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Abstract

Occlusion is one of the most significant challenges encountered by object detectors or

trackers. While object detection in videos has received a lot of attention in the past few

years, most existing methods in this domain do not target detecting objects when they are

occluded. However, being able to detect or track an object of interest through occlusion has

been a long standing challenge for different autonomous tasks. Traditional methods that

employ visual object trackers with explicit occlusion modeling experience drift and (or)

make several fundamental assumptions about the data. We propose to address this with

an end-to-end method that builds upon the success of region based video object detectors

which aims to learn to model occlusion in a data-driven way. Finally, we show that our

method is able to achieve superior performance with respect to state-of-the-art video object

detectors on a dataset of furniture assembly videos collected from the internet, where small

objects like screws, nuts, and bolts often get occluded from the camera viewpoint.
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Chapter 1

Introduction

Occlusion is abundant in natural world and often poses a significant challenge in reliably

tracking or detecting objects. Current object detection tasks [5,6,8,21,27] mostly ignore full

occlusion. However, detecting fully occluded objects can be useful in certain cases and help

us better understand video scenes. For instance, in order to build machines that are capable

of assembling furniture by looking at demonstration videos, it might be useful to be able to

reliably detect or track small tools that often get occluded from the camera viewpoint.

While some older methods model explicit occluder-occludee relationships in visual ob-

ject trackers to track objects through occlusion, in this paper we plan to develop our ap-

Figure 1.1: Occlusion observed in furniture assembly demonstrations. Small tools like
screws often get occluded from camera viewpoint.
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proach following the more recent tracking by detection paradigm, where instead of using vi-

sual object trackers to track occluded objects, we use video object detectors to detect them.

The frame level detections obtained from the detector can be linked temporally using asso-

ciation methods like [3,31] to generate tracks. This way we are able to prevent catastrophic

failures encountered by visual object trackers where we completely lose track of the object

and are unable to track it further even when it has reappeared. Also tracking by detection en-

ables us to easily extend our method for multi-object scenarios. In this paper, however, we

only concentrate on the detection subproblem, since there has been considerable amount

of work done for developing different association methods to solve multi-object tracking.

Frame level object detectors like Faster RCNN [26], RFCN [4] can hardly distinguish

between the two situations, one where an object is occluded and the other where the ob-

ject is not present. Video object detectors on the other hand, look into a temporal context

surrounding the query frame to accumulate features, and then reason on top of the accu-

mulated features. This helps the detector to collect features of the object of interest from

surrounding frames in the video even if the object is occluded in the current frame.

Existing video object detectors [2,9,12,17–19,32–35] are mostly designed to handle par-

tial occlusion, motion blur, unseen viewpoints amongst other issues that frame level detec-

tors are not capable of dealing with. Although we treat full occlusion the same way we treat

any of the above mentioned issues, we believe detecting a fully occluded object is slightly

more challenging mainly because of the following reasons. a) When an object is occluded in

a frame, information about the class of the object does not come from that particular frame

and hence the architecture needs to heavily rely on the temporal connections to obtain this

information. b) In full occlusion, the temporal connections usually act on features belong-

ing to completely different classes of objects. For example, if a coffee mug is occluded by the

hand of the person using the mug, the temporal connections need to combine features of

the mug and the human hand and determine that the mug is occluded by the human hand.

In traditional tasks for video object detection, temporal connections usually act on features

belonging to the same object category. c) Since information of the object doesn’t come from

the frames where it is occluded, and the duration of occlusion can vary, it is necessary to
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propagate information from the beginning or end of the video sequence.

In this research, we aim to solve the problem in a data driven end-to-end fashion by

adding a recurrent computational unit inside region based object detectors following [32]

to enable propagation of features of the occluded object from both ends of the video. In

doing so, we are able to maintain an approximate position of the object through occlusion.

We use spatio-temporal memory networks from [32] as our baseline model and show that

our model achieves a substantial improvement in terms of raw detection score (mAP) un-

der such severe cases of occlusion. Finally, we further show that our method is also able

to achieve competitive results with the state of the art methods on video object detection

datasets like ImageNet VID [1] where full occlusion is hardly present.
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Chapter 2

Prior work

2.1 Tracking through occlusion

Prior work on tracking objects through occlusion with visual object trackers mostly model

explicit inter-occlusion relationships between objects in the scene [14], formulating motion

models [23] or use external knowledge [15] with visual object trackers. Although such

methods are useful when we do not have prior information about the objects that we want

to track, visual object trackers suffer from a fundamental issue: once they lose track of the

object of interest, they can hardly recover from that. Also, methods that model occlusion

explicitly end up making several fundamental assumptions about the data (which includes

motion of objects, objects belonging to foreground or background, etc.) which do not make

them ideal for real world scenarios. For eg., [14] assumes both occluder and occludee objects

belong to the foreground and thus learn to model occlusion relationships explicitly by clas-

sifying different events of occlusion. Specifically, when an object is getting occluded, they

learn to identify it as a region merging event, whereas when an occluded object is becoming

visible they learn to identify it as a region splitting event. Thus, by identifying such region

merging, splitting and (or) continuation events, their approach is able to track an object

through occlusion. Unless the occluder objects are known before hand, it is hard to make

such methods work in a more general setting.
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Figure 2.1: Different occlusion events being determined as per Huang and Essa. Image is
being reused from [14]

2.2 Tracking by detection paradigm

The drift encountered by traditional visual object trackers can in certain cases lead to irrecov-

erable failures. Even when the object reappears and is visible, if the appearance model of

the tracker has changed considerably, it will not able to track the object of interest further.

Also, visual object trackers cannot be easily extended to cases where there are multiple ob-

jects of interest appearing and disappearing through out a video sequence. These issues can

be tackled by the recently popular method of tracking by detection. The core idea is that

instead of tracking the objects directly across adjacent frames with visual object trackers, we

run object detectors at every frame. Once we have the bounding boxes from the detector,

we use some data association method like [3, 31] to link the boxes at different time steps to

form tracks. Since there has been considerable amount of work in developing association

methods, in this research we only concentrate on the subproblem of robust detection of ob-

jects under occlusion. It is be noted that, a frame level object detector, i.e. an object detector

that runs on individual frames of a video is unable to understand occlusion. Hence in or-
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der to detect occluded objects it is necessary to use video object detectors which aggregate

features from a temporal context surrounding a query frame to produce detections.

2.3 Frame level object detection

Over the last few years, object detection [4,10,11,20,22,24–26] in static images has received

quite a lot of attention. Their success can mostly be attributed to very deep convolutional

backbones [13, 30]. Earliest of such detectors is a two stage object detector R-CNN [11],

where at first region proposals were computed from the image and then each and every

proposal was classified. Later on, computationally lighter versions of the original R-CNN

was made possible by leveraging ROI pooling layers [10] and by sharing the convolutional

backbone with the region proposal network [26]. RFCN [4] introduces the position sensitive

ROI pooling layer, and achieves significant speed up compared to [26] while achieving com-

petitive detection accuracy. For our application, we mostly build up on Faster RCNN [26]

and RFCN [4], the two most popular region based object detectors.

2.4 Video level object detection

A more recent task in the domain of object detection [2, 9, 12, 17–19, 32–35], video object

detection, has also been given a lot of attention in the past few years. Even though static

object detectors can be easily applied to individual frames of a video, there are certain dif-

ficult cases where they fail to perform reasonably well. Such difficult cases can mostly be

attributed to occlusion, motion blur and unseen poses of the objects and these cases make

the detection task challenging for the per-frame detector. This is where video object de-

tectors come in. Instead of solely looking at the query frame, video object detectors solve

these problems by accumulating features from a temporal context surrounding the given

query frame with the hope that rich features of the object can be obtained from at least some

of the frames in that context. Most of the recent approaches have concentrated on how to

propagate such features efficiently in time.
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Although, some of the older methods like [12, 17–19] have heavily relied on exhaustive

post processing of detections produced by frame level detectors, more recent approaches

[2, 9, 32–35] in this domain focus on building connections across the convolutional feature

maps of the network backbones at different time steps to aggregate features and then reason

on such aggregated features. Such methods significantly outperform methods which rely

on post-processing of frame level detections. A good number of these methods [2,9,35] use a

short window of frames centered around the frame of interest to accumulate features, while

methods like [16,32,34] use recurrent computational units like LSTM cell, Spatio-temporal

memory module(STMM) and ConvGRU cell [29] to propagate features in time.
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Chapter 3

Datasets

Most existing datasets for video object detection do not take into consideration objects that

undergo full occlusion. Since visual cues of objects are not present when they are fully

occluded, existing datasets treat them as if they are not present and hence have no ground-

truth annotations for such object instances. This creates the need for datasets with ground

truth annotations for occluded objects. While detecting fully occluded objects in static im-

ages can lead to ambiguity and is often redundant, such is not always the case for videos

(for example, learning from demonstration tasks). That being said, even in videos, one can

handcraft specific situations where it might be impossible to annotate the location of the

occluded object precisely. Hence, in this research, we restrict our task to indoor scenarios,

where we try to detect common handheld objects that undergo occlusion (mostly by the

human hand). When an object gets fully occluded, we annotate the object based on an ap-

proximate guess, which may not be precisely accurate. The datasets we collect are explained

as follows.

3.1 Staged occlusion dataset

The first type of dataset we collect comprises of videos where common hand-held desktop

objects like mugs, calculator, notepads, etc. are being manipulated by an individual in front
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of a simple white background and scenes are captured by a static camera. Objects are ma-

nipulated in such a way that they remain occluded by the hand for sufficiently long periods

of time from the camera viewpoint while being in motion. Figure 3.1(a) shows an example

scene from this dataset.

By reducing the noise from external factors like camera movement, scale variation, back-

ground clutter, etc. we are able better analyze and qualitatively evaluate the impact of oc-

clusion on different methods in this staged occlusion dataset. We primarily use this dataset

for debugging and understanding the effect of long term occlusion on different methods.

3.2 Furniture assembly dataset

The second type of dataset comprises of different furniture assembly tasks collected from

the internet as shown in figure 3.1(b). This dataset is more representative of occlusions

that happen in the natural world. In this case, we try to detect only one class of objects (all

small tools like screws, nuts and bolts are grouped into one class). Objects have a lot of

scale variation and are often occluded by hands and different tools like hammer and screw-

driver. We use this assembly dataset for quantitative evaluation by reporting mean average

precision (mAP) of different detection methods.

Figure 3.1: (a) staged occlusion dataset with long term occlusion and simpler background
settings (b) furniture assembly dataset with resemblance to natural occlusion scenes. In both
cases, the ground-truth annotations are shown in green.
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Finally, we use the ImageNet VID dataset [1] to evaluate our method and see how it

performs against existing methods for video object detection in datasets which do not target

full occlusion. This is because in our data driven approach we do not explicitly model

occlusion and hope to learn to do it through the temporal connections of the video object

detector. Hence ideally our model should be able to adapt to both cases (where occlusion

is ignored and where occlusion is annotated) fairly easily.
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Chapter 4

Approach

4.1 Exploiting temporal context for detection

As mentioned earlier, in order to understand occlusion, it is important to build a video level

object detector. This can be further explained with the following example in figure 4.1.

Figure 4.1: Frame level vs video level object detection. Object is only present on the right
hand of the individual while the left hand is empty. The per frame object detector (left) is
unable to distinguish between the two cases: one where the object is absent and the other
where the object is present but fully occluded. The video level object detector, on the other
hand, is able to distinguish between the two cases by exploiting the temporal context

Video object detection methods that use recurrent computational units are not bound

by time and thus in theory have the capability of propagating information from the very

ends of the video sequence. When an object is occluded, information about the occluded
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object do not come from the corresponding frames where it remains occluded. Window

based approaches like [2, 9, 35] can be sub-optimal in this case because the length of the

frame window can become a bottleneck. Instead, we build recurrent connections on top of

region based object detectors that enable propagation of salient features from both ends of

a video sequence. The architecture of a region based object detectors at frame level and at

video level (with recurrent connections) is explained as follows.

Figure 4.2: Frame level region based object detector

In frame level region based object detectors like Faster RCNN or RFCN, the input frame

is passed through a convolutional backbone (typically ResNet or VGG backbones) to obtain

a full image backbone feature Ft (subscript denotes time step of frame). A region proposal

network (RPN) runs on Ft and produces several ROI crops. Each such ROI crop is then

processed further for classification and class specific offset regression. The final offset re-

gression helps in producing slightly tighter or relaxed boxes for better localisation. In order

to extend this family of architectures, we first detach the RPN and the ROI specific layers

(ROI pooling layers, classification and regression layers) and then add the recurrent connec-

tions on top of the backbone feature maps. We call the output of our RNN cell as memory
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(Mt) since it has features from all past frames of the sequence. We then attach the RPN

and the ROI specific layers on top of this memory. Since we are reasoning on top of the

accumulated features and not on the backbone features of a particular time step, we hope

to reason on top of features of the object of interest which are propagated to the current

memory from when it was last visible in the past. This way we are able to detect the object

of interest under occlusion. Our video level object detector is next shown as follows.

Figure 4.3: Video level region based object detector
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4.2 Redundancy of video data: 2-stage training

Video data is highly redundant. This is because consecutive frames belonging to the same

video is highly correlated and thus the number i.i.d. samples in a video dataset is signif-

icantly less than the same in a corresponding static image dataset with similar size. For

eg., consider the ImageNet VID and DET dataset (with the same classes). While VID has

roughly 1 million frames in the training set and the corresponding subset in DET has frames

in the order of 105, almost each and every training sample in DET is independently and iden-

tically distributed. On the other hand, in the VID training set all the frames are taken from

a total of 3862 videos and thus the number of i.i.d. samples are of the order of 104. In order

deal with this, it is recommended that we first pretrain the frame level detector in a static

image dataset and then add the recurrent connections and finetune the entire architecture

on the video dataset in an end-to-end fashion. In our case we use Cut, paste and learn [7]

to generate synthetic static image datasets on which we pretrain our frame level detector.

Some example images from our synthetic dataset is shown as follows.

Figure 4.4: Examples of images in our synthetic dataset

As observed in figure 4.4, the objects of interest are randomly placed on respective back-

ground images. This works well enough for our purpose because region based object de-

tectors rely heavily on local context for object detection.
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4.3 Choice of recurrent computational unit

ConvGRU, ConvLSTM cells are common choices for the recurrent computational units of

convolutional neural networks. These cells are inspired from the original GRU and LSTM

cells with gating mechanisms, where the dot product layers are replaced by convolutional

layers. While both ConvGRU and ConvLSTM cells have been widely used in the domain

of computer vision, in our case we take a closer look at the ConvGRU cell since it has fewer

parameters. It is to be noted that, region based video object detectors when unrolled for

training can occupy a lot of GPU memory and thus fewer parameters of the RNN cell is

always preferred.

Computation steps inside a ConvGRU is explained as follows.

zt = σ(Wz ∗ Ft + Uz ∗Mt−1) (4.1)

rt = σ(Wr ∗ Ft + Ur ∗Mt−1) (4.2)

M̂t = tanh(W ∗ Ft + U ∗ (Mt−1 � rt)) (4.3)

Mt = (1− zt)�Mt−1 + zt � M̂t (4.4)

Here, Ft and Mt−1 denote the backbone feature map at time t and the memory from

time t − 1 respectively. This two features are used to obtain the memory at time t, Mt in

the RNN cell. zt and rt are gates that control how much information from the previous

memory, Mt−1 to forget and how to combine Mt−1 and the candidate memory M̂t.

However there is a slight disadvantage with the ConvGRU cell. In figure 4.2, the region

proposal network and the RoI specific layers directly work on Ft which has values in the

range [0,∞) because the ReLU activations in the convolutional backbone. When we attach

the ConvGRU cell, and fine-tune the architecture in an end-to-end fashion, the region pro-

posal network and the RoI specific layers work on Mt which now has values in the range

[0, 1]. This makes the pretrained weights of the RPN and classification/regression layers

redundant. In order to deal with that, we use a more recently developed ConvRNN cell
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called the Spatio-temporal memory module (abbreviated as STMM) which is given by the

following set of equations.

zt = BN∗(ReLU(Wz ∗ Ft + Uz ∗Mt−1)) (4.5)

rt = BN∗(ReLU(Wr ∗ Ft + Ur ∗Mt−1)) (4.6)

M̂t = ReLU(W ∗ Ft + U ∗ (Mt−1 � rt)) (4.7)

Mt = (1− zt)�Mt−1 + zt � M̂t (4.8)

Here BN∗ is not the typical batch norm layer in convolution neural networks. Rather

this layer ensures takes the unbounded inputs and squashes them into the range [0, 1]. It

does so by first computing mean µ and standard deviation σ. It then sets k = µ+3σ, clamps

the input tensor within the range [0, k] and then divides it by k. This makes sure the values

for the update and reset gates are within [0, 1] while the values in the output memory are

in the range [0,∞). It is to be noted that both ConvGRU and STMM have the same basic

structure but use different activations for non-linearity.

In our approach, we build on top of STMM because of

• its impressive performance on the ImageNet VID dataset

• additional advantage of easy transfer of pretrained backbone weights from static im-

age datasets

We observe pretraining the weights of the baseline per-frame detector to be particularly

useful in our case due to the small volume of training videos.
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4.4 Memory misalignment issue

A vanilla STMM is unable to align the memory properly. Successive such misalignments

end up forming a trail of salient features in the memory, which often leads to false positive

detections and inaccurate localisation. Xiao and Lee [32] address this issue by introducing

the MatchTrans module. They use correlation between the backbone features to determine

affinity coefficients, Γ, which are then used to warp the spatio-temporal memory for align-

ment. More specifically, the coefficients for alignment at location (x, y) are determined by

computing the affinity between Ft(x, y) and the feature cells in a small 2k + 1 by 2k + 1

window around (x, y) in Ft−1. Affinity coefficient between Ft(x, y) and Ft−1(x + i, y + j)

is given by equation 4.9. Finally, the aligned memory, M ′t−1 is obtained from the unaligned

memory Mt−1 following equation 4.10.

Γx,y(i, j) =
Ft(x, y).Ft−1(x+ i, y + j)∑

i,j∈{−k,..,k} Ft(x, y).Ft−1(x+ i, y + j)
(4.9)

M ′t−1(x, y) =
∑

i,j∈{−k,..,k}

Γx,y(i, j).Mt−1(x+ i, y + j) (4.10)

Figure 4.5: Misalignment issue. 2nd row and 4th row from top show L2 norm of memory
with and without the MatchTrans module. Image is reused from [32]
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4.5 Issues with explicit alignment

While this method of explicit alignment works well for objects that are not completley oc-

cluded, we observe that under severe long-term occlusion, correlation based alignment can

do away with salient features in the memory of the RNN cell. This happens because, when

an object is occluded, backbone feature activations are not always fired for the object (since

occluders can often belong to the background class). This in turn results in lower affinity

coefficients for the spatial locations where the occluded object exists at a given time. Ap-

plying MatchTrans over successive time steps, results in dying out of the feature activations

in memory and can thus result in false negatives as shown in figure 4.6.

Figure 4.6: Memory activations of the object held die with time resulting in false negatives.
Adjacent time steps shown are 5 frames apart.

This introduces a trade-off between long-term propagation of features under occlusion

and better alignment for accurate localisation. We propose to address this via an alignment

learning module, that can act as an alternative to explicit correlation based alignment.
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4.6 Learning the alignment

Standard implementation of convRNN cells including the STMM cell uses features from

the same spatial locations of its inputs, Mt−1 and Ft to update a cell in its output feature

Mt. However, unless the objects in a scene are static or moving very slowly, such operations

can be problematic, especially since it is a common convention to skip frames from a video

to deal with the redundancy of adjacent frames. We believe in order to align memory with

standard convolution layers, we should at least ensure large enough receptive fields for

the layers of the RNN cell with respect to its input features. A naive implementation of

this can be achieved by increasing the kernel size or adding successive 3 by 3 convolution

layers. Although simple, such architectures are not memory efficient since adding each

convolution layer only increases the receptive field by a finite amount. Hence, the number

of parameters, ∆P needed to be added scale linearly with respect to the increase in the

effective receptive field, ∆f i.e. ∆P = O(∆f). In stead we propose the following method.

Figure 4.7: A standard convolution rnn cell using features from the same spatial location of
the previous memory and input feature map to form the new memory

First, we build feature pyramids of the input features of the RNN cell (Mt−1 and Ft).
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For this step, we use standard 2 x 2 max pooling operation for downsampling, and set the

number of levels of the pyramid to 3, which gives a good enough balance between mem-

ory usage and performance. Feature pyramids of Mt−1 and Ft are given by Mf
t−1 and F f

t

where Mf
t−1 = {Mt−1,M

0.5
t−1,M

0.25
t−1 } and F f

t = {Ft, F
0.5
t , F 0.25

t }. Here, numerical super-

script denotes scale. We next propagate information using only the top most level of the

pyramid i.e. using M0.25
t−1 and F 0.25

t instead of their corresponding full resolution feature

maps. This way, we are able to increase the effective receptive field of the layers in the RNN

cell without adding more parameters to it. The output of the STMM cell, Mt thus needs to

be upsampled to be passed on to other subnetworks of the object detector like the region

proposal network, ROI pooling layers etc. In order to upsample the newly updated memory

, we use skip connections from the backbone feature pyramid F f
t to combat the information

loss due to downsampling and to aid the network in better alignment of the memory. Ev-

ery level of upsampling has three fundamental steps. Firstly, we do bilinear upsampling to

scale the feature maps by 2x followed by an optional zero padding along the width, height

or both axes to match the spatial resolution of the corresponding feature map from F f
t . It is

to be noted that this zero padding causes additional misalignment by 1 pixel in the feature

space along its corresponding axis. To deal with that, we apply 3 by 3 convolution on top of

the feature maps accompanied by the skip connections from the backbone feature pyramid.

The entire architecture of our modified recurrent computational unit is shown in figure 4.8.

This way we also end up adding much fewer parameters to the network. The only param-

eters that we add are for the skip connections and the number of such parameters linearly

increases with the number of levels in the pyramid, L. On the other hand, the effective

receptive field exponentially increases with L. Thus, in our model, ∆P = O(log ∆f)
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Figure 4.8: Architecture of alignment learning module
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Chapter 5

Experiments

In this section, we evaluate our model quantitatively and qualitatively on the respective

datasets and show the effectiveness of our model in learning the alignment. We use frame

level detectors and STMN as baseline models to compare against our method. Unlike [32],

we do not take the ensemble of the frame level detector and STMN. Through out all our

experiments we only evaluate the single model performance. It is to be noted that all the

modules discussed earlier can be plugged into any existing region based object detector

with any backbone. For each of the three datasets we take different combinations of the

convolutional backbone and frame level base network and hence show that our method is

invariant of the type of backbone and frame level detector.

5.1 Experiments on Staged Occlusion dataset

Framework hyp Settings
Base detector Faster RCNN

Backbone vgg16
bptt steps 5

Type of RNN unidirectional
RoI sampling random
Type of nms standard

Table 5.1: main configurations of video level detector for Staged Occlusion dataset
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5.1.1 Effect on long term occlusion

Figure 5.1: L2 norm of memory and detections for different methods. Row(a) and (b) cor-
respond to MatchTrans. Row(c) and (d) correspoding to our method. As is apparent, our
method of learning to align the memory keeps the features of the object of interest alive in
the memory for longer amount of time, resulting in fewer false negatives.
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5.1.2 Qualitative results

Figure 5.2: Quality of detections when object is visible. Top row: frame level detections,
Middle row: video level detecions with MatchTrans, Bottom row: video level detections
with learned alignment. Time increases from left to right.
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Figure 5.3: Quality of detections as the objects starts undergoing occlusion. Top row: frame
level detections, Middle row: video level detecions with MatchTrans, Bottom row: video
level detections with learned alignment. Time increases from left to right.

Figure 5.4: Quality of detections as the duration of occlusion increases. Top row: frame
level detections, Middle row: video level detecions with MatchTrans, Bottom row: video
level detections with learned alignment. Time increases from left to right.
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5.2 Experiments on furniture assembly dataset

Framework hyp Settings
Base detector Faster RCNN

Backbone ResNet-50
bptt steps 5

Type of RNN unidirectional
RoI sampling random
Type of nms standard

Table 5.2: main configurations of video level detector for Furnuture Assembly dataset

For both the occlusion datasets, we use Faster RCNN with vgg16 and ResNet-50 back-

bone as the frame level baseline detector. We train this detector on synthetic datasets gen-

erated by [7]. Once the Faster RCNN baseline is trained, we add the recurrent connections

into the model and fine-tune the entire network in an end-to-end fashion. Since we were

interested in building online methods, for our case the RNN is uni-directional where in-

formation only flows from the beginning to the end. We use stochastic gradient descent

with learning rate 1e-3 in the beginning and lower it to 1e-4 as the training loss plateaus.

During training, we employ standard left-right flipping for data augmentation and during

test time we use standard non-max suppression with an IoU threshold of 0.3. While there

are additional techniques to boost the mAP like OHEM [28] for better ROI sampling, or

seq-NMS [12] for better post processing of raw detections, in this case we do not use them.

Under these settings, we obtain the following detection scores shown in table 5.3.

Method Base network RNN cell Alignment mAP
Frame level Faster RCNN - - 0.12
Video level Faster RCNN STMM - 0.15
Video level Faster RCNN STMM MatchTrans 0.21
Video level Faster RCNN STMM learned 0.26

Table 5.3: mAP of different models on the Furniture Assembly dataset

Unsurprisingly, we observe that our method significantly outperforms the baseline frame

level object detector. Also, the detection scores from table 5.3 confirm that our method of

aligning the features are more suitable under such strong cases of occlusion.
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5.2.1 Qualitative results

Figure 5.5: Qualitative results on our Furniture Assembly dataset. Each row corresponds to a
different sequence. Time increases from left to right.
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5.3 Experiments on ImageNet VID dataset

In our approach, we try to build a data driven end-to-end method for detecting occluded

objects in videos and do not plan to model occlusion explicitly. Hence, it be worthwhile to

see how our way learning the alignment compares against explicit alignment with Match-

Trans when the occluded object is visible. To do so, we consider the ImageNet VID dataset,

a common dataset for benchmarking video object detectors. From figures 5.6, 5.7, ?? we

observe that learned alignment gives a relatively better aligned memory when compared

to that of MatchTrans.

Framework hyp Settings
Base detector RFCN

Backbone ResNet-101
bptt steps 4

Type of RNN bidirectional
RoI sampling OHEM
Type of nms seq-NMS

Table 5.4: main configurations of video level detector for ImageNet VID dataset

Further more, we quantitatively evaluate our method’s performance on the ImageNet

VID dataset to show how our method of video object detection stacks up against current

state-of-the-art approaches. In order to make a fair comparison, we make some changes to

our method to match the experimental settings of [32]. The details are available in table 5.4.

Our settings differ with that of [32] only in two aspects: i) we evaluate single model per-

formance and not performance of the ensemble model with RFCN and ii) during training

we unroll the rnn for 4 time steps in stead of 7, because we were unable to fit the latter in a

12 GB Nvidia Titan X GPU. Under these settings, we observe that STMN with MatchTrans

achieves an mAP of 78.9 and our STMN with learned alignment achieves an mAP of 79.6.

Although, we acknowledge that the 0.7 mAP improvement is not necessarily statistically

significant, we are able to show that our able is able to learn the alignment well enough

to act as an alternative to explicit alignment for videos object detection tasks that do not

specifically target fully occluded object detection.

28



5.3.1 Quality of memory alignment

Figure 5.6: Top row: input sequence, 2nd row: L2 norm of memory without alignment, 3rd
row: L2 norm of memory with MatchTrans, 4th row: L2 norm of memory with learned
alignment. Time increases from left to right.

Figure 5.7: Top row: input sequence, 2nd row: L2 norm of memory without alignment, 3rd
row: L2 norm of memory with MatchTrans, 4th row: L2 norm of memory with learned
alignment. Time increases from left to right.
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Chapter 6

Conclusion and future work

In this paper, we present a data driven approach to detecting occluded objects in videos.

To the best of our knowledge, prior work on this domain has avoided data driven occlusion

reasoning primarily due to lack of available data to train on. Although the advantage of

such data driven methods is that we do not need to make any fundamental assumptions

about the data, we observe that our method learns some biases for commonly occluding

objects that it has seen during training time. This means, not only does it produce false

positives, but it also unable to generalize to unseen occluder objects at test time. Future

work will be concentrated on generalisation across different occluding objects.

Also, whether a purely data-driven method is not very useful unless there is a significant

volume of training data available. Building datasets with such varying levels of occlusion

can be laborious. Future work will also target creating synthetic videos and using domain

adaptation techniques to address this problem.

Figure 6.1: Failure cases of our method
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