
HITSnDIFFS: A fast algorithm for consecutive ones with applications in item labeling

Subhodeep Mitra

CMU-RI-TR-19-30

Submitted in partial fulfillment of the requirements for the degree of Masters in Robotics Research

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
May 2019

Copyright c© 2019 Subhodeep Mitra

Thesis Committee
R. Ravi

Stephen Smith
Nihar B. Shah
Jingyan Wang

1

Abstract

We analyze a general problem in a crowd-sourced setting: users pick a
label from a set of candidates for a set of items; the problem is to determine
the most likely label for each item, as well as a ranking of the users based
on their ability to pick correct labels for the items.

We start by defining an idealized setting for this problem where the rel-
ative performance of users is consistent across items, and observe that the
response matrices in this ideal case obey the Consecutive Ones Property
(C1P). While the consecutive ones problem is well understood algorithmi-
cally with various discrete algorithms, we devise a simple variant of the
HITS algorithm called “HITSnDIFFS” and prove that it can recover the
ideal C1P-permutation in case it exists.

Unlike fast combinatorial algorithms for finding the consecutive ones
permutation (if it exists), HITSnDIFFS also returns an ordering when
such a permutation does not exist, thus providing a principled heuristic for
the problem that returns the correct answer in the ideal case.

We compare HITSnDIFFS’s performance with previously proposed it-
erative and spectral algorithms to solve similar real-world problems. Our
experiments on both real and simulated datasets show that HITSnDIFFS
produces user rankings and item labelings with superior accuracy compared
to the various scalable methods, and is competitive with other slower state-
of-the-art methods while providing an asymptotic improvement in running
time.

2

Acknowledgments

I would like to express deep gratitude to my advisor, Prof. R Ravi. I
am greatly indebted to him for all his support, guidance and encouragement
over the last few years. The stimulating discussions we had on various topics
helped me learn a lot.

I would also like to thank Prof. Wolfgang Gatterbauer for his guidance
and advice along the way. His close collaboration and insights were always
very helpful. I also thank Tanvi Bajpai for supporting me in my work.

Finally, I would like to thank my committee - my co-advisor Prof.
Stephen Smith, Prof. Nihar Shah, and Jingyan Wang for their valuable
suggestions and feedback.

3

4

Contents

1 Introduction 11
1.1 Problem Definition . 12
1.2 State-of-the-art . 15
1.3 Our method “HITSnDIFFS” 17
1.4 Contributions of this thesis 18

2 Preliminaries and Related work 20
2.1 The method of Atkins et al. (ABH) 20
2.2 Hubs and Authorities (HITS) 21

3 The HITSnDIFFS Algorithm 23
3.1 “avgHITS”: a precursor to “HITSnDIFFS” 23
3.2 Our algorithm HITSnDIFFS 25
3.3 Complexity Comparison . 28
3.4 HITSnDIFFS recognizes C1P 30

4 Synthetic and Real-World Data 34

5 Experiments and Results 37
5.1 Methods and their implementation 37
5.2 Implementation Issues . 38
5.3 Experiments on synthetic data sets 39
5.4 Results on real data sets . 40

6 Future work 45

7 Conclusions 46

A Nomenclature 51

5

6

List of Figures

1.1 (a) Our setup is very general: we have m users who choose
one from k choices of labels for each of n items. Based on their
responses, we like to determine the relative ranking of users’
abilities, and the relative ranking of labels appropriateness
for each item. (b) The input to our algorithm is the (m×k×
n) response tensor C, or equivalently its flattened (m × kn)
response matrix C. 13

1.2 Example 1: pre-P-matrix C and P-matrix C′ (vertical sepa-
rators between columns c13 and c21 are just for illustration). . 14

3.1 (a): Bipartite graph of users and item options they choose.
(b): Tripartite graph of user scores, item weights, and user
diffs that are used by HITSnDIFFS. (c): Response matrix
C corresponding to the bipartite graph from (a). 24

4.1 Item-characteristic curves under the BSTS model: X-axis rep-
resents the user ability, Y-axis the probability of choosing an
option. The increasing order of appropriateness of the items
is blue , green and red. Note that for users of low ability, the
chance of choosing all of them converge to the same random
guessing value 1

3 . 36

5.1 Experiments on binary synthetic data 41
5.2 Experiments on multi-choice synthetic data 42
5.3 Time complexity comparison on simulated data. The dashed

line showing linear growth confirms the linear performance of
HITSnDIFFS . 43

5.4 Percentage of correctly labeled items on real datasets. 44

7

8

List of Tables

1.1 A comparison of the various desirable properties achieved by
prior work and our new method HITSnDIFFS: “C1P” refers
to reconstruction of the correct ordering when the input is
pre-P; “non pre-P” refers to whether the algorithm can be
applied to non pre-P instances; “k ≥ 2” refers to whether
the algorithm can handle non-binary choices; and “scalable”
refers to linear time complexity per iteration (which is re-
ported in the last column). 15

9

10

Chapter 1

Introduction

The problem. We study the following general problem: We have m users
and n items, each of which has up to k possible labels to describe it. Each
user picks one of these labels for each of the items. Derive a principled way
to determine a ranking for the abilities of the users, and a ranking for the
appropriateness of each of the labels for describing the items based solely on
the user label choices.

Applications. This general problem occurs in a wide range of prob-
lems related to crowdsourcing and truth discovery [33]. The crowd-labeling
approach has been refined for various tasks, such as query answering [9],
annotating Twitter data [8], and various other labeling tasks [28, 30]. As a
consequence, this problem has been studied across a number of variants over
the years: whether the options among item labels are binary [6, 11, 12, 16]
or multiple choices [7, 34, 35, 36]; whether we are only interested ranking
the users [1, 4] or only finding the most likely label options [11, 16, 25] or
both [6, 7, 34, 35, 36]. In typical item labeling applications, the labels may
be crowdsourced from the users. Furthermore, each user may not label all
images, and all images may not have the same number of labels. Therefore,
we consider this general scenario, to be formalized subsequently.

Our approach. We are interested in the general scenario, where items
have varying numbers of labels, and users can pick any number of labels
for any item. We start by studying the following core underlying problem:
there are m users and n items; every user chooses exactly one among a fixed
number k of labels for each item. We first define an ideal case when the user
responses are consistent across the items and characterize it using a matrix
property. We then use a spectrally inspired method to give a very efficient
algorithm for reconstructing such ideal orderings if they exist. Our method

11

generalizes to the non-ideal case and allows us to compare it with other
methods developed for ranking users or items or both. We then repurpose
a generative model from item response theory used for modeling difficulties
of multiple choice quiz questions to produce synthetic data for our problem.
Using this and real-world data from image labeling applications from pre-
vious work, we demonstrate that our new method is better or competitive
with existing alternates while being asymptotically faster.

Our assumption that k is fixed across items is useful only in proving
that our method reconstructs ideal orderings. The method itself generalizes
to the cases when (i) different items have different number of options, (ii)
when each user picks labels for only a subset of the items, and (iii) when a
users chooses more than one label for an item. Details are in section 5.2.

1.1 Problem Definition

Consider a setting with m users choosing an option for each of n items,
where each item has exactly k options for its label.

The choices from all users for all items can be represented as an (m×k×
n)-dimensional binary response tensor C, in which each 1 in position (i, h, j)
represents a choice of option h for item j (thus choice cjh) by user i, and 0
otherwise (see top of Figure 1.1b; to simplify representation, we do not show
0 entries in tensors). Since each user chooses exactly 1 option for each item,
any (1×k×1)-dimensional fiber contains exactly one single 1 entry, and the
other entries are 0. This response tensor can be flattened into an isomorph
(m×kn)-dimensional matrix C (see bottom of Figure 1.1b). To summarize,
we have an m×kn binary response matrix C, where a row represents a user’s
choices of an option for each item and each column represents an option for
some item. Also note that the number of non-zeros in the response matrix
is mn and each row has sum n.

Each user ui is assumed to have an associated selection ability θi, and
each option h for item tj has an associated quality αjh. When presented
with the response matrix C, our desired algorithm should return a ranking of
users that is close to the ranking according to θ, and the ranking of options
for item j should be close to the ranking according to αj:.

The ideal case with consistent responses. We argue that a response
matrix is consistent if there is an unambiguous ordering of users according
to their abilities that is reflected in their responses. This way, the ability is
a unique skill that is tested across their responses to all items. In this ideal
case, if a user u1 chooses a better option for an item t1 than user u2, then she

12

m users

...

user u1

user u2

user um

n items
with k choices

item t1
(c11) ...

...

(c12) (c1k)

item t2
(c21) ...(c22) (c2k)

item tn
(cn1) ...(cn2) (cnk)

(a) Our problem

t1 t2 tn...

c11
1

... c1k

1

1

u1
u2

...

um

c21
1

... c2k

1

1

cn1
1

... cnk

1

1

...

C =

C =

(b) The input

Figure 1.1: (a) Our setup is very general: we have m users who choose one from k
choices of labels for each of n items. Based on their responses, we like to determine
the relative ranking of users’ abilities, and the relative ranking of labels appropri-
ateness for each item. (b) The input to our algorithm is the (m× k × n) response
tensor C, or equivalently its flattened (m× kn) response matrix C.

must also choose an equal or better option for any other item t2 to reflect
this consistency. This implies there is an implicit ordering among the choices
for each item from best to worst and the better users pick better options
for every item. Formally, assume that the abilities θi are all distinct, and
also that for every item tj , the qualities αjh over all the options are distinct
so that there is a unique linear ordering of the users, and of the options for
each item.

Definition 1 (Consistent Responses). A response matrix C is consistent if
there exists an assignment of selection abilities θ and item qualities α, s.t.
for any pair of users u1 and u2 with θ1 > θ2, and for any item tj where u1

chooses option h1 and u2 chooses option h2, we have αjh1 ≥ αjh2.

Consecutive ones property (C1P). We observe that consistent re-
sponse matrices, when row-sorted according to user abilities, satisfy a widely
studied ordering property in seriation, called the consecutive ones property
(C1P). We will follow the notation from seriation theory, and call this a
P-matrix.

Definition 2 (C1P, P-matrix & pre-P-matrix [1]). A binary matrix satisfies
C1P if in each column, all the 1’s are consecutive. A binary matrix that
satisfies C1P is also called a P-matrix. If the rows of a matrix can be
permuted so it becomes a P-matrix, we call it a pre-P-matrix.

13

c11 c12 c13 c21 c22 c23


u3 1 1
u4 1 1
u1 1 1
u2 1 1
u5 1 1

(a) C

c11 c12 c13 c21 c22 c23


u1 1 1
u2 1 1
u3 1 1
u4 1 1
u5 1 1

(b) C′

Figure 1.2: Example 1: pre-P-matrix C and P-matrix C′ (vertical separators be-
tween columns c13 and c21 are just for illustration).

In other words, no 0’s appear between any two 1’s in a column in a
P-matrix. To see that consistent responses with users sorted by abilities θ
give a P-matrix, suppose for a contradiction that a column corresponding
to an option for an item has two or more blocks of ones. Then the users
corresponding to the zeros in between these blocks will have chosen another
option for which the quality is strictly higher or lower than that of this
option since the choice qualities are assumed to be distinct. But this violates
consistency since the rows are ordered by user ability.

Observation 1 (Consistent Responses give Consecutive Ones Matrices). A
response matrix C is consistent iff it is is a pre-P-matrix.

Consequently, ranking the users in the case of consistent responses cor-
responds to the problem of determining a permutation of the rows of C so
that the result obeys C1P.

Example 1 (pre-P-matrix). Matrix C in Figure 1.2a is not a P-matrix
because it has two 0’s between 1’s in the column c21. However, it is a pre-
P-matrix because after swapping rows (u1, u2) with (u3, u4), it does satisfy
C1P (see Figure 1.2b). Also notice that any P-matrix automatically deter-
mines a ranking on the options consistent with the ranking of the users. For
Figure 1.2b, these are (c12 → c11 → c13) and (c23 → c21 → c22).

The general case. Our goal is to develop a fast and principled algo-
rithm for solving the problem in the more general practical case when the
response matrix is not pre-P, yet returns a P-matrix in the special case of
pre-P matrix inputs. To that end, we review prior work on reconstructing
P-matrices and for the general case.

14

Method C1P non pre-P k≥2 scalable complexity
BL [4] 4 8 4 4 O(mn)
ABH [1] 4 4 4 4 O(mn)
EM [7] 8 4 4 8 −
DDKR1 [6] 8 4 8 4 O(mn)
DDKR2 [6] 8 4 8 8 O(m2n)
GKM [12] 8 4 8 4 O(mn)
HITSnDIFFS 4 4 4 4 O(mn)

Table 1.1: A comparison of the various desirable properties achieved by prior work
and our new method HITSnDIFFS: “C1P” refers to reconstruction of the correct
ordering when the input is pre-P; “non pre-P” refers to whether the algorithm
can be applied to non pre-P instances; “k ≥ 2” refers to whether the algorithm
can handle non-binary choices; and “scalable” refers to linear time complexity per
iteration (which is reported in the last column).

1.2 State-of-the-art

Some of the state-of-the-art methods for item labeling and algorithms for
reconstructing the C1P property are discussed below.

BL. Booth and Leuker [4] proposed the fastest known algorithm to find
all possible permutations of the rows that reconstruct the C1P ordering
in time linear in the number of nonzero entries in the matrix, thus taking
time O(mn) in our setting. Their method constructs a “PQ-tree”, which
represents all possible permutations of the rows that reconstruct the C1P
ordering if at least one C1P ordering exists, and otherwise informs that
there is no such ordering.

Since their method fails to produce an ordering of the rows when the ma-
trix is not a pre-P-matrix, it therefore cannot be used as a general heuristic
for simulated or real-world datasets that are not ideal.

ABH. Atkins et al. [1] proposed an elegant spectral sort method to de-
termine whether a matrix obeys C1P, thus giving a rare continuous method
to solve a seemingly combinatorial ordering problem. The method returns
a PQ tree (all possible permutations of the rows that reconstruct the C1P
ordering) like BL, but in addition, it is general and also adapts as a real-
world heuristic when the input matrix does not obey C1P. However even
though it can be used as a heuristic on datasets that do not satisfy C1P,
the accuracy of this method on many simulated and real datasets is poor.

EM. Dawid and Skene [7] proposed an approach for label aggregation,
where they assume that each user has a latent confusion matrix for labeling.
The off-diagonal elements represent the probabilities that a user mislabels

15

an arbitrary item from one class to another while the diagonal elements
correspond to her accuracy in each class. The confusion matrices and true
labels are jointly estimated by maximizing the likelihood of observed labels.
This method is very popularly used in item labeling, but does not always
return a C1P ordering in the ideal case.

DDKR1, DDKR2. Dalvi et al. [6] proposed two methods DDKR1
and DDKR2 that simultaneously output a measure of user ability as well
as the label for each item, along with error bounds for arbitrary user-label
graphs, The error bound for both the algorithms they propose is governed
by the expansion of the graph. By constructing an assigment matrix A and
a rating matrix B, both the algorithms rely on finding eigenvectors of the
symmetric matrices AᵀA and BᵀB. The difference between the algorithms
is that DDKR1 uses the ratio of the eigenvectors for computing the user
ability ranking and the labels, while DDKR2 uses the eigenvectors of the
ratio (i.e. the Hadamard or entrywise division) of the matrices. In the
scenario where every user labels every item, both DDKR1 and DDKR2
produce the same user ability output; the performance of the two methods
starts deviating as the number of responses decreases. Among the two,
DDKR2 requires quadratic time while DDKR1 can be run in linear time
using the power method.

GKM. Ghosh et al. [12] proposed a method GKM that only outputs the
item labels. The robustness of this algorithm to manipulation by adversarial
or strategic raters is also analyzed with error bounds. Like DDKR1 and
DDKR2, this method also involves calculating the first eigenvector of a
symmetric matrix, and so can be run in linear time using the power method.

Thus, with the exception of ABH and BL, none of the methods
DDKR1,DDKR2,GKM,EM are guaranteed to return a consecutive ones
ordering if the input matrix is pre-P. However, BL cannot be used in gen-
eral crowdsourced settings since it cannot generalize to datasets that do not
satisfy C1P, and while ABH can be used as a heuristic for real datasets,
its performance is generally poorer than the other methods (as shown in
Chapter 5), as the method is mostly aimed at solving the C1P problem.

Apart from the method BL designed exclusively to satisfy C1P, we
compare our own spectral method introduced in this paper to the spec-
tral methods DDKR1, DDKR2, GKM and ABH, as well as the clas-
sic expectation-maximization algorithm EM. There are also several other
newer crowdsourcing item-labeling algorithms, many of which are based on
expectation-maximization, along with bounds on rates of convergence and
error rates. Gao and Zhou [11] proved convergence rates of a projected EM
algorithm for the Dawid-Skene estimator. The revealed exponent in the rate

16

of convergence was shown to be optimal via a lower bound argument. Gao
et al. [10] established matching upper and lower bounds under the classic
Dawid-Skene model - the minimax rate of misclassification for estimating the
truth from crowdsourced labels were shown to have upper and lower bounds
with exact exponents that match each other. Khetan and Oh [16] introduced
a novel adaptive scheme to assign labeling tasks to users, which was shown
to be optimal given a fixed budget on the number of responses collected
on the crowdsourcing system. Karger et al. [13, 14] tackled the problem
of minimizing the total number of labeling task assignments to achieve a
target overall reliability, by introducing a new algorithm for deciding which
tasks to assign to which workers, and for inferring correct answers from the
workers’ answers. They showed that the method was order-optimal through
comparison to an oracle that knows the reliability of every worker. Liu et
al. [19] transformed the problem of aggregating crowdsourced labels into a
standard inference problem in graphical models, and applied approximate
variational methods, including belief propagation (BP) and mean field (MF).
They showed that by choosing a good distribution on the workers’ reliabil-
ity, their methods are competitive with state-of-the-art algorithms based on
more complicated modeling assumptions. Zhang et al. [32] proposed a two-
stage efficient algorithm for multi-class crowd labeling problems - the first
stage uses the spectral method to obtain an initial estimate of parameters,
and the second stage refines the estimation by optimizing the objective func-
tion of the Dawid-Skene estimator via the EM algorithm. This algorithm
was shown to achieve the optimal convergence rate up to a logarithmic fac-
tor, and is comparable to the most accurate empirical approach. Shah et
al. [24] proposed a permutation-based model for crowd labeled data that
is a significant generalization of the common Dawid-Skene model, which
offers significant robustness in estimation, while incurring only a small addi-
tional statistical penalty as compared to the Dawid-Skene model. They also
proposed a computationally-efficient method that is uniformly optimal over
a class intermediate between the permutation-based and the Dawid-Skene
models, and is uniformly consistent over the entire permutation-based model
class.

1.3 Our method “HITSnDIFFS”

We present a new method for item labeling called HITSnDIFFS that pre-
serves the ideality properties of BL and ABH, while retaining the speed of
the iterative methods that do not return the correct solution in the ideal case

17

(DDKR1,DDKR2,GKM,EM), and also performs as well in various mea-
sures of accuracy in the general case on both simulated and real-life data.
Our method, is a variant of the popular HITS algorithm [18], applied to
the the bipartite graph corresponding to response matrix with two crucial
differences: 1) HITS relies on taking the sums of adjacent components of
the graph in each step; we use averages instead of sums. 2) we prove that
if the input response matrix obeys C1P, then the ordering of the users cor-
responding to the second largest eigenvector of the update matrix of the
average version of HITS reconstructs this ordering. To construct the second
largest eigenvector of the average version of HITS, one could proceed by
using deflation methods [31] that subtract out the subspace corresponding
to the first eigenvector from the original matrix and applying the power
method to find the largest eigenvector in the resulting matrix. However,
such methods are known to suffer from numerical issues [22], especially as
the first two eigenvalues of a matrix become more strongly graded.

Instead, inspired by the proof methodology of ABH, we propose a new
intermediate step taking differences of user scores in the updates of the aver-
aging version of HITS, and prove that when the response matrix obeys C1P,
our new algorithm that we term “HITS and DIFFS” (or HITSnDIFFS) re-
constructs the correct ordering of the rows. It is possible that despite the
deflation method suffers from numerical issues, the relative ordering of ele-
ments in the eigenvector is still preserved, however it is unproven, and thus
we rely on our new intermediate step of user score differences. As the num-
ber of users m scales, computing the update matrix explicitly takes time
Θ(m2n). However each iteration of the power method on this matrix using
the average HITS and DIFFS idea (or alternatively by the deflation method)
takes time only O(mn) by using factored matrix-vector products instead of
matrix-matrix products. Furthermore, on synthetic and real-world data,
our fast method extends to compute a heuristic ordering that is competitive
with other spectral methods.

1.4 Contributions of this thesis

1. We define a notion of consistent responses in crowd-sourced label
choice experiments by using matrices with C1P from seriation the-
ory that we argue should be retained by any principled approach to
solving the problem.

2. We propose and analyze a simple variant of the HITS algorithm of
Kleinberg [18] inspired by the proof technique of the spectral method

18

by Atkins et al. [1] that we call HITSnDIFFS for ranking users and
label choices. Our method is both scalable and competitive in quality
with other slower methods.

3. We show that HITSnDIFFS recovers the consecutive ones ranking of
users in the ideal case when there is a unique order obeying C1P.

4. Unlike fast combinatorial algorithms for finding the C1P ordering only
if one exists, HITSnDIFFS can deal with the general case when such
orders do not exist. We can thus compare it with other methods for
item labeling (DDKR1,DDKR2,GKM,EM) on synthetic and real
data sets. even though these methods cannot guarantee to recon-
struct the ideal ordering in the consistent case. We also show superior
performance compared to ABH on these synthetic and real data sets.

5. We use ideas from Item Response Theory (IRT) to define the BSTS
model as a new synthetic data generator for the crowd-sourced label
choice problem. We then show that HITSnDIFFS works surprisingly
well over synthetic data from this model, as well as in many real data
sets involving binary and multiple choice options for label selection for
items, to give accurate item labels as well as user orderings.

Outline. In the rest of the paper, we provide some more background
and related work (Chapter 2), describe our new method HITSnDIFFS and
prove its surprising properties (Chapter 3), describe our synthetic and real
data sets (chapter 4), show experimental results of our method’s relative per-
formance (Chapter 5), and discuss future work (chapter 6) and conclusions
(chapter 7).

19

Chapter 2

Preliminaries and Related
work

2.1 The method of Atkins et al. (ABH)

Given a pre-P matrix C, the spectral method of Atkins et al. [1] (which we
refer to as “ABH”) indirectly uses the product of the response matrix C
and its transpose to form C ·Cᵀ to find all possible orderings of users that
reconstruct the C1P property for C. Their method has two main parts:
showing that if C is a P-matrix, (1) then C · Cᵀ has the special property
of being an R-matrix (which we will define below), and (2) the eigenvector
corresponding to the second smallest eigenvalue of the related Laplacian
matrix L = D−C ·Cᵀ is monotonic (i.e. its elements are in either increasing
or decreasing order). Here D is a diagonal matrix filled with the row sums
of CCᵀ. Given these two facts, they prove that if C is a pre-P matrix, then
the eigenvector corresponding to the second smallest eigenvalue of L can be
found by a method called SpectralSort [1] to find all row permutations that
reconstruct the C1P property for C.

Definition 3 (R-matrix [1]). A matrix A is called an R-matrix if it is
symmetric and

aij ≤ aik , for j < k < i

aij ≥ aik , for i < j < k

If the rows and columns of A can be permuted symmetrically to become an
R-matrix, then we say that A is pre-R.

20

Intuitively, the definition describes a matrix where, the values fall off
as we move away from the diagonal along any row. Since for C ·Cᵀ, each
matrix entry represents the dot product of the responses of two users, when
the response matrix is sorted by user ability, the entries represent the number
of common responses for a pair of users. These values are highest for a user
with herself and fall off as we move away along the correct linear ordering
of the abilities represented in the correctly sorted response matrix. The R-
matrix property is preserved if we add a constant to all off-diagonal entries,
so we can assume WLOG that all off-diagonal values are non-negative.

Our method. We will prove that a similar theoretical guarantee holds
for the variant of HITS that we will propose. In particular, given a pre-P
matrix C, we will define an update matrix U (which is a function of C) to
find all possible orderings of users that reconstruct the C1P property for
the matrix C. To do this, we will prove the following two statements: in
lemma 6, we show that if C is a P-matrix, then U is an R-matrix, and in
lemma 7, we show that the eigenvector corresponding to the second largest
eigenvalue of U is monotonic. These two statements imply that if C is
a pre-P matrix, then the eigenvector corresponding to the second largest
eigenvalue of U can be used to find all orderings that reconstruct the C1P
property for the matrix C. However, we will do this without explicitly
computing the update matrix U - by adding a new user score difference layer
to the bipartite graph representing users and item labels and extending the
power method to this construct, we perform updates directly on the graph
corresponding to the response matrix.

2.2 Hubs and Authorities (HITS)

The HITS algorithm by Kleinberg [18] implements the power method to
converge on a set of hub and authority scores in a bipartite graph where the
hubs pick and point to a subset of the authorities. If the link structure of the
p hubs to q authorities is captured in a p× q binary matrix M, then the hub
scores converge to the largest eigenvector of the matrix MMᵀ. These scores
have the nice property that the hub scores are proportional to the sum of
the authority scores of the nodes they point to and the authority scores are
proportional to the sum of the scores of the hubs pointing to them, thus
reflecting a mutually consistent set of scores.

Our method. We build upon this fundamental idea of updating scores
in a bipartite graph by iterative summation of scores from one side, and
updating the other side accordingly. However, we need to modify the al-

21

gorithm in two ways: 1) our precursor to HITSnDIFFS is an averaging
version of HITS where instead of summing the scores of the authorities that
a hub points to, we take their average value as the new hub score. 2) We
further modify this average version to use differences among the hub score
vectors to compute the ordering of the second largest eigenvector of the up-
date matrix in our HITSnDIFFS method. We implement this method by
performing updates in a tripartite instead of a bipartite graph.

22

Chapter 3

The HITSnDIFFS Algorithm

We describe a natural averaging version of the HITS algorithm that we
call “avgHITS.” Our key observation is that the second eigenvector of the
update matrix corresponding to avgHITS reconstructs the row ordering
with C1P if one exists and is unique. We then describe an efficient variant
that we call “HITSnDIFFS” to find this second eigenvector: it uses an
additional vector of differences between adjacent scores and updates it in
the standard loop of the avgHITS algorithm to compute the ordering we
require. We then compare its time complexity with other methods and prove
that it returns the correct ordering when the input responses are consistent.

3.1 “avgHITS”: a precursor to “HITSnDIFFS”

As shown in Figure 3.1a, we can construct a bipartite graph G = (L∪R,E)
equivalent to the response matrix C:

• Partition L contains a vertex for each user: L = {u1, ..., um}.

• Partition R is a collection of n vertex sets R = {I1, ..., In}, representing
items. Each set Ij contains k vertices: Ij = {cj1, ..., cjk}; here, cjh
represents option h of item j.

• We add an edge between a user ui and an option cjh if user i picks
option h for item j.

Define s as a (m×1) user score vector with one score for each user. Also
define w as an (kn × 1) option weight vector denoting weights for each of
the kn options, according to their order in the response matrix C.

23

u1

u2

u3

u4

u5

c11

c12

c13

c21

c22

c23

item t1

item t2

users options

(a)

s1

s2

s3

s4

s5

w1

w2

w3

w4

w5

w6

sdiff
1

sdiff
2

sdiff
3

sdiff
4

user scores option weightsuser diffs

(b)

C =


1 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 1 0 0 1



(c)

Figure 3.1: (a): Bipartite graph of users and item options they choose. (b): Tri-
partite graph of user scores, item weights, and user diffs that are used by HITSn-
DIFFS. (c): Response matrix C corresponding to the bipartite graph from (a).

avgHITS is the modification of the popular HITS update rule that uses
averages instead of sums to iteratively update the user scores and option
weights: an option weight cjh is updated to be the average of the scores of
all users who picked it, and the user score si of the ith user is updated to be
the average of the weights of all the options that the user i picked.

An equivalent matrix formulation of the avgHITS rule is as follows.
Denoting columns of C by C:j , define column-normalized response matrix
Ccol of size m× kn with columns Ccol

:j by:

Ccol
:j =

C:j∑m
i=1Cij

Similarly, denoting rows of C by Ci:, define row-normalized response matrix

24

Crow of size m× kn with rows Crow
i: by:

Crow
i: =

Ci:∑nk
j=1Cij

At each iteration, we update the option weight vector w and user score
vector s as follows until convergence:

w(t) ← (Ccol)ᵀs(t−1)

s(t) ← Croww(t)

By concatenating above two update equations, we can update user scores
between iterations directly by multiplying the two normalized response ma-
trices into one update matrix U as in:

s(t) ← Crow(Ccol)ᵀ︸ ︷︷ ︸
U

s(t−1) (3.1)

These iterations are not yet very helpful. Indeed, we observe (see
lemma 2) that the eigenvector corresponding to the largest eigenvalue of U
is the all-ones vector e, and this is the vector of user scores that avgHITS
converges to. However, it turns out that it is the eigenvector correspond-
ing to the second largest eigenvalue of U that we seek. We will prove in
section 3.4 the following theorem:

Theorem 1 (2nd eigenvector of avgHITS recovers C1P). If C is a pre-P-
matrix with a unique consecutive ones ordering of its rows, then the unique
consecutive ones ordering of the rows of C is given by the ranking of the
rows sorted by values in the eigenvector corresponding to the second largest
eigenvalue of U.

We now describe our modification of the avgHITS iterative loop to find
the exact ordering of this second eigenvector very efficiently in linear time
per iteration. Note that all nomenclature details used are listed together in
appendix A.

3.2 Our algorithm HITSnDIFFS

Rather than updating the user scores iteratively, our variant HITSnDIFFS
updates the differences between adjacent user scores by using a suitably
modified update matrix, and results in the scores converging to the ordering

25

according to the second eigenvector of U. Furthermore, this modification
only adds a linear overhead of computing the user score difference vectors
and normalizing it in every iteration. Yet, as we will show later in section 3.4,
when there is a unique solution to the consecutive ones ordering of the rows
of the response matrix, then HITSnDIFFS will discover it correctly.

Consider response matrix C from Figure 3.1c corresponding to the bi-
partite graph from Figure 3.1a. We add a third partition of nodes to the
left of the user nodes, which represents differences between user scores (Fig-
ure 3.1b): To go from the user scores (middle) to the user difference scores
(left), we find differences between consecutive user scores.

Defining the left partition of nodes as sdiff, we can rewrite as

sdiff
i = si+1 − si i ∈ [m− 1]

= Ss

where S ∈ R(m−1)×m is defined as:

S =


−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1


In the reverse direction, there are infinitely many vectors s that can be

generated from a given sdiff, all shifted by a constant. Since we only want a
final ordering of users, we can WLOG set the first element of the vector s
to be 0. The transformation then is

s = Tsdiff

where T ∈ Rm×(m−1) is the lower triangular matrix

T =


0 0 · · · 0
1 0 · · · 0
1 1 · · · 0
...

...
. . . 0

1 1 · · · 1


We can now get a user difference score update rule of the form sdiff ←

26

Udiffsdiff for iteration (t) as follows:

sdiff(t) = Ss(t)

= SCrow(Ccol)ᵀs(t−1)

= SCrow(Ccol)ᵀTsdiff(t−1)

= SUTsdiff(t−1) (3.2)

In other words, Udiff := SUT is a ‘difference update’ matrix that is used
to update sdiff from one iteration to the next, and the update equations for
HITSnDIFFS take on the form of:

sdiff(t) ← SCrow(Ccol)ᵀT︸ ︷︷ ︸
Udiff

sdiff(t−1) (3.3)

It follows that by running the mutual updates of w, s and sdiff as de-
scribed in algorithm 1, we will converge to the eigenvalue corresponding
to the largest eigenvector of Udiff. Our algorithm HITSnDIFFS that im-
plements this is described in algorithm 1. We prove the following crucial
property in section 3.4 (see eq. (3.6)):

Lemma 1 (Eigenvector correspondence). x is the eigenvector corresponding
to the second largest eigenvalue of U iff y = Sx is the eigenvector corre-
sponding to the largest eigenvalue of Udiff.

In other words, converting the converged y back into a user score, we
regain the ordering of the rows according to values in the second largest
eigenvector of U. This, along with Theorem 1, gives our main result in
theorem 2 that HITSnDIFFS detailed in algorithm 1 reconstructs ideal
consistent orderings. More details follow in section 3.4.

Note that algorithm 1 can be performed by using matrix-vector products
only; we do not actually have to multiply any matrices directly, thus avoiding
a possible quadratic time complexity. In particular, in the case when each
of m users picks exactly one option out of k for each of n items, then each
of the matrix-vector products in updating sdiff(t) from the values of sdiff(t−1)

involves O(mn) time. Also note the output of HITSnDIFFS provides us
with additional information on the item options: we obtain both an ordering
of all users (the s vector obtained at convergence), as well as an ordering of
each option of each question (the w vector obtained at convergence).

Theorem 2. If C is a pre-P-matrix with a unique consecutive ones ordering
of its rows, then HITSnDIFFS reconstructs the consistent ordering of the
users taking only time O(mn) (linear in the number of nonzeros in U) per
iteration.

27

Algorithm 1: HITSnDIFFS: A ranking algorithm that uses a user-item
response matrix C

Input: Response matrix C, randomly initialized student scores s0

Output: Student scores s, item option weights w

1 s← s0 // initialize user scores
2 repeat

3 w← (Ccol)ᵀs // update item option weights
4 s← Croww // update user scores

5 sdiff ← Ss // update user score differences

6 Normalize sdiff to be a unit vector

7 s← Tsdiff // update user scores from differences

8 until convergence or iteration limit

3.3 Complexity Comparison

We now outline the asymptotic complexity (in terms of the number of users)
of the different methods described earlier - BL [4], ABH [1], DDKR1,
DDKR2 [6], and GKM [12].

ABH. Given m users with their pairwise similarities recorded in a sym-
metric matrix, finding all orderings that reconstruct C1P has complexity
O(m(T (m) + m logm)), where T (s) is the time for an eigen-calculation on
a matrix with s entries. Using Lanczos algorithm (as stated in [1]) to com-
pute the second smallest eigenvector results in T (m) being nearly linear, but
having a dependence on the difference between the first two distinct eigen-
values. When C is not a pre-P matrix, ABH can return the ordering given
by the second smallest eigenvector as the final user ordering as a heuristic.
However, the matrix whose second smallest eigenvector is calculated is the
Laplacian of the matrix CCᵀ. Just like with HITSnDIFFS, using matrix-
vector products instead of matrix-matrix products, the overall running time
for returning a ranking of users as a heuristic from ABH has complexity
O(mn).

GKM and DDKR1. The binary classification approaches GKM [12]
and DDKR1 [6] make use of the first eigenvectors of different matrices.
Both of these can be implemented to run in O(mn) time per iteration like
our method using the factorization of the update matrix. However, this
method is not proven to return C1P in the ideal case.

DDKR2. Given an assigment matrix A and a rating matrix B, this
method involves finding the first eigenvector of the Hadamard (entrywise)
division AᵀA � BᵀB. This requires explicit computation of the matrices

28

AᵀA and BᵀB, and thus takes time O(m2n).
EM. The complexity of EM is tricky to analyze - the open-source version

used [5] is shown experimentally to be slower than other methods, but an
optimized version of EM may have much faster performance.

BL. The original paper by Booth and Leuker (BL) [4] for reconstructing
the C1P property however can work directly on the initial response matrix
and runs in linear time. But this method is purely discrete and does not
extend to given any meaningful heuristic in the non-ideal case.

29

3.4 HITSnDIFFS recognizes C1P

We show that if C is a pre-P matrix with a unique consecutive ones ordering,
then the eigenvector corresponding to the second largest eigenvalue of U can
be used to find this ordering. To show this, we use the two theorems we
alluded to in section 3.2.

Note that if there are multiple connected components in the user-option
bipartite graph, there is no way to get a total ordering on the users or
questions, since we cannot compare between the different connected compo-
nents; we can only get an ordering for each connected component separately.
Thus, in the sequence, we assume a single connected component, and thus,
multiplicity 1 of the largest eigenvalue of the update matrix U.

We first state two Lemmas that will be useful in the proofs.

Lemma 2 (Constant row sums). If all rows of a non-negative square ma-
trix A sum to a scalar b, then the largest eigenvalue of A is b with the
corresponding eigenvector in the direction of e = 1n.

We next restate the Perron-Frobenius Theorem [21]:

Lemma 3. There exists a user who picked options for all questions that
no other user picked (i.e. there exist 2 users not connected in the bipartite
user-options graph), if and only if the largest eigenvalue of the matrix U has
multiplicity > 1.

Now we proceed to prove lemmas that will enable us to prove theorem 1
and theorem 2.

Lemma 4 (U is row-stochastic). Each row of U has sum 1.

Proof. Define vi as the sum of elements of the ith row of U: vi =
∑m

j=1 Uij .
We want to show vi = 1 ∀i ∈ {1, 2, ...,m}.

Recall that U = Crow(Ccol)ᵀ, so ∀i, the ith row of U, Ui: is generated
from the corresponding row Crow

i: of Crow and all the rows Ccol
j: of Ccol.

Then,

vi =

m∑
j=1

Crow
i: ·Ccol

j:

= Crow
i: ·

m∑
j=1

Ccol
j:

30

By construction,
∑m

j=1 Ccol
j: is the ones vector e. So,

vi = Crow
i: ·

m∑
j=1

Ccol
j:

= Crow
i: · e

= 1.

The last step follows by definition of row-normalized response matrix
Crow.

Lemma 5 (1st eigenvector of avgHITS). If the largest eigenvalue of U has
multiplicity 1, the fixed point of the avgHITS update rule is the ones vector
e = 1m

Proof. The avgHITS update rules above imply for any iteration l > 0,

s(l) = Us(l−1)

=⇒ s(l) = Uls(0)

Let the largest eigenvalue of U be λ1 with corresponding eigenvector z1.
By the power rule, if λ1 has multiplicity 1, s(l) converges in the direction of
z1 as l goes to infinity (barring the very unlikely random initialization that
is orthogonal to z1).

Note that U is square and non-negative since Crow and Ccol are both
non-negative. By lemma 4, each row of U has sum 1, and we can then use
lemma 2. This gives us the result, since the fixed point of avgHITS is in
the direction of the eigenvector corresponding to the largest eigenvalue λ1

of U (provided λ1 has multiplicity 1) and lemma 2 implies U has largest
eigenvalue 1 with corresponding eigenvector e.

We can now prove our main result in theorem 1 using the following two
lemmas.

Lemma 6. If the response matrix C is a P-matrix and each user picks the
same number of options, then the update matrix U is an R-matrix.

Proof. If C is a P-matrix, CCᵀ is an R-matrix [15]. By a similar argument,
we show if C is a P-matrix, U = Crow(Ccol)ᵀ is an R-matrix. We need to
show neither of

uij > uik ∀j < k < i (3.4)

uij < uik ∀i < j < k (3.5)

31

is true. Equation (3.4) implies that, out of the columns of C which have a 1
in the ith row (and therefore nonzero entries in the ith row of Crow), strictly
more have 1’s in the jth row than the kth row. But since j < k, the column
which has a 1 in the jth row but not the kth row leads to a violation of the
consecutive ones property. Equation (3.5) leads to a similar contradiction.

Next, we also need to prove U is symmetric; for this, we need the prop-
erty that each user picks the same number of options - say each user chooses
nans options. Consider any i, j ∈ {1, 2, ...,m}, i 6= j. We need to show
uij = uji.

uij =
nk∑
h=1

crow
ih ccol

jh

uji =
nk∑
l=1

crow
jl c

col
il

To contribute to the sum, the respective elements of Crow and Ccol have
to both be nonzero. When crow

ih and ccol
jh are both nonzero, it implies cih

and cjh are 1. But by definition of Crow, all nonzero entries are equal:
crow
ih = 1

nans because each user chooses nans options. And by definition of

Ccol, ccol
ih = ccol

jh for all nonzero ccol
ih , ccol

jh . So, uij = uji for all i 6= j, and thus
U is symmetric.

The following lemma shows the desired property of the second eigenvec-
tor of U in the ideal case.

Lemma 7. If C is a P-matrix and each user chooses equal number of op-
tions, the eigenvector corresponding to the second largest eigenvalue of U is
monotonic.

Proof. We will prove this in a method similar to [1]. Define the matrices
S ∈ R(m−1)×m and T ∈ Rm×(m−1) as in section 3.2.

Note that TS = (Im − eeᵀ1). Note that for any vector v, Sv = (v2 −
v1, v3 − v2, ..., vr − vr−1)ᵀ. Similarly, the ith row of SU is just the difference
between the (i + 1)th and ith rows of U. However, as shown in lemma 4,
each row of U sums to 1. This implies each row of SU sums to 0.

Let x be an eigenvector of U that is not in the direction of the all ones

32

vector e = 1m, i.e. x 6= αe. Then,

Ux = λx

SUx = λSx

SU(Im − eeᵀ1)x = λSx

SUTSx = λSx

Udiffy = λy, where y = Sx (3.6)

The equivalence between the second and third lines above is because each
row of SU sums to 0 as shown above, so SUe = 0. So, any eigenvalue λ of U
is also an eigenvalue of Udiff, except for the eigenvalue of U corresponding to
the e eigenvector. So, Udiff has exactly the same eigenvalues as U, except
the largest eigenvalue 1, and the eigenvectors of Udiff are the differences
between the elements of the corresponding eigenvector of U.

Using an argument identical to Theorem 3.2 in [1], we know the off-
diagonal elements in Udiff are non-negative because U is an R-matrix.

Since off-diagonal elements of Udiff are non-negative, the matrix Udiff +
tIm−1 is non-negative for some t ∈ R. We can now apply Perron-Frobenius
Theorem - there exists a non-negative eigenvector of Udiff corresponding to
the largest eigenvalue of Udiff. But we know Udiff has exactly the same
eigenvalues as U, except the largest eigenvalue 1, and the eigenvectors of
Udiff are the differences between the elements of the corresponding eigen-
vector of U. Since the differences between the elements of the eigenvector
corresponding to the second largest eigenvalue of U (largest eigenvalue of
Udiff) is non-negative, that eigenvector of U is monotonic.

The above two lemmas imply that if we start with a pre-P matrix C,
sorting the rows according to the second eigenvector ordering of the corre-
sponding update matrix U gives a P-matrix, proving theorem 1. This in
turn gives our main theorem 2.

33

Chapter 4

Synthetic and Real-World
Data

We next describe the BSTS generative model for synthetic data that we
repurpose from Item Response Theory (IR) for our problem and explain
why it is particularly suited for our problem. We then provide details of
real-world data sets we use. The BSTS model generates exactly one option
for each item for each user and hence a response matrix with equal row sums.
However, some of its variants and the real-world data we work with involve
response matrices with unequal row sums. We describe how our method
handles this generalization to unequal row sums in section 5.2.

The BSTS Data Generator from IRT. To test our method on the la-
bel choice problem, we propose a new synthetic data generator that combines
models from the statistical field of Item Response Theory (IRT). IRT [2] is
widely used to assess students, e.g. in the Scholastic Aptitude Test (SAT)
[20] and Graduate Record Examinations (GRE) [17]. It models the proba-
bility of a student providing a correct response as a function of latent traits
describing student ability and item factors characterizing the question.

We use an extension of a multiple choice response model due to Thissen
and Steinberg [29] to derive a generative model of how users select item
label options, which we describe next. In the widely studied two parameter
logistic (2PL) model from IRT for binary responses, the ability of student i
is captured by a single latent trait variable θi, and question j has a difficulty
and a discrimination factor. The model specifies item characteristic curves
that plot the probability of a student answering the item correctly as a
function of her ability. The basic 2PL model has been extended to handle
multiple (“polytomous”) responses [3, 23].

34

We use a combination of these extensions proposed by Thissen and Stein-
berg (see the chapter by Thissen and Steinberg in [29]) for generating our
simulated data. We call this the BSTS model combining the last names of
all four contributors (Bock-Samejima-Thissen-Steinberg). The model pos-
tulates a latent “don’t-know” choice numbered zero along with the given k
options. Each option including the latent one has two parameters αh and
κh. The probability that a user of ability θi chooses the option h between 1
and k is given by the following response function:

P(Cih = 1|θi, αh, κh) =
eαhθi+κh + 1

ke
α0θi+κ0∑k

h=0 e
αhθi+κh

.

Note that for an item labeling problem with k options per item, this model
requires 2(k+ 1) parameters, including a pair for each option and a pair for
the don’t-know option. This is an appropriate generalization of the binary
choice model for choosing among multiple options especially when there is
an ordering among the distractors to the best label as reflected in Figure 4.1.
Note that the BSTS model generalizes the widely studied Multinomial Logit
(MNL) model in discrete choice theory by setting both α0 and κ0 to negative
infinity thus ruling out the don’t-know option. The MNL itself generalizes
the Logistic model for binary choice which itself is widely used in data mining
and neural network models.

We reiterate why the BSTS model is particularly appropriate for the
crowd-sourced item labeling problem. In this model, note that as the ability
of the chooser deteriorates, the choices become randomized among all the
options rather than converge on one focal bad option. This is particularly
representative of user choices among item labels when there is a clear ap-
propriate label chosen by the high ability users and the other choices are
somewhat ordered but eventually non-skilled choosers pick among all choices
randomly.

Three real-world data sets. We use the NLP-RTE and NLP-TEMP
datasets [27] for binary item labeling and the GAL dataset [26] for multiple
choice item labeling. NLP-RTE consists of 164 users labeling 800 binary-
choice items. Each item is a pair of sentences {A,B} and users choose
whether or not sentence A implies sentence B. Note that there are 8000 re-
sponses, and not all users label all items. NLP-TEMP is another binary la-
beling dataset with 76 users labeling 800 items, consisting of 4620 responses.
Each item consists of a text paragraph and two events; users choose which
event occurred first based on the text paragraph. The GAL (Get Another
Label) dataset is a multiple choice dataset from Amazon Mechanical Turk

35

4 2 0 2 4 6 8
User Ability θi

0.0

0.2

0.4

0.6

0.8

1.0
R

e
sp

o
n
se

 F
u
n
ct

io
n

Figure 4.1: Item-characteristic curves under the BSTS model: X-axis represents
the user ability, Y-axis the probability of choosing an option. The increasing order
of appropriateness of the items is blue , green and red. Note that for users of low
ability, the chance of choosing all of them converge to the same random guessing
value 1

3 .

with 613 users labeling 1594 items which has 13021 unique responses. Each
item is a website; users choose which of 5 categories each website belongs
in. We see that these three datasets provide real-world examples of users
labeling items into different categories based on their ability.

36

Chapter 5

Experiments and Results

Our experiments compare accuracy and scalability of the various methods.
In particular, we will show that: 1) HITSnDIFFS produces user rankings
and item labelings with superior accuracy compared to the various linear
spectral methods; and 2) HITSnDIFFS is competitive with other state-of-
the-art methods that are asymptotically slower.

5.1 Methods and their implementation

In addition to our method HITSnDIFFS, we implement DDKR1 and
DDKR2 for binary item labeling [6], GKM for binary item labeling [12],
EM for multi-choice item labeling [7], and the ABH heuristic for multi-
choice item labeling [1].

DDKR1 and DDKR2 can simultaneously output a measure of user abil-
ity as well as the label for each item. These methods show theoretical error
bounds for arbitrary user-item graphs. In the scenario where every user
labels every item, both DDKR1 and DDKR2 produce the identical out-
put; the performance of the two methods starts deviating as the number of
responses decreases. The error bound for both the algorithms they propose
is governed by the expansion of the graph. Recall that by constructing an
assigment matrix A and a rating matrix B, both the algorithms rely on find-
ing eigenvectors of the symmetric matrices AᵀA and BᵀB. The difference
between the algorithms is that DDKR1 uses the ratio of the eigenvectors
for computing the user ability ranking and the labels, while DDKR2 uses
the eigenvectors of the ratio (i.e. the Hadamard or entrywise division) of
the matrices.

Notice that GKM [12] can only output item labels. Like DDKR1, it can

37

be run in linear time using the power method. Like DDKR1 and DDKR2,
this method also involves calculating the first eigenvector of a symmetric
matrix, and so can be run in linear time using the power method. It also
shows certain theoretical guarantees against manipulation by adversarial or
strategic raters.

Recall that the EM algorithm assumes that each user has a latent con-
fusion matrix for labeling. The off-diagonal elements represent the proba-
bilities that a user mislabels an arbitrary item from one class to another
while the diagonal elements correspond to her accuracy in each class. The
confusion matrices and true labels are jointly estimated by maximizing the
likelihood of observed labels. Again, this method does not guarantee recon-
struction of the C1P property in the ideal case.

ABH is the only prior method that can reconstruct the C1P condition (if
present) as well as work on general datasets. It also provides a SpectralSort
algorithm to find all possible orderings that reconstrcts C1P. Note that
ABH originally returns only a student ability measure.

Similar to [6], we choose the weight of an item’s option to be the sum of
the user ability estimates of the users who chose that option, and the correct
option chosen for an item is the one with the highest weight.

We also use this approach for generating the item labels for the HITSn-
DIFFS based on the user scores it outputs.

5.2 Implementation Issues

Unequal row sums. While proving these theoretical C1P results for our
methods, we often make the assumption that each row of the matrix C
has the same row sum, i.e. the same number of 1s in each row. This
is WLOG, because given any arbitrary matrix C, we can add additional
columns to the matrix C, where each additional column has exactly one 1
and m− 1 zeros, till each row has the same number of 1s. Note that adding
such columns doesn’t affect the C1P property, since each additional column
we add has only a single 1. In practice, the ordering of users might be
affected by padding the matrix with columns in this way, so we only make
this assumption of equal row sums for proving results related to the C1P
property, and not while using this method as a heuristic on datasets in this
section.

Entropy-based symmetry breaking. All methods for solving C1P
suffer from a symmetry breaking problem of deciding between the order ar-
rived at by the algorithm or its inverse (reversing the order of a P-matrix

38

still leaves it as a P-matrix). This would not be an issue if we were only
interested is the adjacencies in the ordering, but not the actual ranking.
However in our applications, we require to know if a user performs best or
worst, and similarly for the item options.

Our solution to this symmetry-breaking problem is motivated by the
following observation: when one choice is the most appropriate label for an
item, the higher quality users tend to converge on it as a majority answer
while at the other end of the ordering the alternate options are chosen more
randomly by the lower quality users. Thus, intuitively, the higher quality
end in a user ordering can be distinguished by the lower entropy of choices
picked by that end compared to the opposite end.

We encode this idea in a new heuristic that is very effective in practice:
Given a final ranking of the users, we compute for every item, for the top
and the bottom decile, the entropy of the fractions of item options that
appear in the deciles, for each item. We pick the end that has lower entropy
of options picked as the higher quality end. Since the other methods such
as ABH, DDKR1, DDKR2, and GKM also are faced with this problem,
in our implementation of these methods, we also added the “decile entropy
method” described above in outputting the final order of user abilities and
item option orderings. The idea of using the end with lower entropy is also
supported by the BSTS generative model: the set of choices picked by users
of low ability are uniformly random among the distractors, hence having
high entropy compared to the single correct choice picked by the user with
the highest ability.

5.3 Experiments on synthetic data sets

We compare the various methods by following metrics: 1) user accuracy (i.e.
correlation of user ranking output by the methods with abilities θ); 2) item
labeling accuracy (i.e. fraction of correctly labeled items); 3) item labeling
accuracy when users label only a fraction of items; and 4) execution times.

We use the BSTS model from chapter 4 to generate either binary (k =
2) or multiple choice data (k = 5). We uniformly sample αh and κh for
h ∈ {0, . . . , k} in the range [−0.2, 0.2] for each question, and θ in the range
[−100, 100] for each student, which ensures that incorrect item options are
not easily discarded by users. We vary the number of users m and keep
the number of items fixed at n = 50 and the probability that each student
answers a question at p = 0.7. For each parameter setting, we average over
500 repetitions. Figures 5.1a to 5.1c and 5.3a show the results on binary

39

choice data and Figures 5.2a to 5.2c on multiple-choice data.
1. User accuracy. Figures 5.1a and 5.2a compare the user accuracy

over varying sizes of users. We calculate accuracy as the correlation between
the user ability estimates returned by the methods with θ. Notice that
GKM can only find the item labels and EM returns a confusion matrix for
each user (but not a ranking of the users) so we do not report user accuracy
for GKM and EM. Also recall that DDKR1 and DDKR2 only work for
binary user data. We see that HITSnDIFFS shows better accuracy than
the other methods.

2. Item labeling accuracy. Figures 5.1b and 5.2b compare the item
accuracy over varying sizes of users. Here we calculate the fraction of cor-
rectly labeled items for each method. EM performs the best, but HITSn-
DIFFS outperforms other methods.

3. Varying fractions of labeled items. Figures 5.1c and 5.2c com-
pare the item accuracy when the users label a varying fraction of items.
Here, we fixed m = 50 users. HITSnDIFFS outperforms other methods as
long as the probability of users labeling items is not very low. Notably, HIT-
SnDIFFS is far more robust than ABH, whose performance falls drastically
as the probability of users labeling items decreases.

4. Execution time. Figure 5.3a shows the execution times of the
various methods as the number of users m grows. HITSnDIFFS, DDKR1,
ABH and GKM show linear growth in m.

Take-aways. In summary, HITSnDIFFS outperforms the other
method that can handle multiple choice data ABH and reconstruct C1P
in terms of accuracy, as well as is far more robust as the probability of users
labeling items decreases. It also outperforms the other linear methods in
accuracy of user correlation for binary data (DDKR1 and GKM), and is a
highly scalable method for multiple-choice questions.

5.4 Results on real data sets

Figure 5.4 compares the item labeling accuracies on the 3 real datasets de-
scribed in chapter 4. For the binary datasets NLP-RTE and NLP-TEMP,
HITSnDIFFS outperforms both GKM, DDKR1 and ABH, while being
competitive with DDKR2 and EM. For the multiple choice dataset GAL,
we see identical performance from HITSnDIFFS and ABH. This is to be
expected for GAL (and other sparse datasets) which are close to being pre-
P matrices (with pre-P inputs, we know the user rankings from ABH and
HITSnDIFFS are identical; with slight perturbations, the user rankings

40

100 200 300 400 500 600 700
Number of users

0.5

0.6

0.7

0.8

0.9

1.0
U

se
r

A
cc

u
ra

cy
HITSnDIFFS
DDKR2
DDKR1
ABH

(a) Correlation user score with θ
vs. number of users (binary)

100 200 300 400 500 600 700
Number of users

80

85

90

95

100

%
 o

f
C

o
rr

e
ct

 I
te

m
s

EM
HITSnDIFFS
DDKR2
GKM
DDKR1
ABH

(b) Percentage of correct items
vs. number of users (binary)

0.2 0.4 0.6 0.8 1.0
Probability of user labeling item

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
se

r
A

cc
u
ra

cy

HITSnDIFFS
DDKR2
DDKR1
ABH

(c) Percentage of correct items vs.
probability for labeling (binary)

Figure 5.1: Experiments on binary synthetic data

might differ but still result in the same label outputs for each item).

41

100 200 300 400 500 600 700
Number of users

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

U
se

r
A

cc
u
ra

cy

HITSnDIFFS
ABH

(a) Correlation of user score with θ
vs. number of users (multi-choice)

100 200 300 400 500 600 700
Number of users

0

10

20

30

40

50

60

70

%
 o

f
C

o
rr

e
ct

 I
te

m
s

EM
HITSnDIFFS
ABH

(b) Percentage of correct items vs.
number of users (multi-choice)

0.2 0.4 0.6 0.8 1.0
Probability of user labeling item

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
se

r
A

cc
u
ra

cy

HITSnDIFFS
ABH

(c) Percentage of correct items vs.
probability of labeling (multi-choice)

Figure 5.2: Experiments on multi-choice synthetic data

42

100 101 102 103 104 105 106 107

Number of users

10-4

10-3

10-2

10-1

100

101

102

E
x
e
cu

ti
o
n
 t

im
e
 (

se
co

n
d
s) 65.6972.23

0.10

ABH
DDKR2
HITSnDIFFS
DDKR1
GKM
EM
Linear

(a) Execution time vs.
number of users (binary)

100 101 102 103 104 105 106 107

Number of users

10-3

10-2

10-1

100

101

102

103

E
x
e
cu

ti
o
n
 t

im
e
 (

se
co

n
d
s)

91.23

0.22

HITSnDIFFS
ABH
EM
Linear

(b) Execution time vs.
number of users (multi-choice)

Figure 5.3: Time complexity comparison on simulated data. The dashed line show-
ing linear growth confirms the linear performance of HITSnDIFFS

43

(a) NLP-RTE dataset

(b) NLP-TEMP dataset

(c) GAL dataset

Figure 5.4: Percentage of correctly labeled items on real datasets.

44

Chapter 6

Future work

The HITSnDIFFS algorithm was shown to handle the problem of user
ranking and item labeling, and is competitive in accuracy with asymptot-
ically slower algorithms on synthetic and real-life data. In addition to the
methods compared against (ABH, DDKR1, DDKR2, GKM, EM) in this
work, the newer work mentioned in Section 1.2, as well as the maximum like-
lihood estimator for the BSTS generative model can be compared against.
Research is also ongoing to better explain the superior performance of HIT-
SnDIFFS to ABH, since these are the two spectral methods that are both
used for item-labeling, as well as satisfy C1P. Also, the current experiments
in Chapter 5 on real data only compare the item-labeling accuracy. The per-
formance of the various methods on real datasets on user ranking accuracy
is also a future direction, since our HITSnDIFFS method is intrinsically
designed for finding a user ranking.

45

Chapter 7

Conclusions

We have proposed a variation of the widely studied HITS algorithm with
surprising theoretical and practical properties for this choice problem. On
the theoretical side, we showed that 1) C1P of the response matrix models
consistent solutions for the problem; 2) our method reconstructs the correct
user rankings in the consistent case; 3) does so in linear time; 4) can handle
more general cases (in contrast to other linear discrete algorithms); 5) on the
practical side, can handle the problem of user ranking and item labeling,s
and is competitive in accuracy with asymptotically slower algorithms on
synthetic and real-life data.

We believe this method thus contributes a principled and practical so-
lution to our problem that can reconstruct the ideal order if it is unique,
scales well, and provides highly accurate data sets on real data sets that are
not consistent.

46

Bibliography

[1] J. E. Atkins, E. G. Boman, and B. Hendrickson. A spectral algorithm
for seriation and the consecutive ones problem. SIAM Journal on Com-
puting, 28(1):297–310, 1998.

[2] F. K. Baker and S.-H. Kim. Item Response Theory: Parameter Esti-
mation techniques (2nd Ed). Marcel Dekker Inc., 2004.

[3] R. D. Bock. Estimating item parameters and latent ability when re-
sponses are scored in two or more nominal categories. Psychometrika,
37(1):29–51, 1972.

[4] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. Journal
of Computer and System Sciences, 13(3):335–379, 1976.

[5] Dallascard. Implementation of the estimator for combining noisy ob-
servations from dawid and skene (1979). Github.

[6] N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi. Aggregating crowd-
sourced binary ratings. In WWW, pages 285–294. ACM, 2013.

[7] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of ob-
server error-rates using the em algorithm. Applied statistics, pages 20–
28, 1979.

[8] T. Finin, W. Murnane, A. Karandikar, N. Keller, J. Martineau, and
M. Dredze. Annotating named entities in twitter data with crowd-
sourcing. In Proceedings of the NAACL HLT 2010 Workshop on Creat-
ing Speech and Language Data with Amazon’s Mechanical Turk, pages
80–88. ACL, 2010.

[9] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.
Crowddb: answering queries with crowdsourcing. In SIGMOD, pages
61–72. ACM, 2011.

47

[10] C. Gao, Y. Lu, and D. Zhou. Exact exponent in optimal rates for crowd-
sourcing. International Conference on Machine Learning (ICML), 2016.

[11] C. Gao and D. Zhou. Minimax optimal convergence rates for es-
timating ground truth from crowdsourced labels. arXiv preprint
arXiv:1310.5764, 2013.

[12] A. Ghosh, S. Kale, and P. McAfee. Who moderates the moderators?:
crowdsourcing abuse detection in user-generated content. In EC, pages
167–176. ACM, 2011.

[13] D. Karger, S. Oh, and D. Shah. Budget-optimal crowdsourcing us-
ing low-rank matrix approximations. Annual Allerton Conference on
Communication, Control, and Computing, 2011.

[14] D. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowd-
sourcing systems. Advances in neural information processing systems,
2011.

[15] D. Kendall. Incidence matrices, interval graphs and seriation in arche-
ology. Pacific Journal of mathematics, 28(3):565–570, 1969.

[16] A. Khetan and S. Oh. Reliable crowdsourcing under the generalized
dawid-skene model. arXiv preprint arXiv:1602.03481, 2016.

[17] N. M. Kingston and N. J. Dorans. The feasibility of using item response
theory as a psychometric model for the gre aptitude test. ETS Research
Report Series, 1982(1), 1982.

[18] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
JACM, 46(5):604–632, 1999.

[19] Q. Liu, J. Peng, and A. T. Ihler. Variational inference for crowd-
sourcing. Advances in Neural Information Processing Systems, pages
692–700, 2012.

[20] F. M. Lord, M. R. Novick, and A. Birnbaum. Statistical theories of
mental test scores. 1968.

[21] C. D. Meyer, editor. Matrix Analysis and Applied Linear Algebra. So-
ciety for Industrial and Applied Mathematics, 2000.

[22] Y. Saad. Numerical methods for large eigenvalue problems. In Numer-
ical Methods for Large Eigenvalue Problems, pages 91–94, 2003.

48

[23] F. Samejima. Evaluation of mathematical models for ordered poly-
chotomous responses. Behaviormetrika, 23(1):17–35, 1996.

[24] N. B. Shah, S. Balakrishnan, and M. J. Wainwright. A permutation-
based model for crowd labeling: Optimal estimation and robustness.
arXiv preprint arXiv:1606.09632, 2016.

[25] N. B. Shah and D. Zhou. Double or nothing: Multiplicative incentive
mechanisms for crowdsourcing. In NIPS, pages 1–9. 2015.

[26] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? im-
proving data quality and data mining using multiple, noisy labelers. In
KDD, pages 614–622. ACM, 2008.

[27] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast—
but is it good?: evaluating non-expert annotations for natural language
tasks. In EMNLP, pages 254–263. ACL, 2008.

[28] A. Tarasov, S. J. Delany, and C. Cullen. Using crowdsourcing for la-
belling emotional speech assets. W3C EmotionML Workshop, 2010.

[29] W. van der Linden and R. Hambleton. Item response theory: Brief
history, common models, and extensions, pages 1–28. Springer, 1997.

[30] P. Welinder and P. Perona. Online crowdsourcing: rating annotators
and obtaining cost-effective labels. In CVPRW, pages 25–32. IEEE,
2010.

[31] J. H. Wilkinson. The algebraic eigenvalue problem. Oxford Science,
Oxford, England, 1965.

[32] Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan. Spectral methods
meet em: A provably optimal algorithm for crowdsourcing. Journal of
Machine Learning Research, 2014.

[33] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in
crowdsourcing: Is the problem solved? PVLDB, 10(5):541–552, 2017.

[34] D. Zhou, S. Basu, Y. Mao, and J. C. Platt. Learning from the wisdom
of crowds by minimax entropy. In NIPS, pages 2195–2203, 2012.

[35] D. Zhou, Q. Liu, J. Platt, and C. Meek. Aggregating ordinal labels
from crowds by minimax conditional entropy. In ICML, pages 262–270,
2014.

49

[36] D. Zhou, Q. Liu, J. C. Platt, C. Meek, and N. B. Shah. Regular-
ized minimax conditional entropy for crowdsourcing. arXiv preprint
arXiv:1503.07240, 2015.

50

Appendix A

Nomenclature

ui user i
tj item j
cjh choice h for item j
m number of users
n number of items
k number of choices (or labels) for each item
θi ability of user ui
αjh quality of choice h of item tj
s user score vector (m× 1) where si denotes score of user i
sdiff user difference vector ((m−1)× 1) with sdiff

i = si+1 − si, i ∈ [m− 1]
C response matrix (m× kn) obtained by flattening the response tensor

Ccol column-normalized response matrix (m× kn)
Crow row-normalized response matrix (m× kn)
w option weight vector (kn× 1)
U Update matrix (m×m) used by avgHITS to update user scores

Udiff Difference Update matrix ((m − 1) × (m − 1)) used by HITSnDIFFS to
update user score differences sdiff

51

	1 Introduction
	1.1 Problem Definition
	1.2 State-of-the-art
	1.3 Our method ``HITSnDIFFS''
	1.4 Contributions of this thesis

	2 Preliminaries and Related work
	2.1 The method of Atkins et al. (ABH)
	2.2 Hubs and Authorities (HITS)

	3 The HITSnDIFFS Algorithm
	3.1 ``avgHITS'': a precursor to ``HITSnDIFFS''
	3.2 Our algorithm HITSnDIFFS
	3.3 Complexity Comparison
	3.4 HITSnDIFFS recognizes C1P

	4 Synthetic and Real-World Data
	5 Experiments and Results
	5.1 Methods and their implementation
	5.2 Implementation Issues
	5.3 Experiments on synthetic data sets
	5.4 Results on real data sets

	6 Future work
	7 Conclusions
	A Nomenclature

