Surfel-based RGB-D Reconstruction and
SLAM with Global and Local Consistency

Yi (Jack) Yang
CMU-RI-TR-19-45
July 2019

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Michael Kaess (Chair)
Simon Lucey
Kumar Shaurya Shankar

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright (©) 2019 Yi (Jack) Yang

For my family

v

Abstract

Achieving high surface reconstruction accuracy in dense mapping has been a de-
sirable target for both robotics and vision communities. In the robotics literature,
simultaneous localization and mapping (SLAM) systems use depth-enabled cameras
to reconstruct a dense map of the environment. They leverage the depth input to pro-
vide accurate local pose estimation and a locally consistent model. However, drift in
the pose tracking over time leads to misalignments and artifacts. On the other hand,
offline computer vision methods, such as the pipeline that combines structure-from-
motion (SfM) and multi-view stereo (MVS), estimate the camera poses by performing
batch optimization. These methods achieve global consistency, but suffer from heavy
computation loads.

We propose two novel approaches that integrate both methods to achieve locally
and globally consistent reconstruction. The first method estimates the poses of keyframes
in the offline SfM pipeline to provide strong global constraints at relatively low cost.
Afterwards, we compute odometry between frames driven by off-the-shelf SLAM sys-
tems with high local accuracy. We fuse the two pose estimations using factor graph
optimization to generate accurate camera poses for dense reconstruction.

The second method applies bundle adjustment to improve the estimation of both
camera tracking and landmarks, while simultaneously optimizing the dense model
upon loop closure using a deformation graph. Through efficient implementation on
GPU, the system is able to achieve online performance and accurate dense reconstruc-
tion.

Experiments on real-world and synthetic datasets demonstrate that our approaches
produce more accurate models comparing to existing dense SLAM systems, while
achieving significant speedup with respect to state-of-the-art SEM-MVS pipelines.

Vi

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Michael
Kaess. Without his unwavering support, patience, and guidance along the way, I would
not be able to finish what I have done today. I would also like to thank my thesis
committee, Professor Simon Lucey and Kumar Shaurya Shankar, for their help and
suggestions.

Being a part of the Robot Perception Lab, I am grateful for the discussions, encour-
agement, and friendships. You are not only a source of inspiration, but also a beam of
light in the sunless basement of NSH 2nd floor.

For many of my friends at CMU and Mudd, I want to let you know that I am
thankful for all the help over the past two years. I would also like to give my special
thank to Lizzi Yin for bringing me various of encouragements and laughter. Thank
you all for being there.

Finally, I want to let my parents know that I would not be able to make it without
your faith in me. Your unfaltering love and constant support empower me to overcome
the hardships in my journey of life.

viii

Contents

1

1

2

2

5

5

6

6

8

13 Preliminaries! 11
[3.1 Overview of Feature-based Visual Odometry and Structure-from-motion| 11
[3.2 Joint Geometric and Photometric Tracking| 12
[3.2.1 Tterative Closest Point Tracking| 12

[3.2.2 Appearance-based Photometric Tracking] 13

[3.2.3 Joint Optimization of ICP and Photometric Tracking| 13

4 Surfel-Based Dense RGB-D Reconstruction with Global and Local Consistency| 15
.1 Globally Consistent Pose Estimation using Factor Graph| 15
@4.1.1 Prior and Odometry Estimation| 16

@.1.2 Factor Graph Representation| 16

K.1.3 Pose Initialization: Interpolation on SE(3) Manifold 18

“4.1.4 Scale Imtializationl o o 18

4.2 Optimization and Surfel-based Model Reconstruction| 19
4.3 Experimental Results| L 19
4.3.1 TImplementation| L o 19

“4.3.2 Synthetic Dataset) o 20

433 Real World Datasetl 21

4.4 Analysis|o e 22

IS Elastic Structure Fusion: Dense Mapping with Deformation and Pose Graph| 25
[5.1 Approach Overview|. 25

ix

[5.2 Joint Geometric and Photometric Tracking| 26

[5.3 LoopClosure| e 26
0.3.1 Randomuzed Fern Relocalization| 26
[5.3.2 Pose Graph Optimization|. 28
[5.3.3 Retriangulation and Bundle Adjustment| 29
[5.3.4 Feature Non-maximum Suppression| 30
[5.3.5 Deformation Graph using Landmarks| 31
[5.3.6 Deformation Graph using Camera Poses|. 35

[5.4 Experimental Results| 36
[5.4.1 System Information|. 36
[5.4.2 Synthetic Dataset), 36
543 RealWorldDataset| 36

.. 39

nclusion 41

Chapter 1

Introduction

1.1 Motivation

Knowing the environment has been a crucial component in rising technologies such as mobile
robotics, virtual reality, and various applications in artificial intelligence. For example, a con-
struction robot requires a detailed map of the construction site to be able to navigate around the
environment; infrastructure inspection requires recovering a realistic 3D model of the object; vir-
tual reality needs to create vivid 3D models to provide an immersive experience to the users. The
essence of all of these application is the task of creating a 3D model with accurate geometry to
facilitate the perception of the environment.

The task of mapping and reconstruction has been addressed in various ways in the past. Without
any prior knowledge of the robot state, mapping of the environment usually requires that we know
where the sensor or camera is. This problem is called simultaneous localization and mapping
(SLAM). If we cannot accurately detect the states of the sensor, we cannot trust the resulting
map. Meanwhile, if we do not have a reliable map, estimating the state of the sensor becomes an
intractable task. Therefore, the mapping problem is tightly coupled with the state estimation of the
sensor, and it is important that both aspects are addressed at the same time.

There are many different representations of the map. For example, sparse point maps are used to
encoded important information of the environment, such as landmarks, and provide state estimation
information; topological maps such as Google navigation map are popular such that it provides
navigation instructions. However, in autonomous robot applications and virtual reality, a dense
3D map is more desirable because it not only provides the sparse landmarks, but it also contains
the information that can help a robot to navigate around and avoid the obstacles. In addition,
infrastructure inspection using autonomous robots requires the sensors to recover an as-realistic-as-
possible map of the environment; sparse points simply cannot be used to encode such information.

Meanwhile, as RGB-D and stereo cameras have become widely available, per-pixel level depth
estimation has been greatly simplified, which is valuable for dense scene reconstruction. The

abundance of depth information has allowed the development of various algorithms and systems
such as KinectFusion [1], VoxelHashing [2]], Kintinuous [3]], ElasticFusion [4], and Open3D [3].
In this thesis, we proposed an offline and an online reconstruction system that combine traditional
3D reconstruction methods in computer vision, dense SLAM, and computer graphics to generate
high-fidelity 3D models with global and local consistency.

1.2 Current Challenges

The two key demands for a reconstruction or mapping algorithm to fulfill are:

¢ accurate modelling of the global geometry of a large scale environment in terms of global
geometric consistency, and

e detailed scene geometry such as locally consistent shape, texture, and color.

Many efforts have been devoted to address both requirements [6], [7], [[L]], [3] [4]]. These efforts can
be divided into two categories: offline methods such as structure-from-motion (SfM) with multi-
view stereo (MVS), and online methods such as dense 3D SLAM. Depending on the applications
and requirements in efficiency, robustness, and accuracy, one of the methods can be employed.
However, it is not uncommon that these methods fail in one of the criteria listed above.

Specifically, in computer vision methods such as the widely used STM-MVS pipeline, the initial
structure and camera poses are computed using feature points. Later, bundle adjustment (BA) is
applied to optimize the overall structure and poses by minimizing the reprojection error. One of
the challenges in SfM is the presence of outliers in BA. In reality, the outliers from either the
mismatched features or the incorrect pose initialization produce large error. The process of BA
distributes this error across all structures and poses, and results in inaccurate camera pose and
structure estimations. In addition, the reconstruction systems sometimes reject the image input
in a featureless region and resulting in inaccurate camera pose estimation for the corresponding
images.

On the other hand, systems that are dedicated to generating detailed local geometry and accurate
short-term odometry in a room-size scene, such as ElasticFusion [4], often fail at large scale oper-
ations due to tracking failures. Other offline or online dense RGB-D reconstruction systems such
as [8] and [9]] produce accurate models, but often at the cost of significant computation resources
and time.

1.3 Contribution

This thesis presents two major contributions:

® We introduce a framework to combine SfM and SLAM in a factor graph formulation. Al-
though our method requires offline pose optimization, it produces more accurate model ge-
ometry comparing to online methods, and is much less time-consuming comparing to other
offline reconstruction systems.

¢ We introduce an online system that leverages the sparse landmarks to improve the dense map.
To the best of our knowledge, this is the first work that links the optimization of the camera
poses and the dense 3D model using surface deformation. In this thesis, we detailed the steps
and algorithms to establish the formulation. In addition, we will make the code available to
the public at https://bitbucket.org/rpl_cmu/structurefusion/src/.

The thesis is organized as three major components: an overview of the state-of-the-art dense map-
ping and SLAM systems, an offline reconstruction system that achieves state-of-the-art geometry
accuracy in dense reconstruction, and an online system that maintains the global consistency for
both the camera poses and the reconstructed model through elastic deformation.

https://bitbucket.org/rpl_cmu/structurefusion/src/

Chapter 2

Related Work

3D reconstruction from images has been a historically well-explored topic. A plethora of methods
and systems have been proposed over the past 30 years. Meanwhile, SLAM using visual sensors
has gradually become one of the most popular method to explore unknown 3D environments.
The mapping process, which involves constructing a 3D model of the unknown environment, has
naturally overlapped with the topics in 3D reconstruction. The problem has gathered great attention
from both the robotics and the vision communities.

In general, we can divide the 3D mapping and reconstruction into three different categories. First,
structure-from-motion and multi-view stereo (MVS) has been thoroughly studied by the computer
vision community. As the RGB-D camera has become widely available, dense offline RGB-D
reconstruction using depth map has also been proposed. Finally, the real-time dense SLAM for-
mulation has also become possible as parallel computation units such as GPU become widely
available. The chapter provides an overview of all three categories of dense 3D reconstruction, as
well as sparse landmark-based SLAM.

2.1 Structure-from-Motion

Undoubtedly, SIM-MVS pipeline has been one of the most popular method to recover 3D struc-
ture from 2D images. From early systems such as Bundler [10} [11] to later large scale 3D recon-
structions using internet images [12], many systems address various problems from fundamental
multi-view geometry to robust correspondent verification. Recently, systems such as PMVS [13],
OpenMVG [6, [14], Theia [15], COLMAP [7, [16], OpenMVS [17] provides not only the multi-
view reconstruction algorithms but also a rich user interface that allow users to interact with the
reconstruction process. These systems address various problems and concerns in the early stage of
computer vision, and greatly improve the robustness, completeness, accuracy, and efficiency.

The problem of accuracy and efficiency has been addressed in many large scale offline SIM-MV'S
pipelines and online dense mapping systems. One of the most popular approaches is based on the

5

idea of divide-and-conquer. Zhu et al. [18]] and Yao et al. [19] introduce the technique of locally
readjusting the camera poses to improve the reconstruction quality. This method is effective in
terms of smoothing out the rough surfaces and recovering more accurate local geometry. How-
ever, these methods still suffer from predefined heuristics such as the size of local camera group.
Built upon these ideas, many state-of-the-art SfM pipelines such as COLMAP by Schonberger et
al. [16] and OpenMVG by Moulon et al. [6] have developed complete systems that apply local
refinement to recover better local reconstruction quality. These state-of-the-art systems provide
globally accurate camera pose estimation.

While many systems intend to solve the problem of SfM, using purely 2D images has some draw-
backs. First, it heavily relies on 2D features to establish correspondence. Features can be brittle in
the context of repetitive textures, textureless scenes, and varying lighting conditions. Second, mul-
tiple bundle adjustments and geometric verification form the core of those SfM methods, which
is often time consuming. Third, patch matching stereo methods and point cloud densification can
be even more time consuming. The reconstructed results often have “holes”, e.g. missing areas,
on textureless surfaces due to a lack of features. Finally and most importantly, these methods
sometimes are prone to outliers in the feature matching process. During the process of bundle
adjustment, the error introduced by these outliers will be evenly distributed to all landmarks, and
often results in local artifacts in the final reconstruction. We address this problem as the local
consistency problem, and an example is provided in Fig.

2.2 Dense Offline RGB-D Reconstruction

As RGB-D sensors became widely available over the years, many offline systems are developed to
use the depth information to generate highly accurate 3D models. For example, Zhou and Koltun
[20] propose to construct small fragments of a large scene, and then use volumetric registration to
combine these small fragments. In addition, Zhou et al. [21] apply elastic regularization to merge
all fragments. Apart from these methods, Choi et al. [8] apply a similar idea of constructing many
overlapping small fragments, and then use Iterative Closest Point (ICP) to register the fragments
together to complete a full scene. Recently, Open3D [J5] introduces various algorithms to recon-
struct the 3D environment with RGB-D information. However, these systems still face problems
such as requiring manual alignment of the unregistered camera frames from separated fragments,
and poor initialization of the camera poses could lead to incorrect convergence of the camera poses.
These works produce accurate models, but at a cost of hours or even days of processing time.

2.3 Sparse Mapping in SLAM

Given the rich visual information from a camera, visual SLAM has been a popular field since
the first single camera SLAM [22] system. As Klein et al. proposed the new PTAM [23] system
that separate the mapping and tracking into two parallel threads, visual SLAM has become the

6

Figure 2.1: A problem of the local consistency shown by Zhu et al. [18]. The picture on the left shows the original
3D structure, and the picture on the right shows the reconstructed result from SfM-MVS pipeline. A lack of local
consistency can be seen that the resulting surface is bumpy and irregular.

Figure 2.2: An example of failed global consistency of the 3D model reconstructed by ElasticFusion [4]. Although
locally it preserves the model details, the model becomes distorted due to odometry drift and failed loop closure.

choice for robots to navigate in an unknown environment. Improving upon the work of PTAM,
many visual SLAM systems such as ORB-SLAM [24] and LSD-SLAM [25]] have been prevalent
in real-world applications such as augmented reality, autonomous driving, and search and rescue.
Although these SLAM systems provide relatively good camera tracking in real-time, the map that
these systems build is represented by sparse points, which has less information than a dense map
such as voxel grid or mesh. It is difficult to use the sparse map for robotics applications such
as path planning and semantic understanding. Building upon these SLAM methods, dense map
representations are needed in order for a robot to carry out meaningful actions.

2.4 Dense Online RGB-D Reconstruction

With the rise of RGB-D sensors such as Microsoft Kinect, Asus Xtion Pro, and Intel RealSense,
dense SLAM with RGB-D sensor has become possible. As a subject of great interest, systems such
as KinectFusion [1], Kintinuous [3]], InifiniTAM [26, 27]] focus on the surface reconstruction of the
model using truncated signed distance function (TSDF) [28] that stores the signed distance from
every voxel to its nearest surface. Although these systems are able to achieve high performance
in a room-size reconstruction, they rely on the depth information to conduct frame-to-model ICP,
which is brittle when the depth measurements are subject to significant sensor noise. As a result,
they are vulnerable to accumulated drift. ElasticFusion [4] incorporated the color information in
the frame-to-model tracking to minimize the effect of ICP drift. However, the ICP drift still exists
when the scene is large. Another approach applied by the state-of-the-art BundleFusion [9]] is the
SIFT feature correspondence search and BA that is similar to sparse SLAM works such as ORB-

8

SLAM [24]. Although BundleFusion achieves superior performance in indoor reconstruction, it
is computationally demanding, requiring two high-end GPUs to run in real-time. FlashFusion
[29]] applies a similar approach to use ORB [30] feature correspondence and keyframe integration
without GPU. It achieves a similar performance to BundleFusion with much lower computation
needs, but its keyframe integration strategy leads to a lower surface area coverage comparing to
other dense mapping systems; it substantially sub-samples the frames and voxels. Most impor-
tantly, a common characteristic in all of the dense mapping methods in SLAM is that they often
fail at a larger scene due to incorrect odometry estimation or incorrect loop closures. This results
to inconsistent global model, as shown in Fig. 2.2

10

Chapter 3

Preliminaries

3.1 Overview of Feature-based Visual Odometry and Structure-
from-motion

Structure-from-motion (SfM) and feature-based visual odometry (VO) are the dominant methods
to estimate the pose of the camera. The general pipeline for the feature-based methods can be
listed as follows:

Feature Extraction: For each image, a feature extractor will extract features that represent the
“high gradient” region of the image. Each 2D feature on the image corresponds to a 3D object that
is called “landmark.” The feature extractor also generates a feature descriptor that is later used in
feature matching. Common features include SIFT [31], SURF [32]], and ORB [30].

Feature Matching: Between two images or between an image and a scene, a feature matcher finds
and recognizes similar features and establishes the correspondence between these features based
on their descriptors.

Geometric Verification: Since feature matching can only check the appearance-based feature simi-
larity, it does not ensure that two corresponding features are exactly the same landmark. Therefore,
it is necessary to verify the correspondence using geometric information. Usually, fundamental
matrix or essential matrix is used to verify the geometric relationship between two sets of cor-
responding features. In addition, homography is also used to verified in pure rotation scenario.
RANSAC [33]] and its derivative methods are used in this stage to exclude any outlier correspon-
dence.

Image Registration: Once two images are successfully matched and verified, we obtained a collec-
tion of landmarks that is called the map. Successively, we can register the image onto the map by
applying feature matching and verification. Usually, algorithms such as Perspective-n-Point (PnP)
[34] and its variants are used to register the image and obtain its corresponding camera pose.

11

Triangulation: Each image comes with some newly observed points that do not exist in the collec-
tion of landmarks. Once confirmed that there exist enough correspondences among images, a new
point can be triangulated into the map.

Bundle Adjustment: During image registration and triangulation, it is unavoidable that some uncer-
tainties are involved, and these accumulated uncertainties must be addressed in order to minimize
the drift in the camera pose estimations. Here, bundle adjustment (BA) is used to minimize the
reprojection error across all the landmarks by optimizing both the landmark positions and camera
poses.

Epa=Y_ > p(lm(P,Xs) = xy]l3) (3.1)
J %

Here, p is a robust estimator that is used against the outliers, and 7(+) is the projection function
that projects a landmark onto an image. Common optimization methods such as Gauss-Newton
and Levenberg-Marquardt are used in the optimization.

3.2 Joint Geometric and Photometric Tracking

3.2.1 Iterative Closest Point Tracking

Iterative Closest Point (ICP) is an algorithm of finding the transformation between two sets of 3D
points. If the exact correspondence is given, the solution can be obtained by algebraic methods
such as singular value decomposition in one step. However, in most cases, we are given two sets
of 3D points with unknown correspondences. Therefore, the closest point pair is often used as the
known correspondence. However, it is often inefficient to search for the closest neighbors using
brute force. While data structures such as k-d tree [35] can be used to speed up closest neighbor
searching, it contains many sequential instructions and requires random memory access, which is
more difficult to implement on GPU. Here, we apply the projective data association to find the
correspondence. Projective data association uses the normal vector of a point to project from the
previous estimation to obtain the cross point, and uses the cross point as the corresponding point,
as shown in Fig. [3.1]

Using projective data association, we minimize the point-to-plane distance defined as the follow-
ing:

Eip = ZH(vk(u) — exp (f)Tvk_l(u)) . nk_lHQ, (3.2)

~

where the exponential map exp(&£) maps a member of the Lie algebra se(3) to a member of Lie
group SE(3). Here, ny_; is the normal vector at time stamp k£ — 1, and vy, is the vertex at time
stamp k, T is the transformation from camera pose T to TY.

12

Previous Depth Frame

Current Depth Frame

&

T~ 3 Tk
3

Figure 3.1: ICP projective data association. The red lines are the previous depth frame, and the blue lines are the
current frame. Given a point vi_1, we can use the corresponding normal vector n_; to find the corresponding point
along the direction of the ray.

Vi

3.2.2 Appearance-based Photometric Tracking

Given that the depth measurement from the sensor is noisy, it is not always reliable to use ICP as
the sole method in estimating the camera pose. Therefore, we introduce the dense direct method
based on the assumption that grey scale of two successive images are invariant. We propose the
following formulation to calculate the pose transformation between two images by minimizing the

photometric error:
Fn=Y)
u

Here, the p(u) is the 3D point from the previous frame, and T is the pose transformation from
previous frame to the current frame.

2

. (3.3)

~

L(w) = L (7 (K exp (§)Tp(u)))

3.2.3 Joint Optimization of ICP and Photometric Tracking
We express the total error as a function of the joint ICP and photometric tracking term as below:
Etrack: = wEicp + (1 - w)Ergba (34)

where w is the relative weighting between the geometric and photometric term. To solve the
system, we apply Gauss-Newton optimization to solve the system iteratively. We apply first order

13

linearization to the errors:

~

Tgb(g + Af) wp() pr() (3.5)

where J;., and J,g, are the corresponding Jacobian matrices of the geometric and photometric
term. The problem is reduced to solving a least-square system represented as:

S AAé=-Yb, (3.7)

£=Atad, (3.8)

where the system is built up with
A= (1=w) oy dep(©) + w T, Jiep(£), (3.9)
b=(1-w)J,Eu&) +w J,Eie(E). (3.10)

A coarse-to-fine image pyramid [36]] is implemented to accelerate convergence.

We implement the tracking in GPU given that the problem can be divided into pixels. Each pixel
contributes the same to the entire Jacobian. We implement an efficient block sum reduction algo-
rithm to reduce the .J ' .J array into a single 6 x 6 matrix and solve for the final result by Cholesky
decomposition on the CPU.

14

Chapter 4

Surfel-Based Dense RGB-D Reconstruction
with Global and Local Consistency

In Chapter [2, we introduce some of the most prevalent reconstruction systems used by both the
computer vision and robotics community. However, these reconstruction works often fail to ad-
dress some of the existing problems. For example, in SfM, structure estimation from multi-view
geometry is usually prone to outliers, and procedures such as patch matching in MVS are time-
consuming. The resulting mesh from SfM-MVS pipeline usually requires post-processing that is
not only time-consuming but also labor intensive. On the other hand, dense SLAM systems often
fail at large reconstruction due to camera pose drift. These failures often lead to misalignments in
the final reconstruction.

In this chapter, we propose a new system that combines the advantages from both sides to achieve
high fidelity surface reconstruction. We first solve a sparse problem of SfM by obtaining some of
the camera keyframe poses, and then we use the frame-to-model odometry to recover the rest of
the frames’ poses. This method not only ensures that the camera does not drift due to odometry
error accumulation, it also recovers the local details of the reconstruction that is often omitted in
large scale SfM system.

4.1 Globally Consistent Pose Estimation using Factor Graph

Given a set of N RGB-D images captured by a consumer-grade RGB-D camera, keyframe camera
pose priors are obtained through a SfM pipeline. Later, the camera poses are jointly optimized by
the prior and odometry from the dense tracking. The optimized camera poses are used in the final
reconstruction. Fig. shows an illustration of the system architecture.

15

Triangulation \
& Bundle Adjustment /

Feature Extraction

& Geometric Verification
P : Keyframe Poses

olor I t
Color Image Se Keyframe Selection
C: Set of Color Images K: Set of Keyframes
D: Set of Depth Images

A

Y Keyframe Covarian(:es/

Pose Interpolation \

Frame-to-Model Tracking & Scale Initializati /
¢ Scale Initialization

&ij: Odometry between J

‘(Ioint Optimization
\of Pose Prior and Odometry

Pr: Final Poses

s1: Initial Scale Factor

Frame ¢ and Frame j Pr : Initial Poses)

Surface Fusion

Figure 4.1: System block diagram. The top of each block shows the sub-components for each system, and the bottom
of the block shows the output of the corresponding system. From a set of RGB-D images, a set of keyframes IC is
selected, and processed using the SfM pipeline. The resulting set of keyframe poses P}, and the corresponding covari-
ance Xy, are generated; these are treated as strong priors in the later optimization. Frame-to-model tracking provides
odometry using joint optimization of ICP and photometric information. In preparation to the joint optimization of
prior and odometry, keyframes are interpolated to provide a good initial value for the optimization. We optimize the
poses incrementally as the new odometry becomes available, and fuse the new surfels from each frame into the existing
model.

4.1.1 Prior and Odometry Estimation

Keyframe Pose Estimation: The set of color images C is evenly down-sampled with an interval of
A. The resulting color maps are regarded as keyframes KL C C. Using the state-of-the-art system
COLMAP [16], we estimate the i-th frame pose P; € SE(3) and its corresponding covariance Xp,.
The resulting camera pose is regarded as the camera pose prior in the optimization in Sec.
We refer to section [3.1] for a detailed overview of the Structure-from-Motion systems. We also
refer to Schonberger et al. [7] and Moulon et al. [6] for a detail description of the systems such as
COLMAP and OpenMVG.

Frame Odometry Estimation: The pose change between the i-th and j-th consecutive frames
&; € RO is estimated using a joint frame-to-model [37] optimization. The cost function over
the relative pose joins the point-to-plane distance and the photometric error, and is minimized in
image pyramids for faster convergence. For details, we refer to section[3.2]

4.1.2 Factor Graph Representation

At the core of our proposed system is the joint optimization of the keyframe pose prior and frame-
to-model odometry. To bring these together, we propose to use the factor graph formulation shown
in Fig. Specifically, given a keyframe K; where i € {1,2,--- £} and its corresponding
pose P; estimated from SfM, we treat the keyframe pose as the pose prior in the factor graph. In
addition, we represent the frame-to-model odometry ;; between frame ¢ and j as an odometry

16

factor. Since the keyframe prior and the frame-to-model odometry are independently estimated,
these two kinds of factors are not aligned in the same coordinate frame. In addition, due to the
scale ambiguity issue in SfM, we need to simultaneously estimate the scale that best aligns the
prior and the odometry. The connections of the prior factor and the odometry factor are shown in
Fig. B.2] Given this formulation, the optimal solution of the problem is the maximum a posteriori
estimation of the factor graph:

® 3D Point
RGB-D Pixel

— Re-projection

® 3D Landmark

2D Feature) ’

Batch Keyframe Pose Estimation

--- Correspondence '/

Scale Prior

® Odometry

® Key Frame Pose Prior

Pose Factor Graph

@ Pose Scale

@ Frame Pose
Keyframe Pose

Figure 4.2: Frame-to-model odometry is solved using joint ICP and photometric optimization, as shown in the picture
in the top left. The keyframe pose priors are solved using SfM, as shown in the top right. The factor graph in the
bottom demonstrates how to combine the keyframe priors with the odometry.

Ng N N
* . 2
X* = arg;nanHTSHig +) |lre, S, T > e, 5 4.1)
i=1 i=1 ij=1 “
where the set of optimal state is the set of all of the optimal poses and the optimal scale:
X =A{P*, s} 4.2)

Ts, I'p,, and rg, correspond to the residuals of scale, pose prior, and odometry respectively. o2,
Yp,, and X, . correspond to the covariance of the scale, the pose prior, and the odometry. This
problem can be solved using Levenberg-Marquardt non-linear optimization to iterate at the lin-
earization point X*. At the k-th iteration, the linearization can be expressed as the following

Taylor expansion: X A A R
7o, (XF + X m g (XF) + HEGX0HH, (4.3)

re, (X% + 6% 2w (%) + HE 55, (4.4)

17

where we use the first order term to approximate the actual value. The measurement Jacobian H
at the k-th iteration and the corresponding state update can be expressed as:

ors, ore, .
i: Ts; : 2: &ij : (4.5)
§X X=Xk J 5X X=Xk
XM = xk g skt (4.6)

We use the & operator to represent retraction.

4.1.3 Pose Initialization: Interpolation on SE(3) Manifold

Pitlzl’.;\.\'; _ S
“ i+A—1
/1:;@ P/L'+A L @

2 ~ Y
&y 2
L/ JUE
Figure 4.3: (Left) Illustration of the pose interpolation on manifold. (Right) 3D similarity transformation.

Initialization is of paramount importance to solve the non-convex optimization problem. It is im-
portant to initialize the state within close proximity of the optimal value to allow final convergence.
If the sub-sampled interval A is large, using the keyframe pose prior to initialize the intermediate
poses is likely inaccurate, and thus might lead to wrong convergence. We propose to use an on-
manifold interpolation based on the method shown in Zefran and Kumar [38] to initialize the poses
in between two keyframes.

Let two keyframe poses be P; and P, , corresponding to the i-th and the (i4\)-th frames, we want
to find the intermediate pose P, corresponding to the k-th frame that satisfies + < k < ¢ 4+ A. This
can be achieved by first finding the difference P between two poses, and then map the difference
from SE(3) to se(3) represented by 0. Given the tangent space of the Lie manifold preserves
linearity, we can estimate the intermediate poses corresponds to k as:

P, = P, exp (k ; iag) . 4.7)

4.1.4 Scale Initialization

Due to the scale ambiguity in the SfM, we need to find the scale factor s € R that best aligns
the two sets of poses. Similar to the pose initialization in Sec. we also need to make sure
that the scale is correctly initialized. We propose to use the 3D landmark X, captured by the
first frame in the SfM pipeline. Assuming that the first camera frame should be aligned with the
global coordinate, we have the pose for the first frame expressed in the global coordinate frame to

18

be P = I,.4. The set of first frame landmarks X ¢,,, corresponds to the set of 2D pixel coordinates
x1. We can extract the corresponding 3D landmarks X, from the first frame depth image using
the following camera projection function:

Xslam = 7"'71(];)1 = I4><47 Xl)a (48)

where 771(-, -) is the inverse camera projection that maps the pixel coordinate to the world coor-
dinate. Then, based on the method by Horn [39], we estimate a similarity transformation between
two sets of 3D points using singular value decomposition:

U, S,V = svd(Xyjm @ Xam), (4.9)
R=UV', (4.10)
Xaligned = RXsfm (411)

We express the initial scale as:

inexslamvxjexaligned Xl ’ X]
2
2,6k, 1 X

where the XS #m and Xslam are the zero-centered 3D points stacked in a column matrix, and ®
denotes the outer product between two matrices. Since the depth image is subject to noise, the
initial scale s; is not entirely accurate. We refine the scale in the optimization as shown in Fig.

: (4.12)

S —

sfm

4.2 Optimization and Surfel-based Model Reconstruction

Given the keyframe pose prior and the odometry are initialized and aligned, we optimize the cam-
era poses using the incoming odometry. When a new odometry measurement is obtained using the
method in Sec. {.1.1] it is inserted into the factor graph and incrementally optimized using iSAM2
[40]. Similar to ElasticFusion, the model is generated by surface splatting. Different from the
surface deformation approach in ElasticFusion, our method relies on the globally consistent pose
priors to constrain the input odometry. Therefore, we do not apply the surface loop closure and the
model deformation.

4.3 Experimental Results

4.3.1 Implementation

We implement the system based on two state-of-the-art systems, COLMAP and ElasticFusion.
COLMAP is used as the SfM pipeline that generates the pose prior, and the tracking component

19

in ElasticFusion is used to generate odometry. In addition, we adopt the surfel representation and
the surface fusion strategy in ElasticFusion. We implement the proposed factor graph, Levenberg-
Marquardt optimizer, and iISAM2 [40] optimizer using the GTSAM [41] library. Experiments are
conducted on a Ubuntu 16.04 desktop with an Intel 17-6700 CPU and a GeForce GTX 1070 GPU.

4.3.2 Synthetic Dataset

We test our system on the Augmented ICL-NUIM (A-ICL) dataset with synthetic noise created
by Choi et al. [8]. The A-ICL sequence is based on the original ICL-NUIM dataset by Handa
et al. [42]. Both ICL and A-ICL sequences are created in the same synthetic living room scene,
but A-ICL contains a longer camera trajectory (max of 2870 frames vs. max of 1510 frames)
and a larger coverage of the scene. We compare the surface reconstruction accuracy against the
ground truth (GT) model using CloudCompare [43], and we also compare the Root Mean Square
of Absolute Trajectory Error (ATE-RMSE) using the tools from TUM-RGBD benchmark [44]. To
demonstrate the performance of our system, we compare against the systems from three different
categories: (1) offline SEIM-MVS systems represented by COLMAP-MVS [16], (2) offline RGB-D
reconstruction systems represented by Redwood [8], and (3) online dense mapping systems rep-
resented by ElasticFusion [4] and InfiniTAMv3 [27]. The surface reconstruction accuracy, system
runtime, and absolute trajectory error are used as metrics to evaluate the system performance. Ta-
ble 4.1 shows the results of the A-ICL living room dataset with noise. A heatmap visualization of
the surface reconstruction accuracy is shown in Fig. .4l A complete reconstructed model can be

view in Fig.

Table shows the mean and the standard deviation of the distance to the GT model. Although
our surface reconstruction accuracy is slightly lower than the models from COLMAP-MVS and
the Redwood, the model produced by our method has the lowest standard deviation and trajectory
error. A collection of heatmaps illustrating the surface reconstruction accuracy of A-ICL-Ir1 is
shown in Fig. {.4] Furthermore, our method not only achieves a higher accuracy than the online
methods, but also finishes the reconstruction in a much shorter period comparing to other offline
methods.

Table 4.1: Surface reconstruction accuracy on the synthetic A-ICL dataset

| | Mean distance to GT model (cm) | Std. Dev. distance to GT model (cm) |

A-ICL-Ir1 A-ICL-Ir2 A-ICL-Ir1 A-ICL-1r2
COLMAP-MVS 1.59 1.35 4.58 4.20
Redwood 3.00 2.02 2.98 1.83
ElasticFusion 7.71 7.78 6.91 6.34
InfiniTAMv3 7.33 10.25 6.39 6.87
Proposed (offline) 1.74 2.26 1.34 1.78

20

Table 4.2: System runtime and camera trajectory on the synthetic A-ICL dataset

’ H System Runtime (min) \ ATE RMSE (cm)
A-ICL-Ir1 | A-ICL-1r2 | A-ICL-Ir1 | A-ICL-1r2

COLMAP-MVS 212.66 159.41 5.68 18.78

Redwood ~300 ~300 N/A N/A

ElasticFusion (online) (online) 66.61 28.53

InfiniTAMv3 (online) (online) 46.07 73.64

Proposed (offline) 29.37 6.93 5.14 3.79

- 02

I...

(a) COLMAP (b) ElasticFusion (c) Redwood (d) Proposed

Figure 4.4: Heatmaps showing reconstruction error on A-ICL-Irl. The top row and the bottom row are the internal
view and the top view of the room scene, respectively. Points more than 0.2m away from the ground truth are removed.

4.3.3 Real World Dataset

Table 4.3: Results on the real-world CoRBS dataset

| Mean distance (cm) | Std. dev. distance (cm) |

Racing car | Human | Racing car | Human
ElasticFusion 6.07 52.98 4.45 49.0
Proposed (offline) 1.30 1.12 1.15 1.84

We conduct additional tests on the CoRBS [43] real world dataset with surface ground truth model
collected by a 3D scanner with sub-millimeter accuracy. We also conduct qualitative evaluation
on the TUM RGB-D dataset [44]. The CoRBS dataset is collected using a Kinect V2 hand-held
RGB-D camera, and it contains a real racing car and a human-size model, while the TUM RGB-
D dataset is collected using a Kinect RGB-D camera with ground truth trajectory. The surface

21

Figure 4.5: Results on the real-world CoRBS dataset. Top row, Human sequence. Bottom row, Racing Car sequence.
The output distance heatmap shows our method reconstructs accurate models.

reconstruction accuracy of each object is shown in Tabled.3] and the reconstructed models and the
corresponding heatmaps are shown in Fig. 4.5] In addition, a qualitative view of the TUM RGB-D
long office scene [44]] can be view in Fig. [4.6b]

4.4 Analysis

We present a dense reconstruction system that combines the advantages from both SfM and SLAM
to recover both locally and globally consistent 3D models using a RGB-D sensor. We achieve per-
formance by extracting keyframes and obtaining their corresponding pose priors from SfM, and
locally adjusting the camera using odometry from dense SLAM. Our method shows better per-
formance than the state-of-the-art dense SLAM system for both synthetic and real-world datasets,
while providing much shorter processing time and comparable quality than other offline dense 3D
reconstruction systems. In addition to the discussion about StM and SLAM, the idea of combining
strong camera priors and odometry can also be applied in situations such as GPS input as prior, or
IMU input as odometry.

For future work, we would like to develop a solution to various parameter choices. For example,
the number of keyframes should be automatically adjusted when the reconstruction data becomes

22

(a) Augmented-ICL-Ir1 [8]] top view via splatted ren-
dering

(b) TUM fr3 [44] point cloud office scene

Figure 4.6: Reconstructions results for a synthetic and a real sequence

23

larger, and more keyframes should be extracted when the camera motion is large. In addition, it is
also of great interest to build an online system that is capable of achieving similar reconstruction
accuracy. In Chap. [5] we will introduce our design and efforts in building such a system.

24

Chapter 5

Elastic Structure Fusion: Dense Mapping
with Deformation and Pose Graph

Chapter 4 demonstrates the capability of our offline system in reconstructing a large scale 3D map.
However, our offline system is still highly dependent on the SfM system to provide good keyframe
pose priors. It is not always possible for the SfM system to successfully extract the keyframe prior
(for example, SfM often struggles to perform well in featureless regions), and without the priors
our proposed system degenerates into the dense SLAM formulation. In addition, if odometry drifts
significantly between two keyframes, the model could become distorted due to rendering from the
frames in between. Finally, a natural question that arises from the previous work is whether it
is possible to achieve real-time performance with the current reconstruction system. To solve
this problem, we propose a new online system that leverages the deformation to link together the
surface model correction and the camera pose estimation.

5.1 Approach Overview

Our system derives from a typical dense SLAM formulation that leverage the fast and parallel
computation on GPU. The system has three different components: tracking, mapping, and loop
closure. For tracking and surfel fusion mapping, we adapt a tracking framework similar to Elastic-
Fusion [4]. In addition, we add the feature points and landmark creation on CPU to better estimate
the camera poses. The result from the sparse feature and landmark tracking is used to initialize the
dense tracking. As a result, the map is composed of two different layers: a sparse map represented
by the feature-based landmark, and a dense map from the surfel fusion. Upon loop closure, the
sparse layer is used to construct a deformation graph that is embedded in the surface of the model,
and the deformation graph is used to guide the deformation of the dense model in order to recover
global and local geometry. With the two-layer architecture, we successfully link the pose graph
and deformation graph and allow model deformation based on the change in the camera poses. Fig.

25

shows the overall system structure, and Fig. shows the structure of our new loop closure
component.

Loop
m [SparseTracking '\ Initialize DenseTrackmg Loop Closing Detec\ed Model Deformation
—_ -
\ RGB-D Sensor / Feature extraction/ Frame-to-frame / Randomized Fern Deformation Graph
PnP Frame-to-model
Loop
Not Detected

/ Fusion)
_ Global SurfelMap /

Figure 5.1: System diagram. Given a stream of RGB-D images, we first extract features and conduct sparse feature
tracking using conventional algorithms such as PnP. Then, we use the result from PnP to initialize the dense frame-
to-model or frame-to-frame tracking. If a loop closure is detected by the randomized fern, a deformation graph will
be constructed based on the results of bundle adjustment upon loop closure. Then, the constructed deformation graph
will be uploaded to GPU and deform the surfels.

5.2 Joint Geometric and Photometric Tracking

We refer the reader to 3.2| for details in the camera tracking.

5.3 Loop Closure

We implement the loop closure detection using the randomized fern proposed by Glocker et
al. [46]]. Once two similar images are detected, we try to align two images using joint geomet-
ric and photometric odometry. Then, we check both the number of ICP inliers and residuals. If the
number of inliers is larger than 50% of the current frame’s point number and residual is smaller
than the threshold ¢;.,, we claim that the loop closure is valid. The overview of the loop closure
structure is shown in Fig. [5.2]

5.3.1 Randomized Fern Relocalization

We use the randomized fern to detect loop closures. Our implementation of the randomized fern
is similar to that of the Glocker et al. [46]. We define a fern F' = { f;}; to be a set of consecutive
nodes, where each node represents a binary test of a particular pixel location ; and a value 7;. The
binary test can be described as:

1if 1(0) > 7

JLOT) =90 1(0) <,

(5.1)

26

Randomized Fern Table Lookup

Frame id

.3}

7.8,9)

Graph C

Frame-to-Frame Loop Closure Alignment &
Bundle Adjustment

Figure 5.2: Loop closure system diagram

where 7 is a threshold on the pixel value 7(6). By applying the nodes to the pixel value we
obtained a binary code block with n binary values b;bs...b, € B". We called the collection of
ferns a conservatory such that C' = {F;}!",. Each conservatory yields a single code block b. =
bpbr,...bp, € B™". Each code block represents the binary encoding of a single image. We define
the Hamming distance between two different code blocks from frame I and frame .J to be as

27

Input RGB-D image Given pixel location 6; Fern encoding

1010

Figure 5.3: Fern encoding example. Given a pair of RGB-D image, we randomly choose a pixel location and RGB-D
thresholds, and then we evaluate the pixel value on the thresholds using Eqn. 5.1} This results to a 4 bit encoding of
the frame.

1 m
Bl kHD b = — E 5.2
oc - ; (5.2)

The = sign gives 0 if two code blocks are completely equal, and 1 if there is at least one bit
difference. This gives a dissimilarity score between two frames in the interval of [0, 1].

To construct ferns for each keyframe image, we first downsample the input image to 60 x 80. Then,
we randomly choose 500 fern locations that are uniformly distributed across the downsampled
image space. Each fern consists of 4 nodes where f = {f&, fa, [B, fp}. This also gives us
4 parameters {0r,0q,0p,0p}. Following the guideline from Glocker et al. [46], we pick our 4
parameter by randomly choosing from the input domain, which gives us {7z, 7¢, 75} € [0, 255],
and {7p} € [30,3000] given that the valid depth input range is between 30 mm and 3000 mm.

For every k frames, we extract a keyframe and its corresponding tracked pose {I,T};; where
T € SE(3) from the image sequence and calculate its code representation b5. We store its id and
its keyframe and pose into a table, where id can be used to lookup the keyframe image and poses.
In addition, we store the keyframe id and its code block into a set P. For every incoming new
frame, we simply calculate the co-occurrence of all of the previously stored keyframe. Once we
found the minimum BlockHD dissimilarity score and this score is below a given threshold o, we
extract such minimum keyframe image and pose from the table where it is stored. Then, we initiate
an odometry instance to try to align the keyframe and the newly incoming frame. The loop closure
is deemed valid if the number of ICP inliers 7, is above the threshold 7}, and per-vertex residual
€icp is below the threshold €},,. Both thresholds are user-defined hyperparameters.

5.3.2 Pose Graph Optimization

We maintain a pose factor of of each frame. Upon a valid loop closure is detected, a loop closure
factor is added into the factor graph, and iISAM?2 algorithm [40] is used to optimize the pose graph.

28

e

Frame pose factor

@9

(] Frame odometry factor

. Loop dosure factor

Figure 5.4: Pose graph optimization upon loop closure

The loop closure factor is composed by the odometry alignment of the keyframe from P and the
newly incoming frame. The factor graph construction is shown in Fig.

5.3.3 Retriangulation and Bundle Adjustment

When pose graph is updated due to loop closure, we first re-triangulate all landmarks in the map.
Given a landmark X ; and a set of corresponding frames [that observes this landmark, we have the
new landmark position X, to be:

1 <

Zﬂfl(KvPi:Xij)a (5.3)

X; = oy
where K is the intrinsics matrix, P; is the pose of the ¢th frame, and x;; is the measurement of the
jth landmark in the 7th frame. In addition, we check whether if the projection error is too large
among different observation. If two frames show that they have very distinctive measurements
on the same landmark, it is very likely that this landmark is mistakenly associated with another
landmark. As a result, we discard this landmark from the list of all landmarks in an effort to
remove the outliers.

After we geometrically verify the landmark correspondence, we conduct a step of bundle adjust-
ment that jointly optimize all landmarks and frame poses. We have:

ar%(rgin Z Z p(Epa) (5.4)

P;,eP X;ex

where E'z 4 is defined in Eq. [3.1] This step make sure that we reach the optimal state for all frames
and landmarks after the loop closure.

29

5.3.4 Feature Non-maximum Suppression

' Surfel
. Landmark

Figure 5.5: Landmark clustering and non-maximum suppression. In order to effectively apply deformation and exclude
the effect from multiple concentrated landmarks, we conduct a non-maximum suppression based on the number of
observations. Previously a surfel is deformed by landmarks at one single corner, and after non-maximum suppression,
the surfel is deformed by landmarks that are dispersed around the region.

Feature extraction is one of the most commonly used techniques in image processing. Features
on an image usually concentrates on the corner regions, where two distinctive lines meet. These
corner regions usually represents a high image gradient. Since image features often concentrates
on these regions, it is not uncommon to observe multiple image features clustered in a single
region. Since the landmarks are constructed from the image features, we can often observe multiple
landmarks clustered in the corner regions, as shown in the left part of Fig. [5.5] Given that we are
using the landmarks as the skeleton of the deformation, we want the surfels to be stretched equally
across all directions, instead of all from landmarks situated in a single corner. Therefore, we apply
non-maximum suppression to reduce a cluster of landmarks into a single landmark.

In order to cluster the landmarks, we used the k-d tree data structure to efficiently indexing the
spatial locations of the landmarks. The complete non-maximum suppression algorithm is listed in

30

Alg.

Algorithm 1: Landmark non-maximum suppression
Data: X, a set of all landmarks
Result: C, a set of clustered (set) of landmarks
1 Visited <—A list of the same size of landmarks initialize with boolean false;
2 C+— 0
3 foreach Landmark X; in X do
4 if Visited(X ;) then
| continue;
end
C «— 0
@ «— Empty Queue;
Q-push(X;);
10 C.push(X;);
11 Visited(X;) = true;
12 while not Q).empty() do

D= CHEE N B Y

13 X, = Q.pop();

14 find k nearest neighbor of the landmark X ; using KD-tree;
15 foreach neighbor landmark X ;;, do

16 Mark corresponding Visited as true;

17 C.push(X,i);

18 end

19 end

20 C.push(C);

21 end

For each cluster C; in the set of all clusters C, we find the landmark with the maximum number
of observations. If more than one landmark have the same number of observations, a random
landmark is chosen. This landmark will be used to represent the entire cluster of landmarks, such
that the reset of the landmarks in the cluster are discarded. The resulting landmark is shown in the
right figure in Fig. [5.5]

5.3.5 Deformation Graph using Landmarks

The deformation graph is used to non-rigidly deform the surface to preserve model’s global and
local consistency. Since it is computationally prohibitive to conduct bundle adjustment across
millions of surfels, we develop a way to indirectly manipulate the surface and add constraints
upon loop closure. We use the features and landmarks as an intermediate step to conduct shape
manipulation while preserving the shape integrity. Our deformation graph formulation is similar
to that of Sumner et al. [47]] and Whelan et al. [4]].

31

A deformation graph is a graph structure that consists of a set of nodes and edges. The nodes are
represented by the landmarks, and each node G" consist of a timestamp G;' € R, a position vector
Gy € R% a3 x 3 matrix G, and a 3 x 1 translation vector G'. The matrix G and the translation
vector G;' make up an affine transformation, which is default to be an identity transformation. Each
node is also connected to k, neighbors. Upon loop closure, the G and G{' are optimized according
to the following energy formulation:

Edef = wrotErot + wregEreg + wconEcona (55)

given a set of landmark correspondence before and after triangulation and bundle adjustment. We
define the landmark correspondence before as X7 and after as X7. We detail each term of the
energy function below:

® Rotation constraint. For the deformation, we want to the rotation term in the affine transfor-
mation to be as rigid as possible. Therefore, we have

Bt =Y ||Gn(GR)" — 1|
J

2
jak

(5.6)

where it uses the Frobenius norm to sum up the term.

® Regularization constraint: For the deformation, we want to make sure that the surface to be
smooth and without obvious cracks and gaps. We use the following formulation to optimize
the smoothness of the surface:

Ereg =Y > ||Ga(GE —GE) + 6o+ Go — Gk — GE| .. (5.7)
J k

e Landmark constraint: We must ensure the position of the landmarks after the triangulation
and bundle adjustment should be as close to the target location as possible. Therefore, we
have

Beon = > [[6(X5) = X5, (5.8)
J

where ¢(-) can be described as the influence from the neighboring deformation nodes

kg
B(X3) = w'(X3)(Gr(X5 — G2 +Gr — G, (5.9)

and the weight w™(-) is calculated as:

w™(X3) = (1 — || X8 = 62| /dmaa)?, (5.10)

where d,,,,, is the distance to the £, + 1 node. We use k = 4 in all of our experiments aligned
with the suggestion from Sumner et al. [47]. In addition, we use w,o; = 1, w,, = 10, and
Weon, = 100 in all our experiments.

32

(a) Surface reconstruction model overlay with de-
formation graph

(b) Embedded surface deformation graph

Figure 5.6: An example of the deformation graph in the copyroom [20] dataset

We introduce the steps to construct a deformation graph. Similar to ElasticFusion, the process of
applying the deformation graph to the surfels is introduced in Alg. 2}

s dl - —

(a) Before applying deformation (b) After applying deformation

Figure 5.7: Deformation based on landmarks. The picture on the left shows the before the deformation, and the
picture on the right shows the after deformation. Although the multiple mapping layers has been corrected, the local
consistency is no longer preserved due to the landmarks being placed to the wrong locations in the process of bundle
adjustment.

However, after implementing the landmark-based deformation graph, we found that the resulting
map suffers from local consistency issues. An example of this issue can be seemed in Fig. [5.7]
We found that the most likely underlying cause for such problem is the incorrect data association
of landmarks, which leads to the landmarks being placed in the wrong location in the bundle
adjustment process. While using some heuristics might mitigate the problem of incorrect data
association of the image features, due to the inherent limitation of feature matching process and the
difficulty of the data association, it is a challenging problem to ensure the correct data association
of the landmarks. Alternatively, we proposed to use the camera poses as the deformation node
instead to avoid directly addressing this problem.

33

Algorithm 2: Deformation graph application

input : M? surfels to be deformed
G a set of deformation nodes
« number of nodes to explore
output: M deformed surfels

// Gather temporally nearby nodes and sort them by euclidean
distances

1 ¢ < argmin H./\/lf0 - QfOHl
i

2 72«0

3 fori < —a/2toa/2do

4 L Ttel2 e 44

5 sort by euclidean distance(Z, G, /\/l;)

6 take closest k as influencing nodes
// Calculate weights

7h+0

8 Do < HM; —g*
9 forn € Z(M?*,G) do
2
10 w" (MS) <— (1— HME_QQHQ/dmaX)
h < h+w"™ (M?*)
// Apply transformation

s w" (M?* n S n n n
12 /\flp =D er(M=.0) (h) Gk (M}, — G) +Gg + 6]
B M =3 crmeg) COGRTTM;,

2

11

34

Figure 5.8: Each surfel is associated with &k frames that most recently observe such surfel.

5.3.6 Deformation Graph using Camera Poses

An important observation from the factor graph structure of the SLAM problem shows that the
number of camera poses are usually much fewer than the number of the landmarks, given that
hundreds of features will be extracted from a single image. As a result, camera poses are much
more well-constrained comparing to the landmarks, and using camera poses instead of landmarks
as deformation node becomes a natural alternative choice. Using the same factor graph framework,
we replace the deformation node with landmarks, and using the pose before bundle adjustment T;

and the pose after bundle adjustment Tﬂ} as the deformation parameter. In addition, we associate
each surfel with &k frames that most recently observe such surfel, as shown in Fig. Our new
deformation application can be written as follows:

k
R 1 . .
My =exp (7D log (T) " Tx))M;, (5.11)
J
. 1E . .
M;, = exp (3> log ((T%) ' T5)) M;,, (5.12)
J

where the surfel position and normal are transformed by the average transformation of (Tif)_szT
across the k frames that observe the surfel. For the simplicity, we assume both the position and the
normal vector are of the homogeneous form.

Fig. [5.9] shows the resulting deformation using camera poses instead of the landmarks. The result
shows that we are able to preserve both the local and global consistency in our new deformation
formulation.

35

Figure 5.9: The deformation using the camera pose as the new deformation nodes. Note that comparing to Fig. |5.7al
we preserve both the local and global consistency.

5.4 Experimental Results

5.4.1 System Information

We implement and test our system in Ubuntu 16.04 desktop with an Intel 17-6700 CPU. We test
using both CUDA 9.0 and CUDA 10.0 on a GeForce GTX 1070 GPU, as well as a GeForce GTX
2070 GPU. The surfel fusion, rendering, and odometry are implemented using CUDA in GPU.
The pose and landmark bundle adjustment, as well as the deformation graph optimization, are
implemented in CPU. Specifically, the pose and landmark optimization are represented using a
factor graph and optimized using GTSAM [41]].

5.4.2 Synthetic Dataset

Similar to the offline system, we conduct our surface reconstruction accuracy test on the A-ICL [8]
dataset with synthetic noise. Table [5.1]shows the surface reconstruction result on the A-ICL living
room scene. The result shows that our system achieve superior performance on par with the other
online systems, while still needs to improve comparing to the offline systems.

5.4.3 Real World Dataset

We also conduct qualitative evaluation on many real world dataset. Mainly, we conduct our exper-
iments on the publicly available stanford dataset [20] and redwood dataset [48]. Fig. shows
the effect of deformation that successfully corrects the odometry drift after loop closure. Fig. [5.11]
shows the reconstruction of a totempole outdoor that contains a major loop closure. In addition,
Fig. [5.12] shows the reconstruction of a hotel lobby that contains 20,000 frames and covering an
area of 86.46m>. Fig. shows the reconstruction of the The Burghers of Calais statues. This

36

Table 5.1: Surface reconstruction accuracy on the synthetic A-ICL dataset

| | Mean distance to GT model (cm) | Std. Dev. distance to GT model (cm) |

A-ICL-Ir1 A-ICL-Ir2 A-ICL-Ir1 A-ICL-1r2
COLMAP-MVS 1.59 1.35 4.58 4.20
Redwood 3.00 2.02 2.98 1.83
Proposed (offline) 1.74 2.26 1.34 1.78
ElasticFusion 7.71 7.78 6.91 6.34
InfiniTAMv3 7.33 10.25 6.39 6.87
Proposed (online) 2.28 5.64 3.60 4.15

dataset is particularly challenging given that it is collected outdoor with interference from the sun-
light, and it also suffers from significant motion blur. These real-world dataset shows that our
system can perform well in mid-size to large scale mapping tasks, and generate reliable 3D model
under imperfect sensor conditions.

(4

> .
E =2 v
(a) stonewall dataset before deformation (b) stonewall dataset after deformation

Figure 5.10: Reconstruction of the stonewall [20] dataset, before and after deformation. Severe odometry drift and the
distorted model are corrected after deformation.

37

Figure 5.11: Reconstruction of the rotempole [20] dataset

Figure 5.12: Reconstruction of the lobby [48] dataset that contains 20000 frames

38

Figure 5.13: Reconstruction of the burghers [20] dataset that contains over 10000 frames

5.5 Analysis

We present a dense 3D SLAM system that is capable running online while preserving global con-
sistency through shape deformation. We achieve better reconstruction accuracy comparing to the
state-of-the-art systems, while using only one single GPU to conduct simultaneous tracking, map-
ping, and loop closure. However, our system still suffers from the inaccurate tracking in the front-
end, which leads to significant drift in the odometry that has to be corrected in frequent small loop
closure. In addition, similar to all appearance-based methods, our fern-based localization does not
necessarily address all the possibility of loop closures, especially during noisy depth sensors and
drastic lighting changes. These are still the direction that should be improved in the future work.

39

40

Chapter 6

Conclusions

We closely examine the problem of dense 3D reconstruction and mapping using a depth-enabled
camera. Inspired by the previous work on both sparse and dense SLAM systems, we combine the
SfM-MVS pipeline from the computer vision community and the SLAM method from the robotics
community to achieve high-fidelity mapping. Specifically, we introduce two 3D reconstruction
systems that achieve state-of-the-art performance in constructing a 3D map in surfel representa-
tion. The offline system is able to achieve high accuracy mapping comparing to online SLAM
systems, while it significantly reduces the computation time. The online system leverages defor-
mation via loop closure to achieve global accuracy, using only a single GPU to conduct mapping,
tracking, and model correction. The online system is also open-source for the benefit of the com-
munity. Through experiments, we validate the system performance in various scenarios in mapping
different environments.

Currently, both the online and offline systems are subject to various of limitations. Specifically, the
offline system is still highly dependent on the SfM pipeline. If the SfM pipeline provides wrong
estimation of the camera pose prior, the system will suffer from severe drift due to the strong
prior introduced into the factor graph. The online system also suffers from significant drift in the
front-end due to inaccurate tracking.

One possible solution to improve the tracking is to use the feature point to coarsely estimate the
motion of the camera, and then use the joint geometric and photometric tracking to improve upon
the result. There are two possible ways: first, we can jointly optimize the result from feature and
from dense tracking; second, we can use the result from the feature point to initialize the dense
tracking. Both ways could provide better odometry estimation then relying on dense tracking
alone.

We believe that there are still many open problems in the area of 3D mapping. For example, how
to leverage the scene semantic information and use it the improve robot perception of the world is
a problem that can be built upon the constructed dense map. In addition, achieving both local and
global accuracy in online dense SLAM is also a very challenging problem. Finally, we would like
to address the problem of scalability of mapping given the system memory limitation. All of those

41

problems are challenging yet rewarding to explore in the future of dense 3D mapping.

42

Bibliography

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-time dense surface mapping
and tracking,” in I[EEE and ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR), Oct.

2011, pp. 127-136. [L.I}[1.2] 2.4]

[2] M. NieBner, M. Zollhofer, S. Izadi, and M. Stamminger, “Real-time 3d reconstruction at
scale using voxel hashing,” ACM Trans. on Graphics, vol. 32, no. 6, pp. 169:1-169:11, Nov.
2013. [Online]. Available: http://doi.acm.org/10.1145/2508363.2508374/[1.1]

[3] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald, “Kintinu-
ous: Spatially extended KinectFusion,” RSS Workshop on RGB-D: Advanced Reasoning with
Depth Cameras, Jul. 2012. [I.1}[T.2} 2.4]

[4] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison, “ElasticFu-
sion: Dense SLAM without a pose graph,” in Robotics: Science and Systems (RSS), Rome,
Italy, Jul. 2015. 2A4HF32 5.3.5

[5] Q. Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3d data
processing,” Computing Research Repository, vol. abs/1801.09847, 2018. [Online].
Available: http://arxiv.org/abs/1801.09847

[6] P. Moulon, P. Monasse, and R. Marlet, “Adaptive structure from motion with a contrario
model estimation,” in Asian Conf. on Computer Vision (ACCV), Nov. 2012, pp. 257-270.

[7] J. L. Schonberger, E. Zheng, J. M. Frahm, and M. Pollefeys, “Pixelwise view selection for
unstructured multi-view stereo,” in Eur. Conf. on Computer Vision (ECCV), Oct. 2016, pp.
501-518. [L2, 2. T A.1.1]

[8] S. Choi, Q. Y. Zhou, and V. Koltun, “Robust reconstruction of indoor scenes,” in Proc. IEEE
Int. Conf. Computer Vision and Pattern Recognition, Jun. 2015, pp. 5556-5565.
4.3.21[4.6a,[5.4.2

[91 A. Dai, M. Niellner, M. Zollhofer, S. Izadi, and C. Theobalt, “BundleFusion:
Real-time globally consistent 3D reconstruction using on-the-fly surface re-integration,”
ACM Trans. on Graphics, vol. 36, no. 4, May 2017. [Online]. Available: |ttp:
/Idoi.acm.org/10.1145/3072959.3054739

[10] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo collections in

43

http://doi.acm.org/10.1145/2508363.2508374
http://arxiv.org/abs/1801.09847
http://doi.acm.org/10.1145/3072959.3054739
http://doi.acm.org/10.1145/3072959.3054739

3d,” ACM Trans. on Graphics, vol. 25, no. 3, pp. 835-846, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1141911.1141964

[11] ——, “Modeling the world from internet photo collections,” International Journal
of Computer Vision, vol. 80, no. 2, pp. 189-210, Nov. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11263-007-0107-3| 2.1]

[12] S. Agarwal, Y. Furukawa, N. Snavely, 1. Simon, B. Curless, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” Commun. ACM, vol. 54, no. 10, pp. 105-112, Oct. 2011. [Online].
Available: http://doi.acm.org/10.1145/2001269.2001293 [2.1]

[13] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stereopsis,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 32, no. 8, pp. 1362-1376, Aug. 2010. [2.1]

[14] P. Moulon and P. Monasse, “Unordered feature tracking made fast and easy,” ACM SIG-
GRAPH European Conference on Visual Media Production, p. 1, Dec. 2012. 2.1]

[15] C. Sweeney, T. Hollerer, and M. Turk, “Theia: A fast and scalable structure-from-motion
library,” in Proceedings of the 23rd ACM Intl. Conf. on Multimedia, Oct. 2015, pp. 693-696.
2.1

[16] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proc. IEEE Int.
Conf. Computer Vision and Pattern Recognition, Jun. 2016, pp. 4104-4113. 2.1 .1.1, 4.3.2]

[17] L. Moisan, P. Moulon, and P. Monasse, “Automatic homographic registration of a pair of
images, with a contrario elimination of outliers,” Image Processing On Line, vol. 2, pp. 56—

73, 2012.

[18] S. Zhu, T. Fang, J. Xiao, and L. Quan, “Local readjustment for high-resolution 3D recon-
struction,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Jun. 2014, pp.

3938-3945.
[19] Y. Yao, S. Li, S. Zhu, H. Deng, T. Fang, and L. Quan, “Relative camera refinement for
accurate dense reconstruction,” in Intl. Conf. on 3D Vision, Oct. 2018, pp. 185-194.

[20] Q. Y. Zhou and V. Koltun, “Dense scene reconstruction with points of interest,” ACM Trans-
actions on Graphics, pp. 112:1-112:8, Jul. 2013. 5.6,[5.4.3 [5.10[5.11) 5.13

[21] Q. Y. Zhou, S. Miller, and V. Koltun, “Elastic fragments for dense scene reconstruction,” in
Intl. Conf. on Computer Vision (ICCV), Dec. 2013, pp. 473-480.

[22] A.J. Davison, “Real-time simultaneous localisation and mapping with a single camera,” in
Intl. Conf. on Computer Vision (ICCV), vol. 2, Oct. 2003, pp. 1403-1410.

[23] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in IEEE
and ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR), Nara, Japan, Nov. 2007, pp.
225-234.

[24] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A versatile and accurate
monocular SLAM system,” IEEE Trans. Robotics, vol. 31, no. 5, pp. 1147-1163, Oct. 2015.
2324

[25] J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Large-scale direct monocular SLAM,”

44

http://doi.acm.org/10.1145/1141911.1141964
http://dx.doi.org/10.1007/s11263-007-0107-3
http://doi.acm.org/10.1145/2001269.2001293

in Eur. Conf. on Computer Vision (ECCV), Sep. 2014, pp. 834-849.

[26] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and D. W. Murray, “Very high
frame rate volumetric integration of depth images on mobile device,” IEEE Transactions on
Visualization and Computer Graphics, vol. 21, no. 11, pp. 1241-1250, Nov. 2015.

[27] V. A. Prisacariu, O. Kihler, S. Golodetz, M. Sapienza, T. Cavallari, P. H. Torr, and D. W.
Murray, “InfiniTAM v3: A framework for large-scale 3D reconstruction with loop closure,”

ArXiv e-prints, Aug. 2017. 2.4,[4.3.2]

[28] B. Curless and M. Levoy, “A volumetric method for building complex models
from range images,” in SIGGRAPH, 1996, pp. 303-312. [Online]. Available: http:
/ldoi.acm.org/10.1145/237170.237269) 2.4

[29] H. L and L. F, “FlashFusion: Real-time globally consistent dense 3D reconstruction using
CPU computing,” in Robotics: Science and Systems (RSS), Jun. 2018. [2.4]

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT
or SURF,” in Intl. Conf. on Computer Vision (ICCV), Nov. 2011, pp. 2564-2571. 2.4, [3.1]

[31] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Jour-
nal of Computer Vision, pp. 91-110, Nov. 2004. [3.1]

[32] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346-359, Jun. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.cviu.2007.09.014 [3.1]

[33] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, pp. 381-395, Jun. 1981. [Online]. Available:
http://doi1.acm.org/10.1145/358669.358692

[34] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. ~New
York, NY, USA: Cambridge University Press, 2003.

[35] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, mno. 9, pp. 509-517, Sep. 1975. [Online]. Available:
http://doi.acm.org/10.1145/361002.361007

[36] P. J. Burt and E. H. Adelson, Readings in Computer Vision: Issues, Problems, Principles,
and Paradigms, M. A. Fischler and O. Firschein, Eds. Morgan Kaufmann Publishers Inc.,
1987. [Online]. Available: http://dl.acm.org/citation.cfm?id=33517.33571 [3.2.3]

[37] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald, “Robust real-time
visual odometry for dense RGB-D mapping,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), May 2013, pp. 5724-5731. . 1.1]

[38] M. Zefran and V. Kumar, “Interpolation schemes for rigid body motions,” Computer-Aided
Design, vol. 30, no. 3, pp. 179-189, Mar. 1998. {.1.3]

[39] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal
of the Optical Society America A, vol. 4, pp. 629-642, 1987. 4.1.4]

45

http://doi.acm.org/10.1145/237170.237269
http://doi.acm.org/10.1145/237170.237269
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://doi.acm.org/10.1145/358669.358692
http://doi.acm.org/10.1145/361002.361007
http://dl.acm.org/citation.cfm?id=33517.33571

[40] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iISAM2: Incre-
mental smoothing and mapping using the Bayes tree,” Intl. J. of Robotics Research, vol. 31,

no. 2, pp. 216-235,2012. 4.2, 4.3.1,5.3.2]

[41] E. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Georgia Tech Technical
Report, 2012. 3.1} [5.4.1]

[42] A.Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark for RGB-D visual odom-
etry, 3D reconstruction and SLAM,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
May 2014, pp. 1524-1531. 4.3.2]

[43] “Cloudcompare user manual,” https://www.danielgm.net/cc/doc/qCC/
CloudCompare%20v2.6.1%20-%20User%20manual.pdf. 4.3.2]

[44] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evalu-
ation of RGB-D SLAM systems,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), Oct. 2012, pp. 573-580. [4.3.2 [4.3.3| [4.6b|

[45] O. Wasenmiiller, M. Meyer, and D. Stricker, “CoRBS: Comprehensive RGB-D benchmark
for SLAM using Kinect v2,” in Winter Conf. on Application of Computer Vision (WACV),
Mar. 2016, pp. 1-7.

[46] B. Glocker, J. Shotton, A. Criminisi, and S. Izadi, “Real-time rgb-d camera relocalization via
randomized ferns for keyframe encoding,” IEEE Transactions on Visualization and Computer

Graphics, vol. 21, pp. 571-583, May 2015.

[47] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for shape
manipulation,” in SIGGRAPH. New York, NY, USA: ACM, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1275808.1276478|[5.3.5] [5.3.5]

[48] J. Park, Q. Zhou, and V. Koltun, “Colored point cloud registration revisited,” in Intl. Conf. on
Computer Vision (ICCV), Oct. 2017, pp. 143-152.

46

http://doi.acm.org/10.1145/1275808.1276478

	1 Introduction
	1.1 Motivation
	1.2 Current Challenges
	1.3 Contribution

	2 Related Work
	2.1 Structure-from-Motion
	2.2 Dense Offline RGB-D Reconstruction
	2.3 Sparse Mapping in SLAM
	2.4 Dense Online RGB-D Reconstruction

	3 Preliminaries
	3.1 Overview of Feature-based Visual Odometry and Structure-from-motion
	3.2 Joint Geometric and Photometric Tracking
	3.2.1 Iterative Closest Point Tracking
	3.2.2 Appearance-based Photometric Tracking
	3.2.3 Joint Optimization of ICP and Photometric Tracking

	4 Surfel-Based Dense RGB-D Reconstruction with Global and Local Consistency
	4.1 Globally Consistent Pose Estimation using Factor Graph
	4.1.1 Prior and Odometry Estimation
	4.1.2 Factor Graph Representation
	4.1.3 Pose Initialization: Interpolation on SE(3) Manifold
	4.1.4 Scale Initialization

	4.2 Optimization and Surfel-based Model Reconstruction
	4.3 Experimental Results
	4.3.1 Implementation
	4.3.2 Synthetic Dataset
	4.3.3 Real World Dataset

	4.4 Analysis

	5 Elastic Structure Fusion: Dense Mapping with Deformation and Pose Graph
	5.1 Approach Overview
	5.2 Joint Geometric and Photometric Tracking
	5.3 Loop Closure
	5.3.1 Randomized Fern Relocalization
	5.3.2 Pose Graph Optimization
	5.3.3 Retriangulation and Bundle Adjustment
	5.3.4 Feature Non-maximum Suppression
	5.3.5 Deformation Graph using Landmarks
	5.3.6 Deformation Graph using Camera Poses

	5.4 Experimental Results
	5.4.1 System Information
	5.4.2 Synthetic Dataset
	5.4.3 Real World Dataset

	5.5 Analysis

	6 Conclusions

