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Through-water Stereo SLAM with Refraction
Correction for AUV Localization

Sudharshan Suresh, Eric Westman, and Michael Kaess

Abstract—In this work, we propose a novel method for under-
water localization using natural visual landmarks above the water
surface. High-accuracy, drift-free pose estimates are necessary
for inspection tasks in underwater indoor environments, such as
nuclear spent pools. Inaccuracies in robot localization degrade
the quality of its obtained map. Our framework uses sparse
features obtained via an onboard upward-facing stereo camera
to build a global ceiling feature map. However, adopting the
pinhole camera model without explicitly modeling light refraction
at the water-air interface contributes to a systematic error in
observations. Therefore, we use refraction-corrected projection
and triangulation functions to obtain true landmark estimates.
The SLAM framework jointly optimizes vehicle odometry and
point landmarks in a global factor graph using an incremental
smoothing and mapping backend. To the best of our knowledge,
this is the first method that observes in-air landmarks through
water for underwater localization. We evaluate our method via
both simulation and real-world experiments in a test-tank envi-
ronment. The results show accurate localization across various
challenging scenarios.

Index Terms—Localization; SLAM; Marine Robotics

I. INTRODUCTION AND BACKGROUND

UTONOMOUS underwater vehicles (AUVs) can con-
duct inspection tasks in complex environments inaccessi-
ble to humans. They have the potential to create high-fidelity
maps of such areas with minimal manual intervention. One
such task is imaging and mapping of nuclear waste storage
pools, a task critical to the safe operation of the infrastructure.
However, long-term operation of the robot causes drift in its
pose estimate if it is solely reliant on dead reckoning. This has
a detrimental effect on the resulting map it generates. Thus,
there is a need for an accurate robot state estimate.

The problem of underwater localization has received consid-
erable attention over the years. Numerous sensing modalities
and algorithms have been explored, as documented by Paull
et al. [26]. In this work, we focus on the specific task of AUV
localization in nuclear spent pools. These concrete pools are
indoor underwater environments with significant clutter in the
form of stored nuclear waste.

Recently, [25] proposed an acoustic sensor network to
localize a robot swarm in a nuclear storage pond, while [28]
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Fig. 1: (top) A sampling of ceiling frames taken from the stereo pairs. These
highlight challenges for the frontend, including motion blur, light scattering
and particulates. (bottom) An underwater still of our AUV executing a
trajectory in the test environment at a depth of 1m. The upward-facing stereo
camera views the ceiling through the water interface.

used visible light to localize an ROV in a nuclear reactor.
Both methods suffer from attenuation in cluttered environ-
ments. Vision-based methods are preferable due to excellent
visibility and absence of open-sea error sources such as surface
disturbances and turbid waters.

Jung et al. [14, 15] developed visual localization methods
for AUVs by installing fiducials underwater. However, spent
nuclear pools cannot be modified due to radioactivity and often
have nuclear waste and thick sludge deposition at the bottom.
Cho et al. [4] performed 3-DOF state estimation of a robot in
a reactor vessel through an external camera, by viewing LEDs
on the vehicle frame. Later, Lee et al. [18] used a submerged
camera and prior map to obtain a full 6-DOF state estimate
through fiducial tracking. Both methods, however, are affected
by clutter in the line-of-sight between the camera and robot.
Consequently, they do not scale to larger environments.

The field-of-view of an upward-facing camera on an AUV is
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not obstructed while navigating these cluttered environments
(Fig. 1). Ceilings in most such environments have robust
structural cues for localization, with several notable examples
for ground vehicles [7, 13]. In this problem formulation,
feature points triangulate to landmarks in air, viewed through
the water-air interface. Refraction causes light to bend at the
interface, and generates a systematic error in heights calculated
from stereo correspondences. This creates large geometric
errors in the global map, and negatively affects the optimized
trajectory estimate. To achieve the true SLAM solution, we
must explicitly model for the refraction.

Refraction correction was first explored in aerial photogram-
metry for shallow water [22, 31]. These works obtain actual
water depth from an analytic plotter by applying a correction
factor. Fryer et al. later demonstrated that two-camera pho-
togrammetry of submerged objects can only be approximated,
as rays from an object have different incident angles with the
cameras [8]. This procedure was used to create underwater
topographical maps of river beds and reefs [24, 35]. All prior
through-water methods (i) are not in the context of SLAM and
(ii) consider aerial cameras observing underwater objects.

In this work, we propose a SLAM formulation for AUVs
using an onboard upward-facing stereo camera for accurate
underwater pose estimation. The method is intended for indoor
underwater environments with adequate visibility and lighting.
To the best of our knowledge, this is the first through-water
visual SLAM technique for underwater vehicles. Concisely,
our main contributions are:

(1) An upward-facing stereo SLAM framework for drift-free
AUV localization using a ceiling feature map.

(2) A refraction correction module for through-water vision,
modeled after prior work in multimedia photogrammetry.

(3) Evaluation in both simulation and real-world settings.

While this work targets nuclear pools, it generalizes to anal-
ogous applications such as robotic swimming pool cleaners.
This method can also be extended to dense stereo for mapping
partially-submerged caves with AUVs [34].

II. REFRACTION OBSERVATION MODEL

A routine operation in any visual SLAM framework is the
projection of 3-D points to image pixel coordinates and the
corresponding backprojection of 2-D image points to 3-D
points. When operating in a single medium, this is a trivial
operation given camera intrinsics and extrinsics. We require
compensation factors that enable these operations in a dual-
media setting. Thus, we introduce methods for refraction-
corrected stereo triangulation (Section II-A) and refraction-
corrected projection (Section II-B), both based on previous
work. However, the prior algorithms were for aerial pho-
togrammetry through shallow water. We adapt them to the
inverse problem of an underwater camera observing points in
air. Our SLAM framework (Section III) uses this module at
every stage for frue landmark positions.

A fixed-baseline stereo camera is calibrated underwater
and has known, constant camera-robot extrinsics. The single
viewpoint pinhole camera model is found to be theoretically
inaccurate due to refraction at the camera housing [1, 32].

(b)
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Fig. 2: (a) Geometry of refraction-corrected stereo triangulation for a single
landmark in air. While the stereo pair incorrectly triangulates a measurement
to apparent position P’, we perform correction to obtain the true position P.
(b) (inset) top view of the geometry, showing directly observable quantities
in the XY plane.

However, it is a valid approximation if the center of projection
and flat port and very close to each other [20], which is the
case for underwater housings. Thus, we adopt the pinhole cam-
era model—refraction at the camera’s housing is accounted for
in the lens distortion parameters. We mathematically model the
water surface as a plane, an approximation that is commonly
made in related works [21, 31]. The camera viewing direction
is not required to be perpendicular to the water surface.
Lacking this assumption, we cannot model refraction at the
water interface as a radial distortion [29]. We establish a sign-
convention for the Z direction: the water surface is the XY
plane, points in air are negative and points underwater are
positive. The apparent landmark is that triangulated without
considering refraction at the interface. The frue landmark is
that obtained from explicitly modeling this refraction.

A. Refraction-Corrected Stereo Triangulation

Given pixel correspondences in an image pair, we wish
to calculate the true position of a landmark. Fig. 2 (a)
illustrates the geometry for a single point landmark observed
by a stereo pair. We assume known (i) pose of the cameras and
(i1) refractive indices of the media (we consider pu,, = 1.33
for water and p, = 1 for air, but we can modify the indices
to represent any general pair of media). The cameras are at
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positions ¢; and ¢y, having depths H; and H, below the water
surface respectively. The apparent landmark P’ has a height
h', while the frue landmark P has a depressed height h. ¢
and ¢, are the interface intercept points obtained by tracing
the rays from P’ to ¢; and co respectively. For rays from P
to ¢; and ca, the incidence angles with the interface are 1, io
and refracted angles are 71, rs.

Fig. 2 (b) is the top view of Fig. 2 (a) showing the distances
in the XY dimensions:

dy = ||C2xy - C/2xyH

I2 = ”C/Qxy - P/XYH
From Fig. 2, r; and ro are:

ry = tan™ <]c;11) ro = tan! <222> 2)

Snell’s law relates the refractive indices of media with the
direction of light propagation. Further, ¢; and 7o are:

di = |lciyy — ¢
1 || Ixy 1xy|| (1)

/1 = ||c/1xy - P/XYH

sin 71 sin 7 Lo

sin ro o

B 3)

S 71

Knowing the angles of incidence, we obtain the corrected

height of the landmark for each camera (h., , hc,). From Fig.
2, in a similar fashion to Equation 2, we have:

he, = dj/ tan(iy) he, = db/ tan(ia) 4

They are found to be slightly different, as no unique solution
exists when rays from the true 3-D point landmark have
different incident angles with the cameras [8]. However, an
approximate solution suffices for landmark initialization. We
take the average, giving the final corrected height:

h = (he, + he,) /2 o)

Thus, refractive triangulation gives us the true position of
landmarks. This ensures consistent triangulation regardless of
robot location and assures geometrically accurate maps.

B. Refraction-Corrected Projection

Given the frue position of a landmark—P—we wish to
project it to image coordinates. First, we calculate the shifted
position P* the camera views the landmark at. This is done
by radially shifting it parallel to the water surface.

P* lies on the ray joining the apparent landmark position
P’ with the camera center (Fig. 2). Due to bending of light at
the interface, frue landmark position and camera center are no
longer collinear. We radially shift the landmark with respect
to the camera center before projection [21].

Fig. 3 shows the problem geometry when viewed perpen-
dicular to the direction of the ray. The true landmark to be
imaged is P, at a height H,. The projection center of the
camera viewing the landmark is C, at depth H.. The incident
and refracted rays make angles ¢, r with the interface. There
is no closed form solution as C” is unknown—we follow an
iterative method. This process is formalized in Algorithm 1.
We initialize the shifted radial distance R* to the true radial
distance R itself. Knowing its position and applying Snell’s

] R ]
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Fig. 3: Radial shift geometry for the estimated frue position of a landmark
P with respect to camera center C. An iterative procedure converges to P*,
which is the shifted position of the landmark. This allows us to trivially project
the 3-D landmark into the camera similar to a single-medium setting.

Algorithm 1 Iterative radial-shift for refraction correction.

:R*=R=/(P, —Co)? + (P, — C,)?
: repeat

1_R"
Co+P:

¢ =sgin" (=2 sinr
a
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4:

5: AR =R* — (Hptani+ H.tanr)
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R* + R*+ AR
. until (JAR| <€)
:P;:OxJFRT;(Pz*Ox)
R(nycy)

law, we can compute the angles 7 and r. The radial shift, AR,
is computed as AR = R* — R. From Fig. 3:

R = Hptani+ H.tanr

6
R* = (H,+ H.)tanr ©

These are directly obvious from the right triangles that 7 and
r are part of. Using Equation 6, we compute AR at every
iteration and radially shift the point until convergence (i.e.
|AR| < €). We convert the expression to Cartesian coordinates
to get the shifted landmark that we can project trivially, as in
the single-media case. In initial tests, we get convergence to
within a few mm from ground truth in a 100 iterations.
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III. PROPOSED SLAM FORMULATION
A. Factor Graph Representation

We represent the problem as a factor graph optimization,
as commonly done in the SLAM literature. A factor graph
is a bipartite graph comprised of variables to be optimized
and measurements that constrain the system. In a landmark-
based SLAM formulation, all poses in the trajectory and their
accompanying observed landmarks make up the variables.
This is graphically represented in Fig. 4.

Typically, underwater vehicles have a pressure sensor that
directly observes depth (Z). Detecting the direction of gravity
allows the inertial measurement unit (IMU) to provide ab-
solute pitch and roll measurements. The remaining degrees of
freedom—X, Y and yaw—are obtained via dead reckoning and
are subject to drift. This gives accurate measurements locally,
but the pose estimate drifts over long dives. We represent the
vehicle pose as:

Ty = [ti,zati,y7ti,za ¢13017w1 ]T @)
—_— —

yaw, pitch and
roll angles

translational

componenls
Thus, we can split the vehicle odometry into two independent
constraints, similar to [36]: (i) a 3-DOF pose-to-pose relative
odometry constraint on XYH (X, Y, yaw) and (ii) a 3-DOF
unary constraint on ZPR (Z, pitch, roll). At a given timestep
4. an XYH factor u;_; is added between x;_; and z;, and
a ZPR factor v; is added to vehicle pose x;. A corrected
stereo measurement factor my joins any observed 3-D point
landmark [; with pose z;. This factor my, is the corrected
stereo landmark pixel observations, which is a four-vector for
unrectified stereo. We attach a pose prior measurement pg to
xo to bind the entire trajectory to a global coordinate frame.
The state and measurement vectors are:

oy}

500y -

®)
, Mo, .. }
We compute the maximum a posteriori (MAP) estimate, which
predicts variable values that maximally agree with the given
measurements:

X = argmax p(X|Z)
:argmax p(X)p (Z|X)

= argmax p(zo Hp wilwi—1, ) p(vilzs)  (9)
— T ———— ——

prior i= 1 XYH

H p(mplzi, 1)

k=1

ZPR

corr. stereo factor

We consider all four measurements as normally distributed
random variables with covariances g, ¥;, ®;, ['x:

p(z0) = N (po, Xo)
p(uilzi—1,z;) = NU@i—1,2;), ¥;)

p(vilz:) = N(V(z:), ©;)

i) = NM(zi, 1), Tx)

(10)

(mk "Iﬁ
In Equation 10:

(i) po represents the pose prior.

O Pose prior . 3-DOF XYH factor .3-DOF ZPR factor . Corrected stereo factor

Fig. 4: Factor graph representing our SLAM formulation. Variable nodes
are the large circles that represent either poses (z;) or landmarks (I;).
Measurement factors are denoted by smaller, colored circles. As opposed
to conventional landmark-based stereo SLAM, our method incorporates a
refraction-corrected stereo factor between poses and landmarks.

(ii) U(w;—1,x;) represents the relative transform between
consecutive poses in [t; », iy, @i

(iii) V(=;) is the direct measurement of [¢; ., 0;, 1]

@iv) M(z;,,1;,) is the refraction-corrected stereo measure-
ment function. It projects [; into the stereo cameras
at vehicle pose z; while accounting for refraction. The
output is a four-vector of stereo pixel measurements.

Assuming Gaussian noise models reduces the inference to
a nonlinear least squares optimization [6]:

n

X" = argmin — log <p(900) [ [p(uilzir, z)p(vilas)
X

i=1
IIMmk%ho
k=1

= argmin Ipo © wol1%, + Z ([ — M(wi, 1

k=1
+3° (1
=1

—Ul@ims, 2}, + o = Vi)l3,)

The 6-DOF pose prior is in the SE (3) Lie group, and &
represents the logarithm map of the relative transformation
between the elements [2]. The notation of the form ||w/| A=
w” A~ w is the Mahalanobis distance of w.

We use incremental methods to obtain optimized vehicle
pose and landmark estimates at every timestep [16, 17]. Instead
of re-calculating the entire system each time, it updates the
previous matrix factorization with the new measurements. The
sparse nature of the system (i.e. pose-landmark connectivity)
assures computational efficiency.

an

2
j)”rk

B. Feature Extraction

Our technique uses sparse stereo feature points. Existing
benchmarks for feature detectors underwater focus on repeata-
bility in turbid environments [10], which is not required in our
clear conditions. Our preliminary investigation demonstrated
no discernible upside to using other feature detectors such as
SIFT, SURF, or MSER. Moreover, we value the efficiency
of ORB features for near real-time implementation of stereo
visual SLAM [27]. We detect a large number of ORB feature
points and prune them through adaptive non-maximal sup-
pression [3], selectively choosing keypoints based on corner
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Fig. 5: Feature matching between a stereo pair of images from our real-world
dataset (Section IV-D). Adaptive non-maximal suppression prevents clustering
of feature points and gives good spatial distribution. In these frames, the
vehicle is just below the water surface and the reflection of the stereo pair at
the water interface is faintly visible.

strength and spatial location. This prevents clustering, degener-
acy, and speeds up computation. We establish matches between
the stereo pairs based on the Hamming distance between their
binary descriptors. To remove ambiguous matches, we perform
the distance-ratio test [19] and further select the inliers of
a RANSAC homography computation. Fig. 5 shows feature
matches between a stereo pair from our real-world dataset.

C. Data Association

Wrong correspondences affect the accuracy of the state esti-
mate and landmark map. Thus, we need a reliable data associ-
ation framework. Two operations—map update and landmark
initialization—are explained below:

1) Map update: The estimated positions of landmarks in
the optimization are first corrected to their apparent positions
for the current camera poses (Section II-B). They are then
projected into the cameras of the stereo pair. A landmark is
temporally matched with a stereo keypoint if its corresponding
projection lies within an empirical gating threshold g; in both
cameras (g; = 5 pixels). In the case of multiple matches, the
closest projected landmark is considered.

2) Landmark initialization: If a stereo keypoint does not
correspond to an existing landmark, it is considered for initial-
ization as a new landmark. We only initialize landmarks when
they are supported by observations from multiple viewpoints,
similar to the distant stereo point triangulation in [23]. We
triangulate a stereo keypoint upon first viewing it, but do not
add it to the optimization yet. If a stereo keypoint lies within
g of the projected landmark for the N consecutive frames,
we add this landmark to the global map. We initialize it by
triangulating over all the N views. It is only then that the
landmark and its corresponding measurements are added to
the optimization. The value of N = 5 is empirically selected,
but this is often reduced in difficult visibility conditions.

D. Implementation

Our framework uses the GTSAM library [5] for factor-graph
optimization. We use iISAM?2 [17] for an efficient incremental
solution using the Powell’s dog-leg optimization algorithm.
The experiments (Section IV-C and IV-D) are run offline on
an Intel Core i7-7820HQ CPU @ 2.90GHz and 32GB RAM
without GPU parallelization.

IV. EXPERIMENTAL RESULTS
A. Vehicle Description

Our framework is intended for any AUV with vehicle
odometry (Section III-A) and stereo sensing. We use the Hov-
ering Autonomous Underwater Vehicle (HAUV) from Bluefin
Robotics [33] (Fig. 1), with properties of the vehicle modeled
in both our simulation and real-world experiments (see Table
I). The vehicle’s payload is comprised of a Doppler velocity
log (DVL), attitude and heading reference system (AHRS) and
depth sensor, with measurements characterized as follows:

(i) The depth sensor provides direct measurements of

HAUV depth (Z).

(ii) The AHRS observes gravity to give drift-free pitch and
roll estimates.

(iii)) The X, Y and yaw quantities are obtained via dead
reckoning. During long-term operation they drift un-
boundedly with time.

Using high-precision navigation sensors, the proprietary

odometry of our vehicle exhibits very low drift over the

relatively short time frames of operation. We treat this as the
ground truth. We corrupt the relative odometry between poses
with significant additive white Gaussian noise. This induces
drift in the XY plane to mimic having a less accurate IMU

+ DVL payload, as usually seen in underwater applications.

Noise is added in the XYH directions at every frame, with

standard deviations o, = ¢, = 0.01 m and o4 = 0.01 rad.

In Section IV-C and IV-D, we compare this synthesized dead

reckoning with our SLAM solution.

The stereo pair consists of two Prosilica GC1380 cameras
fixed adjacent to the DVL, oriented upwards (Fig. 1). It
has a 0.078 m baseline and records 5 fps grayscale images
(680 x 512). We calibrate the stereo camera underwater and
manually measure the camera-robot transformation. Images
are corrected for radial and tangential distortion.

B. Evaluation Metrics

We compare the dead reckoning and SLAM trajectories
with the ground truth. We use standard trajectory evaluation
metrics [30], namely the absolute trajectory error (ATE) and
relative pose error (RPE). The ATE computes the difference
between points on a query trajectory and the ground truth,
while the RPE quantifies local drift [30]. In simulation, we
also compute the mean and median absolute landmark error
(ALE) of the final landmark map.

C. Simulated Experiments

For preliminary analysis, we run simulations with generated
vehicle motions and assume known data association. We ran-

TABLE I: Covariance matrices (defined in Section III-A) used in simulation
and real-world experiments. They are diagonal square matrices of the form
diag(Mg2, M2, .. .). The units for translation, rotation and image measure-
ments are meters, radians and pixels respectively.

Covariances Square roots of matrix diagonal elements (M)
3o 107" m, 107%m, 107% m, 10" m, 10~ % m, 10~% m
v, 0.01 m, 0.01 m, 0.01 rad
P; 0.01 m, 0.005 rad, 0.005 rad
Ty 1 pix, 1 pix, 1 pix, 1 pix
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Fig. 6: Visualization of the SLAM trajectory and landmark estimates from
simulation, overlaid with the tank environment. (a) and (b) show top-views
while (¢) and (d) are from the side. The SLAM solution coincides (and thus
obscures) the ground truth, while the dead reckoning drifts. The estimated
landmarks converge to near their ground truth positions.

domly initialize landmarks in space above the water surface,
spread across the XY plane and between 4-5 m in the Z
direction. We add Gaussian noise (o = 1 pixel) to stereo land-
mark measurements. When projecting ground truth landmarks,
we apply our refractive model to simulate looking through
the water surface. Two scenarios are analyzed: a square
and corkscrew trajectory. While square does not include
motion in the Z direction or yaw rotation, corkscrew
exercises all these degrees of freedom. To emulate the HAUYV,
we constantly vary the pitch and roll over the 5° range. Each
dataset has 1200 poses, executing 7 loops of radius 2.5m in
corkscrew and 10 loops of side length 3m in square.

In Table II, we quantitatively compare the dead reckoning
and SLAM estimate trajectories against ground truth. It can
be seen that we achieve substantial reduction in ATE and

Fig. 7: (top) Ceiling present over the tank. Objects in the vehicle’s field-of-
view are between 3.6-5.8m in height from the water surface. (bottom) Tank
setup with vehicle executing a trajectory at 1m depth.

RPE with our framework for both trajectories. While the mean
ALE is higher for corkscrew, the median verifies that it is
due to outliers. Fig. 6 qualitatively compares both trajectories
and estimated landmarks. The dead reckoning trajectory drifts
significantly over time, while our solution roughly overlaps
with the ground truth. In Table III, we further compare these
results with a modified implementation that does not account
for refraction.

D. Real-world Experiments

Our SLAM framework is evaluated using the HAUV in an
indoor test-tank. The tank has a depth of 3m and radius of
3.5m. Regions of the ceiling are not at the same height from
the water surface due to piping, air ducts and girders. On
measurement with survey equipment, they are found to be
between 3.6—-5.8m. Fig. 7 shows the ceiling and tank setup.

We log 12 datasets for evaluation that encompass a wide
range of scenarios the vehicle may encounter. They vary
between 100-686 seconds in length and all but one execute
pre-programmed loops in the tank. The vehicle translates in the
X and Y directions at a fixed depth, along with rotation about
the Z-axis (yaw rotation). The pitch and roll directions of the
vehicle cannot be controlled, but fluctuate mildly underwater
nevertheless. Upon receiving a valid pair of stereo frames, we
use its timestamp to interpolate a state estimate. Challenges

TABLE II: Mean absolute trajectory error (ATE) and relative pose error (RPE) for the two simulation trajectories. Mean and median absolute landmark error
(ALE) are also shown. We see a significant decrease in error in the SLAM solution as compared to the dead reckoning trajectory.

Dead reckoning

SLAM solution

Dataset
ATE (m) RPEans (m) RPE;ot (°) ATE (m) RPEans (m) RPE;o (°) mean ALE (m) median ALE (m)
square 0.458 0.661 16.444 0.012 0.018 0.130 0.015 0.008
corkscrew 0.415 0.593 10.931 0.011 0.017 0.112 0.107 0.005

TABLE III: ATE of real-world (left) and simulation datasets (right) with/without refraction correction (RC). It reduces when RC is present in the framework.

Dataset 01 02 03 04 05 06 07 09 10 11 12 average square corkscrew
ATE with RC (m) 0.053 0.067 0.115 0.058 0.046 0.051 0.074 0.073 0.086 0.068 0.037 0.050 0.065 0.012 0.011
ATE without RC (m) 0.057 0.067 0.155 0.060 0.047 0.053 0.075 0.074 0.102 0.071 0.041 0.058 0.072 0.015 0.014
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Fig. 8: Qualitative comparison of trajectories from the representative datasets. We observe strong correspondence between our SLAM trajectory and the ground
truth, while the dead reckoning trajectory drifts over time. The global coordinates (in the X and Y) vary between trajectories as the origin is defined by the

vehicle start position prior to recording.

that can degrade the SLAM solution include water surface dis-
turbances, motion blur, suspended particulates, light scattering
and image washout (Fig. 1). The value of N (refer Section
III-C2) is reduced to 2 in datasets with larger disturbances.
The datasets incorporate all these conditions (brackets denotes
number of such datasets):

Depth: Just below surface (4), 1m (4) and 2m depth (4).
Visibility: With (8) and without (4) suspended particulates.
Lighting: With (3) and without (9) ceiling lights.

Table 1V lists the evaluation metrics for the dead reckoning
and SLAM solution for all 12 datasets. We choose one repre-
sentative dataset from each depth level—datasets 03, 08 and
09—and plot the trajectory estimates (Fig. 8). Our proposed
method significantly reduces drift in all cases, as seen in the
ATE and RPE metrics. This is most apparent in the longer
datasets, 08 (Fig. 8 (b)) and 10.

We also compare the results from our real-world and simu-
lation dataset with a modified implementation that does not ac-
count for refraction (refer Table III). The results show reduced
error when we account for refraction (RC), which reinforces
our method. We also see a significant difference between the
final landmark maps of both cases. Fig. 9 visualizes this result
for dataset 08.

The solve time for each dataset (Table IV) depends on how

. Landmarks with RC
. Landmarks without RC -~

| | o
W Bg U]
£
% °,
Y
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. d
%
%o
XTI

4 3 2 1
X [m]
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Fig. 9: (a) Final landmark map of dataset 08. (b) The landmark map with
refraction correction is compared with that without refraction correction.

0 -1 -2

(@)

densely connected the underlying factor graph is. Most of the
execution time is devoted to the optimization; the refraction
module requires only a smaller proportion of the compute
time. For example, the entire optimization for dataset 08
(724 seconds dataset duration, 144 landmarks) takes 884.3 sec-
onds to solve with the refraction module, and 789.4 sec-
onds without. We can achieve real-time performance through
keyframing or fixed-lag smoothing.

TABLE IV: Mean ATE and RPE for the 12 underwater datasets. Details about each dataset—operation depth, runtime duration and solve time—are shown.
Om indicates a depth just below the water surface. Datasets in bold are the representative datasets, which further appear in Fig. 8 and Table III.

Dataset Dead reckoning SLAM solution
#  depth (m) duration (s) solve time (s) ATE (m) RPEyas (m) RPE;y (°) ATE (m) RPEgus (m) RPEq (°)
01 1 133.8 476.3 0.069 0.112 4.572 0.053 0.072 2.198
02 0 99.6 188.7 0.122 0.149 3.301 0.067 0.079 1.480
03 0 202.2 505.5 0.280 0.370 5.976 0.115 0.090 2.539
04 2 121.8 63.0 0.103 0.145 4.121 0.058 0.125 2.822
05 1 192.6 23.4 0.076 0.112 2.600 0.046 0.062 1.273
06 2 203 13.5 0.095 0.137 2.328 0.051 0.068 1.520
07 1 238.8 329.9 0.181 0.248 5.839 0.074 0.096 2.886
08 1 724.0 884.3 0.568 0.818 21.451 0.073 0.098 2.267
09 2 260.0 4492 0.265 0.343 5.696 0.086 0.105 2.216
10 2 686.2 1409.0 0.327 0.402 20.583 0.068 0.082 1.365
11 0 446.8 2088.0 0.259 0.329 9.050 0.037 0.051 1.175
12 2 200.0 914 0.096 0.160 2.972 0.050 0.065 1.164




8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

V. CONCLUSION AND FUTURE WORK

We have presented a novel localization framework for
underwater vehicles in nuclear pools and other analogous
environments. There exists no prior work that takes cues from
above the water surface for underwater visual SLAM. By
utilizing an onboard upward-facing stereo camera, our method
is less prone to failure in cluttered environments as compared
to traditional line-of-sight methods. We detail the challenges
that refraction presents and develop a correction module.
Previously, refraction correction had only been addressed for
aerial photogrammetry and lens housing compensation. We
formulate the landmark-based stereo SLAM problem and
address the challenges faced by the frontend. We evaluate the
method through simulation and a dozen real-world underwater
experiments. These validate our method’s ability to achieve a
drift-free state estimate in the presence of significant noise.

Our underlying approximation of water surface planarity
can be improved by modeling for waves and ripples [9]. The
generic point feature frontend can be improved by taking ideas
from the state-of-the-art in visual SLAM. It can be replaced
by a dense or semi-dense method for mapping applications,
or combined with lines for robust detection [12]. In larger
environments, we can also integrate loop closure detection. For
computational efficiency, an over-compensation factor can be
used in the refraction module, or it can be completely replaced
by a lookup-table [21]. A large baseline stereo pair will
guarantee better results for distant stereo points. Further, we
can also rectify stereo images to exploit epipolar constraints
for faster matching. Point correspondences are restricted to
epipolar curves due to the refractive interface, as detailed
by [11]. The SLAM framework may also be extended to
support the use of monocular cameras.
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