3.3, A.3

[38] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016. 1

[39] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998. 3.2.1

[40] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. IROS, 2017. 2.1

[41] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 5026–5033. IEEE, 2012. 4.1

[42] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014. 2.1

[43] Arun Venkatraman, Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert,
Byron Boots, Kris Kitani, and J Bagnell. Predictive-state decoders: Encoding
the future into recurrent networks. In Advances in Neural Information Processing
Systems, pages 1172–1183, 2017. 3.2.2

[44] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z
Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick.
Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016. 2.1

[45] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014. 2.1

[46] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter
Abbeel, and Sergey Levine. One-shot imitation from observing humans via
domain-adaptive meta-learning. arXiv preprint arXiv:1802.01557, 2018. 2.1

[47] Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown:
Learning a universal policy with online system identification. arXiv preprint
arXiv:1702.02453, 2017. 1, 2.2, 3.2.2, 4.1, A.4

32

	1 Introduction
	2 Related Work
	2.1 Domain Adaptation
	2.2 System Identification
	2.3 Prediction and Intrinsic Reward

	3 Environment-Probing Interaction Policies (EPI)
	3.1 Overview
	3.2 Background
	3.2.1 Reinforcement learning
	3.2.2 Conditioned Policies

	3.3 Learning Environment-Probing Interactions
	3.3.1 Transition Prediction Models
	3.3.2 EPI Reward Formulation
	3.3.3 Additional Training Details

	3.4 Learning task-specific policies

	4 Results
	4.1 Experiment Setup
	4.2 Performance of Task Policy
	4.3 Environment Embedding
	4.4 Analysis on Generalizability
	4.5 Ablative Experiments

	5 Conclusions
	A Appendix
	A.1 Environment Descriptions
	A.2 Randomized Environment Parameters
	A.3 Training Details
	A.4 Training Details of Baselines

	Bibliography

