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Abstract

Most learning architectures for segmentation task require a significant
amount of data and annotations, especially in the task of segmentation,
where each pixel is assigned to a class. Few-shot segmentation aims to
replace large amount of training data with only a few densely annotated
samples. In this paper, we propose a two-branch network, FuseNet, that
can few-shot segment an input image, i.e. query image, given one or
multiple images of the target domain, i.e. support images. FuseNet
preserves the local context around the target domain by masking out the
non-target region in the feature space. The network then leverages the
cosine similarity between the masked features from the support and the
feature from the query as guidance to predict the segmentation mask.
In the case of few-shot, we weigh such guidance differently according
to their image-level feature similarity with the query. We also explore
the quantitative effects of number of support images on Intersection over
Union(IoU). Our network achieves the state-of-the-art result on PASCAL
VOC 2012 for both one-shot and five-shot semantic segmentation.
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Chapter 1

FuseNet: Few-shot Learning for
Semantic Segmentation using

Feature Conditioning

1.1 Introduction

Current breakthroughs in deep neural networks, in particular convolutional neural
networks (CNN) have led to a series of model variants such as U-net [22], FCN [19], and
Mask R-CNN [11]. These models enabled convenient end-to-end feature extraction and
performed exceptionally well on various visual tasks such as classification, recognition,
detection and segmentation. However, these models require a large amount of data to
learn a new class, which in the real-world translates to significant time and effort of
collecting and annotating samples. This problem becomes more serious in the tasks
of segmentation, where dense labels are harder to annotate. Moreover, other than the
lack of annotations, a bigger issue lies in the long tail distribution of real-world images,
where many classes of interest simply do not have sufficient data and constitute the

heavy tail.

Several approaches have been proposed to learn from insufficient data and label.
One direction is to reduce annotation time by using weak supervision signal such as

image-level label [13, 15], bounding boxes [7, 14], and points [2], where the annotator
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simply selects a pixel for the object. Even though these algorithms reduce annotation
time, they still require a large pool of training samples. Moreover, these methods
require some manual fine-tuning and can easily overfit the training samples yet remain
insensitive to new incoming data, yielding great performance on fine-tuned classes but
still poor result on classes with few training samples. Therefore, we employ one-shot
segmentation to directly tackle the issues of limited data, annotations and manual
parameter tuning.

The goal of few-shot segmentation is to predict a binary mask of an unseen class
given a few pairs of support and query images containing the same unseen class
and the binary ground truth masks for the support images. One simple approach
is to fine-tune the pre-trained segmentation network. However, such technique is
prone to overfitting due to potentially millions of parameter updates. In addition,
tuning often resorts to heuristics which can be hard to determine. In contrast,
meta-learning [6, 16, 20, 28] abstracts such parameter tuning away by letting the
meta-learner network infer model parameters for the learner network. In classification,
meta-learning often works well with k nearest neighbor to predict the image-level
label without changes to the model parameter given a small set of samples containing

the target class.

Inspired by the network structure of meta-learning, [24] proposed OSLSM, a
two-branch model adapted from the siamese classification network [16], to perform
dense segmentation. The model consists of a segmentation network for predicting
a binary mask of the target class from the query, and a conditioning network for
generating parameters for the logistic regression layer. Built on the two-branch
model, co-FCN [21] modified the conditioning network to generate features instead
of parameters to guide the segmentation mask. The assumption is that the target
region in the support and query images should have similar appearance, therefore,
similar features. However, co-FCN simply element-wise multiply feature maps from
two branches to guide the segmentation, leaving the rest for the model to optimize.
Moreover, co-FCN only implicitly encoded the ground truth by concatenating the
binary mask in the input.

Our proposed network, FuseNet, reduces the model redundancy by combining two
networks, one from conditioning branch and the other segmentation branch, into one

shared base network similar to hard parameter sharing in [16]. With fewer parameters,
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Figure 1.1: FuseNet: overall simplified architecture for one-shot segmentation, con-
sisting of segmentation and conditioning branches

the network is less proned to overfitting and the training converges faster. In addition,
we learn the target class feature by desigining a contextual masking module for
extracting a shallow linear representation of the target region. Inspired by [18], we
enforce the explicit feature conditioning by filtering with the target class feature,
similar to a 1 x 1 convolution, instead of the indirect guidance and optimization
in OSLSM and co-FCN [21, 24]. We use the same network for testing on one-shot
and few-shot settings. In the case of few-shot, we fuse multiple support features
by exploiting their global feature similarity with the query feature. Our overall
architecture is shown in Figure 1.1, with a more detailed illustration of contextual
masking and few-shot fusion technique in Figure 1.2. Our network achieves a mean
IoU of 46.4% on PASCAL VOC 2012 4-fold cross-validation for one-shot segmentation
and 50.2% for five-shot segmentation, both outperforming the current state-of-the-art

result.
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1.2 Related Work

Semantic segmentation aims to classify each pixel of an image to a pre-defined class.
The dense annotation can be used as an interpretable feature for downstream appli-
cations such as path planning and scene understanding. Fully Convolutional Network
(FCN) [19] is a major building block for segmentation and uses only convolutional
layers to preserve relative pixel positions in features of all scales. By discarding
fully-connected layers, FCN reduces model parameters, accommodates input images
of arbitrary size, and becomes more robust due to less sensitivity to overfitting.
Subsequently, U-Net [22], Chen [4] and DeepLabv3+ [5] used the fully-convolutional
concept to improve IoU on various segmentation datasets, including PASCAL [8].
Additionally, He [11] and Hariharan [10] proposed to simultaneously perform object
detection and segmentation in the bounding box, both within a unified network.

Weakly-supervised segmentation uses image classification label and rough bound-
ary scribble as annotations in training to segment images. Due to significant cost in
acquiring dense annotation, Huang [13] proposed to train the network to segment by
starting from discriminative region and growing progressively. Furthermore, Zhou [32]
and Zhang [29, 30] showed how the convolutional layer identifies the region for object
of interest by localizing its feature from image-level label. Our contextual masking
and few-shot fusion technique are inspired by similar local feature correspondence
and global feature exploitation. Lin et al. [17] presented scribble line annotation
methodology and the network learns to match the unlabeled pixel to the closest
scribble line pixels in spectral distance. Tang et al. [27] extended the scribble line
matching by designing the normalized cut loss to optimize for consistency across all
pixels within the mask as it grows and shrinks, as opposed to growing from the seed
with cross-entropy loss.

The few-shot learning problem aims to solve the general pattern recognition by a
few labeled examples, defined as the support set, through learning based approach.
The difficulty lies in the generalization to the unseen domain while maintaining
the accuracy, which are typically a tradeoff. The discriminative approach learns to
differentiate the pre-defined domain from the target domain. Siamese network [16]
learns the differences by learning the embedding space to maximize inter-class distance,

optimized through energy loss. In contrast, Vinyals [28] focused on recognizing the
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target class by augmenting memory into the neural network and jointly optimize for
the support set embedding via metric learning. Similarly, Annadani [1] explicitly
model the semantic relation as attributes in the embedding space for zero-shot
learning. Finn et al. [9] used meta-learning to optimize the manifold of model
parameter evolution and learned the more transferable internal representation across

classes.

In few-shot dense segmentation, OSLSM [24] designed a two-branch network,
where one branch regress the parameter weights for the other branch to segment the
query images. Similar to auto fine-tuning in OSLSM, the more recent co-FCN [21]
also employed the two-branch setup, differing in that co-FCN uses spatial feature
extracted from the support images to directly guide the query feature. Zhang [31]
proposed similar idea to our network without the exploitation of image-level feature,

which is commonly used as coarse guidance for identifying the target region [13].

1.3 Problem Setup

The goal of one-shot and few-shot segmentation is to produce a binary segmentation
map, ]\?fquery, of the target region in an unseen query image given one or multiple images
containing the target class, called the support set, along with their corresponding
ground truth masks. Let a set of classes in a dataset be, C'. We partition C' into a set
of training classes, Ci.q4in, and a set of testing classes, Cy.s;, where the two sets are
disjoint. We define a sample as a tuple of an image and a binary mask, (I, M), where
M contains only one class. We then construct a training set, Dy, .qin, out of the set of
tuples whose mask class is in C},.4;, and similarly for a testing set, D;cs;, whose mask
class is in Ceq. In training, for each iteration, we sample one tuple as our query and
another tuple of the same class as our support from Dy,.q;,. Similarly in testing, we
sample one tuple as our query and k tuples of the same class to form the support set,

where k represents the number of shots. We use uniform sampling for all procedures.
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Figure 1.2: Fusion Module: detailed illustration of multiple support images. The
support and query feature maps come from FCN and VGG pipeline before, which
are not shown. Note that since the normalized fusion weight is 1, i.e. 53 = 1, we use
the same pipeline of few-shot fusion for the one-shot setup as well.
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1.4 Proposed Method

Our porposed method is shown in Figure 1.1. We employ the two-branch network
[21, 24], consisting of the conditioning branch for extracting the support image feature

and the segmentation branch for segmenting the query image.

1.4.1 Shared Network

Initially as the query and the support images are passed into FuseNet, the same
fully convolutional network (FCN) [19] produces feature tensors of the same size,
which are passed into two separate VGG16 [25] layers, creating two branches. By
using one FCN for both branches, we reduce the risk of overfitting and gain the benefit
of fewer parameters, along with faster convergence and the ability to use deeper
network. Since the query and support come from the same dataset, we hypothesize
that it is desirable for both branches to largely share the same network. In addition,
inspired by [12, 22, 26], we also concatenate the support feature with the query
feature as new channels in the last two layers of VGG16 [25] to add information
flow from the conditioning branch to the segmentation branch. We choose feature
concatenation over summation because [12] argues that the feature summation would
harm the gradient low. We only use the convolution and ReLU activation without any
fully-connected layers to preserve relative pixel location for the contextual masking

operation.

1.4.2 Contextual Masking Module

The contextual masking module aims to produce a linear target detector, repre-
sented as a target feature in Figure 1.2, from one support image-mask tuple. We
design the module to mask the support in feature space in order to preserve the local
context around the target region and use as guidance in the later operation. The
support feature map, produced by the conditioning branch of VGG16, is passed into
the contextual masking module to compute the target feature. Inside the module, we
first bilinearly interpolated the support feature map into w x h x ¢ feature tensor,
where w and h are the width and the height of the input image. We element-wise

multiply the mask of the same size with each channel of the feature tensor to produce
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the masked tensor. Lastly, we use an average pooling to create a single value for each

channel to obtain the target feature of size 1 x 1 X c.

Mathematically, let v; represents the ith value of the target feature, v, then

i Zx,yM ® Fl
Zz,yM

(%

where ® is element-wise matrix multiplication, M is the ground truth binary map
of size w x h, and Fj is the ith slice of support feature tensor after the bilinear
interpolation.

In comparison, OSLSM [24] masks out background from the support image at
input. Such early masking leaves only the target region to extract feature from and
creates an unnatural RGB image without using boundary information. In co-FCN
[21], they concatenate the mask with the RGB image and let the network optimize
without any use of explicit masking for focusing on area of attention. In contrast, the
target feature we generate from average pooling is an explicit linear class detector.
The vector encodes not only the object region information but also the local context
around the region. We inject the direct guidance by using the target feature to

compute the conditioning map for the query.

1.4.3 Few-Shot Fusion

To extend to few-shot segmentation, previous work like co-FCN [21] proposed to
simply average the support features and OSLSM [24] proposed to take the union of all
output binary masks due to high precision and low recall, i.e. very few false positives
in each output mask. These two fusion heuristics effectively weigh all support images
equally and do not consider any coupling or correlation between the query and the
support. Instead of fusion by heuristics, we design a few-shot fusion technique that
couples the query with each support by their feature distance measured by cosine
similarity. We combine multiple target features, each from one support tuple, by a
normalized weighted sum. Each target feature is a vector representation of the target
region from a support image. We exploit the global similarity between the query and

each support to weigh the corresponding target feature accordingly. Given a support
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set and a query image, we define the normalized fusion weight for each target feature
as the support score.

The support score is computed from global feature maps and represents the image
level similarity in appearance between the query and the support. We normalize the
score over all supports and compute the weighted sum of all target features as our
final target feature. Benefited from the feature concatenation in VGG16 module,
we avoid the issue of numerical instability in computing cosine similarity for high
dimensional features.

Suppose we have K support tuples, to obtain the weighted sum of all K target
features, we couple the query and the support by computing the global feature cosine

similarity, i.e.

support
fquery . fj

5 =
Tl (L £7

“ Sj
I T K
Zj:l Sj

where §; is the support score for jth target feature given the support set ( f;“72""... faPPert)

I

fauem is the vectorized query feature map from VGG, and f;*** ort

support feature map. Since §; is normalized, we use the same pipeline for one-shot as

is the jth vectorized

well, where §; = 1. The weighted sum of all K target features is simply

K
QAJ = Z SAj . Uj
j=1
The underlying assumption is that the targets in images of similar appearance,
potentially from similar perspectives and background, would also be visually more

similar. Our few-shot fusion technique enables the network to more heavily condition

the query feature map with globally similar image from the support set.

1.4.4 Conditioning Map

Given the fused target feature, we proceed to generate a conditioning map, which
represents the pixel-level similarity map between the query feature and the target

class. In a way, the conditioning map serves as a heat map or attention map to
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’ Dataset ‘ Test classes ‘
PASCAL-A aeroplane, bicycle, bird, boat, bottle
PASCAL-B bus, car, cat, chair, cow

PASCAL-C | dining table, dog, horse, motorbike, person
PASCAL-D | potted plant, sheep, sofa, train, tv/monitor

Table 1.1: 4-fold cross validation for PASCAL VOC 2012

down weigh the irrelevant feature region and activate the target region in the query.
The process of generating conditioning map is analogous to reversing the contextual
masking, where we want to use the target feature to generate a ”soft mask” for the
query feature.

First, we bilinearly interpolate the query feature to w’ x h' x ¢ feature tensor. To
compute the conditioning map, let the target feature be v, and F““"¥ be the query
feature tensor. Then the conditioning map is

O . Favery

Coy = o
Sl N

where F79¢™¥ is a 1 x 1 x ¢ feature vector across all channels at pixel (x,y), and C,,
is the similarity score to the target class at query position (z,y).

Note that the process of taking cosine similarity resembles a 1 x 1 convolution
with a 1 x 1 x c filter, i.e. class detector. It condenses the previously interpolated
feature tensor back to w’ x h'. Once we obtain the conditioning map for the query,
we inject direct guidance to the query segmentation by element-wise multiplying the
conditioning map with the query feature map from VGG. Finally, the guided feature
map goes through two convolutional layers, a bilinear interpolation to resize to w x h,

and a probability thresholding to produce a binary segmentation map.

1.5 Implementation

For benchmarking against previous work, we employ VGG16 [25] as our base model
for both segmentation and conditioning branch, identical to OSLSM and co-FCN.
We use the pre-trained weights from ILSVRC [23] and crop the RGB images from
PASCAL VOC 2012 [8] to 224 x 224 x 3. The network uses the same encoding
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Methods(1-shot) PASCAL-A PASCAL-B PASCAL-C PASCAL-D Mean

1-NN 25.3 44.9 41.7 18.4 32.6
LogReg 26.9 42.9 37.1 18.4 31.4
Siamese 28.1 39.9 31.8 25.8 31.4
Fine-tuning 24.9 38.8 36.5 30.1 32.6
OSLSM 33.6 55.3 40.9 33.5 40.8
co-FCN 36.7 50.6 44.9 324 41.1
Ours(concat) 36.8 51.1 43.8 33.1 41.2
Ours(Input-Mask)  37.4 53.2 44.3 33.5 42.1
Ours 40.3 58.6 47.9 38.7 46.4

Table 1.2: Mean IoU for one-shot semantic segmentation given class partition from
Table 1.1

structure as FCN [19] with 3 max pooling layers to downsample to 28 x 28. In
both the segmentation and conditioning branches, we strip the max pooling layer
to preserve feature resolution and only use conv4 and convb from VGG16. We
concatenate support features from conv4 and convb with the query features as new
channels. In contextual masking module, we employ bilinear interpolation to resize
the support feature into 224 x 224 and follow the procedure described in 1.4.2. We
use kernels of size 3 x 3 for all convolutional layers except the last one before the
bilinear interpolation, where 1 x 1 convolution is used for creating two channels of
binary mask, i.e. target class and background. The bilinear interpolation restores
the mask size to 224 x 224 and a probably threshold of 0.5 is applied to obtain the
binary mask. The training parameters with SGD are as follows: learning rate of 1le ™,
decay of 1e73 and momentum of 0.9. In training, We use batch size of 1, where one
sample consists of two tuples of the same class for one iteration. We do not explicitly
optimize for conditioning map and only update the network weights in training by
back-propagating the cross entropy loss. In testing, the network weights stay fixed

while running inference by forward propagating the support set and the query.
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Methods(5-shot) PASCAL-A  PASCAL-B  PASCAL-C PASCAL-D Mean

1-NN 34.5 93.0 46.9 25.6 40.0
LogReg 35.9 51.6 44.5 25.6 39.3
OSLSM 35.9 58.1 42.7 39.1 43.9
co-FCN 37.5 50.0 44.1 33.9 41.4
Ours(avg) 40.5 28.9 49.1 39.6 47.0
Ours(union) 43.1 59.6 50.1 40.0 48.2
Ours 45.3 61.6 52.1 41.7 50.2

Table 1.3: Mean IoU for five-shot semantic segmentation given class partition from
Table 1.1

1.6 Experiment

1.6.1 Dataset

We use PASCAL VOC 2012 [8] and follow the protocol from OSLSM [24] for data
preparation. We partition a total of 20 classes into 4 folds in alphabetical order, and
each fold consists of 5 classes, as shown in Table 1.1. We employ cross-validation and
use 1 fold as testing classes, and the rest as training classes. We follow the procedures
described in 1.3 to construct Dy.q, and Di.s;. We evaluate each fold by averaging
the intersection over union of 1000 queries and report the numbers in Table 1.2 for
one-shot and Table 1.3 for five-shot. We also include previous works such as co-FCN

and OSLSM with the same experiment setup to compare with.

1.6.2 Benchmark Comparison

We use the standard segmentation metric, mean IoU, as computed from tpﬂf%,
where tp represents the number of true positive pixels, fp the number of false positive
pixels, and fn the number of false negative pixels. The mean cateogry is directly
computed by averaging the results of each fold. We include several important one-
shot baselines in Table 1.2. In particular, fine-tuning works by only tuning the
fully-connected layers, specifically (fc6, fc7, fc8), as mentioned in [3]. Comparing
to co-FCN, the second best overall method in one-shot, our method gains an 8%

performance increase in PASCAL-B and a 5.3% in mean. Comparing to OSLSM, our
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method achieves a 5.6% increase in mean. Since one-shot setting does not utilize our
few-shot fusion, we attribute such improvement to the contextual masking module,
which produces the class descriptor feature and the conditioning map for segmentation
guidance.

From Table 1.2 to Table 1.3, we see a significant boost of [oU in all 4 folds as well
as the mean category in five-shot setting. Comparing to the 0.3% improvement in
mean from co-FCN, which averages the support features, ours increases from 46.4%
to 50.2%, a 3.8% improvement. Surprisingly, in OSLSM, the heuristic of taking union
of output masks proves to work well under high precision and low recall, with a 3.1%
increase from 40.8%. Instead of averaging or taking the union, we combine our target
feature guidance in a principled way. Our few-shot fusion technique utilizes global
feature similarity, which provides an even more significant improvement of 3.8% on

top of the already better one-shot result.

1.7 Conclusion

We propose FuseNet for few-shot semantic segmentation, where the network learns
to segment out regions of target classes with only a few annotated examples. The
proposed approach has several advantages over previous work, namely parameter
sharing, contextual masking module, and few-shot fusion. We redesign the two-
branch network by using a shared fully convolutional network for feature extraction.
Such parameter reduction results in less overfitting as well as faster convergence. In
contextual masking module, our proposed method encodes the target region and its
boundary information into a feature vector. In particular, the linear representation
works well under few-shot scenario, where the network has to generalize from the
few annotated examples. Lastly, the few-shot fusion weighs each annotated sample
according to its global feature similarity with the query. Our network can be optimized
end-to-end without any pre-processing or post-processing and achieves the state-
of-the-art result on PASCAL VOC 2012 for both one-shot and five-shot semantic

segmentation tasks.
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