
Stereo Visual-Inertial-LiDAR
Simultaneous Localization and Mapping

Weizhao Shao

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Master’s Committe:
Prof. George A. Kantor

Prof. Michael Kaess
Dr. Eric Westman

June 2019

CMU-RI-TR-19-48

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

ii

Abstract

Simultaneous Localization and Mapping (SLAM) is a fundamental task to mobile
and aerial robotics. The goal of SLAM is to utilize on-board sensors for estimating
the robot’s trajectory while reconstructing the surrounding environment (map) in
real-time. The algorithm should also be able to perform loop closure, such that it
could detect if same environments are revisited again and hence eliminate drifts over
the loop. SLAM has been an appealing field of research over the past decades, for
one it is a great mix of probabilistic estimation, optimization, and geometry. For
two, it is practically useful but hard, as it involves tasks from sensor calibrations to
system integration.

The community has been investigating different sensor modalities and exploit-
ing their benefits. LiDAR-based systems have proven to be accurate and robust in
most scenarios. However, pure LiDAR-based systems fail in certain degenerate cases
like traveling through featureless tunnels or straight hallways. Vision-based systems
are efficient and lightweight. However, they depend on good data associations to
perform well, and thus fail terribly in environments without many visual clues.
Inertial Measurement Unit (IMU) produces high-frequency measurements, which are
reasonable for a short interval but quickly drift.

In this thesis, I investigate the fusion of LiDAR, camera and IMU for SLAM. I
will begin with my implementation of a stereo visual inertial odometry (VIO). Then I
will discuss two coupling strategies between the VIO and a LiDAR mapping method.
I will also present a LiDAR enhanced visual loop closure system to fully exploit the
benefits of the sensor suite. The complete SLAM pipeline generates loop-closure
corrected 6-DOF LiDAR poses in real-time and 1cm voxel dense maps near real-time.
It demonstrates improved accuracy and robustness compared to state-of-the-art
LiDAR methods. Evaluations are performed on representative public datasets and
custom collected datasets from diverse environments.

iii

iv

Acknowledgements

I want to express my sincere gratitude to my advisor, Professor George Kantor,
for his belief in my potential, unconditional supports, and valuable discussions
along my great two years at Carnegie Mellon University. His profound engineering
and scientific insights have enlightened me so many times and will continue to be
influential in my life. I would not be in the position where I am right now if it were
not for him.

I want to say a great thank you to my lab mates, Cong Li and Srinivasan Vi-
jayarangan. Having the opportunities to work closely with them is one of the
greatest opportunities that I could have ever asked for. they demonstrate me pro-
fessionalism, productivity, and critical thinking, which I will carry along with in my
career.

Finally, I want to sincerely thank my families and friends. You have given me
the greatest understanding and support along the two years. You have always
encouraged me to pursue my academic and life goals. You have shared my joy and
sorrow, love and pain. Having you in my life makes me feel favoured by fortune.

v

vi

Contents

Abstract . iii
Acknowledgements . v
List of Tables . viii
List of Figures . x

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 System Overview . 5

2 Stereo Visual Inertial Odometry 6
2.1 Hybrid Visual Frontend . 6
2.2 Backend Optimizer . 6

2.2.1 IMU pre-integration factor . 8
2.2.2 Structureless vision factor . 10
2.2.3 Optimization and marginalization 11

3 Coupling Strategy With LiDAR 13
3.1 Overview of the LiDAR Method . 13
3.2 Loose Coupling Strategy . 14
3.3 Tight Coupling Strategy . 15

4 LiDAR Enhanced Visual Loop Closure 17
4.1 Loop Detection . 17
4.2 Loop Constraint Generation . 17
4.3 Global Pose Graph Optimization . 18
4.4 Re-localization . 18

5 Experimental Results 19
5.1 EoRoC MAV Dataset . 19
5.2 Autel Dataset . 21
5.3 KITTI Odometry Dataset . 26

6 Conclusion 31

Bibliography 32

vii

viii

List of Tables

5.1 RMSE OF ATE (METER) ON THE EuRoC MAV DATASET [6] . . 20
5.2 FDE (%) and MRE (m) TEST RESULTS 21
5.3 MEAN TRANSLATIONAL ERROR (%) ON THE KITTI ODOME-

TRY DATASET . 26

ix

x

List of Figures

1.1 The system diagram of VIL-SLAM. 4
1.2 Sample outputs of VIL-SLAM. 5

2.1 The pose graph inside VIO without LiDAR feedback. 7

3.1 The pose graph inside VIO with LiDAR feedback. 15
3.2 The pose graph inside VIO with LiDAR feedback (more practical). . 16

4.1 The global pose graph inside the loop closure system. 18
5.1 EuRoC evaluation results. 19

5.2 Results for the highbay test. 22
5.3 Results for the hallway test. 22
5.4 Results for the tunnel test. 23
5.5 Results for the huge loop test. 23
5.6 Results for the outdoor test. 23
5.7 Mapping results. 24
5.8 Loop closure demonstration. 25
5.9 Trajectory results for KITTI sequences 06. 27
5.10 Trajectory results for KITTI sequences 06 (side). 27
5.11 Trajectory results for KITTI sequences 07. 28
5.12 Trajectory results for KITTI sequences 08. 28
5.13 Trajectory results for KITTI sequences 09. 29
5.14 Trajectory results for KITTI sequences 10. 29
5.15 Trajectory results for KITTI sequences 10 (side). 30

xi

xii

1 Introduction

1.1 Motivation

Enabling mobile robots to perform tasks and interact with people in real world has
been a long-term goal that drives scientists and engineers along their way. One of the
fundamental tasks to solve is to give a robot the sense of position and environments.
SLAM algorithms are to tackle this fundamental task. The ability to solve a SLAM
problem is essential to practice. High-level robotics tasks relies on it: A planning
system needs to know the robot’s pose to do planning and avoid obstacles. A
semantic scene segmentation system needs to have some map representation as its
input data. More generally, applications like search and rescue, AR (augmented
reality), autonomous driving, and indoor mobile robots all requires doing SLAM in
one form or another. SLAM problems are also interesting theoretical. Evolving for
several decades, this domain has become a great mix of probabilistic estimation,
geometry, signal processing, and optimization. With cameras becoming popular
and more visual SLAM algorithms being developed, the community also establishes
a deep connection with the field of computer vision and methods such as Bundle
Adjustment (BA). Though most SLAM problems are considered solved, current
SLAM algorithms still lack the robustness to be freely deployed in real world, as
argued by Cadena et al. [7]. The abilities to recover from failure, and deal with
challenges from environment, non-trivial robot’s motion, and sensor failures still
require a vast amount of algorithmic efforts. Not to mention that practical issues
such as synchronization and sensor calibrations must be treated well.

A multi-sense fusion approach naturally comes in mind when thinking about
improving the robustness. Different sensors have their own superiority and failure
mode. There have been lots of efforts on exploring different sensor modalities.
LiDAR has been a popular sensor in the robotics community. LiDAR based SLAM
systems have demonstrated their advantages in being accurate and robust in most
cases. However, pure LiDAR approaches fail in certain degenerate cases like traveling
through featureless tunnels or straight hallways. Vision based systems are efficient
and lightweight. However, the range of observations is limited and they depends on
good data associations to perform well. Thus they fail terribly in environments with-
out much visual clues. Inertial Measurement Unit (IMU) produces high frequency
measurements, which are reasonable for a short interval with biases being corrected,
but drift quickly. With an integration of the three where their advantages could still
be fully exploited, they compliment each other to deal with individual sensor failure.
The formulation of the estimation problem also favors this approach. Sensor inputs
are modeled as independent and identically distributed observations in the estimator,
and adding a sensor is hence as straightforward as adding an observation once the

1

sensor model and the noise model are available.

This thesis aims to explore this multi-sense approach for improving the robust-
ness of a SLAM pipeline. Specifically, I investigate the fusion of LiDAR, camera
and IMU for tackling the real-time state estimation and mapping problem. I will
begin with the factor graph formulation and implementation of a feature-based
stereo visual inertial odometry (VIO). Then I will discuss two coupling strategies
between the VIO and a state-of-the-art LiDAR mapping method. I will also present
a LiDAR enhanced visual loop closure system, which consists of a global factor graph
optimization, to fully exploit the benefits of the sensor suite. The complete SLAM
pipeline, Visual-Inertial-LiDAR SLAM (VIL-SLAM), is able to generate loop-closure
corrected 6-DOF poses in real-time and dense 1cm voxel-size maps near real-time. It
demonstrates improved accuracy and robustness in challenging environments, where
state-of-the-art LiDAR methods fail easily. Evaluations are performed on represen-
tative public datasets and custom collected datasets from diverse environments.

1.2 Related Work

Visual Inertial Odometry An odometry differs from a SLAM pipeline as it does
not have a loop closure system to correct global drift. The output is smooth, and
is preferred for applications who only consider local motions. Because no global
information is required to retain for global drift correction, the memory consumption
and time complexity generally remain the same as the operation time grows long.
Current VIO literature introduces various formulations to integrate visual and
inertial data. The literature characterizes different approaches into tightly-coupled
system [40, 29, 23], in which visual information and inertial measurements are jointly
optimized, or loosely-coupled system [16, 32, 51], in which IMU is a separate module
and fused with a vision-only state estimator. The approaches could be further
divided into either filtering-based [47, 41, 3, 52, 51, 17] or graph-optimization based
[40, 29, 23, 24, 48]. Filtering-based approaches use nonlinear filtering techniques, and
generally suffer from poor linearization point. Tightly-coupled optimization-based
approaches, using an Maximum a posteriori (MAP) formulation and taking the bene-
fit of minimizing residuals iteratively, usually achieve better accuracy and robustness
with a higher computation cost. However, we see that some VIO systems based on
filtering have also demonstrated state-of-the-art performance. Some representative
examples include the VIN systems of Kottas et al. [27], Hesch et al. [22], and
the MultiState Constraint Kalman Filter of Mourikis and Roumeliotis [35]. They
reduce the performance gap between filtering and MAP estimation by taking care
of potential sources of inconsistency and getting more accurate linearization point.
In this work, I have implemented a stereo VIO systems using a fixed-lag smooth-
ing framework as the backend. It follows a tightly-coupled formulation and uses
marginalization to bound the computation costs to achieve the real-time performance.

2

Visual SLAM Visual SLAM algorithms aim to recover a globally consistent
representation for both robot’s pose and the map. Compared with LiDAR-based
SLAM algorithms, they become popular for the accessibility from small mobile de-
vices, which typically have limited computation resources. PTAM [26] is considered
as the earliest modern visual SLAM system. It proposes the idea of tracking a camera
and mapping the environment in parallel, which makes these algorithms accurate
and efficient enough for real-time applications. The tracking part is responsible for
local motion recovery and providing a real-time estimate for the camera’s pose. The
mapping part runs a global BA for achieving the global consistency in the back. This
idea is widely adopted in future works, such as DTAM [37], ORB-SLAM [42], and
SOFT-SLAM [11]. In VIL-SLAM, I adapt this idea to using VIO as the tracking
thread and using a LiDAR mapping method for maintaining global consistency.
In this way, advantages of both methods are exploited: VIO is able to provide
accurate local motion estimate and LiDAR scan to map matching could reliably
register scans to global map, at the same time correcting local drift. From another
perspective on a visual SLAM system, the ability to do loop closure (loop detection
and loop validation) directly distinguish it with a VIO. The bag-of-words method
[20] is a widely adopted feature-based approach for loop detection. Though it suffers
from severe illumination variations, it demonstrates reliable performance when the
training set is carefully constructed. Several other methods are developed to boost
the performance via matching sequences [33], incorporating spatial and appearance
information [28], and unifying different visual appearances into one representation
[10]. Lowry et al. [30] provides a comprehensive survey on visual place recognition
methods. Loop validation is for preventing wrong loop detection results to get into
the estimator. A common method in vision-based approaches is to use RANSAC for
outlier rejection [43]. In VIL-SLAM, I adopt the bag-of-words approach for visual
loop detection and a geometric verification method based on RANSAC for loop
validation. Furthermore, I introduce LiDAR into the loop closure system for further
loop validation and loop constraint refinement.

LiDAR-based SLAM Current state-of-the-art SLAM systems using just laser
scanner are [9, 49, 50, 53, 14], in which a motion model is required, either a constant
velocity model or a Gaussian process. These approaches are variants of iterative clos-
est point (ICP) and rely on robust data association to perform well. LOAM [53], the
top ranked LiDAR-only method on KITTI odometry benchmark [21], introduces the
separation of a LiDAR odometry and a LiDAR mapping to tackle the problem. The
former conducts a scan to scan matching to estimate local motion while the latter runs
a scan to map registration using the estimated local motion as the prior. The goal of
the local motion estimate is to provide a relatively good initialization point, which is
essential for the scan to map ICP optimization to perform well and converge faster.
In VIL-SLAM, I couple my VIO implementation with the LiDAR mapping portion of
LOAM to correct the local drift. A VIO provides a better initialization point for the
ICP optimization: Experiments show that the motion estimate from a VIO is much
accurate compared to a LiDAR odometry. Also, a VIO uses IMU as motion model

3

Figure 1.1: The system diagram of VIL-SLAM. Sensors are in gray and system mod-
ules are in green. Arrows indicate how messages flow within the system. Blue arrow
indicates that this message is optional, depending on the system configuration. The
dark thick arrows indicate the system real-time output and the light thick arrow
indicates the output generated in post-processing near real-time.

and could provide estimate up to IMU rate, eliminating the need for a constant
velocity motion model in LiDAR odometry, which is less accurate in comparison.
Approach in [15] combines stereo cameras and a laser scanner. It has motion estimate
generated from a visual odometry (VO) and refined by matching laser scans. The
differences to VIL-SLAM are that they use multi-resolution grid map representation,
but ours uses sparse point cloud for localization and outputs dense point cloud as map
representation. Also, VIO is usually more robust and accurate compared to a VO [13].

VLOAM [54], which uses an IMU, a monocular camera, and a laser scanner is
the most similar existing system to VIL-SLAM. However, they are different from
several perspectives. VLOAM [54] loosely couples IMU, camera, and LiDAR. It uses
a sequential pipeline to process the sensor data: High-rate IMU data provides motion
model for the visual odometry, which then initializes the LiDAR ICP registration.
Both camera and LiDAR are able to provide a feedback for correcting the IMU biases.
LiDAR points are projected into the image frame, serving as depth information.
This pipeline is robust to either camera or LiDAR failure, as the other one could still
correct the IMU biases and generate motion estimate. In comparison, VIL-SLAM
uses a tightly-coupled VIO as the motion model to initialize the LiDAR mapping
algorithm instead of a loosely-coupled one. For LiDAR, both loosely-coupling and
tightly-coupling strategies are proposed, and the latter feeds the LiDAR mapping
results back into the VIO smoother as an additional constraint, making the smoother
a local batch optimization consisting of information from all three sensors. This
guarantees an accurate local motion estimation which is also robust to either camera
or LiDAR failure. Moreover, all sensory information are coupled together, which
makes the optimization problem better constraint. In terms of correcting drift after
long traversal, VIL-SLAM has a LiDAR enhanced loop closure system whereas
VLOAM only depends on the LiDAR mapping system to match scans to existing
map when there is a loop.

4

Figure 1.2: Sample outputs of VIL-SLAM from an indoor test. LiDAR feedback is
closed and loop closure system is turned off in this test. (a) Pose estimate results
from both the VIO and LiDAR mapping systems obtained in real-time. (b) Dense
mapping results (cross-sectioned) stitched with LiDAR mapping pose estimate.

1.3 System Overview

VIL-SLAM consists of three major systems, which are a stereo VIO, a LiDAR map-
ping system, and a LiDAR enhanced visual loop closure system. They collectively ex-
ploit the advantages of IMU, stereo camera, and LiDAR. Fig. 1.1 shows the complete
pipeline of VIL-SLAM. The stereo VIO consists of a visual frontend and a backend
optimizer. The visual frontend takes stereo pairs from the stereo cameras. It performs
frame to frame tracking and stereo matching, and outputs stereo matches as visual
measurements. The backend optimizer takes stereo matches and IMU measurements,
performs IMU pre-integration and tightly-coupled fixed-lag smoothing over a pose
graph. When VIL-SLAM is configured to perfrom LiDAR feedback, the pose graph
has one additional constraint added, which is the pose between factor formulated
from the LiDAR mapping poses. The optional blue arrow in Fig. 1.1 corresponds
to this configuration. The VIO backend optimizer outputs pose estimate at both
IMU rate and camera rate in real-time. The LiDAR mapping system follows the
one in LOAM [53]. It uses the motion estimate from the VIO and performs LIDAR
points dewarping and scan to map registration. The LiDAR enhanced visual loop
closure system conducts visual loop detection and initial loop constraint estimation,
which is further validated by RANSAC geometric verification and refined by a sparse
point cloud ICP alignment. A global pose graph constraining all LIDAR poses is
optimized incrementally to obtain a globally corrected trajectory and a LIDAR pose
correction in real-time once there is a loop. They are sent back to LIDAR mapping
module for map update and re-localization. In post processing, the logged dewarped
LIDAR scans are stitched with the best LIDAR pose estimate to have the dense map-
ping results as in Fig. 1.2. The method assumes extrinsic and intrinsic calibration
parameters are obtained beforehand.

5

2 Stereo Visual Inertial Odometry

2.1 Hybrid Visual Frontend

Visual frontend accepts a stereo pair, and performs frame to frame feature track-
ing and stereo matching for the generation of a set of stereo-matched sparse feature
points, namely, stereo matches. A stereo match could either be one tracked from
previous stereo pair, or a new one extracted in this pair. The frame to frame track-
ing performance directly affects the quality of temporal constraints. Stereo match-
ing is important for bootstrapping the system and generating high-quality matches
to constrain the scale. These two tasks are crucial for any stereo visual frontend.
Traditionally in a feature-based visual frontend, both of the tasks are performed in
descriptor space. However, we note that this method is sensitive to parameter tuning
and time-consuming. More importantly, this method does not use the prior informa-
tion (previous frame) in the tracking task. Direct methods show robust and efficient
temporal tracking results in recent years [16, 18]. Hence, I use Kanade Lucas Tomasi
(KLT) feature tracker [4] to track all feature points of the previous stereo matches,
either in the left or right image. Only when they are both tracked, we have a tracked
stereo match and it is pushed into the output. For stereo matching task, I still use
feature-based methods which are better suited to handle large baselines than KLT.
Large stereo baseline helps scale estimation and reduces degeneracy issues caused by
distant features. Since the system combines direct and descriptor space methods,
hence become a hybrid of the two. If the number of tracked stereo matches is below
a threshold, we perform feature extraction using Shi-Tomashi Corner detector [44],
followed by a feature elimination process in which features that have pixel coordinate
distance to any existing features smaller than a threshold are deleted. ORB (Oriented
FAST and Rotated BRIEF) [42] descriptors are then computed on all survived fea-
tures, followed by a brute-force stereo matching to obtain new stereo matches. The
system initializes by performing stereo matching on the first stereo pair.

2.2 Backend Optimizer

The goal of the backend optimizer is to provide real-time locally consistent state
estimate at a relatively high frequency, serving as the motion model for the LIDAR
mapping algorithm. A tightly-coupled fixed-lag smoother operating over a pose graph
is a good trade-off between accuracy and efficiency. Optimization-based methods
in general allow for multiple re-linearization to approach the global minimum. A
fixed-lag pose graph optimizer further bounds the maximum number of variables,
and hence the computation cost is bounded. Since bad visual measurements cause
convergence issues, we enforce a strict outlier rejection mechanism on visual measure-
ments. The system eliminates outliers by checking the average reprojection error,

6

Figure 2.1: Fixed-lag pose graph formulation in the VIO. State variables being opti-
mized are circled, where i stands for the current state and N is the window size. (a)
The state to be marginalized is crossed. (b) After marginalization, prior factors are
added back on related variables.

both stereo and temporal. Another advantage of formulating the problem as a pose
graph optimization problem is that it unifies different kinds of observations into the
factor representation. This eases the the procedure of adding new sensor inputs
or constraints into the optimization problem. The coupling of LiDAR information
introduced in the next section demonstrates this perspective.

The VIO proposed has IMU Pre-integration Factor and Structureless Vision Factor
as constraints in default, and has Pose Between Factor when LiDAR feedback is
configured. The pose graph formulation without LiDAR feedback is shown in Fig.
2.1. Variables to be optimized are the states inside the window. Denote St as the
state variable at the stereo frame time t, we have

St
.

= [ξt,vt,b
a
t ,b

g
t]

where ξt
.

= (Rt,pt) ∈ SE(3) represents the 6 Degrees of Freedom (DoF) system
pose (IMU-centered robot pose at time t). vt ∈ R3 is the associated linear velocity.
bat ∈ R3 and bgt ∈ R3 are the accelerometer bias and gyroscope bias respectively.
The state variables being estimated at time t are those inside the sliding window
consisting of the most recent N keyframes

{St}N

Past state variables are marginalized by the estimator. This procedure produces prior
factors on related variables which are still inside the window.

7

2.2.1 IMU pre-integration factor

I follow the IMU pre-integration theory introduced in [19, 8] to process IMU mea-
surements. The idea of pre-integrating IMU measurements is first introduced in [31]
to ease the computational cost. It adopts Euler angles as global parametrization for
rotations and hence has the issue of singularities and inconsistency of rigid transfor-
mation in Euclidean space [34]. The pre-integration theory is built up on this work
and addresses the manifold structure of the rotation group. It preserves the original
insight of pre-integration, that is, the integration is performed locally and does not re-
quire repetitive integration when the linearization point in the optimization changes.
Moreover, the theory provides a complete theoretical derivation for all Jacobians,
uncertainty propagation, and a-posteriori bias correction. I present here only the key
steps in writing the pre-integration factor. Readers should refer to [19] for the details.

For two consecutive states Si and Sj, denote k = i, · · · , j as the IMU measure-
ments in between, the relative motion increments that are independent of the pose
and velocity could be derived as

∆Rij
.

= Rᵀ
iRj =

j−1∏
k=i

exp
(
(ω̃k − bgi − η

gd
k)∆t

)
∆vij

.
= Rᵀ

i (vj − vi − g∆tij) =

j−1∑
k=i

∆Rik(ãk − bai − ηadk)∆t

∆pij
.

= Rᵀ
i (pj − pi − vi∆tij −

1

2
g∆t2ij)

=

j−1∑
k=i

[
∆vik∆t+

1

2
∆Rik(ãk − bai − ηadk)∆t2

]
=

j−1∑
k=i

[3
2

∆Rik(ãk − bai − ηadk)∆t2
]

(2.1)

In which ω̃k and ãk are the measured angular velocity from gyroscope and accel-
eration from accelerometer, ηgdk and ηadk are the modeled discrete-time white noise
for IMU (additive for gyroscope and accelerometer individually), ∆tij = sumj

k=i∆tk,
∆Rik

.
= Rᵀ

iRk, ∆vik = vk − vi. Note that the biases between two consecutive
keyframes Si and Sj are modeled as constant. However, the equations still depend on
the biases. So when the biases change during optimization, potential re-integration
is required. To proceed, the biases are first assumed given, and then the authors
show how to avoid the re-integration.

Using first-order approximations of the exponential map and the Adjoint repre-
sentation of the exponential map

exp (φ∧) ≈ I + φ∧

8

Exp(φ+ δφ) ≈ Exp(φ)ExpJr(φ)δφ

Exp(φ)R = RExp(Rᵀ)

The approximated measurements are derived

∆Rij
.

= ∆R̃ijExp(−δφij)
∆vij

.
= ∆ṽij − δvij

∆pij
.

= ∆p̃ij − δpij

(2.2)

in which

∆R̃ij =

j−1∏
k=1

Exp
(
(ω̃k − bgi)∆t

)
Exp(−δφij) =

j−1∏
k=1

Exp
(
∆R̃

ᵀ
(k+1)jJ

k
r η

gd
k ∆t

)
∆ṽij =

j−1∑
k=i

∆R̃ik(ãk − bai)∆t

δvij =

j−1∑
k=i

[
∆R̃ikη

ad
k ∆t−∆R̃ik(ãk − bai)

∧δφik∆t
]

∆p̃ij =

j−1∑
k=i

3

2
∆R̃ik(ãk − bai)∆t

2

δpij =

j−1∑
k=i

[3
2

∆R̃ikη
ad
k ∆t2 − 3

2
∆R̃ik(ãk − bai)

∧δφik∆t
2
]

∆R̃ij, ∆ṽij, and ∆p̃ij are the pre-integrated rotation, velocity, and position mea-
surements. δφij, δvij, and δpij are the associated noises.

To deal with the bias update b ← b̄ + δb during the optimization, first-order
approximation is used to update the delta measurements:

∆R̃ij(b
g
i) ≈ ∆R̃ij(b̄

g
i)Exp

(
∂∆R̄ij

∂bgi
δbgi

)
∆ṽij(b

g
i ,b

a
i) ≈ ∆ṽij(b̄

g
i , b̄

a
i) +

∂∆v̄ij
∂bai

δbai +
∂∆v̄ij
∂bgi

δbgi

∆p̃ij(b
g
i ,b

a
i) ≈ ∆p̃ij(b̄

g
i , b̄

a
i) +

∂∆p̄ij
∂bai

δbai +
∂∆p̄ij
∂bgi

δbgi

(2.3)

I omit the Jacobian’s expression which could be found in the original paper. Note
that the Jacobian is constant across the optimization and can be computed before-
hand.

9

The biases are modeled to be slowly-varying in the model, hence with a ”Brownian
motion”, that is, an integrated white noise:

ḃ
g
(t) = ηbg ḃ

a
(t) = ηba

By integration, for two consecutive states Si and Sj, the following could be written:

bgj = bgi + ηbgd

baj = bai + ηbad
(2.4)

where ηbgd and ηbad are the discrete noises which have zero mean and covariance
Σbgd .

= ∆tijCov(ηbg) and Σbad .
= ∆tijCov(ηba) [19]. This equation is readily to be

used for formalizing a residual term for the bias update. Together with the previous
derivation, we have the residuals represented by the IMU pre-integration factor, rIij =
[rᵀ∆Rij

, rᵀ∆vij
, rᵀ∆pij

, rᵀbij
]ᵀ, derived:

r∆Rij

.
= Log

((
∆R̃ij(b̄

g
i)Exp

(∂∆R̄ij

∂bgi
δbgi
))ᵀ

Rᵀ
iRj

)
r∆vij

.
= Rᵀ

i (vj − vi − g∆tij)

−
[
∆ṽij(b̄

g
i , b̄

a
i) +

∂∆v̄ij
∂bai

δbai +
∂∆v̄ij
∂bgi

δbgi

]
r∆pij

.
= Rᵀ

i (pj − pi − vi∆tij −
1

2
g∆t2ij)

−
[
∆p̃ij(b̄

g
i , b̄

a
i) +

∂∆p̄ij
∂bai

δbai +
∂∆p̄ij
∂bgi

δbgi

]
||rbij

||2 = ||bgj − bgi ||2Σbgd + ||baj − bai ||2Σbad

(2.5)

2.2.2 Structureless vision factor

In a traditional factor graph based VIO, visual landmarks are modeled as variables
in the graph, either in inverse depth or 3D position representation. Visual mea-
surements are then the camera projection factors. In this work, visual landmarks
are not explicitly modelled, and visual measurements are modeled in a structureless
fashion, similar to [19, 36, 5]. The benefits of the latter approach are two-fold. First,
variable size is bounded to be the sliding window size at any point in time. The
computational cost is hence bounded. Second, it is easier to manage the landmark
variables. When a keyframe is out of the window, landmarks of all observations
associated with it are marginalized automatically.

Consider a landmark p, whose position in global frame is xp ∈ R3, is observed
by multiple states and denote the set of states observing p as {S}p. For any
state Sk in {S}p, denote the residual formed by measuring p as in the left camera
image as rVξk,lc,p (ξk,lc is the left camera pose, obtained by applying a IMU-camera

10

transformation to ξk, the IMU-centered system pose):

rVξk,lc,p = zξk,lc,p − h(ξk,lc,xp) (2.6)

where zξk,lc,p is the pixel measurement of p in the image and h(ξk,lc,xp) encodes
a perspective projection. Same formulation is derived for the right camera image.
Iterative methods are adopted for optimizing the pose graph, and hence linearization
of the above residual is required. Equation (2.7) shows the linearized residuals for
landmark p. ∑

Sp

||Fkpδξk + Ekpδxp + bkp||2 (2.7)

where the Jacobians Fkp, Ekp and the residual error bkp are results from the lin-

earization and normalized by Σ
1/2
c , the visual measurement covariance. Stacking each

individual component inside the sum into a matrix we have

||rVp ||2ΣC
= ||Fpδξk + Epδxp + bp||2 (2.8)

To avoid optimizing over xp, we project the residual into the null space of Ep: Pre-
multiply each term by Qp

.
= I− Ep(E

>
p Ep)

−1E>p , an orthogonal projector of Ep [19].
We thus have the Structureless Vision Factor, for landmark p as

||rVp ||2ΣC
= ||QpFpδξk + Qpbp||2 (2.9)

2.2.3 Optimization and marginalization

Given the residuals, the pose graph optimization is a maximum a posteriori (MAP)
problem whose optimal solution is

{St}∗N = arg min
{St}∗N

(||r0||2Σ0
+
∑
i∈w

||rIi(i+1)||2ΣI
+
∑
p

||rVp ||2ΣC
) (2.10)

where {St}∗N is the set of state variables inside the window. r0 and Σ0 are prior factors
and their associated covariance. ΣI is the covariance of the IMU measurements.
I use the Levenberg-Marquart optimizer to solve this nonlinear optimization problem.

The most recent N state variables are maintained inside the optimizer. Schur-
Complement marginalization [45] is performed on state variables getting out of the
window. Denote xµ as a set of states to be marginalized out, xλ as the set of all
states related to those by error terms, and xρ as the set of remaining states. Because
of conditional independence, the marginalization step can be simplified:[

Hµµ Hµλ

Hλµ Hλλ

] [
δxµ
δxλ

]
=

[
bµ
bλ

]
(2.11)

11

Applying of the Schur-Complement operation yields:

H∗λλ := Hλλ −HλµH
−1
µµHµλ (2.12)

b∗λ := bλ −HλµH
−1
µµbµ (2.13)

where H∗λλ and b∗λ are nonlinear functions of xλ and xµ. This describes a single step
of the marginalization. In the VIO, marginalization is repeatedly performed and prior
factors are continuely introduced. Hence, we fix the linearization point around x0, the
value of x at the time of marginalization. We then introduce ∆x := Φ−1(log(x̄◦x−1

0))
as the state update after marginalization, where x̄ is the current estimate for x. In
other words, x is composed as

x = exp Φ(δx) ◦ exp Φ(∆x) ◦ x0 (2.14)

in which
x̄ = exp Φ(∆x) ◦ x0 (2.15)

After introducing ∆x, we could approximate the right-hand side of Eq. 2.11 up to
first-order

b +
∂b

∂∆x

∣∣∣∣
x0

∆x = b−H∆x (2.16)

If again using the partition of variable as xµ and xλ, we have[
bµ
bλ

]
=

[
bµ,0
bλ,0

]
−
[
Hµµ Hµλ

Hλµ Hλλ

] [
∆xµ
∆xλ

]
(2.17)

Plug Eq. 2.17 into Eq. 2.13, we thus have

b∗λ := bλ,0 −HλµH
−1
µµbµ,0 −H∗λλ∆xλ (2.18)

in which
b∗λ,0 = bλ,0 −HλµH

−1
µµbµ,0 (2.19)

The marginalization procedure thus consists of applying Eq. 2.12 and Eq. 2.18. Upon
marginalization, prior factors are added back to related variables (of marginalized
variables) which are still inside the window, as shown in Fig. 2.1.

12

3 Coupling Strategy With LiDAR

3.1 Overview of the LiDAR Method

LiDAR-based methods alone demonstrate robust and accurate performance in most
scenarios. In this work, I use part of LOAM [53], a state-of-the-art LiDAR method,
as our LiDAR mapping system. LOAM [53] solves the SLAM problem in a division
of an odometry and a mapping algorithm. The former performs odometry at a
high-frequency but at low fidelity to estimate velocity of the sensor. It conducts scan
to scan registration for fast computation. The latter runs at an order of magnitude
lower frequency for fine matching and registration of the point cloud. It conducts
point cloud dewarping and scan to map registration.

The odometry algorithm performs feature extraction and scan to scan local
motion estimation. Let Pk refer to the kth point cloud, i be a point in Pk, i ∈ Pk. Let
S be the set of consecutive points of i returned by the laser scanner in the same scan.
Two kinds of features are extracted: edge points and planar points. The extraction
is based on evaluation on the smoothness of local surface as in Eq. 3.1.

c =
1

|S| · ||XL
k,i||
∣∣∣∣ ∑
j∈S,j 6=i

(XL
k,i −XL

k,j)
∣∣∣∣ (3.1)

where X denotes the 3D position of the LiDAR point. Feature points are selected
with the maximum c, namely, edge points, and the minimum c, namely, planar points.
They form the edge point set Ek and plane point set Hk. Then, feature correspon-
dences are found for feature point sets between scans, and scan to scan motion es-
timation is conducted by minimizing the overall distances of the feature points. For
edge points, we use the point to line distance where the line is found as formulated
by two edge identical points as in Eq. 3.2.

dE =
|(X̃L

k,i − X̃
L

k−1,j)× (X̃
L

k,i − X̃
L

k−1,l)|

|X̃L

k−1,j − X̃
L

k−1,l|
(3.2)

where X̃(k,i), X̃(k−1,j), and X̃(k−1,l) are the coordinates of points i, j, and l in Lk and
Lk−1, respectively. The latter two are retrieved edge points using the first one for
formalizing this error term. For planar points, point to plane distances are used as
in Eq. 3.3.

dH =

∣∣∣∣ X̃
L

k,i − X̃
L

k−1,j

((X̃
L

k−1,j − X̃
L

k−1,l)× (X̃
L

k−1,j − X̃
L

k−1,m))

∣∣∣∣
|(X̃L

k−1,j − X̃
L

k−1,l)× (X̃
L

k−1,j − X̃
L

k−1,m)|
(3.3)

13

where X̃(k,i), X̃(k−1,j), X̃(k−1,m), and X̃(k−1,l) are the coordinates of points i, j, m, and
l in Lk and Lk−1, respectively. The latter three are retrieved planar points using the
first one for formalizing this error term. In the odometry motion estimation, these
two terms are jointly minimized with a small set of feature points to get an initial
scan to scan motion estimate for the LiDAR mapping optimization.

The LiDAR mapping algorithm uses the scan to scan motion estimate to
perform further refinements. It conducts the same optimization at 10 times lower
rate but at a larger scale (use 10 times more feature points). The error terms remain
the same as in the odometry part. However, feature points are dewarped into the
end of the scan to account for the motion skew. Denote any time within a scan as
ti. We dewarp all points to the time of end of scan tk+1 based on the local motion
estimate. Denote a LIDAR point at ti as Pi and the dewarped itself as P̃i, we have

P̃i = (TL
k+1)−1TL

i Pi (3.4)

where TL
k+1, TL

i are LIDAR frame poses from the LiDAR odometry estimate. The
optimization is performed over scan points and map points (accumulated scan
points from the beginning). The dewarped points are added to the map after the
optimization. This refinement comes at a lower rate but is much accurate compared
to the odometry. Fusing the two, LOAM outputs a refined LiDAR-rate pose estimate
in real-time as the system output.

We see that the LiDAR odometry and mapping methods are relatively independent
and each has its own goal, though they are similar in terms of the methodology. For
the odometry, the goal is to provide a smooth and high-rate local motion estimate,
which is later used for point cloud dewarping and initialization of the scan to map
registration. For the mapping, the goal is to reliably register new coming scans to
the existing map. It should be accurate and robust enough to correct the local drift
and built a consistent map.

3.2 Loose Coupling Strategy

From the relative independence of the odometry and mapping algorithm, one could
think of substitute either parts to improve the overall performance of the algorithm.
From experiments, I see that the LiDAR odometry is relatively inaccurate. Some-
times even the local drift could be pretty large. However, the LiDAR mapping is
rather robust and accurate. With a VIO in hand, I hence substitute the LiDAR
odometry with the VIO. This is shown in the system diagram Fig. 1.1.

To use the VIO as the odometry source, the LiDAR mapping system uses high
frequency IMU-rate VIO poses as the motion prior to perform LiDAR points de-
warping and scan to map registration. To ensure that the local smoothness and
consistency are preserved , I generate a smoothed version of the VIO poses by

14

Figure 3.1: Fixed-lag pose graph formulation in the VIO with LiDAR feedback pose
between factor. State variables being optimized are circled, where i stands for the
current state and N is the window size. The state to be marginalized is crossed. The
light blue edge and dot indicate the pose between factor from LiDAR feedback.

integrating the IMU measurements with the corrected biases and velocities. Altough
this estimate is sub-optimal, experiments show that when the optimization problem
is well constrained, the estimate is reasonably good as a local pose source. Feature
works from the LiDAR odometry are still needed. Denote a scan χ as the point cloud
obtained from one complete LiDAR rotation. Geometric features including points on
sharp edges and planar surfaces are extracted from χ as in Sec. 3.1. Then, all feature
points are dewarped. The registration is then based on dewarped feature points
from current scan to the map (all previous feature points), solved as an optimization
problem by minimizing Euclidean distance residuals formed by the feature points as
in Eq. 3.2 and 3.3.

3.3 Tight Coupling Strategy

Though the coupling strategy in Sec. 3.2 integrates the VIO and LiDAR mapping,
it lacks the capability of correcting the odomety (specifically the IMU biases and
velocity estimate) using the LiDAR mapping results, which is referred as feedback
from LiDAR in [54]. The disadvantage is obvious: the odoemtry estimate could
suffer once the robot is in visually challenging environments, which in turn affects
the performance of the LiDAR mapping system. Hence, I investigate a feedback
mechanism from LiDAR mapping to VIO, which is naturally supported by the pose
graph formulation.

Consider two pose estimates from the LiDAR mapping system Lt−1 and Lt at
time t− 1 and t. From the odometry perspective, they are of smaller drifts compared
with the VIO’s estimates. Hence, I add another constrain in the VIO’s pose graph to
model this relative information, namely, a Pose Between Factor. Using rF to denote
the assoicated residual:

rF = (L−1
t−1Lt)

−1(S−1
t−1St) (3.5)

in which (L−1
t−1Lt) is the measurement of the local relative motion with an associated

noise model. St−1 and St are the current estimate for the two poses inside the state

15

Figure 3.2: A more practical formulation of the pose graph inside VIO with LiDAR
feedback. LiDAR states and camera states have the same state variables but are
different in terms of the timestamp. Pose between factors are formulated on LiDAR
states. Camera states follow the ones in the original VIO pose graph as in Fig. 2.1.

variables. Note that the residuals are formulated on manifold using the exponential
map. The rotation part is minimized towards identity and the translation part is
minimized towards zero. The revised pose graph in the VIO is shown in Fig. 3.1.
Some practical issues are also worth to discuss. First, LiDAR mapping takes time
to finish. Hence, the pose between factors are always added onto the states that are
back in the window. Second, in Fig. 3.1 the pose between factors are added to the
same state variables as of the keyframe states in the original VIO setup. This makes
assumption to the sensor platform: LiDAR scans are received approximately at the
same time of the keyframe states. However, LiDAR scans and images are very likely
to come at a different rate. A more practical or general model would be the one shown
in Fig. 3.2. LiDAR states are created separately and IMU pre-integration factors are
re-generated to account for the insertion of the LiDAR state variables. In this work,
experiments are carried out with the model in Fig. 3.1 on a well synchronized dataset
to illustrate the idea.

16

4 LiDAR Enhanced Visual Loop Closure

Loop closure is critical to any SLAM system as long term operation introduces drift.
The objective of loop closure is to eliminate drift by performing a global pose graph
optimization which incorporates loop constraints and relative transformation informa-
tion from LIDAR mapping. To better assist LIDAR mapping, the corrected LIDAR
pose is sent back in real-time so that feature points from new scans are registered
to the revisited map. We propose adding ICP alignment in addition to visual Bag-
of-Words [20] loop detection and PnP loop constraint formulation. The system uses
iSAM2 [25], an incremental solver, to optimize the global pose graph, achieving real-
time performance.

4.1 Loop Detection

We use the bag-of-words method [20] for initial loop detection. The bag-of-words
model is trained beforehand using images from alike environments. During operations,
keyframes with their pose estimates are added to the database at its first appearance.
At the same time, it retrieves for the most similar keyframe from the bag-of-words
database to see if there is a potential loop. To prevent false loop detection, we
restrict candidates within a certain time threshold. If retrieved, the system matches
feature descriptors of the left image with the loop candidates to further filter out false
positives.

4.2 Loop Constraint Generation

The system first obtains visual loop constraint as an initial estimate. Since we use a
structureless formulation for visual landmarks, triangulation on all the stereo matched
features in the loop candidate is performed to obtain their 3D location. Their associ-
ations to current keyframe are given by descriptor match. The visual loop constraint
is then evaluated using EPNP [?]. For each keyframe, we also store the associated
LiDAR key scans using timestamp. To improve the accuracy of the visual loop con-
straint, we use ICP alignment on the feature points of the corresponding LIDAR key
scans. With a bad initialization or a larger point count, ICP takes longer to converge
and consumes more computation resources. However, the visual loop constraint pro-
vides a good initialization point and the ICP only uses sparse feature points (Sect.
3.1), which makes it converge fast.

17

Figure 4.1: The global pose graph consists of the LiDAR Odometry Factor and the
Loop Constraint Factor. i stands for the most recent LiDAR scan.

4.3 Global Pose Graph Optimization

The graph representation of the global pose graph is shown in Fig. 4.1. It contains all
the available LiDAR mapping poses as variables, constrained by the LiDAR Odometry
Factor and the Loop Constraint Factor, both having the same residual form as the
Pose Between Factor shown in Eq. 3.5. The residual is expressed in 6 DoF minimum
form in the optimization. For the LiDAR Odometry Factor, the two poses to form
the pose between factor are all of the consecutive poses. For the Loop Constraint
Factor, the two poses are the detected twos to formulate a loop. To further improve
the efficiency and realize real-time update performance, we adopt iSAM2 [25] to
incrementally optimize the pose graph.

4.4 Re-localization

Once a loop closure candidate is detected, LIDAR mapping buffers the feature points
(without registering them to the map) until it receives loop correction. The loop
correction contains globally optimized trajectory. LIDAR mapping updates its map,
adds the buffered feature points to the map and then resumes its operation. We
can afford to update the map in real-time because (a) loop closure has a real-time
performance (b) the sparse feature map does not take much memory, and (c) scan to
map registration is fast enough to catch up with the LIDAR data rate.

18

Figure 5.1: Root Mean Square Error (RMSE) of ATE for EoRoC MAV Dataset.
Methods are colored differently as in the legend for better visualization.

5 Experimental Results

The software pipeline is implemented in C++ with ROS communication interface. We
use GTSAM library [12] to build the fixed-lag smoother in the VIO. For loop closure,
we use LibPointMatcher [39] to do ICP on point clunds, DBoW3 [2] to build the
visual dictionary, and iSAM2 [25] implementation in GTSAM [12] to conduct global
pose graph optimization. I have used data from both public available datasets and
custom collected dataset to evaluate the performance of the algorithm. Specifically, I
use the EuRoC MAV dataset [6] to evaluate the stereo VIO implementation, a custom
dataset (Autel dataset) to evaluate the robustness of the complete pipeline without
LiDAR feedback, and the KITTI dataset [21] to evaluate the idea of tightly coupling
LiDAR and VIO.

5.1 EoRoC MAV Dataset

I evaluate the stereo VIO implementation (VIL-VIO) using the EuRoC MAV dataset
[6] in terms of the Absolute Trajectory Error (ATE) as in [46]. This dataset con-
sists of 20Hz stereo images and 200Hz IMU information recorded by a VI sensor [38]
mounted on a MAV. There are 11 sequences varying in motion dynamics, lighting
conditions and image qualities. The difficult ones in V1 and V2 present aggressive
motion, motion blur, and illumination changes, which all challenge a state estimator.

Table. 5.1 and Fig. 5.1 show the comparison results between VIL-VIO and some rep-
resentative state-of-the-art methods. OKVIS [29] and VINS-MONO [40] are fixed-lag
VIO systems and ROVIO [3] is a filtering-based approach. In Table. 5.1 and Fig.
5.1, a sequence is named in the first four letters and the difficulty level is encoded in

19

the last letter (E:easy, M:medium, D:difficult). Results for VIL-VIO are determinis-
tic, obtained in real-time on a desktop with 3.60GHz i7-4790 CPU. Results for the
other methods are the better ones from experiments in [23] and [47]. The best results
are bold in the table. VIL-VIO achieves the best in five out of eleven sequences and
shows competitive results on the others. It succeeds all the difficult ones, verifying the
capability to handle aggressive motion, illumination changes, motion blur and tex-
tureless regions reasonably well. However, we see that OKVIS outperforms VIL-VIO
in six sequences out of the eleven. Though the differences are small, we should note
that OKVIS has a more complicated marginalization strategy and it has a frontend
that is more blended with the backend optimizer for feature selection. These give
rooms for VIL-VIO to improve. If directly compare with VINS-MONO, we see that
VINS-MONO reaches better performance in five of the eleven sequences. However,
it could have pretty bad performance in the difficult ones wheareas VIL-VIO has a
more uniformed performance in all difficult levels. The reason might be the scale
estimation in VINS-MONO is not robust enough to handle all scenarios, especially in
those challenging sequences.

Table 5.1: RMSE OF ATE (METER) ON THE EuRoC MAV DATASET [6]

Sequence VIL-VIO OKVIS VINS-MONO ROVIO

MH-01-E 0.100 0.160 0.284 0.354
MH-02-E 0.106 0.106 0.237 0.362
MH-03-M 0.153 0.176 0.171 0.436
MH-04-D 0.194 0.208 0.416 0.919
MH-05-D 0.223 0.292 0.308 0.991

V1-01-E 0.080 0.050 0.072 0.125
V1-02-M 0.121 0.061 0.118 0.160
V1-03-D 0.217 0.127 0.159 0.170

V2-01-E 0.109 0.055 0.058 0.220
V2-02-M 0.189 0.081 0.097 0.218
V2-03-D 0.343 0.305 0.693 0.252

There are plenty of rooms for VIL-VIO to improve. Firstly, VIL-VIO is a stereo im-
plementation but not using the stereo disparity map. During operation, usually there
are not more than a hundred feature matches currently. Hence, a better frontend
would definitely boost its performance. For example, one could integrate disparity
map or depth map from the sensor or some other software pipeline (e.g. deep learn-
ing approaches). This gives more clues and information for feature selection, feature
match generation, and early outlier rejection. Secondly, a more thoughtful marginal-
ization that separates recent frame and keyframe could be implemented as in [29, 40].
This helps maintain large parallax between keyframes to avoid degeneracy and better
constrain the biases estimation using the recent frames.

20

Table 5.2: FDE (%) and MRE (m) TEST RESULTS

Test
Total FDE MRE

Length VIL-SLAM LOAM VIL-SLAM LOAM
Highbay 118 0.08 0.56 0.08 0.22
Hallway 103 0.61 0.91 0.10 0.27
Tunnel 85 1.86 -2 × ×
Huge

318 0.01 - 0.22 0.36
Loop

Outdoor 528 0.02 0.02 × ×

5.2 Autel Dataset

We built a platform with two mega-pixel cameras, a 16 scan-line LiDAR, an IMU
(400Hz), and a 4GHz computer (with 4 physical cores). Synchronizing the time
between the sensors and computer is critical and directly affects the quality of any
SLAM system. We built a custom microcontroller based time synchronization circuit
that synchronizes the cameras, LIDAR, IMU and computer by simulating GPS
signals (PPS and NMEA stream). We have collected data from various challenging
environments with this platform, aiming to fully evaluate VIL-SLAM. In comparison,
I also show results of LOAM [53], the best real-time LiDAR based system1, on these
test sequences.

I present results from five representative environments including featureless hallways,
cluttered highbays, tunnels, and outdoor environments. The data collection started
and ended at the same point for all these sequences. Odometry (LiDAR mapping
pose) is evaluated based on the final drift error (FDE). Mapping results are evaluated
in terms of mean registration error (MRE) using Faro scans as ground truth: I
first align the map with the model (Faro scans), and then compute the Euclidean
distance between a map point and its closest point in the model [1]. The odometry
FDE and mapping results are shown in Table 5.2 with the better ones in bold. The
trajectories and cross-sectioned maps are shown in Fig. 5.2, 5.3, 5.4, 5.5, 5.6. The
map comparisons are shown in Fig. 5.7.

The highbay is an indoor warehouse which is open, structured, and rich in features.
However, frequent structural occlusions could be a challenge for the visual frontend
and the LiDAR feature extraction part. Both VIL-SLAM and LOAM handle this
environment pretty well. For VIL-SLAM, LiDAR mapping module registers most of
its scan to map, largely reducing the odometry error. Loop closure recognizes the
starting position and closes the loop. The map is generated using the globally refined

1This is the best implementation of LOAM I could find online
https://github.com/laboshinl/loam velodyne

2”-” indicates not finished. ”×” indicates missing data.

21

Figure 5.2: Trajectory and mapping results for the highbay test. Trajectories from
VIL-SLAM and LOAM are shown on the left and cross-sectioned maps generated by
VIL-SLAM are shown on the right. Start(end) position is labeled with red triangle
in the map and is the origin in the plot. Loop closure is triggered and the globally
refined trajectory is shown in blue.

Figure 5.3: Trajectory and mapping results for the hallway test.

poses, with the majority of map errors below 0.15m.

The hallway and tunnel tests are challenging environments because of lack of
visual features and the degeneracy issue along traversal direction for LiDAR. LOAM
accumulates large error in the hallway, and fails the tunnel test mainly due to the
degeneracy issue. Aided by the stereo VIO module (VIL-VIO), VIL-SLAM succeeds
both tests. In the hallway test, the visual frontend returns fewer reliable measure-
ments because of the featureless walls, under-constraining the VIO. This corrupts
the map as observed by wall misalignment, which is later corrected by loop closure
as shown in Fig. 5.8(c-d). Loop closure detects the loop twice when approaching the
endpoint, lowering FDE to 0.05% and generating a refined map. In the tunnel test,
because of the degeneracy issue, VIL-SLAM struggles as well and accumulates some

22

Figure 5.4: Trajectory and mapping results for the tunnel test.

Figure 5.5: Trajectory and mapping results for the huge loop test.

Figure 5.6: Trajectory and mapping results for the outdoor test.

23

(a) Highbay

(b) Hallway

(c) Huge Loop

Figure 5.7: Map registration error of VIL-SLAM (right) and LOAM (left) comparing
to the model. Errors above 0.3m are colored red for (a-b) and 0.5m for (c). Discon-
tinuous red regions inside the blue and green are due to lack of the model caused by
occlusions of the Faro scans.

24

Figure 5.8: (a) Map of the tunnel stitched using LIDAR mapping poses. (b) Map
of the tunnel stitched using globally refined poses. Double image in (a) is mostly
eliminated but not fully, because only one loop constraint is generated, not enough
for a full correction. (c) Map of the hallway stitched using LIDAR mapping poses.
(d) Map of the hallway stitched using globally refined poses. Double image in (c) is
mostly eliminated. Walls are aligned with two loop constraints.

error in the traversal direction. However, loop closure detects the loop at about 3m
from the end point, lowering the FDE down to 0.08% and correcting the map as
shown in Fig. 5.8(a-b).

The huge loop test features challenges from both hallway and highbay environ-
ments. In addition, we end the trajectory by re-entering the highbay after traversing
along a long narrow corridor. LOAM fails this test after re-entering the highbay, at
the place labeled by a red cross in Fig. 5.5. This is because it fails to register new
scans to the original highbay map caused by a large error in z-direction accumulated
in the corridor. VIL-SLAM succeeds in this test. Without loop closure being
triggered, it achieves 0.01% FDE in odometry. VIL-SLAM is robust and achieves this
result by successfully registering new scans to the original highbay map at re-entry.
The map generated with the odometry estimate of VIL-SLAM is compared with the
map generated with LOAM before its failure. The boxed region is where LOAM
accumulates errors leading to its failure.

The outdoor test features an outdoor trajectory which is 546m long and includes a
gentle slope. Pedestrians and cars were observed which served as potential outliers.
VIL-SLAM and LOAM have comparable results along the xy-plane. However, LOAM
fails to capture the changes in the z-direction. The inaccuracy in z of LOAM is also
observed in the previous tests.

Overall, VIL-SLAM generates more accurate mapping results and lower FDE
compare to LOAM when they both finish. Also, VIL-SLAM succeeds the more
challenging environments where LOAM fails with qualitatively good mapping and
odometry results.

25

5.3 KITTI Odometry Dataset

I use training sequences from KITTI odometry dataset [21] to validate the LiDAR
feedback mechanism. The dataset consists of driving sequences collected with a
platform mounted on top of a vehicle, featuring environments including country,
urban, and highway. The dataset provides data from high resolution color and
grayscale stereo cameras, a 64-line Velodyne 3D laser scanner, and a high-precision
GPS/IMU inertial navigation system. Moreover, data from different sensors is well
synchronized and is well suited for the pose graph formulation in 3. However, there
are sequences with lost of IMU messages occasionally, which VIL-SLAM could not
deal with at the point. Hence, only results from sequences 05 to 10 are shown
below. Also note that the VIO system that achieve these results is of a monocular
version that I implemented. The reason is while LiDAR could recover the scale,
the visual frontend could get rid of the stereo matching phase which eliminates lots
of visual observations. In this monocular version, I use KLT feature tracker [4] to
generate temporal constraints. I adopt the official evaluation metric from KITTI:
From all sequences, it computes translational and rotational errors for all possible
sub-sequences of length (100,...,800) meters. Errors are measured in percentage (for
translation) and in degrees per meter (for rotation).

Results for the mean translational errors are shown Table 5.3. Qualitative re-
sults are shown in Fig. 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15. In the table,
TC indicates tight-coupling and LC indicates loose-coupling. Results of VIL-SLAM
(monocular version) running in both loose and tight coupling mode are shown. In
comparison, results of LOAM [53] are shown. Note that for sequence 05, results of
VIL-SLAM are for the first half of the trajectory as IMU messages are lost in the
middle. Comparing TC and LC, we see results for TC are all better. This validates
the initial expectation, as the LiDAR feedback mechanism could help constrain the
scales in a monocular VIO, which in turn yields much better local odometry estimate.

Table 5.3: MEAN TRANSLATIONAL ERROR (%) ON THE KITTI ODOMETRY
DATASET

Sequence Environments VIL-SLAM (TC) VIL-SLAM (LC) LOAM

05 Urban 0.48 0.51 0.57
06 Urban 0.89 0.93 0.65
07 Urban 0.52 0.73 0.63
08 Urban+Country 1.01 3.75 1.12
09 Urban+Country 0.79 0.878 0.77
10 Urban+Country 1.53 1.49 0.79

However, comparing with LOAM, the tight coupling VIL-SLAM only achieved better

26

Figure 5.9: Trajectory results for KITTI sequences 06.

Figure 5.10: Trajectory results for KITTI sequences 06 (side).

results in 3 of the 6 sequences. In sequence 06 and 10, the results are much worse
in comparison, and in sequence 09, the two methods achieves relatively similar
performance. I believe this inaccuracy is because of two major disadvantages of
the current implementation. Firstly, no explicit scale estimation is performed in
the current monocular VIO implementation. The odometry estimate is up to scale
and hence leads to unstable and inaccurate results, especially in the loose coupling
case. In the tight coupling case, though LiDAR feedback mechanism corrects the
scale ambiguity, an explicit scale estimate in the VIO is much more self-contained
and brings more robustness to the estimation process. Secondly, the current LiDAR
implementation deals with z-direction estimation poorly in certain environments,
and the estimate drifts along z-direction more in comparison with x and y directions.

27

Figure 5.11: Trajectory results for KITTI sequences 07.

Figure 5.12: Trajectory results for KITTI sequences 08.

28

Figure 5.13: Trajectory results for KITTI sequences 09.

Figure 5.14: Trajectory results for KITTI sequences 10.

29

Figure 5.15: Trajectory results for KITTI sequences 10 (side).

This can be seen from both Fig. 5.10 and 5.15: The majority of the drift is along
z-dimension and is consistent in both loose coupling and tight coupling cases. To
remedy the z-drift issue, I believe adjusting weights for different losses and adding
more penalty terms such as global plane and line constraints should help. The results
for sequence 09 are very close in comparison. From the figure, We see that there are
drifts in x and y direction at the end part of the trajectory for VIL-SLAM, and the
one for tight coupling case is a bit better.

Overall, the experiments demonstrate that adding LiDAR feedback mechanism
to the VIO is beneficial for both fixing the scale and lowering the drift. The results
should be improved if a stereo VIO is used in which case there is no scale ambiguity,
and if the LiDAR mapping system is improved to be more robust to estimation along
z-direction.

30

6 Conclusion

In this thesis, I have explored a multi-sense approach for improving the robustness of
a SLAM pipeline. I investigated the fusion of LiDAR, camera and IMU for tackling
the real-time state estimation and mapping problem in a factor graph formulation.
The method consist of a stereo VIO, a LiDAR mapping system, and a LiDAR
enhanced visual loop closure system. It runs two factor graph optimization in
real-time: a fixed-lag smoothing in the stereo VIO and a global pose graph optimized
incrementally. The complete pipeline, VIL-SLAM, is able to generate loop-closure
corrected 6-DOF poses and associated sparse LiDAR point cloud in real-time, and
dense 1cm voxel-size maps near real-time. VIL-SLAM has been evaluated successfully
on public dataset (EuRoC MAV dataset) and a custom dataset (the Autel dataset)
collected with a built sensor suite. The pipeline demonstrates improved accuracy and
robustness in challenging environments, where state-of-the-art LiDAR methods fail
easily. Then, I further discussed loose and tight coupling strategies between the VIO
and the LiDAR mapping system, and introduced the LiDAR feedback mechanism to
help reduce drifts in the VIO local odometry estimate. This mechanism is successfully
validated with the KITTI odometry dataset.

Several potential directions could be investigated for improvements. Firstly, vi-
sual frontend needs a more careful examination, both in terms of feature generation,
association, and outlier rejection. Information such as depth map in a stereo case
and LiDAR point cloud projected to image plane are valuable to be included in this
pipeline. Moreover, deep learning based temporal and spatial feature association
methods are worth an investigation. In terms of outlier rejection, the frontend should
get more integrated with the backend, and use the current estimate as one cue for
eliminating outliers. Secondly, the LiDAR feedback mechanism is now evaluated
with a monocular VIO, in which case the scale ambiguity is not explicitly dealt with.
Thus, either projecting LiDAR point cloud to image space and use it as frontend in-
formation in the monocular VIO or using a stereo VIO could be investigated to boost
the performance. Finally, the LiDAR feedback mechanism implementation should be
revised for the formulation that cooperates more practical sensor configurations as
in Fig. 3.2, after which a more comprehensive evaluation should be performed.

31

Bibliography

[1] Cloud-to-Cloud Distance cloudcompare. https://www.cloudcompare.org/

doc/wiki/index.php?title=Cloud-to-Cloud_Distance, 2015.

[2] DBoW3 dbow3. https://github.com/rmsalinas/DBoW2, 2017.

[3] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual inertial odom-
etry using a direct ekf-based approach. pages 298–304, Sept 2015.

[4] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature
tracker description of the algorithm. 1, 01 2000.

[5] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas. Probabilistic
data association for semantic slam. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 1722–1729, May 2017.

[6] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics Research, 35(10):1157–
1163, 2016.

[7] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard. Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE Transactions on Robotics,
32(6):1309–1332, Dec 2016.

[8] L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert. Eliminating con-
ditionally independent sets in factor graphs: A unifying perspective based on
smart factors. In 2014 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 4290–4297, May 2014.

[9] S. Ceriani, C. Snchez, P. Taddei, E. Wolfart, and V. Sequeira. Pose interpolation
slam for large maps using moving 3d sensors. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 750–757, Sept 2015.

[10] Winston Churchill and Paul Newman. Experience-based navigation for long-term
localisation. The International Journal of Robotics Research, 32(14):1645–1661,
2013.

[11] Igor Cvii, Josip esi, Ivan Markovi, and Ivan Petrovi. Soft-slam: Computationally
efficient stereo visual simultaneous localization and mapping for autonomous
unmanned aerial vehicles. Journal of Field Robotics, 35(4):578–595.

[12] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Technical
report, Georgia Tech, September 2012.

32

https://www.cloudcompare.org/doc/wiki/index.php?title=Cloud-to-Cloud_Distance
https://www.cloudcompare.org/doc/wiki/index.php?title=Cloud-to-Cloud_Distance
https://github.com/rmsalinas/DBoW2

[13] Jeffrey A. Delmerico and Davide Scaramuzza. A benchmark comparison of
monocular visual-inertial odometry algorithms for flying robots. 2018.

[14] Jean-Emmanuel Deschaud. Imls-slam: scan-to-model matching based on 3d data.
CoRR, abs/1802.08633, 2018.

[15] D. Droeschel, J. Stckler, and S. Behnke. Local multi-resolution representation
for 6d motion estimation and mapping with a continuously rotating 3d laser
scanner. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 5221–5226, May 2014.

[16] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(3):611–625, March 2018.

[17] J. Engel, J. Sturm, and D. Cremers. Camera-based navigation of a low-cost
quadrocopter. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2815–2821, Oct 2012.

[18] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct monocular
visual odometry. In 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 15–22, May 2014.

[19] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Imu
preintegration on manifold for efficient visual-inertial maximum-a-posteriori es-
timation. In Robotics: Science and Systems, 2015.

[20] Dorian G’alvez-L’opez and J. D. Tard’os. Bags of binary words for fast place
recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–
1197, October 2012.

[21] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[22] Joel A Hesch, Dimitrios G Kottas, Sean L Bowman, and Stergios I Roumeliotis.
Camera-imu-based localization: Observability analysis and consistency improve-
ment. The International Journal of Robotics Research, 33(1):182–201, 2014.

[23] J. Hsiung, M. Hsiao, E. Westman, R. Valencia, and M. Kaess. Information
sparsification in visual-inertial odometry. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), Madrid, Spain, October 2018. To appear.

[24] Vadim Indelman, Stephen Williams, Michael Kaess, and Frank Dellaert. Informa-
tion fusion in navigation systems via factor graph based incremental smoothing.
Robotics and Autonomous Systems, 61:721–738, 2013.

[25] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. isam2:
Incremental smoothing and mapping with fluid relinearization and incremental
variable reordering. In 2011 IEEE International Conference on Robotics and
Automation, pages 3281–3288, May 2011.

33

[26] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces.
In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality, pages 225–234, Nov 2007.

[27] Dimitrios G. Kottas, Joel A. Hesch, Sean L. Bowman, and Stergios I. Roume-
liotis. On the Consistency of Vision-Aided Inertial Navigation, pages 303–317.
Springer International Publishing, Heidelberg, 2013.

[28] Kin Leong Ho and Paul Newman. Loop closure detection in slam by combining
visual and spatial appearance. Robotics and Autonomous Systems, 54:740–749,
09 2006.

[29] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul
Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization.
34, 02 2014.

[30] S. Lowry, N. Snderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J.
Milford. Visual place recognition: A survey. IEEE Transactions on Robotics,
32(1):1–19, Feb 2016.

[31] T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-dynamic
motion in built environments without initial conditions. IEEE Transactions on
Robotics, 28(1):61–76, Feb 2012.

[32] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. A robust and mod-
ular multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3923–3929,
Nov 2013.

[33] M. J. Milford and G. F. Wyeth. Seqslam: Visual route-based navigation for sunny
summer days and stormy winter nights. In 2012 IEEE International Conference
on Robotics and Automation, pages 1643–1649, May 2012.

[34] Maher Moakher. Means and averaging in the group of rotations. SIAM Journal
on Matrix Analysis and Applications, 24, 04 2002.

[35] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter
for vision-aided inertial navigation. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 3565–3572, April 2007.

[36] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter
for vision-aided inertial navigation. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 3565–3572, April 2007.

[37] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking and
mapping in real-time. In 2011 International Conference on Computer Vision,
pages 2320–2327, Nov 2011.

34

[38] Janosch Nikolic, Jörn Rehder, Michael Burri, Pascal Gohl, Stefan Leutenegger,
Paul Timothy Furgale, and Roland Siegwart. A synchronized visual-inertial
sensor system with fpga pre-processing for accurate real-time slam. 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 431–437,
2014.

[39] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magne-
nat. Comparing ICP Variants on Real-World Data Sets. Autonomous Robots,
34(3):133–148, February 2013.

[40] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and versatile monocular visual-
inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020, Aug
2018.

[41] Meixiang Quan, Songhao Piao, Minglang Tan, and Shi-Sheng Huang. Map-based
visual-inertial monocular slam using inertial assisted kalman filter. 09 2017.

[42] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. In 2011 International Conference on Computer Vision, pages
2564–2571, Nov 2011.

[43] D. Scaramuzza and F. Fraundorfer. Visual odometry [tutorial]. IEEE Robotics
Automation Magazine, 18(4):80–92, Dec 2011.

[44] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–600, June
1994.

[45] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding window filter with
application to planetary landing. Journal of Field Robotics, 27(5):587–608.

[46] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A bench-
mark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 573–580, Oct 2012.

[47] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Tay-
lor, and V. Kumar. Robust stereo visual inertial odometry for fast autonomous
flight. IEEE Robotics and Automation Letters, 3(2):965–972, April 2018.

[48] V. Usenko, J. Engel, J. Stckler, and D. Cremers. Direct visual-inertial odometry
with stereo cameras. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1885–1892, May 2016.

[49] M. Velas, M. Spanel, and A. Herout. Collar line segments for fast odometry
estimation from velodyne point clouds. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 4486–4495, May 2016.

35

[50] C. Wei, T. Wu, and H. Fu. Plain-to-plain scan registration based on geometric
distributions of points. In 2015 IEEE International Conference on Information
and Automation, pages 1194–1199, Aug 2015.

[51] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart. Real-time onboard
visual-inertial state estimation and self-calibration of mavs in unknown environ-
ments. In 2012 IEEE International Conference on Robotics and Automation,
pages 957–964, May 2012.

[52] Kejian Wu, Ahmed Ahmed, Georgios A. Georgiou, and Stergios I. Roumeliotis.
A square root inverse filter for efficient vision-aided inertial navigation on mobile
devices. 2015.

[53] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time.
07 2014.

[54] Ji Zhang and Sanjiv Singh. Laser-visual-inertial odometry and mapping with
high robustness and low drift. 08 2018.

36

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 System Overview

	2 Stereo Visual Inertial Odometry
	2.1 Hybrid Visual Frontend
	2.2 Backend Optimizer
	2.2.1 IMU pre-integration factor
	2.2.2 Structureless vision factor
	2.2.3 Optimization and marginalization

	3 Coupling Strategy With LiDAR
	3.1 Overview of the LiDAR Method
	3.2 Loose Coupling Strategy
	3.3 Tight Coupling Strategy

	4 LiDAR Enhanced Visual Loop Closure
	4.1 Loop Detection
	4.2 Loop Constraint Generation
	4.3 Global Pose Graph Optimization
	4.4 Re-localization

	5 Experimental Results
	5.1 EoRoC MAV Dataset
	5.2 Autel Dataset
	5.3 KITTI Odometry Dataset

	6 Conclusion
	Bibliography

