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Abstract— The application of robots in inspection tasks
has been growing quickly thanks to the advancements in
autonomous navigation technology, especially the robot lo-
calization techniques in GPS-denied environments. Although
many methods have been proposed to localize a robot using
onboard sensors such as cameras and LiDARs, achieving
robust localization in geometrically degenerated environments,
e.g. tunnels, remains a challenging problem. In this work, we
focus on the robust localization problem in such situations.
A novel degeneration characterization model is presented to
estimate the localizability at a given location in the prior map.
And the localizability of a LiDAR and an Ultra-Wideband
(UWB) ranging radio is analyzed. Additionally, a probabilistic
sensor fusion method is developed to combine IMU, LiDAR and
the UWB. Experiment results show that this method allows for
robust localization inside a long straight tunnel.

I. INTRODUCTION

In this work, we aim to address the robust localization
problem in robot-based tunnel inspection tasks. Compared
with traditional human-based approaches, robots are more
flexible and efficient in that they do not require specialized
tools to gain mobility, and are able to access places that are
dangerous for humans. Recent advancements in robot sensing
and autonomous navigation have significantly increased the
usage of robots in such applications. However, as one of
the most fundamental problems, localizing a robot inside
long straight tunnels remains challenging even for the state-
of-the-art methods. Reasons for localization failure include
darkness, dust, ambiguity and so on. Here we focus on the
ambiguity issue faced by most LiDAR-based systems.

To localize a robot in situations where system reliability
is critical, LiDARs are more widely used than other sensors
thanks to its long-ranging capacity and robustness to low
illumination conditions. However, since a LiDAR captures
the geometry information by scanning the environment, it
is more likely to be affected in geometrically degenerated
cases. For example, a robot navigating through a long straight
tunnel (as seen in Fig. 1 top-left) will not be able to determine
its location along the tunnel since the measurements are
identical everywhere. We can understand the degeneration
with an analogy to a sliding block inside a pipe (see Fig.
1 bottom-left). The block is obtained by connecting the
endpoints of the LiDAR scan. The contact forces, analogous
to the surface normals, prohibit motions towards the sides of
the pipe. However, since there is no friction to restrain the
object, its motion along the pipe becomes under-constrained.
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Fig. 1: An analogy between robot navigation inside a tunnel
and a sliding block inside a pipe, where the measured surface
normals correspond to contact forces.

To identify the geometric degeneration in general envi-
ronments, a mathematical model to predict the localizability
is needed. Besides, a mathematical model can also assist
in actively placing sensors to eliminate the degeneration.
In this work, we first formulate the localizability model
from a set of geometric constraints, then compare the lo-
calizability of the LiDAR and the UWB, showing that the
two sensors are complementary in constraining the pose
estimation problem. Finally, the UWB ranging information
is fused with a rotating 2D LiDAR in a probabilistic filtering
framework. In experiments, we show that the incorporation
of a single UWB ranging radio can significantly improve the
localization performance inside a tunnel.

The main contribution of this paper is a novel localizability
estimation method that is easy to implement and has a
physically meaningful metric. We believe this model is useful
for sensing system design, active perception/sensing and path
planning to minimize the risk of localization failure. As the
secondary contribution, we present a simple probabilistic
sensor fusion method that combines a UWB ranging radio
with the IMU-LiDAR system for accurate localization.

The rest of this paper is organized as follows: Section
II discusses related work on localizability estimation, while
Section III describes the proposed localizability model and
the sensor fusion method in detail. The experimental results
are presented in Section IV. Finally, the paper is concluded
in Section V.

II. RELATED WORK

There is plenty of work modeling the sensor localizability,
observability or uncertainty. Those approaches can be cate-



gorized by the type of sensors. For LiDAR-based approaches,
perhaps the earliest attempt is from Roy and Thrun [1], which
is known as coastal navigation. Their model is formulated
in a probabilistic framework but needs approximations to
compute the uncertainty efficiently. Instead of modeling the
laser uncertainty directly, Diosi and Kleeman [2] compute
the uncertainty of line segments extracted from laser scans.
Censi [3] derives a lower bound of the uncertainty matrix that
2D ICP algorithms can achieve using Cremar-Rao’s bound,
which actually inspires the development of our method. His
later work extends the idea to pose tracking [4] and localiza-
tion [5]. Liu et al. [6] provide a numerical implementation
of this approach in 2D and a planner is developed to max-
imize the determinant of the computed information matrix.
Similarly, methods that apply the concept of localizability
to design optimal planners are proposed in [7], [8] and [9].
Zhang et al. [10] use a degeneracy factor to characterize
geometric degeneration and improve the accuracy of ego-
motion estimation in the context of solving an optimization
problem. Our previous work [11] describes a simple method
that builds an information matrix from 3D normal vectors
and use its eigenvalues to measure the localizability. How-
ever, it only considers translation and does not provide an
explanation for the metric of localizability. Different from
the methods mentioned before which are mostly derived
using geometric rules, Vega et al. [12] propose a learning
approach to predict uncertainty matrix based on the system’s
experience. This approach is demonstrated using cameras
and LiDARs in the simulation. In the case of cameras,
available approaches typically try to estimate the uncertainty
of extracted features. For example, Eudes and Lhuillier [13]
model the error propagation from image pixels to recon-
structed 3D points in the settings of a bundle adjustment
problem. Our Localizability model shares a similar idea with
[4] and [10] in that the sensitivity of measurements w.r.t.
parameters is used to identify degeneration. But we formulate
the sensitivity from a constraint set and use a different but
physically meaningful metric to evaluate the localizability.

People have also proposed approaches for reliable local-
ization in tunnels. For example, monocular camera [14],
or camera-LiDAR [15] systems are used to provide state
estimation for the robot inside a pipe or tunnel. However,
those methods may not work in the absence of visual
or structural features. Differently, [16] and [17] present
a localization method using the periodic radio frequency
signal fading, which achieves an accuracy of half the fading
period. Besides, Kim et al. [18] use UWB for localization
inside tunnels. Those approaches are more robust to low-
texture and geometrically degenerated conditions and are
similar to our localization approach. But our work is focused
on localizability estimation which allows for appropriate
selection or placement of sensors.

III. APPROACH

In this section, we first present the formulation of the
proposed geometric degeneration model and then elaborate
on the IMU, LiDAR and UWB fusion algorithm. Throughout

the paper, bold lower-case letters (e.g. x) represent vectors
and bold upper-case letters (e.g. R) represent matrices.
Scalars are denoted as light lower-case letters (e.g. ρ). In
formulations related to probabilistic sensor fusion, we use
the symbols ·̄ and ·̃ to indicate the prior and the observation
respectively, while the posterior does not have a header.

A. The Degeneration of Geometry

The goal of modeling the degeneration of geometry is to
develop theoretical tools to identify degeneration in given
maps and also gain insights on designing reliable sensing
systems. In other words, given the prior map, we would like
to answer whether the current measurement from a specific
sensor contains enough information to estimate the robot
state.

1) Localizability of the LiDAR: First of all, we represent
the LiDAR-based localization problem as solving a set of
constraint equations:

C(x,R, ρi) = nT
i (x + Rriρi) + di = 0 (1)

where (x,R) ∈ (R3, SO(3)) denotes the robot position and
orientation, and i ∈ {1, 2, · · · ,m} is the point index in the
laser scan. (ni, di) ∈ (R3,R) encodes the normal vector
and distance which is estimated by fitting a local plane to
the neighboring points. ri ∈ R3 is the unit range vector
represented in the robot body frame and ρi ∈ R is the range
value. Eqn. 1 describes a simple fact that the scanned points
should align with the map when the robot is localized.

Now we evaluate the strength of the constraint by measur-
ing the sensitivity of measurements w.r.t. the robot pose. The
key observation is that if the robot pose is perturbed slightly
but the resulting measurements do not change much, then
the constraint is weak. Otherwise, the constraint is strong.
Therefore, it is natural to compute the derivative of ρi w.r.t. x
and R as a measure of the sensitivity. Stacking the derivatives
computed from all the constraints gives two matrices:

F =

[
− n1

nT
1 r1

· · · − nm

nT
mrm

]
(2)

T =

[
−ρ1r1 × n1

nT
1 r1

· · · −ρmrm × nm

nT
mrm

]
(3)

(see Appendix I for details). We could then perform Eigen-
value Decomposition on the information matrices:

FFT = UFDFUT
F, TTT = UTDTUT

T (4)

and any eigenvalues significantly smaller than the others
indicate degeneration in the direction of the corresponding
eigenvectors. A straightforward choice of the metric to
evaluate the degeneration is the eigenvalues. However, we
found this metric difficult to interpret because its physical
meaning is not clear. To accommodate this issue, we choose
to project each row in F and T into the eigenspace

F′ = UFF, T′ = UTT (5)



Fig. 2: An illustration of the visual wrench restraining the
robot position and orientation.

and define the localizability vector lF ∈ R3 and lT ∈ R3 as

lF,i =

m∑
j=1

|F′ij |, lT,i =

m∑
j=1

|T′ij | (6)

meaning each element is the sum of absolute values of each
row in F′ and T′.

A closer look at Eqn. 2, 3 and 6 gives a more natural and
intuitive interpretation. As illustrated in Fig. 2, we can inter-
pret the position constraints as forces in the direction of ni

(ignoring the signs) and the orientation constraints as torques
in the direction of ri×ni. Now the F and T are collections
of wrenches (forces and torques) restraining the translation
and rotation of the robot. Aligning with this picture, well-
conditioned F and T indicate a frictionless force-closure,
which is a term used in the field of manipulation mechanics
to describe a solid grasp of an object. The characterization
of a frictionless force-closure is to check whether the row
vectors in F and T span the space of R3 [19]. Interestingly,
this shares a similar idea of identifying degeneration using
eigenvalues that are small. Furthermore, we can interpret
the physical meaning of the localizability as the magnitude
of accumulated virtual forces and torques gained from the
measurements to restrain the uncertainty of pose estimation.

2) Localizability of UWB Ranging: The UWB sensor
measures the distance from the anchor (attached to the
environment) to the target (attached to the robot). Assuming
the target is located at the origin of the robot body frame,
we get the constraint equation

C(x,R, γ) = ||x− xa||2 − ||γ||2 = 0 (7)

where xa ∈ R3 is the anchor position in the environment and
γ ∈ R is the measured range. Following similar procedures,
we obtain the force matrix F for the UWB

F =
x− xa

γ
(8)

(see Appendix II). Again F can be treated as a collection
of unit forces. In fact, there is only one column in F and
thus represents a single force in the direction from the
anchor to the target. The force is later projected into the
previously derived eigenspace to be compared with LiDAR
localizability. On the other hand, since the sensor does not
provide any information about the orientation, the torque
matrix T is trivially zero.

Fig. 3: Sensor fusion system overview. The green blocks
indicate pipeline to process the UWB measurements and is
described in detail in this paper. The red and orange blocks
are pipelines of the ESKF and LiDAR fusion respectively.

Fig. 4: An illustration of the GPF in 2D. Grey ellipse:
uncertainty of prior belief. Dark red ellipse: the uncertainty
of posterior. Light red ellipse: uncertainty of the recovered
position measurement. The color of a particle encodes its
weight with darker color corresponds to a higher weight.

B. Probabilistic Fusion of LiDAR and UWB

The fusion of IMU, LiDAR and the UWB is based on
an Error State Kalman Filter (ESKF) (see Fig. 3). An
ESKF is very similar to the well known Extended Kalman
Filter (EKF), except it models the system dynamics in error
states, which is beneficial when linearizing the system [20].
Basically, in the ESKF, the IMU measurements are integrated
over time to predict the robot states. And the laser scans are
matched to the prior map to recover a 6D pose measurement
which is further used to update the prediction. Different
from the LiDAR, the UWB ranges are converted to a 3D
position measurement since the UWB doesn’t contain any
orientation information. After that, the recovered position is
used to update the prediction similarly. Note that the update
rate from LiDAR and UWB is different and depends on the
data frequency. We encourage the readers to [11] for more
details on ESKF and LiDAR fusion and only elaborate on
the pipeline to process UWB data.

Specifically, a Gaussian Particle Filter (GPF) is used to
convert the UWB ranges to a pose measurement as in [21].
First, a set of particles {xi ∈ R3|i = 1, 2, · · · , N} are drawn
based on the position partition (x̄, Σ̄) ∈ (R3,S+) of the full
prior belief which consists of position, orientation, velocity
and so on. Additionally, each particle is assigned with a
weighting factor

wi = exp

[
−
(
||xi − xa|| − γ

σ

)2
]

(9)

where σ is the ranging noise of the UWB and is tuned by



hand in the experiments. This weighting factor measures how
likely is each particle to be the true hypothesis. After that, the
position posterior (x,Σ) is found by computing the weighted
mean and covariance of the set

x =

∑
wixi∑
wi

, Σ =

∑
wi(xi − x)(xi − x)T∑

wi
(10)

With the prior and the posterior belief in hand, we differen-
tiate them to recover a position measurement (x̃, Σ̃)

(x̃, Σ̃) = (x,Σ)	 (x̄, Σ̄) (11)

by inversing the Kalman update step

x̃ = K−1(x− x̄) + x̄ (12)

Σ̃ = (Σ−1 − Σ̄−1)−1 (13)

where K is the Kalman gain computed as

K = Σ̄(Σ̄ + Σ̃)−1 (14)

Here the observation matrix is an identity and hence omitted.
Finally, (x̃, Σ̃) is used to update the full state in the ESKF.

Fig. 4 explains the process of converting UWB ranges into
position measurements using a 2D example.

IV. EXPERIMENTS

A. Overview

Fig. 5: Left: The Smith Hall tunnel at CMU with the UWB
anchor board placed on the ground. Right: The customized
DJI M100 quadrotor.

Experiments are carried out inside the Smith Hall tunnel
at CMU (shown in Fig. 5). The tunnel is of size 35m ×
2.4m×2.5m (l×w×h) with pipes on both sides. The prior
map is obtained by aligning multiple local scans along the
tunnel. The robot (see Fig. 5) is a customized DJI Matrice
100 quadrotor. It has a rotating Hokuyo UTM-30LX-EW
LiDAR (40Hz, 30m range), a Microstrain IMU (100Hz), a
Pozyx UWB target board (100Hz, 100m range with clear
line-of-sight), and a DJI Manifold computer (2.32GHz). Note
that the Hokuyo LiDAR is mounted on a continously rotating
motor (180◦/sec) and the laser scan is projected into the
robot body frame using the encoder angles. There are other
sensors such as GPS, compass and a gimbal camera that are
not used in this work.

Fig. 6: Top: The LiDAR localizability along the tunnel. The
upper plot is a top-down view of the pre-built map where the
ground and ceiling points are cropped and the color encodes
the height of remaining points. The red-green (x-y) frames
indicate the 20 sampled positions. Bottom: A comparison of
position localizability of the LiDAR and the UWB. The red
dot marks the position of the UWB anchor in the tunnel.

B. Localizability inside the Tunnel

The LiDAR localizability is evaluated at 20 evenly sam-
pled places along the tunnel (as shown in Fig. 6). Firstly, we
define the map frame with x pointing along the tunnel and z
pointing downward. Secondly, to simulate the measurements
at each place, 4000 points are sampled uniformly within the
range of 15 meters. We choose 4000 because that is about the
amount of downsampled laser points used for localization per
180◦ rotation of the motor. And the effective range of LiDAR
is decreased since distant points have nearly 90◦ reflection
angle resulting in unreliable measurements. Then, at each
point, a local surface is estimated by fitting a plane to its 20
nearest neighbors. Finally, using Eqn. 2-6, the localizability
vector can be computed. The computation is repeated 10
times with different set of points and results are averaged.
Fig. 6 shows a top-down view of the sampled poses and
their localizability. In order to show the ‘strength’ of the
localizability clearly in the later comparison, the values are
scaled as

li =
li∑
i li

(i = 1, 2, 3)

It can be observed that the position and orientation local-
izability along x-axis is significantly smaller than the other
two dimensions. This is because the position x is ambiguous
along the tunnel except at the right end where a vertical



Fig. 7: An example of the eigenspace obtained from the 1st
sampled place (near the left end of the tunnel). x-,y- and
z-axis define the robot body frame. Left: The eigenspace of
FFT . Right: The eigenspace of TTT .

wall restrains the position. Additionally, since the tunnel
has an arc ceiling and almost identical width and height,
the roll angle cannot be effectively constrained by LiDAR
measurements. Fortunately, the orientation can be directly
measured by the IMU thus roll angle is well-constrained after
sensor fusion.

It’s also worth to mention that the x-axis of the eigenspace
is parallel to that of the body frame (see Fig. 7). That is
because the x-axis in body frame is actually the degenerated
direction. However, that is not necessarily the case for y
and z if there is no significant difference in their constraint
strength.

Considering the UWB, we project the force matrix into the
fore-mentioned eigenspace, evaluate the localizability, and
compare that with the LiDAR (see the bottom plot of Fig.
6). It is easy to see that the UWB compensates the LiDAR
localizability along the x-axis, which means fusing the two
sensors will make the estimation problem well-constrained.
However, we observe a decrease of localizability in x near
the anchor. This is a singular point where only position y and
z are measured. Theoretically, additional anchors are needed
to solve this issue. In practice, the singular point does not
cause failure since the time of being under-constrained is
short. Once the robot passes this position, the localizability
in x increases and the robot can be localized again.

C. Tunnel Localization Test

The localization test is conducted by manually flying the
robot from the map origin to the other end of the tunnel
with an averaged speed of 0.7m/s. The UWB anchor board
is placed a priori and its location is measured in the pre-built
map. In this experiment, we control the usage of the UWB
ranging data and compare the localization performance.
When the UWB is disabled, the localization starts to drift
shortly after the robot takes off. When the UWB ranging
data is fused with LiDAR, the robot is able to successfully
localize itself throughout the whole flight.

Fig. 8 shows the estimated trajectories, the prior map and
the reconstructed map. Since the localization accuracy is
difficult to measure without a motion capture system, we
use the reconstructed map to qualitatively evaluate estimation
accuracy. Although the reconstructed map shows larger noise
than the prior map, the side structures are recovered, which
indicates the localization is correct.

V. CONCLUSIONS

This paper presents a novel geometric degeneration mod-
eling method that encodes the sensitivity of measurements
w.r.t. robot poses. We find an analogy between the force-
closure characterization and our method, which helps to
explain the physical meaning of the localizability. Addition-
ally, it is shown that the LiDAR and the UWB ranging
sensor are complementary in terms of localizability and the
presented fusion method is demonstrated to allow for robust
localization inside real geometrically degenerated tunnels.

There are several directions for future work. Firstly, the
constraint model of a localization problem is potentially
generalizable to other sensors such as cameras. Secondly,
it is still not clear how to compute the total localizability
when multiple sensors of different modalities exist. In our
experience, directly compositing constraints does not give
reasonable results since sensor information may be redundant
and the data comes at different time and frequency. Finally,
although fusing UWB devices with LiDAR and IMU seems
to be a feasible solution for localization inside tunnel-like
environments, it requires the prior knowledge of the map and
UWB positions, which will be an overhead for exploration
tasks. Therefore, techniques for automatic calibration or
localization of multiple UWB devices will be useful.

APPENDIX I

Without losing generality, we could always define the map
frame to align with the robot body frame. In this way, (x,R)
are small and can be treated as perturbations. Therefore the
problem is reduced to evaluate how sensitive is ρi w.r.t. the
perturbations (x,R). This assumption allows using the small
angle approximation R ≈ I + [θ]× to find the linearized
constraint:

C̄(x,θ, ρi) =nT
i (x + (I + [θ]×)riρi) + di

=nT
i x + nT

i riρi + nT
i [θ]×riρi + di

=nT
i x + nT

i riρi − nT
i [ri]×θρi + di

(15)

Then based on the Implicit Function Theorem (IFT), we
have

∂C̄
∂x

dx +
∂C̄
∂ρi

dρi = 0,
∂C̄
∂θ

dθ +
∂C̄
∂ρi

dρi = 0 (16)

which implies

dρi
dx

= −
(
∂C̄
∂x

)(
∂C̄
∂ρi

)−1
= − nT

i

nT
i ri

dρi
dθ

= −
(
∂C̄
∂θ

)(
∂C̄
∂ρi

)−1
= − (ρiri × ni)

T

nT
i ri

(17)

The derivatives are then stacked into matrix F and T.

APPENDIX II

Similarly, based on the IFT, we have

∂C
∂x

dx +
∂C
∂γ

dγ = 0 (18)



Fig. 8: Up: A comparison of estimated trajectories with/without fusion of the UWB ranging data. Middle: The ground truth
map is built by matching multiple local scans using the ICP algorithm. Bottom: The reconstructed map is assembled by
laser scans with estimated poses.

which implies

dγ
dx

= −
(
∂C
∂x

)(
∂C
∂γ

)−1
=

x− xa

γ
(19)
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