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Abstract
Planning and controlling multi-robot systems is challenging due to high dimen-

sionality. When the number of robots increases in the system, the complexity of
computation grows exponentially. In this thesis, we examine the scalability problem
in planning and control of the multi-robot system. We propose two ideas to improve
the scalability of multi-robot systems: abstraction and specialization.

For planning with abstraction, we propose a Hybrid Hierarchical Partially Ob-
servable Markov Decision Processes (POMDPs) structure for improved scalability
and efficiency in an indoor environment that creates abstract states of convex hulls
over the grid environment. We focus our application on the problem of pursuit-
evasion with multiple pursuers and one evader whose location is unknown if not
visible to the pursuers. This approach is scalable that it significantly reduces the
number of states expanded in the policy tree to solve the problem by abstracting
environment structures.

Specialization is important for systems with a large number of robots. Connec-
tivity maintenance is essential for collaborative behaviors since robots need to com-
municate with neighbor robots to share states and information. It is inefficient for
a robot to both attend to task behaviors and also maintain connectivity. Therefore,
we introduce the idea of connection robots, whose goal is to maintain connectiv-
ity of the robot team by correcting the topology of the connectivity graph so as to
provide flexibility for the task robots to perform task behaviors. We propose a scal-
able distributed approach of topology correction that is able to guarantee a faster
convergence rate with response to dynamic environment and tasks.
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Chapter 1

Introduction

Multi-robot systems have been widely studied for their ability to perform collective behaviors to
accomplish complicated tasks, for example, environment exploration [4], cooperative sampling
[17], pursuit and evasion [13], search and rescue [16]. Planning and controlling multi-robot
systems have been challenging due to the high dimentionality of state space, which would in-
crease computation exponentially with the increasing number of robots within the system. In
this thesis, I will present two ways of handling the high dimentionality problem: abstraction and
specialization.

For the abstraction, we propose a hybrid hierarchical structure for planning under uncertainty.
The application scenario we consider is the pursuit-evasion problem in indoor environments,
which have received significant attention owing to the complex structure that makes the problem
more difficult. We also consider multiple pursuers as utilizing collaborative peers for pursuit
increases the probability of catching the evader. However, (i) the limited sensor view of pursuers
caused by stationary obstacles and (ii) the coordination with peer pursuers make the problem
complex and difficult to model using simple representations.

One of the early work [13] formulated the problem as a multi-agent graph search problem.
Although its efficient performance and scalability for locating a target object, the graph search
approach is not sufficiently rich to model the uncertainty from the target that could disappear
from the sensing range of the pursuers after they observe the target. Partially Observable Markov
Decision Processes (POMDPs) can incorporate the uncertainty caused by the target that could
disappear from the pursuers’ view since POMDPs allow the state variables that cannot be directly
observed. For example, the pose of the target may not be directly observed as it can move freely
while it is not in the line of sight of the pursuers. Although POMDPs is capable of modeling
such targets, the state space of POMDPs grows exponentially with the number of robots which
makes the approach intractable.

Thus, we introduce a scalable decision-making framework for the multi-robot pursuit-evasion
problem, which is Hybrid Hierarchical Partially Observable Markov Decision Processes (HH-
POMDPs). Our framework creates an abstraction of the environment and reduces the state space
for improved scalability. We define three planning states in our framework: Base MDP states,
Transition states, and Abstract POMDP states. The base MDPs are defined for the cases where
the evader is visible to the pursuers. The abstract POMDPs provide decision-making processes
for the pursuers if the evader states are not directly observable as the evader can be out of the
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sensing areas of the pursuers. The transition states provide an interface to switch between the
base MDPs and abstract POMDPs. For the abstract POMDP state, we model the environment
with convex hulls to reduce the size of state space. The base MDP states are the states from the
grid world directly. The algorithm terminates when one of the pursuers is at the same location in
the grid world as the evader.

Compared with standard POMDP approaches, our HHPOMDP method creates a hierarchical
structure that utilizes environmental characteristics to reduce the complexity of the state space.
Our approach of modeling the map with convex hulls and borders reduces the size of state space
significantly compared with simple grid world models, while still maintain sufficient information
for planning as well as incorporating the uncertainty of the target.

In the rest of this paper, we will define the problem formally in Sec. 3.1, present the detailed
algorithm in Sec. 3.2, and finally present experimental results and comparisons in Sec. 3.3.

With a growing number of robots available for performing tasks, specialization is helpful for
controlling the robots to achieve their goals. In continuous space and real-world applications,
each robot within the system usually has a limited range of communication [21] and is only able
to exchange information with its neighbors in the connectivity graph. Maintaining connectivity
of the whole system is essential [14] since the collaborative behaviors rely highly on the connec-
tion between robots [29] and it takes extensive amount of work to restore the connection once
it is lost [19]. In this network robotics system, distributed algorithms, where each robot reasons
and controls using only the local neighbor information, is also important for the performance and
scalability [29].

Most work focuses on maintaining connectivity based on existing control laws [11, 29], or
study the connectivity from a given behavior or state [24, 28]. These are based on the assumption
that every robot within the system is assigned a set of behaviors to perform in sequence [22] or in
parallel. Due to connectivity constraints or environmental limitations, some of the robots might
not be able to perform the desired behavior. For example, when some robots are assigned the
behavior of flocking north and the other robots are assigned to flock south, the system could end
up with some robots staying in the middle to maintain connectivity of the whole system. How-
ever, it may be more efficient to add robots whose primary task is to maintain the connectivity
of the whole system. In other words, these robots would not have any task behavior assigned
to them. We define this kind of robot as connection robots. Accordingly, we define the robots
with assigned behaviors to be task robots. With support from connection robots, the task robots
with assigned behavior may have more flexibility in achieving their goals without being overly
constrained by connectivity maintenance.

In this part, our main goal is to design and analyze the controller for connection robots to
maintain a flexible connectivity graph with provably faster convergence rate of the whole sys-
tem, so as to support robots with assigned behaviors to perform as desired. The challenges for
connection robots are 1) keeping up with the task robots; 2) avoiding blocking the task robots,
and 3) providing fast convergence rate. We will present weighted rendezvous, weighted flocking,
and weighted behavior combination that combines weighted rendezvous and weighted flocking
to deal with the above-mentioned challenges. We will show, both theoretically and experimen-
tally, that our method is able to provide flexible connectivity for the task robots to perform their
assigned behavior by distributedly correcting the topology of the connectivity graph.

In this thesis, I will present the results of both methods on various scenarios and maps to
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show that both algorithms are efficient and scalable.
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Chapter 2

Related Work

2.1 Multi-robot Coordination and Pursuit-evasion
Pursuit-evasion has received much attention for decades. Guibas [9] formulated the problem
in a way that the final goal is to “see” the evader and also provided a guarantee for capture in
polygonal environments. For the goal in similar environments, some later work represented the
environment as a graph. Isler et al. [15] proposed building a roadmap for the environment so as
to discretize the continuous space. However, this still results in a large state space because the
roadmap does not compactly describe the environment thus produces a relatively large number
of edges and vertices compared to the size of the environment.

Hollinger et al. [12, 13] proposed coupled and decoupled coordination strategies for multiple
pursuers. The coupled coordination strategy includes a centralized planner that searches all pos-
sible paths on the graph. This strategy takes the future positions of other pursuers into account.
The first robot plans on the original graph and the rest plan on the time-augmented graph which
adds time as an additional variable. For the decoupled coordination, each robot plans for itself,
assuming others’ paths are fixed. They model the environment with convex hulls, then build
a graph with vertices as the convex cells based on the discretization. However, their method
models all the free space in the map by a set of non-overlapping convex hull so cannot capture
the case where the pursuer is able to see multiple convex hulls from an overlapping region of
those convex hulls. For example, at a corner connecting two corridors in different directions, the
pursuer can see both corridors without moving to each of the convex hulls representing each cor-
ridor. The position of the target/evader is maintained by a belief vector and its transition is based
on a dispersion matrix, which is constructed according to the area of adjacent cells. The policy
is computed by searching on the graph. However, since the framework aims to find the location
of the target but does not catch the target physically, the target might evade and disappear from
the sight of pursuers, which is not capable of modeling the target in our problem.

2.2 Planning under Uncertainty and Abstraction
Many probabilistic search problems, which include moving targets or dynamic environment,
can be formulated as Markov Decision Processes (MDPs). If the moving target is not always
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visible to the pursuer, it can be formulated as a Partially Observable Markov Decision Process
(POMDP). An early work uses reinforcement learning with POMDP [1] for multi-agent planning
on a grid world. In that work, each agent learns its own policy with a credit assignment method.
Hollinger [13] proposed to solve the multi-robot search problem with joint space of multiple
pursuers in POMDP, but the state space grows exponentially as the number of pursuers increases.
A recent work on abstract MDPs [8] introduced abstraction to the state space for top-down policy
search for MDP. However, the joint space of POMDPs is still intractably large. Ong [25] provided
the idea of mixed observability, a special class of POMDPs. This approach separates the fully
and partially observable components of the state and leads to a faster planning algorithm. Our
work is motivated by both abstraction and mixed observation. We introduce a planning structure
on top of these special structures of POMDPs.

2.3 Connectivity Maintenance
Multi-robot systems can accomplish collaborative tasks with predefined control laws towards the
goal region such as flocking strategy [23, 30] or from a sequence of behavior library [22]. Such
collaborative performance relies on communication between neighbors in the connectivity graph
[29] to exchange robot states and information.

Connectivity maintenance in multi-robot systems with predefined control laws has been ex-
tensively studied in the literature [20, 28, 29]. Barrier certificate [3] initially proposed to serve as
avoiding collisions between robots, can also be used to formulate constraints on robots to keep
connected within a limited range. To measure the connectivity of the communication graph, [7]
stated the relationship between the second smallest eigenvalue of the Laplacian matrix of the
graph. This is further discussed in detail in [24] which also stated the relationship between the
convergence rate and stability of the robotics system. In [23, 24], it is shown that the conver-
gence rate of rendezvous and flocking is directly related to the second smallest eigenvalue of the
Laplacian matrix, which is also determined directly by the degrees of the graph vertices, as well
as other topological properties.
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Chapter 3

Plan with Abstraction

3.1 Problem Definition
We study the pursuit-evasion problem in indoor environments where k pursuers search one
evader. The goal of the pursuers is to hold the evader physically in close proximity. The con-
figuration of the environment is known to the pursuers but not necessarily known to the evader.
We assume a static environment and discretize the environment into a grid world. For each time
stamp, both a robot (pursuer) and a target (evader) can move to an adjacent cell on the grid map,
or choose to stay in the same cell, which means they have the same base action space in the grid
world. We assume the line-of-sight model of the robotic pursuers, which means the robots are
able to see the target if there is no obstacle or wall blocking the sight, otherwise they do not
directly know the target location.

Let the state of the ith robot Ri, i = 1, 2, · · · , k, at time t be sRi
(t) and the state of the target

T at time t be sT (t). We assume a 4-connected grid so the action space of both robot and target
is A = {N,E,W, S, Z}, which corresponds to move to North, East, West, South, and remain in
the current cell (i.e., no-op). The transition by applying an action to a given state of a pursuer is
deterministic, which indicates the probability of arriving the next state s′Ri

from the current state
sRi

is p(s′Ri
, a, sRi

) = 1. Consider Av ⊆ A to be a valid set of actions for a given state which
satisfies each action a ∈ Av and does not lead to collision to environment obstacles or walls. In
our current scenario, we assume the target moves randomly with a uniform distribution over its
action space. Therefore, we have the probability of action a at a given state s:

p(a) =

{
1
|Av | , a ∈ Av
0, a 6∈ Av.

(3.1)

The transition state is defined as one where a pursuer catches the evader, which means that the
pursuer and the evader are in the same grid cell at the same time, i.e., sRi

(t) = sT (t).
The objective of the pursuers is to find an optimal policy π? that minimizes the expected time

of capturing the evader. Since the reward is discounted, the goal is equivalent to maximizing the
expected reward for the pursuers, which is:

π? = arg max
π

V (s). (3.2)
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3.2 Hybrid Hierarchical POMDP
In this section, we review a standard Multi-agent POMDP with a direct joint state space. Then
we introduce our method of modeling the environment with convex hulls and borders. We also
describe our HHPOMDP structure in detail and define the transition and reward functions ac-
cordingly.

3.2.1 Multi-agent POMDP
A Partially Observable Markov Decision Process (POMDP) describes a stochastic process where
some of the state variables may not be directly observable [10]. The process is described by
(S,A,Θ, T, O,R, γ), where S is the state space, A is the action set, Θ is the observation set,
T : S×A×S is the transition matrix given states, actions, and the next states, O : S×A×Θ is
the probability of observations given states, actions and the observation tuple, R : S × A× S is
the reward given states and action transitions, and γ is the discount factor. The goal is to compute
an optimal policy π? : S × O → A that maps from each state and observation pair to an action
that maximize the expected discounted reward.

For multi-agent POMDP with k agents [27], each state S = S1 × S2 × · · · × Sk, action set
A = A1 × A2 × · · · × Ak, observation set O = O1 × O2 × · · · × Ok are all joint state space
of each agent. Similar with single agent POMDP, the multi-agent POMDP tries to compute an
optimal joint policy π? : (π?1, π

?
2, · · · , π?k) that each π?i : Si ×Oi → Ai maps from each state and

observation pairs to a corresponding action that maximize the expected discounted reward.

3.2.2 Modeling of Environments using Convex Hulls
We convert the grid map of an indoor environment into a set of convex hulls. This representation
of the environment reduces the size of the state space to a great extent but does not lose necessary
information regarding the environment. By definition of convex hull, it is guaranteed that the
target is within the sight of a pursuer.

With this abstraction of the environment, grid cells could be separated and grouped into
regions, thus we could utilize the environment characteristics for planning and reduce the state
space.

As shown in Fig. 3.1, the grip map of the environment is modeled in the following way:
Fig. 3.1a shows the original environment map in grids where the black grid cells represent walls
and obstacles and the white area represents the free space. We model the environment by group-
ing grid cells into convex hulls such that the number of convex hulls is minimized. A convex
hull is denoted as Ci, which also will be used as a state variable in the state space of the evader.
As shown in Fig. 3.1b, the convex hulls may have overlapping areas. The overlapping areas of
the adjacent convex hulls form borders shown in Fig. 3.1c. A border is denoted as Bi, which
will be used as a state variable of the state space of the pursuers. At each convex hull border
Bi, a pursuer is able to directly observe the target in any of the adjacent convex hulls as proved
in Proposition 1. In this present work, the convex hulls are generated through unautomated pro-
cesses. However, it can be generated directly from the input map if we iterate through all the
cells and use any standard convex hull finding algorithm, for example Jarvis’s Algorithm [6].
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(a) Grid Map (b) Convex Hull (c) Convex Hull Borders

Figure 3.1: Modeling the grid world. (a) The world map is discretized into grids. (b) Overlapping
convex hulls are defined based on the free space in the map. (c) The intersections of convex hulls
form borders.

3.2.3 Hybrid Hierarchical POMDP Structure

For multi-agent planning, the direct way for the optimal result is to plan on the joint state space
of all robots as described in Sec. 3.2.1. However, the complexity grows exponentially with the
number of robots. For multi-agent POMDP, the complexity is much higher than direct joint MDP
since it is necessary to track history and record the belief space vector. Note that the complexity
of POMDPs even with a single agent is PSPACE-complete [26].

We notice that when the target is not observable to any of the pursuers, its exact position
on the grid map does not make a significant difference to the exploration plan of the pursuers
because the pursuer needs to “see” the target (i.e., both parties are in the same convex hull) before
catching. Instead, only the convex hull in which the target lies within influences the next location
of pursuers. Thus, the state space which is partially observable to the pursuers could consist of
the convex hull borders while the exact location of the target on the grid cells is omitted. On the
other hand, when the target and pursuers are in the same convex hull, the location of the target
is fully observable to the pursuers. Thus, it is not necessary to keep track of any observation
history, which means that an MDP can be used to improve computational efficiency. Therefore,
we propose a Hybrid Hierarchical structure of MDPs and POMDPs as shown in Fig. 3.2.

Specifically, consider k pursuers (robots) and one evader in a grid world environment dis-
cretized into N convex hulls and M convex hull borders. We denote the location of the evader
(target) with a belief space vector b = [b0, b1, · · · , bN−1]. As shown in Fig. 3.2, the nodes on top
shows the abstract POMDP nodes, which is the joint state space of all pursuers. The nodes in
the middle is transition states where all the belief vector of target location results in a specific
convex hull. The nodes in the bottom are the base MDP nodes contains only the location of one
pursuer and the target in the grid world. Let the state of robot j be SRj

and the state of target to
be ST , the states in the abstract POMDP level is denoted as Spi , transition states as Sti , and the
base MDP states are Sbi .

The hybrid POMDP tree has a height of three. Level 1 is the joint abstract POMDP of all the
pursuers’ and target’s state spaces Spi : SpR1

× · · · × SpRk
× SpT , where the target state space is the

Cartesian product of belief of each individual states SpT =
∏k−1

i=0 Bi. Each robot has a starting
state, the POMDP policy tree grows by applying all valid actions and observations (a, o), and the
belief space vector is updated accordingly. The belief space vector is maintained with a mixed
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Figure 3.2: The Hybrid Hierarchical POMDP Structure. The structure consists of the base MDPs
for the cases where the evader is visible to the pursuers, the abstract POMDPs for the evader
states that are not directly observable, and the transition states bridging between the base MDPs
and abstract POMDPs.
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observability since we assume all robots are connected, the locations of all pursuers are known
by all robots, and only the target location is partially observable. Level 2 is the transition state
when the belief space shrinks to one convex hull, and the target is visible to one of the robots.
Level 3 is the base MDP of the joint space of one robot Rj and the target T , Sbi = SbRj

× SbT .
When the target goes out of the line of sight of Rj , the state of the robot returns to Level 2 and if
the belief space expands, it may return to Level 1.

3.2.4 Transitions and Rewards

Base MDP

The base MDP is fully observable and follows the standard Bellman equation for dynamic pro-
gramming [2]:

V ∗(sb) = max
ab∈Ab

∑
sb′

T b(sb, ab, sb
′
)[R(sb, ab, sb

′
) + γV ∗(sb

′
)] (3.3)

where sb is the current base state in the grid world, which is the coordinate on the grid map, γ
is the discount factor, sb′ is the neighboring states of state sb, and T b is the transition matrix and
Ab is the action space for the base MDP, which is the same as the action space in Sec. 3.1 that is
Ab = {N,E,W, S, Z}.

Each base MDP state is the joint space of the target and the robot in the same convex hull
sb = sbR × sbT . The action spaces of the robot and target are the same, which form the joint
action space for the base MDP Ab = abR × abT . Since the target moves randomly, the robot
has a deterministic outcome for applying a given action, and the transitions of the robot and
target are independent the transition probability is uniformly distributed over the all valid target
neighboring states SbT :

T b(sb, ab, sb
′
) = p(sb

′|sb, ab) =
1

|SbT |
. (3.4)

For the next state sb′, it is possible that the target might disappear from sight. If this happens,
the next state will go back to the transition state and might also further go back to the abstract
POMDP level if the belief space vector changes. This procedure is described in Alg. 1.

Reward is only given to the final terminal state when one of the robot catches the target,
which is when the target and a robot is in the same cell on the grid map:

R(sb, ab, sb
′
) =

{
r, ∃j ∈ [0, k) s.t. sbRj

= sbT
0, otherwise.

(3.5)
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Algorithm 1 Expand Base Node
Input: c: current node to be expanded, A: action set
Output: node set to be expanded

1: function EXPANDBASE(c, A)
2: for a in A do
3: n← getNeighborNode(c, a)
4: if not isVisible(c.robot, c.target) then
5: n.type← transition
6: else
7: n.type← Base
8: c.childList.append(n)

return expandSet ∪ c.childList

Algorithm 2 Expand Transition Node
Input: c: current node to be expanded
Output: node set to be expanded

1: function EXPANDTRANSITION(c)
2: if not isVisible(c.robot, c.target) then
3: n← Node(c)
4: n.type← POMDP
5: c.childList.append(n)
6: else
7: baseList← getBaseGrid(c.belief)
8: for b in baseList do
9: n← Node(b)

10: n.type← Base
11: c.childList.append(n)

return expandSet ∪ c.childList

12



Algorithm 3 Expand POMDP Node
Input: c: current node to be expanded, Θ: observation set, A: action set
Output: node set to be expanded

1: function EXPANDPOMDP(c, Θ, A)
2: for (a, o) in (Θ, A) do
3: n← getNeighborNode(c, a, o)
4: n.updateBelief()
5: if max(n.belief) is 1 then
6: n.type← transition
7: else
8: n.type← POMDP
9: c.childList.append(n)

return expandSet ∪ c.childList

Transition State

A transition state represents a transition between the abstract POMDP and the base MDP. The
transition states could be entered from either the base MDP or the abstract POMDP. When the
belief space vector shrinks to one cell, i.e, ∃bi = 1, and the target is visible to one of the robot,
then the expansion process enters the transition states from the abstract POMDP. The expansion
can also come from the base MDP when the target moves away from the line of sight of any
robot, and in this case, the system needs to return to the abstract POMDP via those transition
states. This procedure is described in detail in Alg. 2.’

Abstract POMDP

The abstract POMDP has a mixed observability of the state space. The state space is the joint
state space of all robot locations (convex hull borders) and the target location (convex hulls).
For robot Rj , the state in the abstract POMDP level spRj

includes the convex hull borders which
are fully observable. This belief space vector is updated during the expansion of the policy tree
(Alg. 3) and will enter the transition state if one of the convex hull belief is one. For target T ,
the state space spT is the belief across convex hulls b = [b0, b1, · · · , bN−1] which are partially
observable. This formulation gives the mixed observability of state variables and is used to
simplify computation in the transition and reward functions.

The state value update follows the traditional Bellman updates, but with the belief space
vector [10]

V ∗(b) = max
a∈A

{∑
s∈S

R(s, a)b(s) + γ
∑
o∈Θ

∑
s∈S

T (o|s, a)b(s)V ∗(τ(b, o, a))

}
(3.6)

where R(s, a) is the reward function for action a at a given state s, T (o|s, a) is the transition
probability of having observation o given state s and action a. The function τ represents the
information state of the joint space of belief vector b, observation o and action a. For our specific
problem, the reward of the system only comes from the base MDP in the absorbing state where

13



the target and a robot are in the same cell. Thus, there is no reward in the updates from the
abstract POMDP level itself.

Along with the mixed observability described above, we could simplify the value update
based on the full observable states of the robots and only keep track of the belief vector over the
target state space. The action space for the abstract POMDP is the joint action of all robots and
target, which is the Cartesian product A = ApT × ΠjA

p
Rj

. Similarly, the robot state space is also
the Cartesian product spR = Πjs

p
Rj

. Since the robot transitions are deterministic and independent
from each other as well as the target, the transition probability is only dependent on the target
transitions, which is uniformly distributed over its adjacent convex hulls that the robot can move,
and robots’ visibility. Thus, the transition probability is

T (o|s, a) = T (o|spT
′, spR

′) · T (spT
′|spT ) · T (spR

′|spR). (3.7)

Then we have the following modified Bellman equation:

V ∗(sp) = max
a∈A

γ∑
o∈Θ

∑
spT

′

∑
spR

′

T (o|spT
′, spR

′)T (spT
′|spT )T (spR

′|spR)b(spT )V (τ(b, o, a))

 . (3.8)

The HHPOMDP system is solved by value iteration based on forward exploration from the
root state [10], which will only search in all reachable belief states instead of the full span of
belief vectors.

3.3 Experiment Results
We implemented the HHPOMDP algorithm in Python and built a simulation environment on
grids in Robot Operating System (ROS). The program is running on Intel Xeon CPU of 2.30GHz
with Ubuntu 16.04.4 LTS. The simulation system consists of an environment canvas node for
displaying the map, a pursuer planning node, and a random target node. Firstly, we run our
simulation based on the following four maps in shown Fig. 3.3. These four maps have different
indoor structures. Map 2 has a loop and Map 3 has two loops, which would give the target more
possibility to evade and hide. In these maps, catching the target is more difficult for the pursuers
than those maps with dead-end as the target has more chances to get out from the line of sight of
the pursuers.

Fig. 3.4 shows the number of nodes expanded in Map 1–4 with both the HHPOMDP and
a standard POMDP. The graph is drawn in a log scale, thus our method significantly decreases
the number of nodes expanded. The number of nodes for the standard POMDP method is also
exponentially increasing as the number of robots grows. The standard full POMDP is solved
using a standard value iteration as described in [10]. Solving the standard POMDP takes more
than 48 hours with more than 2 robots in our simulation environment.

We run our method in Map 4 with multiple robots up to three. The result is shown in Fig. 3.5.
The number of nodes in base MDP is independent from the number of robots, but the number

of nodes grows for both the abstract POMDP and transition states. Fig. 3.5b shows the time of
capturing the target with different numbers of robots. Both the average and standard deviation of
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(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4
Figure 3.3: Environment maps with different indoor structures

Figure 3.4: The number of nodes expanded in our HHPOMDP and a standard POMDP

(a) (b)
Figure 3.5: Results with Map 4 with different numbers of robots
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(a) Map 5 (b) Map 6 (c) Map 7
Figure 3.6: Environment maps with different sizes

(a) (b)
Figure 3.7: Result with 2 robots on maps of different size

the capture time decreases if the number of robots increases from one to two. It remains the same
with three robots, mainly because the map only contains dead-ends but not loops, thus increasing
the number of robots does not improve the performance of the robots in capturing the target.

We also tested our algorithm with different sizes of maps as shown in Fig. 3.6. They are of 8-
by-8, 12-by-12, 16-by-16 grid maps with the same structure, i.e., convex hulls and borders. The
result with two robots in the three different map sizes is shown in Fig. 3.7. Since the environment
has the same structure, number of nodes for the abstract POMDP remains the same, only the
number of the base MDP increases while the size of the map grows. Both the average and
standard deviation for the time of capturing the target increases with the map size, since there is
more free spaces for the target to move and thus it is more difficult to catch the target.
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Chapter 4

Control with Specialization

4.1 Problem Definition

Consider a homogeneous robotic team with n robots in an indoor environment, with positions
denoted as xi ∈ R2 where i ∈ {1, 2, . . . , n}, and single integrator dynamics of ẋi = ui. Velocity
limitation exists for the robots as ||ui|| ≤ umax. Each robot is able to communicate with all
robots within a limited Euclidean distance R, which means that robot i is connected and can
communicate with robot j if ||xi − xj|| ≤ R, with i, j ∈ {1, . . . , n}. In this case, robot j is
considered as a neighbor of robot i. We denote the neighbor set of robot i to be Ni. This forms
a spacially induced connectivity graph G = (V , E) where each vertex vi ∈ V represents robot xi
in the environment, and each edge eij ∈ E between vi and vj exists when robot i and robot j is
connected as defined above. With the definitions above, the connectivity graph G is undirected,
i.e. eij = eji.

When the robots move, they maintain a safety distance with each other of dij ≥ r where
dij = ||xi − xj|| and r is the safety radius between the robot i and j to avoid collision. The
robots also avoid obstacles in the environment by maintaining ||xi − xo|| ≥ r where xo ∈ O
denotes the list of obstacles in the environment, which is known to the robots. To guarantee
connectivity of the system as well as avoiding obstacles in the environment, we maintain the
Minimum Connectivity Constraint Spanning Tree [18] with barrier certificate [3].

Suppose some robots are assigned tasks and need to visit a sequence of locations in parallel,
and the other robots are moving to keep the system connected, i.e. keep the connectivity graph
G strongly connected. Consider a task mapping function specified as s[i, t] = gi, where gi ∈ R2

denotes the goal location of robot i at time t. We define those robots with assigned tasks to be
task robots. If robot i does not have any assigned task at time t, i.e. s[i, t] = ∅, then robot
i is considered as a connection robot, whose role is to maintain the connectivity of the robotic
system and provide high flexibility for task robots to perform assigned tasks. We denote the set
of connection robots to be Vc and the set of task robots to be Vt. According to definition, we
have Vc∪Vt = V . Since the robots are homogeneous, they can be either task robot or connection
robot depending on task allocations and may switch roles accordingly.

An illustrative example is shown in Figure 4.1 to demonstrate the possible functionality of
the connection robots in an indoor environment. As shown in the figure, the red robots are the
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Figure 4.1: Two example scenarios for a system with robots allocated with tasks and connection
robots. Left: connection robots need to keep up with task robots to avoid being left behind;
Right: connection robots need to spread out so as to provide flexibility for the task robots to
execute tasks.

task robots and the blue robots are those without tasks and thus serving as connection robots to
keep the system connected while others executing their tasks. The connection robots need to
keep up with the task robots when the goal locations of the task robots are in a similar direction.
In another example scenario when the goal locations of the task robots are far away from each
other, the connection robots need to adjust the topology of the connectivity graph so as to pro-
vide maximum flexibility for the task robots to achieve their goal locations. The walls and task
locations heavily influence the topology of the connectivity graph, thus having a huge impact on
the overall performance.

As described in the example above, depending on the environment and task locations, the
topology of the connectivity might change and could result in failing assigned tasks. In this case,
it is essential for the connection robots to correct the unsuitable topology of the connectivity
graph for better support of the task executions. Therefore, in this paper, our objective is to design
a distributed controller for the connection robots to correct topology of the connectivity graph so
as to maintain flexible connectivity of the robotic system.

4.2 Topology Correction

4.2.1 Graph Laplacian and Convergence
Consider the graph Laplacian matrix L of the above mentioned connectivity graph G. The graph
Laplacian is defined as

L = D − A (4.1)

where A is the adjacency matrix where each element aij = 1 if an edge exists between vi and
vj , and zero otherwise. D = diag(deg(1), . . . , deg(n)) is the degree matrix where each deg(i)
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denotes the degree of vertex vi that deg(i) =
∑

i 6=j aij , and zero off-diagonal elements. By
definition, L is symmetric if the graph is undirected, and has a right eigen vector of 1 and zero
eigenvalue, i.e. L · 1 = 0 · 1.

Laplacian matrix L of the connectivity graph is essential for evaluating the convergence of
consensus algorithms. The eigenvalues of L can be computed and sorted in ascending order,
denoted as

λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) (4.2)

The smallest eigenvalue λ1(L) of the Laplacian matrix is always zero as mentioned above. The
second smallest eigenvalue λ2(L) describes the algebraic connectivity of the graph [7]. Let
δ = min deg(i) to be the minimum degree of the vertices in graph G with n vertices. A lower
bound for the algebraic connectivity λ2(L) exists [5]

λ2(L) ≥ 2δ − n+ 2 (4.3)

It is known that a continuous-time consensus is globally exponentially reached with a speed that
is faster or equal to λ2(Ls) where Ls = (L + LT )/2 for a strongly connected balanced digraph
[24]. For undirected graph with a symmetric Laplacian matrix, we have L = Ls = (L+ LT )/2.
In our setting, the speed of convergence is λ2(L).

Therefore, to achieve a faster convergence rate, the controller of the connection robots aims
at correcting the topology of connectivity graph by maximizing the minimum degree δ.

4.2.2 Weighted Rendezvous
To keep the robotics system connected, it is straight forward to execute rendezvous on the con-
nection robots so that they could keep up with the task robots. A common control law used for
rendezvous [24] is

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)) (4.4)

where Ni denotes the neighbor set of robot i as introduced in section 4.1 and aij is the element
in adjacency matrix. However, this pure rendezvous controller will result in clusters of robots,
making it hard for the non-connection robots to execute tasks. Following the discussion in section
4.2.1, we propose the weighted rendezvous as follows

ẋi(t) =
∑
j∈Ni

wrij(xj(t)− xi(t)) (4.5)

where the weight wrij in the weight array wr
i =

[
wri1, . . . , w

r
ij, . . . , w

r
i|Ni|

]
, where j ∈ Ni.

Degree-based Weighted Rendezvous

Following the discussion in section 4.2.1, we may set the weights with respect to the degree of
neighboring vertices. The weights should be larger on vertices with smaller degrees and smaller
on vertices with larger degrees. Therefore, the desired weights are calculated as

wr
i = max deg(Ni)− deg(Ni) + ε (4.6)
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Figure 4.2: The moment when vertex vj is moving to vk resulting in vi and vj getting discon-
nected from each other.

where deg(Ni) denotes the degree array of the neighboring vertices where each element is the
degree of a neighbor vertex deg(j), j ∈ Ni and |deg(Ni)| = |Ni|. The variable ε is a small value
of 1 � ε > 0 and serves as a correction factor to guarantee that weights are not all zeros with
complete graph (the graph that every pair of vertices is connected). The weight array is then
normalized so that

∑
j∈Ni

wrij = 1.
We will then prove that this controller will correct the topology of connectivity graph by

modifying the minimum degree δ of graph G.
An assumption made in this paper is that time discretization is dense enough so that only one

edge will change (connect or disconnect) at each time step. Before we start the proof, we list
several cases of topology changes that we are not interested in:
• Adding an edge: when two robots come closer and new connection is made, it can only

cause an increase of minimum degree δ.
• Removing an edge eij where deg(i) > δ and deg(j) > δ: when two robots i and j move

away from each other with a distance larger thanR, the connection edge eij is removed. Let
deg(i, t) denotes the degree of vertex vi at time t. When originally at time t, deg(i, t) > δ,
notice that degrees are integers, we have deg(i, t) ≥ δ + 1. Thus, if eij is removed in
the next time step, we still have deg(i, t + 1) ≥ δ, similar inequality holds for vj . The
minimum degree δ is not influenced in the case.

Therefore, the only case that is of our interest is shown in Figure 4.2, which describes the case
when the vertex vi having minimum degree deg(i, t) = δ, and vj is moving towards its other
neighbor vk, causing edge eij to disconnect. This is the only case that will cause a decrease of δ
and in the following proof of theorem 1, the following discussion focuses on this case.
Preposition 1. With the control law defined in equation 4.5 with weights defined in equation 4.6,
the minimum degree δ of connectivity graph increases, i.e. δ(t + 1) ≥ δ(t), where δ(t) denotes
the minimum degree at time t.

Proof. We prove by contradiction.
As described above, the only case that will result in δ(t) > δ(t + 1) is shown in Figure 4.2

when vertex vj moves towards vk and disconnects with vertex vi where deg(i, t) = δ(t) at time
t. According to equation 4.5, ẋj(t) moves towards xk(t) results from wrjk > wrji. Then we have

wrjk = max deg(Nj)− deg(k) + ε

> max deg(Nj)− deg(i) + ε = wrji

Thus we have
deg(i) = δ(t) > deg(k) (4.7)
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This violates the initial assumption that vi with deg(i, t) = δ(t) at time t has the minimum
degree. Therefore, the case described above will not happen and any other scenarios will not
result in decrease of δ, thus δ(t+ 1) ≥ δ(t).

Distance-based Weighted Rendezvous

The degree-based approach introduced in the previous section is able to trigger edge changes so
as to increase the convergence rate by gradually modifying the minimum degree δ in the graph.
We notice that this degree-based approach treats all graphs with the same vertex and edge set
the same, without considering the actual physical distance between vertices. To further optimize
our objective, we propose the distance-based weighted rendezvous based on the degree-based
approach that provides the same guarantees and better performance.

We first define a density score of each vertex vi as

c(i) = deg(i) +
∑
j∈Ni

R− dij
deg(i)(R− r)

(4.8)

The density score c(i) describes the level of density around vertex vi. An intuition on this is that
when the neighboring robots are close to robot i, dij is relatively small, then density score of
robot i is higher, and vice versa. Similarly, the weights are calculated as

wr
i = max c(Ni)− c(Ni) + ε (4.9)

where 1 � ε > 0 is the same correction factor as in previous section. The weight array is then
normalized such that

∑
j∈Ni

wrij = 1 for each robot i. We will then prove that this formulation
gives the same guarantee as equation 4.6.
Lemma 2. For any two connected vertices vi, vj ∈ V , eij ∈ E on graph G = (V , E), if deg(i) >
deg(j), then c(i) ≥ c(j).

Proof. We prove by analyzing the relationship of deg(i) and c(i) for vertex vi.
Since dij = ||xi − xj|| when eij ∈ E , we have

r ≤ dij ≤ R (4.10)

where as defined in section 4.1 that r is the safety radius and R is the connectivity radius. By
applying the inequality in equation 4.10, we have

c(i) = deg(i) +
∑
j∈Ni

R− dij
deg(i)(R− r)

≥ deg(i) +
∑
j∈Ni

R−R
deg(i)(R− r)

= deg(i)

Notice that deg(i) = |Ni|, we also have

c(i) = deg(i) +
∑
j∈Ni

R− dij
deg(i)(R− r)

≤ deg(i) +
∑
j∈Ni

R− r
deg(i)(R− r)

= deg(i) + 1
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Figure 4.3: An example when the task robot is trying to move to an assigned location but the
connection robots are cluttered along the way.

Combining the two equations above we get

deg(i) ≤ c(i) ≤ deg(i) + 1 (4.11)

Notice that degree of vertex is integer. The inequality deg(i) > deg(j) is the same as deg(i) ≥
deg(j) + 1. Therefore we have

c(i) ≥ deg(i) ≥ deg(j) + 1 ≥ c(j) (4.12)

Then we may conclude that c(i) ≥ c(j) holds when deg(i) > deg(j).

We are then able to show our final statement. It is proven in Lemma 2 that density score
preserves the inequality of the degree values. Following the same procedure of the proof for
Prepostion 1, we may conclude that δ increases similarly for the density score defined in equa-
tion 4.8. Therefore, the following theorem holds.
Theorem 3. With the control law defined in equation 4.5 with weights defined in equation 4.9,
the minimum degree δ of connectivity graph increases, i.e. δ(t + 1) ≥ δ(t), where δ(t) denotes
the minimum degree at time t.

With this distance-based weighted rendezvous, the connection robots will be able to keep up
with the task robots and provide a flexible topology for the whole system.

4.2.3 Weighted Flocking
While weight rendezvous may solve the problem when task robots are moving away from the
cluster of connection robots, weighted flocking introduced in this section may solve the problems
caused by the scenario when task robots are moving through a cluster of connection robots. When
there are many connection robots within the system, it is possible that they block the way of the
task robots. An example of this is shown in Figure 4.3 when the task robot tries to move through
a cluster of connection robots.

To solve the problem mentioned above, we propose weighted flocking as follows

ẋi =
∑
j∈Ni

wfijuj (4.13)
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The weights are designed so that the connection robots flocks with the neighboring task robots.

wfij =

{
1

|Vt∩Ni| , if vj ∈ Vt
0, otherwise

(4.14)

where |Vt ∩Ni| is the number of task robots in the neighbors of robot i.

4.2.4 Weighted Behavior Combination
The final resulting controller of the connection robots is designed as a weighted behavior combi-
nation that combines the output from both weighted rendezvous and weighted flocking.

Denote the output velocity with weighted rendezvous as uri and the output velocity with
weighted flocking as ufi for robot i. We then calculate the weights of performing weighted
flocking for each robot

αi =
1

2umax

∣∣∣∣∣
∣∣∣∣∣uri − 1

|Vt ∩Ni|
∑

j∈Vt∩Ni

uj

∣∣∣∣∣
∣∣∣∣∣ · γ (4.15)

where γ ∈ (0, 1] is an environment-dependent value that controls the range of αi since αi ∈
(0, γ]. γ should be smaller with a very cluttered environment, and could be larger in an environ-
ment with relative sparse obstacles.

The controller of weighted behavior mixing for connection robots is then designed as

ẋi = (1− αi)uri + αiu
f
i (4.16)

This method is also fully decentralized. Note that for weighted rendezvous and weighted flock-
ing, each connection robot only needs to know the neighbor states to calculate the degree and
density score, and then report to its neighbors. This distributed consensus-based method is very
scalable with an increasing number of robots in the system, which we will show in the next
section.

4.3 Results
We tested our controller with the maps in Figure 4.4. In map 4.4a, the task robots have a sequence
of similar goal locations. The challenge for the connection robots in this setting is to avoid
blocking the way for the task robots. In map 4.4b, the goal locations for the task robots are
relatively far from each other in each step. The challenge here is that the connection robots need
to stretch out so as to keep the task robots far away connected.

We tested and compared the performance of 1) weighted behavior combination, 2) no con-
nection controller, 3) weighted rendezvous, 4) weighted flocking, and 5) rendezvous, in the maps
shown in Figure 4.4. In 4.4a and 4.4b, he robotics system is given four tasks and the first three
require two robots and the last one require one. The task locations in map 4.4a is relatively close
and tasks in map 4.4b are far away. Due to space limitation, we will only show the results of two
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(a) (b) (c)

Figure 4.4: (a) size 30×36, (b) size 30×36, and (c) size 27×39, are the three maps for the
experiments. The black area is the walls or obstacles in the environment, and the white area is
the free space.

(a) (b)

(c) (d)

Figure 4.5: (a) Average computation time for each iteration; (b) Average eigenvalues (c) Variance
of the robot locations at each time of convergence; (d) Average distance to goal for the task robots
at each time of convergence
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(a) Task 2 Weighted Be-
havior Combination

(b) Task 3 Weighted Be-
havior Combination

(c) Task 2 No connection
controller

(d) Task 3 No connection
controller

(e) Task 2 Weighted Ren-
dezvous

(f) Task 3 Weighted Ren-
dezvous

(g) Task 2 Weighted
Flocking

(h) Task 3 Weighted
Flocking

(i) Task 2 Rendezvous (j) Task 3 Rendezvous

Figure 4.6: Red robots: task robots, blue robots: connection robots, light blue circles: goal
locations. The process of N = 10 robots executing task 2 and 3 in Map 4.4a with no connection
controller. (a)-(b) Weighted behavior combination: the task robots are able to reach all the goal
locations and the connection robots are able to keep up with the task robots till the end; (c)-(d)
No connection controller: robot failing the task due to connectivity constraints; (e)-(f) Weighted
rendezvous: connection robots blocking the task robots; (g)-(h) Weighted flocking: some robots
were left behind; (i)-(j) Rendezvous: connection robots blocking the task robots.
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(a) Task 1 Weighted Be-
havior Combination

(b) Task 3 Weighted Be-
havior Combination

(c) Task 1 No connection
controller

(d) Task 3 No connection
controller

(e) Task 1 Weighted Ren-
dezvous

(f) Task 3 Weighted Ren-
dezvous

(g) Task 1 Weighted
Flocking

(h) Task 3 Weighted
Flocking

(i) Task 1 Rendezvous (j) Task 3 Rendezvous

Figure 4.7: Red robots: task robots, blue robots: connection robots, light blue circles: goal
locations. The process of N = 10 robots executing task 1 and 3 in Map 4.4b with no connection
controller. (a)-(b) Weighted behavior combination: the task robots are able to reach all the goal
locations and the connection robots are able to keep up with the task robots till the end; (c)-(d)
No connection controller: robot failing the task due to connectivity constraints; (e)-(f) Weighted
rendezvous: perform the same as in weighted behavior combination; (g)-(h) Weighted flocking:
some robots were left behind; (i)-(j) Rendezvous: robot failing the task due to connectivity
constraints.
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tasks on map 4.4a and map 4.4b. Other results will be shown in the video submitted. The results
on Map 4.4a and Map 4.4b is shown in Figure 4.6 and Figure 4.7 respectively. In general, with
weighted behavior combination, the task robots are able to reach all the goal locations and the
connection robots are able to keep up with the task robots till the end. Rendezvous or weighted
rendezvous may be too cluttered around each other and block the way of task robots resulting in
failing the tasks. No connection controller or weighted flocking usually left some robots behind
resulting in the task robots failing the tasks because of connectivity constraints.

We also measure the quantitative results of our experiments. The experiments include 10
runs with random initial locations and of a various number of robots in the system, ranging from
N = 4 to N = 30. The method is written in python and test on Intel Xeon CPU E5-2660 with
cores of 2.60GHz. We present our result on average computation time in Figure 4.5a, average
eigenvalues representing convergence rate in Figure 4.5b, variance of distance in Figure 4.5c
and average distance to goal locations in Figure 4.5d at the time of convergence. We may see
that the computation time is approximately linear with the increasing number of robots in the
system, thus it is scalable to a large number of robots. Also, the computation time for a system
of N = 30 robots is only 0.05 second on average. This shows that our approach can be run in
real-time at each iteration. As shown in Figure 4.5b, our final method also outperforms other
methods in terms of eigenvalues, with larger eigenvalues guarantee faster convergence rate. In
terms of the overall performance, we take into account the variance in locations of the robots
after convergence. This is used to measure the ability for the connection robots to keep up with
the task robots so as to not be left behind. As shown in Figure 4.5c, our final method gives the
smallest variance, which means that the connection robots are able to keep up with the task robot
without being left behind. We also compute the average distance to goal locations for the task
robots to measure the performance of completing assigned tasks for the task robots. As shown in
Figure 4.5d, our final method is able to give a result as good as the best one. Above all, we may
conclude that our weighted behavior combination outperforms all the other methods.
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Chapter 5

Conclusion and Future Work

In this thesis, I proposed two approaches to handle scalability issues for multi-robot systems.
Creating abstraction over state space in planning can save computation. Introducing connection
robots in systems with a large number of robots could improve the overall performance.

First, I presented a scalable algorithm for an indoor pursuit-evasion problem using multiple
robotic pursuers. I proposed the Hybrid Hierarchical POMDP structure that utilizes the convex
hulls of the environment to create abstract states. The algorithm could transit between the base
MDP and the abstract POMDP so as to keep track of the target when it disappears during the
capture event. We have shown that our algorithm is more scalable than a standard multi-agent
POMDP solution and can capture the target within a reasonable time.

The HHPOMDP approach is not limited only to the pursuit-evasion problem discussed in
the paper. For other planning problems where an environment abstraction could be made at the
lower level, having the hierarchical model would help with reducing computational complexity.
The architecture could also be extended to scenarios when the planning tasks could be divided
into groups and each group is independent of each other.

Our idea can be extended in the future to consider limited communication. For our current
settings, all the robots are fully connected, thus the belief space information is shared across
all robots throughout all time stamps. However, in real-world applications, keeping all robots
connected and exchanging information are both unsafe and limited owing to bandwidth restric-
tions. Therefore, an extension of limited communication, information sharing, and belief space
updates will be essential to increase the applicability of this problem. Since our current method
is fully centralized, a decentralized version of the algorithm might be needed for the limited com-
munication setting. In addition, we only consider scenarios with one target. However, in many
real-world scenarios such as search and rescue, there might be multiple moving targets. In this
case, task allocation is needed and optimizing over multiple targets is challenging in larger state
spaces. This would require more abstraction over both the environment and target locations.

Another limitation of the current structure is that HHPOMDP is solved by the forward ex-
ploration in the reachable belief space, which is not efficient with growing state space. A more
efficient solver would be needed, possibly with heuristic or sampling in policy trees.

In the second part, we considered the problem of controlling connection robot to maintain
flexible connectivity graph for the robots with an assigned controller to achieve their goal. We
proposed the method of combining weighted rendezvous and weighted flocking for the connec-
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tion robots to keep up with the task robots as well as providing flexibility for the task robots to
reach their goal by correcting the topology of the current connectivity graph with a provably fast
convergence rate, with a distributed fashion. Both theoretical analysis and experimental result
are presented. Results have shown that our weighted behavior combination method outperforms
all other methods in overall performance. Our algorithm is also scalable to a large number of
robots in the system so that more complex tasks or behaviors could also be achieved.

Both algorithms improve the scalability of the multi-robot systems by reducing computa-
tion complexity with abstract state space and controlling with specialization. These benefit the
planning and control of multi-robot systems and enables more complicated applications for the
system in various scenarios.
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