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Abstract

This thesis explores the application of deep learning algorithms to 2D (image) and
3D (point cloud) registration scenarios, especially where the challenging nature of
the data precludes the use of classical methods for establishing correspondence and
alignment.

In the 2D case, we apply a recently-proposed learning-based image registration
method to the problem of aligning outdoor imagery taken across seasons and times
of day. Further, we extend the method to perform GPS-denied UAV geolocalization
by aligning UAV images and satellite imagery. We also propose a novel joint opti-
mization of motion estimates from visual odometry and geolocalization, to increase
localization accuracy in cases where parts of the satellite map may be missing or
too dissimilar from the UAV imagery.

In the 3D case, we develop three novel point cloud registration algorithms based on
state-of-the-art point cloud processing deep networks. We show the benefits of the
learned representation for registration on partial data, intra-category data (same
category, different shape), and real-world data.
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Chapter 1

Introduction

1.1 Research Questions

There are many existing methods which address 2D image registration and 3D point
cloud registration. These existing methods, and the problem statement of registra-
tion itself, are discussed in more detail in the Background Chapter. For a vast
number of scenarios, an existing method will be able to provide reasonable accuracy
and speed. Existing methods struggle to produce good results in cases where the
appearance is quite different between the reference dataset (template) and the data
to be aligned to the reference (source).

One example of such a registration scenario is the problem of aligning images of
a location which were taken at different times of day, or across different seasons.
This is a more difficult problem than aligning images of a location taken within a
small temporal window, as the appearance has changed drastically. Especially for
outdoor environments, appearance difference is manifested in lighting conditions,
shadows, removal or occlusion of objects like buildings and cars, changes in foliage,
and weather conditions.

In the point cloud case, appearance difference between template and source is mani-
fested through noise affecting the measured position of points, partial measurement
due to specific viewpoint of an object, or differences due to multi-modal measure-
ment on different sensors for template and source.

The central hypothesis of this thesis is these appearance differences may be handled
with a strong prior gained through learning on similar data. We argue that by
designing algorithms which learn from data, and providing an appropriate training
dataset which captures the distribution of these appearance differences, we can
perform well at test time on this type of data. To test this hypothesis, this
thesis asks several questions such as, how should such learning algorithms
(deep neural networks) be designed, how should the training datasets be
generated, and what types of appearance difference are most challenging
and currently out-of-reach of existing methods. We also ask, how does
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CHAPTER 1. INTRODUCTION

the registration speed and accuracy compare to existing methods.

1.2 Contributions

The specific contributions of this work include:

1. Adapting recent deep image registration techniques for use in aligning UAV
imagery to satellite images, providing UAV geolocalization (Chapter 3).

(a) Training networks on offline satellite imagery, and showing that these net-
works can generalize to challenging UAV datasets unseen during training.

(b) Developing a joint optimization of motion parameters from geolocalized
position estimates and visual odometry, which improves localization ac-
curacy in cases where the map is too dissimilar from the UAV imagery.

2. Developing three novel point cloud registration algorithms based on a recent
deep network design which processes point clouds directly (Chapter 4).

(a) Showing favorable performance of developed methods as compared to
common registration baselines.

(b) Showing how the novel point cloud registration networks may be adapted
for partial point cloud registration, and how performance of partial reg-
istration generalizes to real-world data.

(c) Showing the potential for deep registration methods as a means of regis-
tering intra-category objects.

1.3 Overview of Chapters

Chapter 2 covers preliminary topics for 2D image and 3D point cloud registration,
such as classical methods, introduction to relevant deep neural network architec-
tures, and context within higher level problems like Structure-from-Motion (SfM)
and Simultaneous Localization and Mapping (SLAM).

Chapter 3 covers methods, experiments, and results for deep learning registration
in the 2D image case, particularly for aligning images of the same location taken
across large temporal gaps.

Chapter 4 covers methods, experiments, and results for deep learning registration
in the 3D point cloud case, particularly for data with various levels of noise and
partiality.

Chapter 5 provides discussion about the connection between 2D and 3D case, con-
clusions, and recommendations for future work.

2



Chapter 2

Background

In this chapter, we present topics and related work which are preliminaries for the
subsequent chapters.

First, we define registration as used in the computer vision and robotics community.
Registration refers to taking 2 sets of data (a template and a source),
establishing the ground truth correspondence between the template and
source, and from this correspondence finding a transformation in 2D or
3D space which precisely relates template to source. In practice, establishing
correspondence equivalent to ground truth can rarely be achieved due to the noisy
process of measurement by which the template and/or source are acquired. The
typical approach of a registration algorithm is to establish a reasonable cost function
between template and source which, if minimized, is likely to lead to a solution near
to the ground truth registration. It turns out that a great deal of the problems
faced by the computer vision and robotics communities are problems of registration
at the core. Fig. 2.1 shows example of the registration paradigm for both 2D and
3D cases.

In Section 2.1, we elaborate on common image registration scenarios, and describe
classical solutions to these problems. In Section 2.2, we provide context on how the
fundamental image registration problem fits within larger topics in computer vision
and robotics, such as structure from motion (SfM) and simultaneous localization
and mapping (SLAM). In Section 2.3, we present a brief history of and concepts
involved with Convolutional Neural Networks (CNN), and provide understanding of
how CNNs may be combined with image registration.

In Section 2.4, we present an analogous section for 3D point cloud registration.
We present the fundamental problem at hand, how the problem fits within broader
context of current problems in robots and computer vision, and classical solutions to
the problem. In Section 2.5, we present a brief summary of rotational representations
in 3D. Finally, we present in Section 2.6 current deep neural networks approaches
to point cloud representations, and give intuition about how state-of-the-art deep
representations for point clouds may allow efficient, accurate point cloud alignment.

3



CHAPTER 2. BACKGROUND

Figure 2.1: The set-up of typical registration problems in the case of 2D (image)
and 3D (point cloud) data. In any registration problem, we are given template
and source measurements for which we attempt to find the ground truth alignment
through a registration function. For example in the 2D image case (top), the aligning
transformation T may be parameterized as a planar homography (or other type of
planar warping). In the point cloud case, the aligning transformation T may be a
rigid-body transformation (part of the SE(3) transformation group).

4



CHAPTER 2. BACKGROUND

2.1 Image Registration

Consider panoramic image stitching [16, 81], a very well studied problem in the
computer vision literature. Panoramic image stitching is the problem of a making
a larger image by stitching together many smaller images. A common approach to
panoramic image stitching is as follows.

To start, we can find interest points in the first image from the image sequence. Many
methods have been developed in the literature for finding interest points, such as
a difference-of-Gaussians function [37] or the Harris corner detector [39]. Interest
points are typically those points in an image which have high gradient information,
such as corners or other textured areas. After identifying these points, we also form a
descriptor of each point, which is a vector unique to the orientation and appearance
of the particular point. Popular existing methods for computing unique descriptors
include the Histogram of Oriented Gradients method [22] and BRIEF [18].

Next, we look at the second image in the sequence. We repeat the process of
finding interest points in the second image. We also compute descriptors for these
points. Based on the assumption that the viewpoint of the second image affords
some overlap with the first image, some of these interest points will correspond to
the same location in the scene.

To determine which points are seen in both images, we can compare and compute
distances between the descriptors computed for the points in both images. Descrip-
tors which have lower distance and appear in both images are likely to be the same
point in the scene. We can therefore form an initial list of the possible corresponding
points in the two images. Existing pipelines which combine keypoint detection and
description include SIFT [48], SURF [8], and ORB [72]. Now that we have the initial
list of possible matching points, we can determine the transformation relating these
two images. For a planar scene, this transformation from pixels in one image to
pixels in the second image is represented by the planar homography matrix having
8 degrees of freedom ([40], Chap. 13). For a non-planar scene, we must use the more
general essential or fundamental matrix (depending on knowledge of camera intrin-
sics), and the accompanying epipolar geometry relations ([40], Chap. 9). We may
use RANSAC [29] to determine the value of either transformation matrix. We may
repeat this process for each subsequent image, establishing the correspondence of
feature points, and estimating the transform between images, which allows to create
a panoramic view of all of the images. An example of panoramic image stitching
using homography estimation with SIFT and RANSAC, is shown in Fig. 2.2.

Panoramic image stitching at the core is a problem of registration. We can see how
the panoramic image stitching example fits in the overall paradigm of registration.
First, the two datasets to be aligned are each image pair. The transformation
to be estimated in the 8 parameter homography (or essential matrix). The cost
function used for alignment is the distance between corresponding interest points
after applying the transformation. Further, the panoramic stitching problem can be
generalized into the Structure from Motion (SfM) problem. In the SfM problem, the
data are again two images, and the cost function used for alignment is the distance

5



CHAPTER 2. BACKGROUND

Figure 2.2: An example of image stitching using SIFT [48] and homography estima-
tion with RANSAC. The video is captured from a spinning UAV above relatively
flat terrain (baseball field), which allows use of the flat-ground assumption and thus
planar homography.

between corresponding interest points across views. However, because the scene
now has structure and is non-planar, we cannot use the homography anymore. The
transformation must now be the 5 degree-of-freedom essential matrix.

Dense registration. The interest point methods described above are known as
sparse alignment methods. This is because the interest points are sparsely scattered
throughout the images, and these sparse points are matched across images. There
are methods which are referred to as dense alignment methods, as opposed to these
sparse methods.

One of the most well-known dense registration methods is the classical Lucas-Kanade
(LK) alignment algorithm [50]. Instead of identifying interest points and computing
descriptors, the LK alignment algorithm seeks to minimize the difference of all, or
most, of the pixels in two images. The pixel-wise difference is also known as the
photometric difference. The LK algorithm works by defining an optimization on the
cost function of photometric difference, and parameterizing this optimization using
the parameters of the appropriate transformation (the 8-parameter homography,
in the case of planar scenes). The cost function can then be minimized using a
Gauss-Newton optimization over the homography parameters. For an extensive
and detailed review and derivation of the classical LK algorithm and more recent
variants, the reader is referred to [7].

The dense LK registration method is different from the sparse interest point methods
in terms of the cost function used for alignment. In the LK algorithm, the cost
function is the photometric difference for all pixels, whereas in the sparse interest

6



CHAPTER 2. BACKGROUND

point methods, the cost function is the distance between corresponding interest
points after warping the image. However the data (images) and transformations
(homography or essential matrix) remain the same. Instead of directly comparing
pixels, it is also possible to extract a dense descriptor at each pixel, and use LK on
these dense representations instead [3].

Section 3.2 of this thesis incorporates the LK registration method, showing how
it has been combined in recent work with convolutional neural networks to have
enhanced image registration capabilities.

2.2 Bundle Adjustment (BA)

Consider our panoramic image stitching example again. In the simple explanation
in the previous section, we describe how two images may be aligned to each other.
This process can be repeated pair-wise across the whole sequence of images. How-
ever, only estimating the pair-wise motion parameters is not guaranteed to lead to
visually accurate panorama. This is because each pair-wise estimation introduces
some slight error which deviates from the true motion of the camera. This slight
error accumulates over each pairwise estimation, so the full panorama does not look
visually accurate (and the motion parameters between each frame do not reflect the
true camera motion).

To solve this problem, we must estimate motion using interest point correspondence
information from more than just directly adjacent frames. This process is called
bundle adjustment ([40], Chap. 18). In bundle adjustment, we consider interest
points which persist across multiple frames, which are often also referred to as
feature tracks. We use the same cost function as in the original pair-wise matching
with interest points, which is the distance between corresponding feature points after
applying the transformation. When finding this distance between two frames which
are not directly adjacent, the distance is referred to as the reprojection error. The
reprojection cost function for an image sequence may be minimized using a number
of techniques such as Gradient descent, Newton’s method, or Levenberg-Marquardt.

LK and BA. Analogously, we can think about bundle adjustment from an LK
perspective rather than sparse interest points. In this perspective we would seek to
minimize directly the photometric error instead of distance between corresponding
interest points. Instead of discrete interest points locations, we can consider small
patches of the image itself. These small patches are chosen through a similar method
as the interest point detection, however the patch of pixels itself is used in bundle
adjustment, instead of the interest point location in pixel coordinates. This approach
is relatively recent and is referred to as photometric bundle adjustment [23, 2].

Section 3.3 of this thesis develops an approach which follows a similar pattern to
interest point bundle adjustment and photometric bundle adjustment. In our work
however, instead of using image patches, we are able to use all image pixels since
the scene is planar in our case and all pixels are related by homography. We use
this approach to jointly optimize motion estimates from UAV visual odometry and

7



CHAPTER 2. BACKGROUND

comparisons to a satellite map.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have seen great success in the computer
vision in recent years. Although the concept is not new, CNNs have always required a
great deal of data and processing power to learn effectively and generalize on difficult
tasks. With the advent of this computing capability in modern GPUs, and the
creation of datasets containing millions of examples, it has become attainable to train
CNNs for image-based tasks such as object classification, localization, segmentation,
and more.

Levels of training supervision. When training a CNN for a task, the user may be
able to provide a precise ground truth answer for each training example. This ground
truth answer is used to define the loss function for backpropagation. For example,
when training a network to recognize what kind of animal a picture contains, the
correct label (‘dog’ or ‘cat’) is provided to the network for each training example.
This is called supervised learning.

In other tasks, we may be able to do weakly-supervised learning. This refers to
giving the network only a partial knowledge of the ground truth during training,
instead of the full answer. For instance, in weakly-supervised object localization,
only the label of an image (‘dog’) is provided, but the network is asked to learn to
predict a bounding box around the animal in the image. The way this is achieved,
is that the network learns to recognize which features occur in images (like ears,
tongue, eyes, tail) that are unique to the class label (‘dog’). Since it has identified
these features, it is also able to group these features together and put a bounding
box around them. This specific example of weakly supervised learning is used for
object localization [13], though there are other examples of weak supervision for
tasks such as place recognition [5] and semantic segmentation [65].

Taking this one step further, we are also able to do completely unsupervised learning
for some tasks. A notable example is monocular depth prediction. Predicting depth
from a single camera image is an ill-defined problem since there are many scales and
orientations of a scene which can produce the same image. However, as humans we
typically have biases and assumptions which help us to understand the scale of scene
and make accurate guesses of depth. It is therefore expected that a CNN could learn
good assumptions which could make it proficient for single-image depth estimation
as well. The problem can be formulated using supervised learning, but this requires
many training examples with ground truth depth which may be difficult to obtain.
A recent method [34] has shown that instead of collecting ground truth depth using
a physical depth sensor, we can instead do unsupervised learning using left and
right stereo camera images to learn depth prediction. The approach relies on the
fact that, given a depth prediction at each pixel in the left image, the reprojection
of the pixel into the right image using the estimated depth should correspond to a
similarly colored pixel (same scene point). This is the stereo vision constraint which
is inherent to the geometry of scenes and cameras, and allows us to take advantage

8



CHAPTER 2. BACKGROUND

of an unsupervised approach to depth estimation.

In this thesis, the primary focus will be on supervised training. This is because
for the applications presented here, it is feasible to gather the target ground truth
for many training examples, either through gathering of real-world data or through
generation of simulated data and ground truth transformations. This is also because
it is difficult in most cases to formulate image registration or point cloud registration
in a weakly or unsupervised learning framework.

Network structures. CNNs architectures have different structure (number and
type of layers) based on the task. Image classification networks such as VGG [80]
have one of the simpler types of structures. For image classification, the network
input is an RGB image of some normalized sized such as (224,224,3). The image is
then convolved with a set of filters (64 filters for example), with each filter having a
kernel size and a stride with which it is applied. The result is a new data volume with
spatial dimensions determined by the kernel size and stride, and number of channels
equal to the number of filters in the filter set. This convolution of filter sets is
repeated over many layers with a nonlinearity activation function between some of
the convolution operations (typically reLU [59]). After all the convolutional layers,
the resulting data volume is then passed through several fully-connected layers.
A fully-connected layer can be thought of as a matrix of size (output dimension,
input dimension). Fully-connected layers are also followed by reLU. The final fully-
connected layer has an output dimension equal to the number of possible classes
for classification (1000 for ImageNet [24]). For image classification with a single
class per image, the softmax activation is applied at the output of the final fully-
connected layer. The softmax activation function serves to map the network output
into probabilities for each predicted class. After softmax, the most likely predicted
class is that which has the highest value in the activation vector.

This thesis explores CNN architectures for image alignment. As will be further
described in Section 3.2, there are convolutional layers in the image alignment CNN,
but there are not fully-connected layers. Instead of fully-connected layers, there is a
layer which implements Lucas-Kanade image alignment. This implementation of LK
takes as input the data volume output from the final convolutional layer, as opposed
to single-channel grayscale or 3-channel RGB images in traditional implementations
of LK.

Transfer learning with pretrained features. The backbone of training a convo-
lutional neural network (and most other kinds of networks) is the backpropagation
algorithm [73] for updating the internal network parameters. Since the earliest era
of neural network learning, backpropagation has been found to allow network to
learn powerful internal feature representations and complex inter-relationships in
data that are useful for a task. In recent years, further exploration has revealed
that the features learned for one task, may also be quite transferable to a different
task [78, 95].

Large convolutional networks for image classification, such as VGG [80], which have
been trained on the ImageNet dataset, have been found to contain information in
their learned convolutional filters which is helpful for other related tasks in vision.

9
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The filters within these large networks can capture notions of low level features in
images, like edges and corners, all the way up to high level image-specific features
like a door or specific animal. Since lower level features like edges and corners occur
across all natural images, we can speed up training for novel networks by initializing
some or all of the weights with pretrained weights. In several sections of this thesis,
transfer learning is utilized to speed up learning using deep neural networks, as
opposed to randomly initialized network weights.

2.4 Point Cloud Registration

Analogous to 2D image registration, we can consider the problem of 3D point cloud
registration. Point cloud are unstructured point sets in 3D with each point described
by its 3D location. Common sensors which collect point cloud data include LiDAR
sensors on autonomous vehicles, infrared distance sensors, laser range finders, and
RGBD cameras. Point clouds inherently lack information about connectivity and
orientation of surfaces, as opposed to other volumetric representations such as voxels
or polygonal meshes. However point cloud data is very common due to the large
number of sensors which collect this type of data, as well as the point clouds requiring
low memory overhead for storage and processing.

Since point cloud data is abundant, point cloud registration is a very common task.
Point cloud registration is the task of finding the transformation in 3D space which
best aligns one point cloud with another. Analogous to the 2D image registration
case, we can call one point cloud template and the other source. The transformation
is often estimated as a rigid body transformation in SE(3), meaning that the scene in
the point cloud does not contain non-rigid motion or scale changes between template
and source. The rigid transformation assumption is applicable especially to robotic
mapping and localization, where it can be assumed that the environment is static
in many cases.

A plethora of methods exist in the point cloud registration literature. One of the
most popular and commonly used algorithms is Iterative Closest Point (ICP) [12].
The fundamental process of ICP consists of two steps:

1. For each point in the template, find its nearest neighbor in the source.

2. Estimate the SE(3) transformation which minimizes the Root Mean Square
Error (RMSE) for the distances found in Step 1.

3. Transform the source using the solution and repeat Steps 1 and 2 until some
convergence threshold.

Due to its simplicity, ICP is widely used and there exists many variants which
improve upon the fundamental process [74]. However, ICP is notably sensitive to
the initial transformation in some cases and may be unable to recover from a local
minima, and the correspondence step is costly.
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Recalling the interest point methods image alignment such as SIFT, we can think
of possible solutions to the local minima problem of ICP. If we could have local
interest point detectors for 3D point clouds, it may be easier to escape local min-
ima. Indeed, much literature focuses on interest point detection, computation, and
matching for 3D point clouds, analogous to the 2D interest point detection methods
in the image processing community. For instance, scale invariant curvature descrip-
tors [31], oriented descriptors [33], extended Gaussian images [52], fast point feature
histograms [75], color intensity-based descriptors [35], global point signatures [20],
heat kernels [64], etc.

If computational efficiency were of no concern, another option for point cloud reg-
istration is obviously a brute-force search of the transformation space. We could
even consider a nearly-brute force solution which is combined with distance metric
for each query transformation i.e. we randomly transform the source and compute
the RMSE of closest points to the template, keeping track of poses which produce
low RMSE. Some approach in literature have moved in this direction, searching
for the globally optimal registration despite the computational disadvantage. A
representative example of this type of globally optimal registration is Go-ICP [91].

Point cloud registration problems are often characterized by different surface sam-
plings between template and source, a template which is a full 3D model and source
which is a partial observation, or Gaussian-like noise in template or source. Align-
ing partial or noisy point clouds is a difficult task for any registration algorithm.
One goal, and something which will be further discussed in Chapter 4, would be to
have an alignment algorithm which produces a smooth cost manifold with minimal
cost for the ground truth transformation on difficult registration scenarios. It is
thought that perhaps we can harness deep learning based methods to build such an
algorithm.

2.5 Representations of 3D Rotation

3D point cloud registration involves the optimizing a cost function with respect to
some parameterization of a rigid body transformation, and in particular, a param-
eterization of 3D rotation. The group of 3 × 3 orthonormal matrices representing
3D rotation is also referred to as SO(3). There are several well-known parameteri-
zations of 3D rotation, including Euler angles, quaternions, 3× 3 rotation matrices,
and the exponential map representation. For an excellent review of the benefits and
drawbacks of each parameterization the reader is referred to [38]. Following is a
brief summary of the major findings in [38], with the final conclusion that either
quaternion or exponential map representation are the best choice for 3D point cloud
registration.

Euler angles parameterize rotation using 3 angles, a minimal parameterization. The
main shortcoming of Euler angles, which precludes their use in the optimization
process of point cloud registration, is the presence of singularities within the Eu-
clidean parameter space (“gimbal lock”). In short, this means that it is common
for an Euler angle parameterization to enter a point in its parameterization space
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where the dimensionality reduces from 3 to 2 i.e. of the parameters loses its effect
on the physical orientation of the object. This singularity effect makes Euler angles
ill-suited for registration.

Rotation matrices have the favorable property of being a group under multiplica-
tion. However, they are highly over-parameterized, representing orientation with 9
parameters. There exists 6 nonlinear constraints on rotation matrices, which must
be manually imposed throughout the course of optimization to ensure valid rotations
are obtained. This manual task is labor intensive as well as susceptible to numerical
errors, rendering rotation matrices insufficient for the optimization required in point
cloud registration.

Quaternions are a reasonable choice for optimization applications. They are al-
most minimally parameterized, having 4 parameters, do not have any singularity
problems, and are generally numerically well-conditioned. There is one minor draw-
back, which is that there must be steps taken to re-normalize the 4-vector of all
quaternions during optimization.

Finally, the exponential map is likely the best choice for point cloud registration.
Given a vector in R3, the exponential map converts this vector to an SO(3) rota-
tion matrix based on both the direction and magnitude of the initial vector. The
exponential map has the property of being minimally parameterized (3 parameters
in an R3 vector). It also has the property that the singularities of the Euclidean
space are far from the locations that are used in almost every scenario that would be
encountered in point cloud registration. Finally, there is no computational overhead
for re-normalization as was the case for quaternions and rotation matrices.

The exponential map representation may be extended to SE(3) as well, including
the translation component and expanding the vector parameter space to R6. The
definition for mapping this R6 vector to the SE(3) group of 4× 4 parameterization
will be seen in Section 4.1.3. The groups SO(3) and SE(3) are also known as Lie
groups, and the vector spaces R3 and R6 from which they are mapped are known as
Lie algebras. [25] provides an in depth review of these mappings, their properties,
and their usefulness in robotics and computer vision.

2.6 PointNet

Since the recent explosion of deep learning methods which began in 2012 with
AlexNet [46], it was inevitable that deep learning would be applied to point cloud
data at some point. However, there was an inherent challenge in applying deep
learning to point cloud data, which was not the case for image data. Image data is
structured, since pixel information is naturally stored in blocks of H ×W × C and
data which is adjacent within this structure is also adjacent in scene i.e. two adja-
cent pixels inherently capture information about two adjacent 3D locations. This
spawned the idea of convolutional networks which process the pixel data using local
sliding windows (convolutional filters). This approach is valid since adjacent pixel
information tends to be very tightly correlated in local neighborhoods. However,
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the same is not true for unstructured point cloud data. A point cloud, stored in
an N × 3 block, is not guaranteed to have any ideas of ordering based on distance
or other metrics. The other problem is that N can be arbitrary, and in the case of
point cloud registration, N for the template and source may be different numbers.

Deep networks typically have taken the form of either convolutional or fully-connected
(also known as Multi-Layer Perceptron (MLP)) layers. However, it would be näıve
to process the N×3 block using a sliding-window convolutional operator, since there
is no concept of order. It is infeasible to use a fully-connected approach because a
fully-connected network requires a fixed number of input nodes and weights, which
could not be fulfilled for the point cloud input unless some form of fixed-number
subsampling is used. However, arbitrary sampling would be very limiting and it
would be preferable to utilize all given points.

The tactic used by PointNet [68] is to instead learn a single MLP through which all
points in the cloud are passed. For a single 3D point which is size 3× 1, we perform
the MLP operation with several matrix multiplications, with nonlinearity (reLU)
between each multiplication. The first matrix has size 64× 3, transforming the 3D
point into a 64−D embedding space, followed by reLU. This continues with several
layers up to a 1024 − D embedding space. Processing all the points in the point
cloud with the same MLP, we have an N×1024 matrix of points transformed to the
embedded space. Next we apply a pooling (such as average or maximum) along the
N axis to get a single, fixed-length vector of size 1024. This fixed-length vector can
be thought of as a latent, global descriptor of the entire point cloud. In the case of
point cloud classification, we would want this descriptor to occupy separate parts in
the embedded space for each different class of object (e.g. car, table, chair, person).
It is possible to plot these descriptors using a high-dimensional visualization tool
such as t-SNE [51], to see how the latent vector is discriminatory for the object
class.

As an aside, the notion of pooling across a variable dimension of the input data
is not novel in the point cloud learning case. In the Natural Language Processing
(NLP) community for instance, variable sentence length has dictated the need for a
pooling operation along the dimension of sentence length [45].

Of course, these descriptors must be learned from labeled data. In the original
PointNet paper, during training of the network, the 1024−D descriptors are passed
through another MLP which outputs a vector of probabilities for each class (e.g.
car, table, chair, person). This network may be trained with a standard single-label
classification loss such as soft-max cross entropy. PointNet achieves state-of-the-art
classification accuracy with this architecture. They also find that the architecture
can be extended for semantic segmentation of point cloud, for which they achieve
state-of-the-art performance as well.

The success of PointNet has motivated many further extensions in applications. The
authors extend the architecture in a second work to find and assign descriptors to
local parts of the point cloud, rather than a global descriptor vector as in the original
work [69]. They also apply the PointNet method for 3D object detection in [67],
combining the PointNet semantic segmentation capabilities with existing 2D image
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object detection to find 3D bounding boxes in RGB-D data. Other work has used
PointNet to complete partial point cloud data, and specifically partial KITTI car
point clouds, to form full point clouds from only partial input [97].

PointNet has seen success with object classification, semantic segmentation, object
detection, generative point completion, and even place recognition [4]. However, the
application of PointNet to point cloud registration has not been well-explored. In
the original PointNet work, the MLP network also includes feature transformation
(T-net) which are learned transformations of the points in the embedded space. The
authors postulate that these learned transformations serve to re-orient the points
as they travel through the network, orienting them to some concept of canonical
orientation which may enhance classification accuracy. Indeed, they show through
ablation studies that the inclusion of the T-net gives minor improvement. Though
it is not well understood exactly the type of transformation estimated in these
subnetworks, or if they are indeed orienting objects according to some canonical
orientation.

Expanding on the T-net idea, another work [96] is more explicit in estimating a
transformation of the point cloud which aids in classification and segmentation. IT-
Net, as it is called, uses an auxiliary PointNet followed by fully connected layers
which estimates a rigid body SE(3) transformation which is applied to the point
cloud. The transformed points are then passed again through the same network,
estimating a new SE(3) transformation, and iteratively continuing until a conver-
gence threshold is reached. This works also directly compares against the use of the
original T-net, showing how explicitly estimating an SE(3) transformation gives
better performance than transformations in the embedding space.

While IT-Net applies SE(3) transformations to point clouds iteratively, there is
only a single point cloud input, as opposed to a full registration pipeline where two
point clouds (template and source) are input to a network and their relative pose
difference is estimated. IT-Net can be thought of as a registration module which
takes only a source point cloud and has no need for a template because all source
cloud inputs will be aligned to a single canonical “template” orientation; therefore
no actual template cloud is required for estimating the transformation. However,
this approach has the obvious drawback that it cannot estimate transformations
between a template and source which have arbitrary positions within the coordinate
system.

Missing so far from literature is a method using PointNet which takes as input both
source and template point cloud, and achieves registration in this more general set-
ting. However, an important distinction is that there does indeed exist methods
for point cloud registration which utilize deep learning, though there are not many.
In [27], a deep auto-encoder is used to compute descriptors on 3D interest points,
followed by descriptor matching. In [93], a network is used to perform both interest
point detection and descriptor computation. However, since PointNet has allowed
many state-of-the-art advances in the point cloud domain, and it is inherently ef-
ficient and lightweight, it is natural to ask how this architecture may be applied
to the classical registration problem. Chapter 4 describes several methods that we
have explored for adapting PointNet for the task of point cloud registration.
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Chapter 3

Aligning Images Across Large
Temporal Gaps

This chapter explores the use of deep network representations in matching and align-
ing imagery which is captured across large temporal gaps, such as across time-of-day
or seasons. In this challenging registration scenario, we hypothesize that deep rep-
resentations based on learned priors can enhance the state-of-the-art performance.

Unmanned Aerial Vehicle (UAV) geolocalization is a specific application which is
enabled by the ability to align imagery across temporal gaps. In this application, we
use pre-existing satellite imagery as a map to which UAV imagery is compared and
aligned, thus localizing the vehicle. Section 3.3 will further discuss this application.

To develop networks which are capable of the UAV geolocalization task, we begin
with some preliminary experiments using deep features for matching and alignment
between satellite images of a location.

In particular, Section 3.1 presents preliminary experiments where deep features are
extracted from satellite imagery (using a network not trained on any satellite im-
ages) and these features are matched across images using a correlation metric. This
experiment motivates further sections by providing an initial intuition for where
deep features may provide good matching of salient image features.

In Section 3.2, alignment of the extracted deep features from satellite imagery is
added, via an additional Lucas-Kanade layer in the deep network. We train this
network on a large dataset of satellite imagery, and show impressive alignment per-
formance at test-time. We also present experiments where the network is tested
instead on imagery taken from outdoor webcams, showing promising generalizabil-
ity of the features for alignment in related tasks.
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Figure 3.1: Fully-convolutional cross-correlation matching pipeline from [11]. The
pipeline is originally used for object tracking, where the template is an image patch
containing the object in a previous frame, and the search image is the entire current
frame. To find the template inside the search image, both are passed through Fully-
Convolutional Networks (FCN) with shared weights. The resulting data volumes
are cross-correlated, leading to a heatmap for the template locations in the search
image.

3.1 Deep Cross-Correlation Matching

To initially explore the use of deep convolutional features for the satellite image
matching task, we adopt the method from [11], where Fully-Convolutional Networks
(FCN) are used for object tracking. The method is explained in Fig. 3.1.

The cross-correlation method can be adapted from an object-tracking application
to the satellite image matching task as follows. Instead of the template and source
being taken from sequential frames in a object-centric video, the template and source
may be extracted from satellite images taken at different time stamps. An example
of this type satellite data is shown in Fig. 3.2. Satellite data is gathered from the
United States Geographical Survey Earth Explorer.

We perform a cross-correlation experiment on satellite image data using convolu-
tional weights from a VGG-16 network [80] which is pre-trained on ImageNet. We
compare the use of these weights in transfer learning, compared to the pre-trained
weights using the original tracking work [11]. We also compare against a simple
baseline, which is the cross-correlation of normalized pixel patches (no FCN used).
The results of this cross correlation experiment are shown in Table 3.1.

In summary, we find that using pre-trained VGG16 conv3 features for the FCN
produces good results for satellite image matching on the representative satellite
dataset from Fig. 3.2. This is despite using pre-trained weights, which are not
trained on satellite image matching. This illustrates the transfer capability of deep
features for other unrelated tasks. With this knowledge, we use VGG16 conv3
features in many subsequent experiments in later chapters.
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Figure 3.2: Example satellite data used in the cross-correlation experiment. Both
satellite images are captured of the same area, but taken several years apart. A
125×125 patch from the left image (template) is extracted and a search is conducted
for the same patch in the right image. This image pair contains many representative
changes seen over temporal gaps, which are highlighted in Fig. 3.3.

Figure 3.3: Examples of differences seen in satellite images captured across large
temporal gaps, such as different angles of buildings due to satellite viewpoint, sea-
sonal changes to foliage, shadow angles, and construction, among others. These
photometric and environment differences create difficult conditions for matching or
registration.
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Method
Template

Size
Acc.
(%)

Template
Corr. Volume

Source Corr.
Volume

Normalized
pixel x-corr.

125× 125 3 125× 125× 3 1739× 1760× 3

Pre-trained
FCN from [11]

125× 125 3 32× 32× 128 435× 440× 128
250× 250 12 64× 64× 128 435× 440× 128
350× 350 23 128× 128× 128 435× 440× 128

VGG16 conv1

125× 125

10 63× 63× 64 870× 880× 64
VGG16 conv2 25 32× 32× 128 435× 440× 128
VGG16 conv3 90 16× 16× 256 218× 220× 512
VGG16 conv4 32 8× 8× 512 109× 110× 512
VGG16 conv5 5 4× 4× 512 54× 55× 512

Table 3.1: Results for cross-correlation matching experiment on satellite data. We
attempt to localize a template patch from one satellite image within a separate
search image, see Fig. 3.2 for the data which is used. We compute accuracy as the
percent of patches which are localized (highest value in cross-correlation heatmap)
within 20 pixels of the ground truth location in the search image. We find that by
far the best performing method is using pre-trained VGG16 conv3 weights for the
FCN, at 90% localization accuracy. Accuracy is computed for all possible 125× 125
template patches from the template image. This reinforces the common belief that
mid-layer features from pre-trained networks are often the most transferable for
other tasks, which has been found in prior literature [95]. With this insight, we
continue using VGG16 conv3 features in subsequent experiments.

Lastly, we visualize which areas of the imagery are most easily matched between
two satellite images. We would expect that salient, persistent features such as large
buildings would be most easily matched between images, while less textured parts
such as forests or fields may not be easily matched. We visualize this using the
heatmap, computed using VGG16 conv3 features, shown in Fig. 3.4.

We reiterate that this section has not trained any deep features on satellite imagery;
we have used only weights pre-trained on other tasks, as a preliminary experiment.
This experiment, while still a type of registration, is a global search technique as
opposed to a frame-by-frame image registration such as visual odometry with sparse
interest points. The transformation for registration in this cross-correlation experi-
ment is simply a translation in x, y; scale, rotation, or projectivity are not estimated,
as in homography estimation.

In subsequent sections, we will consider more complex registration scenarios, where
scale, rotation, and projectivity will be estimated through planar homography. In-
stead of a global search, we will assume the approximate position of the template is
known in the search image, but this position estimate needs to be refined. We will
see that this experimental set-up is exactly what is needed for GPS-denied UAV
flight. In GPS-denied flight, a rough position of the vehicle may be estimated used
the last known GPS location and on-board sensors. The vehicle location can be
further refined through visual comparison with a satellite map.
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Figure 3.4: Results for cross-correlation experiments in Section 3.1. We visualize the
heatmap for localization accuracy, showing which areas of the image are most easily
matched vs. not easily matched. The green areas show where matching is easier,
due to salient and persistent features such as buildings and intersections. The red
areas highlight low-texture, repetitive areas such as forested areas and fields. Red
areas which overlap with buildings or man-made structures are most commonly
due to construction, or near tall buildings which have large angle variation due to
viewpoint difference.
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3.2 DeepLK for Aligning Satellite Imagery

Building on Section 3.1, we will look at the case where the template position is
approximately known in the search image. This is the scenario in the GPS-denied
UAV localization application, where the UAV location is approximately known, but
we would like to refine this position through comparison with a satellite map.

In the case where the template position in the search image is approximately known,
and fine registration is required, we must estimate all motion parameters for image
registration. These parameters include translation, scale, rotation, and projectivity.
When estimating all possible planar motion parameters, we use the homography
transformation. To estimate this transformation, we adopt the Lucas-Kanade algo-
rithm.

In the following sections, we discuss prior work related to satellite image registration
(Section 3.2.1), we motivate the use of the Lucas-Kanade algorithm as opposed to
sparse feature matching (Section 3.2.2), describe how to combine deep features and
Lucas-Kanade (Section 3.2), and finally describe registration experiments using this
architecture (Section 3.2.4).

3.2.1 Prior Work in Satellite Image Registration

Satellite image registration is a common task within the remote sensing commu-
nity. Early methods for this task are often based around the matching of simplistic
representations of landmark outlines (buildings, rivers, streets) [55] or early feature
point methods [83]. The nature of registration problems in remote sensing is often
alignment of entire satellite mosaics covering up to several kilometers. Thus, these
images typically contain ample texture, and sparse feature-based methods are ade-
quate. For instance, Yang et al. [92] present an automatic satellite image registration
algorithm which utilizes SIFT distance, a Shape Context feature [9], and Euclidean
distances of pixel intensity. This methodology makes their approach reliant on am-
ple texture in imagery. Other representative works in remote sensing include [10,
36], which employ similar methods.

A closely related work is Verdie et al. [85], which introduces a Temporally Invariant
Learned DEtector (TILDE) for registering imagery from outdoor webcams which
captured images across time of day and seasons. The method is based on learned
interest point detection and matching, which thus makes it still reliant on persistent,
salient texture across images. This is satisfied in the outdoor webcam dataset,
which has ground-level imagery of buildings, streets, intersections, and other texture
environments. We present results on the same outdoor webcam dataset which is used
in this work, in Section 3.2.4, showing that our method can adapt for both low and
high texture environments.
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Figure 3.5: An example of low texture in satellite imagery, where the orange markers
indicate a few ground truth correspondences. Sparse feature-based methods such as
SIFT [48] fail on this example due to a lack of persistent, salient features. A dense
registration algorithm such as Lucas-Kanade [7] is required, which considers all or
most of the pixels in the image during registration. We show that deep features,
when combined with LK, can overcome both the photometric differences and the
low texturedness in examples like this one.

3.2.2 LK for Low-Texture Environments

As discussed in the Background chapter, image registration is addressed using meth-
ods which broadly fall into one of two categories. The first category covers sparse
feature-based registration methods, examples of which include SIFT [48], SURF [8],
or ORB [72]. The second category covers dense, direct (pixel-based) registration
methods, exemplified by Lucas-Kanade [7].

The main advantage of sparse feature-based registration methods is that they func-
tion particularly well in scenes with high levels of unique texture, where feature
points can be extracted. In this case, it possible to achieve registration using per-
haps a couple dozen feature correspondences. However, when the texture in the
scene is lower, a dense registration approach is more appropriate. In cases of low
texture, it becomes necessary to consider most or all of the pixel information in each
image to do registration, rather than a few sparse correspondences. Some methods
are both dense and feature-based, such as dense SIFT or bitplanes [1, 3].

In the satellite image registration problem, we find that the data often has low
texture. An example of low texture data is shown in Fig. 3.5. This example helps
motivate the use of a dense registration algorithm such as Lucas-Kanade for the
satellite image registration task. In the example, sparse feature-based methods fail
during the correspondence step, having detected too few interest points to perform
successful registration. However, we are able to use a combination of deep features
and the Lucas-Kanade method to register the images in Fig. 3.5.
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Figure 3.6: The basic DeepLK architecture. Sizes of image volumes are for reference
only, spatial dimensions are arbitrary. A template and source image are provided,
and passed through an FCN which reduces their spatial dimension and creates many
feature channels. These feature volumes are passed through a differentiable imple-
mentation of LK, which estimates the planar homography for alignment of source
to template.

3.2.3 DeepLK Architecture

Combining deep features and Lucas-Kanade alignment was first shown in two recent,
concurrent works, by Wang et al. [86] and Chang et al. [19]. We will reference these
approaches generally as DeepLK. In DeepLK, the template and source image are
first passed through a Fully Convolutional Network (FCN) as in the cross-correlation
experiment. Next, instead of cross-correlation, the resulting feature volumes are
passed into a differentiable, multi-channel implementation of LK which estimates the
8-DoF homography transformation between template and source. The architecture
allows for FCN weights to be learned which enhance alignment performance in the
LK layer. A diagram of the basic DeepLK architecture is shown in Fig. 3.6.

Inverse Compositional Lucas-Kanade (ICLK). We review the formulation of
ICLK, and the parameterization of the warp function (homography). In ICLK, the
role of the template and image are reversed from the original LK formulation. This
reversing allows for much greater computational efficiency, which will be shown in
the following derivation. The formulation of the ICLK seeks the minimization of
squared photometric difference between a template T and source image I :

∑
x

‖T (W(x; ∆p))− I(W(x; p))‖2 (3.1)

Here we use the notation I(W(x; p)) to mean sampling an image I at image co-
ordinates x that have been warped with warping function W, using a projective
transformation (homography) parameterized by p ∈ R8. The warp function W
for homography, parameterized by p = (p1, p2, p3, p4, p5, p6, p7, p8) and for a pixel
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located at x = (x, y), is defined as:

W(x; p) =
1

1 + p7x+ p8y

(
(1 + p1)x+ p3y + p5
p2x+ (1 + p4)y + p6

)
(3.2)

Note that the template and source image can have an arbitrary number of channels;
in our case, we will use feature maps of template and source image with up to 256
feature channels that have been output from fully-convolutional layers.

In each iteration of ICLK, an incremental warp parameter update is computed which
we denote as ∆p. To solve equation (3.1), the ICLK approach performs a first-
order Taylor expansion and solves the resultant least-squares form. The resulting
expression for the warp update can be written:

∆p = H−1
∑
x

[
∇T ∂W

∂p

]T

[I(W(x; p))− T (x)] (3.3)

Where ∇T is the gradient of the template image and H is the Hessian matrix:

H =
∑
x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
(3.4)

To compute ∆p using Equation 3.3, we must compute the warp Jacobian ∂W
∂p

at

(x; 0). For homography, the warp Jacobian can be written as:

∂W

∂p
(x; 0) =

(
x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2

)
(3.5)

Once the solution for ∆p has been obtained via Equation 3.3, it can be converted
to a homography matrix, and applied via inverse composition to the current warp
parameters. Specifically, if H∆ is the homography with parameters ∆p, and Hp is
the homography with parameters p, then the updated parameters can be extracted
from a new homography calculated by:

Hp = HpH−1
∆p (3.6)

For further details on how to develop ICLK from the original LK, the reader is
encouraged to reference [7].

Loss function. A question arises of the correct loss function to use for the task
of estimating homography parameters. The loss function L(p,pGT ) compares the
estimated warp parameters p and ground truth warp parameters pGT , outputting
a single value which is used for backpropagation. In [86], the authors define the
Conditional Loss, which is a robust Huber loss [43] computed on the difference
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between the ground truth warp parameters and the estimated parameters. The
problem with this approach is that each of the 8 parameters within p do not equally
affect the magnitude of the geometric warp. For instance, the projective parameters
p7 and p8 carry much more weight in terms of the visual effect of the warp, than do
the translation terms p3 and p6. Therefore, a loss function is needed which captures
the visual correctness of the regressed parameters p.

We use the Corner Loss proposed in [19], which is a better measure of visual cor-
rectness than the Conditional Loss. The Corner Loss computes the squared distance
between the four corners of a ground truth un-warped image I(W(x; pGT )) and the
prediction of the un-warped image I(W(x; p)). Defining the 4 corners of the warped
image I as c1, c2, c3, c4, we have the Corner Loss defined as:

L(pGT ,p) =
4∑
i=1

‖W(ci; p)−W(ci; pGT )‖2
2 (3.7)

Stopping criteria. ICLK solves a non-linear least squares problem by first-order
Taylor expansion and successive iterations. For each unique image and template
pair, there is a variable number of iterations until convergence of the algorithm.
The criterion for convergence is often a heuristic threshold on the magnitude of
the change in warp parameters, ∆p. This is the chosen method of convergence
used in [19]. In [86] however, the authors use the magnitude of the average error
residual at each iteration as the stopping criterion. The error residual is calculated
as I(W(x; p)) − T (x) in Equation 3.3. We theorize that the choice of stopping
criterion is highly dependent on the problem domain and the type of imagery. We
experimented with using both the average residual method, and the magnitude of ∆p
threshold method. We found that using a heuristic threshold on the magnitude of
warp parameters provides the best trade-off between accuracy of the final alignment
and number of iterations.

Dynamic iterations during training. In both prior works [86] and [19], the
authors only allow the ICLK layer of the network to iterate a single time during the
training stage, although during testing the ICLK is able to iterate to convergence.
This approach is taken due to limitations of the implementation framework (Mat-
ConvNet [84], Torch [21]), which make it very difficult to perform back-propagation
through multiple ICLK iterations during training. Therefore, the authors design loss
functions which suit the single-iteration training regime, and augment their dataset
to mimic the middle output of LK iterations. However, we use the more optimal
strategy of iterating a dynamic number of times in the ICLK layer during training,
as this is readily implemented using a more recent framework (PyTorch [66]). Iter-
ating dynamically during training also allows us to utilize the simple formulation of
Corner Loss in Equation 3.7 as the loss function of our network output.

We show that unfolding dynamic LK iterations during training gives a dramatic
performance improvement over single LK iteration during training, for our task at
test time. Results and further information can be found in Fig. 3.11, where we
compare single-iteration Corner Loss minimization and dynamic-iteration Corner
Loss minimization.
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3.2.4 Experiments

For training and testing, we require datasets containing a large amount of aligned
images of a variety of outdoor environments, across many different periods of time
which showcase seasonal changes and other temporal differences. One source of
such data is aligned orthographic satellite imagery, which can be found from at the
United States Geographical Survey Earth Explorer. Another source of data is the
Archive of Many Outdoor Scenes (AMOS) dataset [44], which is also used by the
TILDE work [85]. AMOS provides data from webcams positioned at many outdoor
scenes across the world, effectively generating large amounts of time-lapse data of
outdoor scenes. In the following sections, we describe experiments and results on
these two datasets.

We compare a DeepLK alignment strategy against three baselines: two other dense
alignment strategies, and one sparse key-point strategy. These strategies are:

1. ICLK: ICLK algorithm on raw pixels, without applying any dense descriptors.
We normalized the pixels to have zero-mean and unit variance per-channel.

2. ICLK on untrained VGG16 conv3 features: ICLK algorithm on feature
maps extracted from the untrained VGG16 conv3, similar to Deep Cross-
Correlation experiments.

3. SIFT+RANSAC: We extract sparse SIFT keypoints and perform RANSAC
to estimate the homography for alignment. We use the implementation in-
cluded in OpenCV [14]. It should be noted that in [19], the authors find that
SIFT+RANSAC provides the second best alignment method, behind only their
implementation.

We employ a Corner Error metric for showing performance of our algorithm, which
is similar to that of [19]. The Corner Error is related to the Corner Loss, except
that it reports the average Euclidean distance between the four corners of the ground
truth un-warped image I(W(x; pGT )) and the prediction of the un-warped image
I(W(x; p)). It is measured in pixels, and is equal to:

E(pGT ,p) =
1

4

4∑
i=1

‖W(ci; p)−W(ci; pGT )‖2 (3.8)

Since we test with variable sizes of square image patches, we instead report the
Corner Error as a percentage of the image width so that we can compare warps for
different image patch sizes. We provide a visualization of Corner Error in Fig. 3.7.

Satellite imagery dataset. For training and testing, we use images from a sub-
urban area of New Jersey, USA. We chose the location for its abundance of data,
and its even mix between high and low texture. Some example images from this
dataset are shown in Figure 3.8. We obtain aligned images taken during spring,
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Figure 3.7: A visualization of Corner Error. The far left picture is ground truth.
The rest of the pictures illustrate warps which result in a Corner Error of 10% of
the image width from the ground truth.

Figure 3.8: Some representative patch examples from our New Jersey satellite image
dataset. The examples illustrate challenges of the temporally-invariant alignment
problem; namely, varying levels of texture, image quality, stylistic changes, degra-
dation in natural environments, the addition or subtraction of structures such as
buildings, and shadows. We find that the trained DeepLK is the only method of
the ones we experimented with which is able to align all of the above examples with
reasonable accuracy.

summer, and fall, taken in 2006, 2008, 2010, 2013, 2015, and 2017 (10 images to-
tal). The images are each 7582×5946 pixels, at a resolution of 1 meter per pixel,
meaning we train on about 50 sq. km. of geographical area. We withhold 20% of
the geographical area (across all 10 images) of this dataset for testing.

We dynamically create data pairs from the satellite imagery data during training
and testing. That is, during the training loop, we randomly choose two of the
7582×5946 images from the New Jersey dataset, and randomly choose a location
in the image and a patch size to sample. Keeping one of the patches static (the
template T ), we apply a random warping to the other patch (the source image I).
The parameters for random patch size, and the random warp parameters, can be
found in the Implementation Details section.

We test on 5000 data pairs from the New Jersey satellite image dataset, from geo-
graphical areas which are unseen during training. The results of this experiment are
shown in Fig. 3.9. We report the results in terms of Corner Error as a percent of
image width, versus the ratio of training data. The results indicate the superior per-
formance of DeepLK with dynamic training iterations for aligning satellite imagery,
in the face of large temporal and seasonal variations. Please see the description in
Fig. 3.9 for more information on the performance metrics. In Fig. 3.10, we provide
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Figure 3.9: Results of testing on 5000 test patches from our New Jersey satellite
image dataset. The Corner Error as a percentage of image width is reported. The
results compare our method (blue), normal ICLK, ICLK computed on untrained
VGG16 conv3 features, and SIFT+RANSAC. There are several interesting aspects
of the results; for one, we can see that SIFT+RANSAC can align about 7% of the
dataset to less than 1% Corner Error. However, at the 1.5% Corner Error threshold,
we see that our method (blue) rapidly surpasses the performance of SIFT+RANSAC
and the other methods. Our method aligns 80% of the dataset to less than 3% Corner
Error. Purple illustrates the results for an algorithm which always returns p = 0
(no-op). We can see that all methods except ours (blue) pass through the purple
line, indicating that they perform worse than no-op for some ratio of the dataset.

some notable qualitative alignment results.

Single-iteration vs. dynamic-iteration training. As previously mentioned,
there is a choice of how many iterations to do in the ICLK layer of the DeepLK
methods, during training. Previous works have designed the system around a single-
iteration training scheme due to limitations of the implementation framework. How-
ever, we show that dynamic iterations provide a dramatic performance boost for our
task in Fig. 3.11. This indicates that for the satellite image alignment task, a dy-
namic iteration scheme is required to achieve adequate performance. We attribute
this requirement to the often dramatic visual differences in satellite imagery, which
is likely not as prevalent in frame-to-frame tracking data used in in [86] or in the
synthetic data used in [19].

AMOS dataset. Our goal is to show that it is possible to learn temporal invari-
ance for outdoor scenes in general. Thus, we propose to train our network using
the satellite imagery dataset only, and test performance on both satellite imagery
and the AMOS dataset. We hypothesize that by training on satellite imagery, we
can learn invariances for both low and high texture, across the paradigms of most
outdoors scenes (urban or rural), and across the variations that occur from large
temporal differences in the images.

For the AMOS Dataset, we first test on 2000 data pairs from a webcam located in
St. Louis, Missouri, USA. Some representative examples of this dataset are shown
in Fig. 3.12. The alignment results for this dataset are shown in Fig. 3.14. Notably,
we find that our alignment method, which has been trained only on satellite data,
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Figure 3.10: Notable results from testing on the New Jersey satellite image dataset.
Our method has the ability to perform alignment on low texture scenes, despite
significant style differences due to temporal effects. In many experiments, the other
methods have final Corner Error that is greater than the Corner Error of no-op. We
also find that SIFT+RANSAC is unable to estimate any warp at all due to lack of
texture in some cases.

Figure 3.11: Performance difference for single-iteration training methods of deep
alignment on satellite imagery, vs. dynamic iterations. The testing data is identical
to the testing data shown in Fig. 3.9 (New Jersey satellite data). The single-
iteration trained network has much higher Corner Error percentage throughout the
testing dataset. We attempted training several times using both single-iteration and
dynamic-iteration, and present the best results for both.
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Figure 3.12: Some representative patch examples from the time-lapse webcam
dataset [44]. The three example data pairs on the left are from the StLouis testing
dataset, and the three example pairs on the right are from the Courbevoie dataset.
We show that invariance that is learned from the satellite data can be transferred
to the webcam alignment task; our algorithm performs the best among methods we
experimented with on aligning the above examples, despite training only on satellite
data.

has learned invariances to outdoor scenes which allow it to be effective at alignment
on the AMOS dataset. Some alignment examples are captured in Fig. 3.13.

We test also on 2000 data pairs from a webcam located in Courbevoie, France.
Some representative examples of this dataset are shown in Figure 3.12, with the
alignment results show in Figure 3.15. Again, we find that the network trained only
on satellite images is able to generalize for this alignment task. Specifically, we find
that our network can align 80% of image pairs in the Courbevoie dataset to within
5% corner error. The SIFT+RANSAC method, and ICLK on untrained VGG16
conv3 features, both align about 60% of this dataset to within 5% corner error.

3.2.5 Implementation Details

For generating image pairs, we randomly select two aligned images from a given
dataset. We extract square patches in the images which range from 175 pixels to
300 pixels wide for the satellite image dataset, and square patches between 150 pixels
and 220 pixels wide from the AMOS dataset. We extract a padded version of the
image I, so that when it is warped, there are not cutoff regions around the edges.
We warp the image I, choosing projective warp parameters from uniform random
distributions. We choose warp parameters such that if the algorithm were to predict
p = 0 for every test example (no-op), the maximum Corner Error would be about
30% of the image width.

We transfer the conv3 layer of the VGG16 network for our convolutional pipeline,
and fine-tune only conv3. We implement the algorithm using the open-source Py-
Torch framework, on an NVIDIA GeForce Titan X GPU. We trained on 15,000
dynamically generated training pairs from the New Jersey satellite image dataset.
We implemented a mini-batch training approach, calculating the Corner Loss on a
mini-batch of 5 training pairs before applying the stochastic gradient update. We
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Figure 3.13: Notable alignment results using our algorithm to align time-lapse
AMOS data, using features trained only on satellite imagery. These results show
that deep features can be used to learn temporal-invariance in one domain (satellite
imagery) and transfer this invariance to a similar but unseen domain (time-lapse
imagery from near ground-level).

Figure 3.14: Results for Corner Error when testing on the StLouis webcam dataset,
after training only on satellite images. We can see that our method is able to align
70% of the test pairs to less than 5% Corner Error. This indicates that we have
learned invariance to outdoor scenes from satellite data, and have transferred that
invariance to the task of webcam data alignment.
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Figure 3.15: Results for Corner Error when testing on the Courbevoie time-lapse
webcam dataset, after training only on satellite images. Although SIFT+RANSAC
performs well because of the high-texture scenes, our method our method can align
80% of the test pairs to less than 5% Corner Error, the best of all other methods at
the 5% Corner Error threshold. The invariance that is learned by training the conv3
layer on satellite images is persistent when testing on the unseen data; we can see
this from the fact that our method outperforms the untrained VGG16 conv3 layer.

generate a validation batch of 20 image pairs randomly at train time from the source
data (New Jersey satellite data), and keep the model which generates the lowest
validation loss during training.

3.2.6 Discussion

We have shown that deep features can be used effectively to align imagery across
large temporal gaps, such as with satellite imagery and time-lapse webcam data. We
have further shown that a temporal invariance can be learned from satellite images
which transfer with some effectiveness to a different but similar task of time-lapse
webcam data.

In some cases, SIFT can be competitive or better than the proposed algorithms for
registering images across large gaps in time, and it is important to understand in
what cases this is true. SIFT is inherently reliant upon local textures, and the similar
visual appearance of these local texture between template and source image. In the
webcam dataset especially, there are examples where there is enough texture and
the appearance difference is not so drastic, and in these cases SIFT registration can
be successful. Also, in these cases SIFT can be quite accurate since corresponding
local features allow precise registration. But the limitations of SIFT and most
other baseline methods, are that they cannot handle drastic appearance difference
(night vs. day, summer vs. winter) or low texture outdoor settings (lack of urban
landmarks) which are best learned through larger datasets.

The DeepLK approach for aligning with temporal invariance can be extended nat-
urally to the UAV geolocalization application. In this application, DeepLK can be
used to match the imagery from a UAV with a downward facing monocular RGB
camera with a pre-existing satellite map, thus localizing the vehicle. This extension
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will be discussed in the following Section 3.3.

3.3 UAV Geolocalization with Satellite Imagery

The commercial and consumer use of UAVs outdoors has grown exponentially in
the last few years. UAVs now find use in search and rescue [76, 70], industrial in-
spection [63, 17], land surveying and mapping [79, 62], precision agriculture [82],
monitoring of remote environments [49, 57], the study of wildlife populations [42],
and many more. Nearly all applications require precise latitude and longitude es-
timates of the UAV during flight, with some also requiring accurate altitude or 6
degrees-of-freedom (DoF). This level of localization may not be available in GPS-
denied or GPS-spoofed situations, and requires the use of often costly GPS hardware
and IMUs. A vision-based system that achieves comparable accuracy would be ben-
eficial as it would lower the cost of UAV platforms, and could replace GPS when
there are signal issues. This idea is further motivated by the fact that there is am-
ple free, GPS-aligned, satellite imagery covering many parts of the globe available
online. This satellite imagery can provide a map prior for a flight, against which we
can perform template matching to localize.

The main challenge of using satellite imagery as a map prior is overcoming the dif-
ferences in imaging conditions between the satellite images and the incoming video
stream from the UAV. An example of this is shown in Fig. 3.16. Since the UAV
images are captured at much lower altitude than the satellite map, there is a larger
perspective effect of structures higher than the ground plane. The correspondence
of typical feature descriptors like SIFT [48], which are commonly used in the remote
sensing community for satellite-to-satellite image matching [36, 10, 92], usually fails
with such perspective differences. Another challenge can come from temporal as-
pects, such as seasonal effects, time-of-day, and the removal or addition of buildings
or cars. Overcoming these temporal aspects has been attempted using learned,
sparse descriptors in the TILDE work [85]. However, sparse descriptors are still
reliant on local texture and inherently cannot generalize to more rural, low texture
flight environments.

To tackle the registration problem, we will use the DeepLK method developed in
the previous section. The previous tests on satellite imagery and webcam data are
indicative of the generalization performance of the learned deep features. We make
the assumption that learning features that are robust between temporally varying
satellite images, is a similar task to learning features that are robust between a
satellite image and imagery from a high-altitude UAV. This assumption is shown to
be true through our experiments.

3.3.1 Prior Work in UAV Geolocalization

There have been a few attempts in recent literature to develop a full UAV localization
system based on satellite image matching. In [77], the authors use HOG features
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Figure 3.16: A typical example of alignment between UAV imagery (left) and a
satellite image (right). Notice differences such as seasonal variation of vegetation,
shadow angles, perspectives of buildings, presence of vehicles, and variations due
to different imaging hardware. Our goal is overcoming these variations to enable
precise UAV localization.

for alignment between UAV imagery and the map, making their approach reliant on
well-defined, temporally consistent texture such as buildings and roadways. In [94],
the authors accomplish alignment using a mutual information metric. They show the
method working only on a UAV flight over a textured urban environment, and the
satellite map they use is photometrically very similar to the UAV imagery captured.
In [60], the authors develop a complex pipeline for alignment which includes SIFT
matching and semantic segmentation of buildings. This makes their method heavily
reliant upon the presence of texture, as well as on the photometric similarity of
UAV images and the map. They must also train their neural network semantic
segmentation on data extracted from the exact location and with similar imaging
qualities as used at test time.

To give an idea of the performance of these systems, each achieves average localiza-
tion error of less than approximately 10 meters across flight distances of between
300-1500 meters, and at altitudes of 100-300 meters. All previous work makes the
flat-world assumption in order to parameterize motion using the planar homography,
a model that we will also use.

3.3.2 Formulation of Geolocalization

Our goal is to obtain accurate, absolute pose of the UAV at any frame F during the
flight sequence. We make the flat world assumption and parameterize the motion of
the UAV in terms of planar homographies with respect to the flat world. Assuming
we have a satellite map M that is aligned to GPS coordinates, then the absolute
pose of the UAV at any frame can be encoded in a homography relating the satellite
map image to the current frame, which we call HF

abs. Then, the goal is to estimate
HF
abs for all frames.

We assume the position of the UAV is approximately known at the time of capturing
the initial frame F = 1. This is a reasonable assumption in applications where the
approximate take-off position is known, or where a single GPS data point is given,
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Figure 3.17: Visualization of the geolocalization formulation. H1
abs parameterizes the

approximately known initial pose of the UAV with respect to the satellite map M ,
at the time that GPS-denied flight begins. Estimates of motion via visual odometry
(HF

rel) can be combined with the initial absolute position (H1
abs) to estimate the

absolute position (HF
abs) at each frame F .

before beginning GPS-denied flight. There is an absolute homography H1
abs relating

the initial view of the UAV to the satellite map image M at frame F = 1, whose
parameters can be determined based on the approximate heading and GPS location
of the UAV. As the UAV moves, each frame F is related to the last frame F − 1
by a relative homography HF

rel computed using image pairs from the UAV (visual
odometry). Therefore, the absolute homography relating the view from the UAV at
frame F to the satellite map is the composition of the intial absolute homography
H1
abs with all relative homographies up to frame F :

HF
abs = HF

rel ·HF−1
rel · ... ·H

2
rel ·H1

abs (3.9)

In Fig. 3.17, we visualize the motion parameters, map M , and camera frustums.

3.3.3 Localizing Each Frame

One option for geolocalization is to compare each incoming UAV frame to the map
M , and estimate the UAV position for each frame individually. Beginning with
the first frame, we would compare and align the frame to the satellite map M ,
and use this alignment to refine H1

abs. For the next frame, we can estimate H2
rel

between frame one and two using a registration method of choice (e.g. SIFT or
LK). The estimated absolute position of the UAV at frame two is then described by
H2
abs = H2

rel ·H1
abs. Then, we can compare frame two to the map M to refine H2

abs.
We could repeat this process for every incoming frame. In general, this approach
can be taken as long a two assumptions are satisfied: the map M exists at the
current location (there is no missing data or “holes” in the map, and we have not
flown outside the map extent) and the map M can be sufficiently registered with the
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current UAV frame (there is not such drastic appearance difference, or corrupted
map pixels, between M and the current image). In the Experiment section, we
show how well this approach works on two flight datasets. However, as discussed
in the next section, there is a question of how to handle the cases where the two
aformentioned assumptions are not satisfied.

3.3.4 Pose Optimization for Missing Map Sections

Motivation. Consider the two assumptions made when localizing against the map
M for every UAV frame: the map M exists at the current location (there is no
missing data or “holes” in the map, and we have not flown outside the map extent)
and the map M can be sufficiently registered with the current UAV frame (there
is not such drastic appearance difference, or corrupted map pixels, between M and
the current image).

When either of these two assumptions is broken, it is not possible to geolocalize the
frame. In this case, we must use the visual odometry estimate of motion HF

rel for
that particular frame only, and cannot refine this motion estimate by comparing to
the map M . This is not particularly bad if we do not need to know the absolute
position for this frame and can afford to skip it. However, it would be beneficial if
we could use the absolute position of past and future frames to help in estimating
the absolute position of the frame which could not be compared to the map.

Motivated by this problem, we devise a novel, LK-based optimization over multiple
poses at once, which incorporates photometric constraints from both visual odome-
try and map comparisons. Our goal is to gracefully handle cases where some subset
of UAV frames cannot be compared effectively to M , whereas other neighbording
frames in the UAV sequence can be effectively registered to the map.

Formulation. We define certain frames throughout the UAV sequence as template
frames T , to which other temporally adjacent frames are aligned. We define visibility
neighborhoods V around each template, which contain the frames adjacent to T .
V should be chosen so that there is sufficient overlap between all frames in V with
T so as to allow direct registration such as with Lucas-Kanade. The precise choice
of template frames and visibility neighborhoods depends on many characteristics of
the particular flight hardware and the speed of the vehicle, and must be tuned for
a given application.

In Fig. 3.17 for instance, we could define a single template T3 as the third frame,
and a visibility neighborhood for this template containing the other four frames:
V (T3) := 1, 2, 4, 5.

To align with the map, we extract the deep feature representation of all T using
our trained convolutional layers from Section 3.2. We also extract the patch from
the map M which corresponds to T based on the current estimate of all motion
parameters in the sequence, and extract the deep features of this map patch. Then,
we simultaneously optimize for the motion parameters based on the minimization of
error between all templates T and the images within their corresponding visibility
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neighborhoods V , as well as the error between the deep feature extractions of the
templates T and the map M . We express this minimization objective as:

min
p

∑
k

∑
F∈V (k)

∥∥IF (W(x; pF,k))− Tk(x)
∥∥2

2
+ λ

∑
k

∥∥∥Mφ(W(x; pM,k))− T
φ
k (x)

∥∥∥2

2

(3.10)

Where k is the set of frames which are templates, IF is the UAV image at frame
F , Mφ and T φ are deep feature extractions of the map and template respectively,
pF,k is the composition of motion parameters from frame F to template k, and pM,k

is the composition of motion parameters from the satellite map M to the template
k. As previously mentioned, we use the notation I(W(x; p)) to mean sampling an
image I at image coordinates x that have been warped with warping function W,
using a projective transformation parameterized by p ∈ R8.

λ is a tunable parameter used to weight the contribution of the map alignment; if
it is zero, the optimization does not use the satellite map at all, but optimizes the
motion parameters based only on UAV imagery (visual odometry).

Derivation of motion parameter update. The minimization in (3.10) can be
solved using the iterative Gauss-Newton method, in a similar manner to the deriva-
tion of the original (forward compositional) Lucas-Kanade algorithm. We start by
defining pf of a particular relative homography in the UAV sequence Hf

rel that we
optimize with respect to. We rewrite both pM,k and pF,k as functions of pf with
the addition of a small perturbation ∆pf to the motion parameters:

∑
k

∑
F∈V (k)

∥∥IF (W(x; pF,k(pf + ∆pf )))− Tk(x)
∥∥2

2
+

λ
∑
k

∥∥∥Mφ(W(x; pM,k(pf + ∆pf )))− T
φ
k (x)

∥∥∥2

2

(3.11)

Linearizing with respect to pf yields

∑
k

∑
F∈V (k)

∥∥JI∆pf + rI
∥∥2

2
+ λ

∑
k

∥∥JM∆pf + rM
∥∥2

2
(3.12)

where
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JI = ∇IF
∂W

∂pF,k

∂pF,k
∂pf

(3.13)

JM = ∇Mφ ∂W

∂pM,k

∂pM,k

∂pf
(3.14)

rI = IF (W(x; pF,k(pf )))− Tk(x) (3.15)

rM = Mφ(W(x; pM,k(pf )))− T
φ
k (x) (3.16)

We note that
∂pF,k

∂pf
is nonzero only if f ∈ V (k) and |f − k| ≤ |F − k|, and

∂pM,k

∂pf

is nonzero only if f ≤ k. Finally, taking the derivative w.r.t. ∆pf , setting the
minimization equal to zero, and solving for ∆pf yields:

∆pf = −H−1

∑
k

∑
F∈V (k)

JT
I rI + λ

∑
k

JT
MrM

 (3.17)

where

H =
∑
k

∑
F∈V (k)

JT
I JI + λ

∑
k

JT
MJM (3.18)

The optimal update ∆pf for all relative homographies Hf
rel can be computed in

parallel using this iterative solution, with the update at each iteration pf ← pf +
∆pf . The iteration continues until the maximum value of ∆pf across all frames is
below a certain threshold.

The optimization can be applied in a sliding-window or a all-in-one batch fashion. A
sliding-window approach would be more suitable for applications with a requirement
for localization at online speeds. We present experiments using a sliding-window,
with more details in the Experiments section.

3.3.5 Converting Between Pose and Homography

Up to this point, we have dealt with pose of the vehicle in terms of homography
relationships in pixel space. We now address the methods that are used to convert
homography relationships to 6 degree-of-freedom rigid body transformations (or
vice versa) to determine the geo-localized position of the UAV. Converting from
homography to pose is done after pose optimization as a final step.

First, we describe the map coordinate system. Consider the image coordinate system
of the satellite map M such that x, y are defined as the horizontal and vertical image
axis and (0, 0) is the top left image corner, and consider an additional z axis also
with its origin at top left image corner and its orientation “into the image”. For
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simplicity, assume that the map M is aligned to the GPS coordinate system such
that x in the image axis corresponds to longitude and y to longitude, and that we
are given the longitude and latitude coordinates corresponding to the four image
corners that can be interpolated to find the latitude and longitude of each pixel. Of
course, this makes the assumption that latitude and longitude are rectilinear and
orthogonal as opposed to spherical; however, this is a valid assumption for the map
sizes used in our experiments, which are about one kilometer across.

Now, we describe how to calculate the initial absolute homography H1
abs. We assume

the initial pose of the UAV is roughly known using on-board sensors or by using an
estimate based on the initial launch position of the UAV. From this information, we
have an estimate of the longitude and latitude of the UAV, altitude, and possibly
orientation (roll, pitch, yaw), totaling 6 degrees of freedom. We can convert the
approximately known initial UAV position to a 3× 3 vehicle rotation matrix R and
3 × 1 translation t which are with respect to the coordinate system x, y, z defined
previously for the map M . Combining these rotation and translation into a 3 × 4
pose matrix yields

P =
(
R t

)
. (3.19)

.

Using this pose matrix and the UAV camera intrinsic matrix K, we have that a
homogeneous 3 × 1 pixel location in the UAV camera image xI corresponds to a
homogeneous 4× 1 3D point on the map XM as

xI = KP−1XM . (3.20)

Note however that with the map coordinate system as defined, all “3D” points
actually lie on the plane z = 0, and all 3D points XM thus have z = 0. This means
that we can ignore the 3rd column of the matrix P−1, instead writing

xI = KP−1
3×3xM , (3.21)

with P−1
3×3 defined as all columns of P−1 except the third, and xM defined as a pixel

location in M . Thus, H1
abs = KP−1

3×3.

Now, we describe how to calculate R, t for the current frame from the estimated ab-
solute homography for the current frame HF

abs. First, recall that HF
abs = HF

rel · HF−1
abs ,

and that if we begin with the first frame then R and t for HF−1
abs will be known. Then,

the goal is to determine R and t of the relative homography HF
rel, and combine this

relative transformation with the currently known pose of HF−1
abs . This process in-

volves the decomposition of homography into pose. To decompose homography,
we use the implementation provided in OpenCV [14], which in turn implements
the method described in [53]. After decomposing, the relative pose update may be
combined with the current absolute pose.
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3.3.6 Experiments

As few attempts have been made at UAV localization systems similar to the one
presented here, there are no freely available datasets or baseline implementations.
A proper dataset for this task consists of a UAV sequence using a monocular,
downward-facing camera, with precise ground truth pose with respect to the Earth,
and an accompanying globally aligned satellite image of the flight location. The al-
titude of the UAV must also be such that the flat-world assumption can reasonably
be made. Of the few previous works [77, 94, 60], none have made their datasets or
source code publicly available for comparison. Therefore we gather two datasets,
in part using UAV imagery from the free datasets offered from the senseFly profes-
sional drone mapping company1. The first dataset is captured overhead the Swiss
village of Merlischachen, at an altitude of 0.2km, over 0.85km flight distance. This
is an urban environment similar to those used in all prior works, with ample tex-
ture and landmarks such as buildings and roadways. The second dataset is more
challenging, captured overhead a rural gravel quarry at 0.22km altitude and flight
distance of 0.61km. This location offers substantially less texture and landmarks for
alignment. We use this dataset to showcase the capabilities of our system to align
with low-texture imagery, an advantage over past approaches.

Village Dataset. Some example UAV frames from the Village dataset and an
overview of the flight are in Fig. 3.18. The UAV used is the senseFly eBee drone,
equipped with a downward facing Canon IXUS 125 HS camera. We extract the
GPS-aligned satellite map from Google Earth Pro. The UAV imagery was captured
in April, 2013, and the satellite imagery in May, 2012. High-accuracy RTK GPS
(latitude, longitude, and altitude) is included in the metadata of each UAV frame
in the dataset. We process the GPS metadata of the initial frame of the dataset in
order to form H1

abs, the homography relating the initial UAV pose to the satellite
map. To form initial estimates of the frame-to-frame relative motion HF

rel, we use
SURF [8] feature extraction and correspondence to estimate homographies between
UAV frames. We find SURF provides odometry performance comparable to other
popular sparse-feature based methods, and is thus used as a representative baseline.

Matching every frame. With estimates for H1
abs and HF

rel, we compare different
approaches for map alignment based on the different aforementioned assumptions.
In the first case, we compare every UAV frame to the map (assuming that the map
exists for every frame, and there is not any registrations which fail between UAV
images and map). Using this approach, we find that the average localization
error is 6.89 meters in the x-y plane, and 7.92 meters in altitude error,
or 10.49 meters in 3D. This average is across all frames in the Village dataset. In
other words, we do find that our method can successfully retain “tracking” between
the UAV imagery and the map, when considering all available UAV frames in the
dataset. This error is competitive with or less than the errors seen in prior work.

Handling skipped frames with pose optimization. However, we now con-
sider the case where we must skip map alignment for some frames, and we will use
the aforementioned pose optimization to account for the skipped frames. For the

1https://www.sensefly.com/education/datasets/
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Village dataset, we find empirically that using a sliding-window approach for the
pose optimization produces the lowest average localization error. This is due to the
low frame-rate of the UAV dataset, where there is as low as 50% frame-to-frame
overlap. This makes the composition of HF

rel from the SURF odometry inaccurate
when predicting pose after many frames. It is this predicted position which is used
to extract patches from the map M in the optimization to use for alignment, but
if these patches do not have significant overlap with the UAV frames then the opti-
mization fails. We use a sliding-window containing 4 UAV frames, of which the 2nd
and 4th frame images are the templates T , with V (2) = 1, 3 and V (4) = 3 as the
visibility neighborhoods of the two templates. This window is slid forward by two
frames after the optimal parameters are found. We start with the first 4 frames of
the video, and progress through the whole sequence. With this sliding window, only
half of all video frames are directly compared with the map (assuming that the other
half of frames cannot be compared to the map for some reason, such as map parts
missing, corrupted map pixels, or very large appearance difference between map and
UAV image). For this experiment, we find that the average error measured
in 3D distance is 10.67 meters (result shown in Fig. 3.19), as compared
to 11.03 meters if the odometry position estimates only are used for the
skipped frames. This result shows that our optimization approach is able to re-
duce the localization error as compared to a naive approach to localization with
skipped frames.

After solving for the optimal motion parameters, we convert them to GPS coordi-
nates (latitude, longitude, and altitude) and plot error from ground truth, versus
SURF odometry. Localization results on the Village dataset are shown in Fig. 3.19,
and some example alignments in Fig. 3.20. Despite relatively little training data as
described in Section 3.2, the learned features generalize well to the unseen UAV imag-
ing conditions and satellite map used in both the Village and Gravel Pit datasets.
We find other alignment methods simply do not come close to proper alignment
on these datasets, including ICLK on normalized images, or ICLK on vanilla conv3
VGG16 features. SIFT produces very few (3 to 5) if any correct correspondences
between UAV images and satellite images, not enough for effective RANSAC esti-
mation.

Gravel pit dataset. Example frames from the Gravel Pit dataset are shown in
Fig. 3.21, along with a flight overview. The same UAV and camera are used from the
Village dataset. The UAV imagery was captured in April, 2013, and the satellite
map we extract is from November, 2014. We chose this dataset to showcase the
abilities of our method of alignment for use on very low-texture environments lacking
landmarks. The effects of seasonal variation are more pronounced in this dataset
due to increased vegetation as well.

We repeat the process from the Village dataset for extracting initial motion parame-
ter estimates. For the motion parameter optimization, we experiment by eliminating
the inclusion of the odometry term in (3.10) and using only the minimization of the
map with templates. Further, we use a sliding-window of size 1 (a single template),
and move the sliding window by 1 frame each step. This way, the optimization
will seek to fully align all UAV frames with the map. This is equivalent to what
is done in prior work, where visual odometry is not taken into consideration for
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Figure 3.18: (a) Overview of the Village dataset flight path. (b) Some examples
of UAV frames (right) and their corresponding satellite map patches (left) for the
Village dataset.
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Figure 3.19: Our results on the Village dataset. Results labeled 2D Euclidean are
error distances measured in the x-y plane. Markers represent template frames. The
average 2D euclidean error of our method is 7.06m. The average altitude error of our
method is 8.01m. The ground truth altitude of the UAV for the entire sequence is
approximately 0.2km. We find that alignment methods including SIFT+RANSAC
or ICLK on vanilla VGG16 conv3 features fail to align UAV images with the satellite
map for this dataset, and thus do not improve on the error from SURF odometry.
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Figure 3.20: Some examples of the alignment capabilities of our system on the
Village dataset, which occur during optimization of motion parameters. Crops from
the satellite map (top) are warped and aligned (middle) with the corresponding UAV
imagery (bottom). The red rectangle is static in all images, allowing the reader to
visually compare aligned landmarks.

computing the optimal motion parameters. We use this approach to illustrate that
the algorithm recovers from misalignment on one frame and successfully relocalizes
in the next frame, even with large UAV motion between frames. Results are shown
in Fig. 3.22, with some example alignments in Fig. 3.23. We observe that the regis-
tration performance does degrade due to the difficulty of the low-texture; however,
there is still clear visual evidence that the registration has not lost “tracking” with
the map, which is most clearly seen in Fig. 3.23.

3.3.7 Implementation Details

We use an OpenCV [14] implementation of SURF detection and computation, with
brute-force matcher and cross-check for smallest distance match. We also use the
OpenCV’s findHomography function with RANSAC, with an error threshold of
5 pixels. The satellite map for the Village dataset is 4800 × 2861 pixels at 0.45
meters per pixel width. The map for the Gravel Pit dataset is 3355× 1852 at 0.32
meters per pixel width. Native UAV image resolution is 4608× 3456. UAV images
and map patches are square-cropped and scaled to 200 pixels each during pose
optimization. The output of VGG16 conv3 has 256 feature channels and is 3-times
spatially downsampled from the input. On a 2.9 GHz Intel Core i5 laptop with 16 GB
RAM, optimization using 2 templates with 4 frames in each visibility neighborhood,
and two overlapping frames between neighborhoods, takes 8.41s on average over 10
trials. We empirically find λ = 0.35 best for optimization experiments on Village
dataset, although the automatic selection of best lambda we leave for future work.
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Figure 3.21: (a) Overview of the Gravel Pit dataset flight path. (b) Some examples
of UAV frames (right) and their corresponding satellite map patches (left) for the
Gravel Pit dataset.
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Figure 3.22: Our results on the more challenging, low texture Gravel Pit dataset.
The average 2D euclidean error of our method is 25.00m. The average altitude error
of our method is 7.70m. Precise x-y localization is difficult on this dataset due to
low texture, leading to ambiguous alignment. However, no other methods we try
for UAV-map matching are able improve on the odometry error as ours has. We
note that altitude error may be lower since the planar assuption was particularly
well-satisfied for this dataset i.e. the ground is quite fronto-parallel to the nadir
UAV camera as opposed to the Village dataset, where there is a consistent sloping
landscape.
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Figure 3.23: Some examples of our alignment on the Gravel Pit dataset. Crops from
the satellite map (top) are warped and aligned (middle) with the corresponding UAV
imagery (bottom). The red rectangle is static in all images, allowing the reader to
visually compare aligned landmarks. These examples show that we are able to
maintain tracking and registration to the map, as there is clear correspondence and
alignment taking place between visual landmarks.

3.4 Chapter Discussion

In this chapter, we have studied the difficult problem of registration across large tem-
poral gaps. First, we showed in Section 3.1 that deep convolutional features from pre-
trained networks could be effective in providing temporal invariance, even without
training on a specific dataset. Next, in Section 3.2, we showed the DeepLK method
could find application in this problem, and we showed that a novel change in the
training procedure of DeepLK (dynamic training iterations) could dramatically im-
prove registration results on satellite imagery. Finally, we showed in Section 3.3 how
the DeepLK approach could be integrated into a full UAV geolocalization pipeline
based on matching UAV imagery to satellite imagery, and showed experiments on
UAV flight datasets. We further developed an optimization which combined deep
features and visual odometry constraints within a Bundle-Adjustment-like optimiza-
tion, inspiring further work in the integration of deep feature representations into
existing SLAM pipelines.

In the next chapter, we explore deep learning as it can be applied to point cloud
registration instead of image registration. Analogously to the image case, where
we addressed temporal invariance, we will address challenging registration scenarios
in 3D. Namely, noisy, partial, and real-world data which proves difficult to register
with existing approaches. The connection between this chapter and next, is the
exploration of the usefulness of deep network representations for difficult registration
scenarios.
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Chapter 4

Learning for Point Cloud
Registration

Work from this chapter was done in collaboration with Yasuhiro Aoki, Rangaprasad
Arun Srivatsan, Vinit Sarode, and Xueqian Li.

Point cloud registration in 3D is at the core of many applications such as localization
and mapping [58, 61], reconstruction [47], object matching [30], detection and shape
completion [89], and tracking [71, 87], among others. Existing methods of point
cloud registration, such as ICP, and 3D sparse feature methods, are discussed in the
Background chapter.

Across these applications, there are varying levels of difficulty involved in performing
accurate registration. As discussed in the Background chapter, a simple registra-
tion scenario might be between a template and source which consists of an identical
sampling of points, uniformly sampled from the entire surface of an object, with a
small perturbation between template and source. This is typically an easy registra-
tion scenario for two primary reasons: the cost function for registration will be zero
when template and source are perfectly aligned since the sampling is the same, and
the perturbation is small and unlikely to lead to a registration algorithm finding a
local minimum. Thus, we can understand the level of difficulty of a registration in
terms of these two aspects: sampling and perturbation.

The difficulty of registration generally increases as the magnitude of the perturbation
increases, and in particular when the magnitude of the difference in orientation
(rotation) increases. The difficulty of registration also increases when the sampling
between template and source are no longer equal. For example, the source may be
a different surface sampling than template, may have added isotropic or anisotropic
noise at each point, or may be a sampling from only a partial viewpoint of the scene.

In the following chapter, we explore the use of deep learning in point cloud reg-
istration, and specifically address how deep learning can improve performance in
registration scenarios at varying levels of sampling and perturbation difficulty. We
show that in some key scenarios, deep learning can improve upon state-of-the-art
methods in difficult registration scenarios, such as the presence of noise, partial
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viewpoint, and real-world data which is far removed from the training distribution
used during learning.

4.1 PointNet for Registration

Point clouds are unstructured, having no inherent order. This lack of structure
makes it difficult to create deep networks which can process the data. However, the
introduction of PointNet [68] provides a unique solution to this dilemma, in pro-
viding a learnable representation for point clouds. PointNet is the first deep neural
network which processes point clouds directly, as opposed to alternative representa-
tions such as 2D image projections of objects [90, 15, 32], voxel representations [54,
89, 98] or graph representations [88]. By processing point clouds directly instead of
through an auxilliary representation, PointNet can achieve extremely fast process-
ing speeds. Within larger network architectures, PointNet has proven to be useful
for tasks including classification, semantic segmentation, object detection [67], and
completion of partial point clouds [97].

Although it has helped achieve state-of-the-art performance in other point cloud
tasks, PointNet has not yet been applied to the problem of point cloud registration.
In the following sections, we outline three methods that we experimented with for
introducing PointNet into a registration pipeline:

1. PCRNet. PCRNet can be thought of as a one-shot regression, from template
and source point cloud to the pose parameters which align them. The tasks
of both point cloud representation and registration are learned from data.

2. Iterative PCRNet. Iterative PCRNet uses the basic PCRNet structure,
but combines multiple incremental estimates over time to align template and
source.

3. PointNetLK. An iterative framework where only the point cloud represen-
tation is learned, and not the task of registration. Registration is instead
formulated as the minimization of distance between representation vectors,
which is solved using a Gauss-Newton optimization similar to Lucas-Kanade.

Notation. We denote matrices with uppercase bold such as M, constants as up-
percase italic such as C, and scalar variables with lowercase italic such as s.

Let φ denote the PointNet function, φ : R3×N → RK , such that for an input point
cloud P ∈ R3×N , φ(P) produces a K-dimensional vector descriptor. The function φ
applies a Multi-Layer Perceptron (MLP) to each 3D point in P, such that the final
output dimension of each point is K. Then a symmetric pooling function, such as
maximum or average, is applied, resulting in the K-dimensional global descriptor.

Let PT , PS be template and source point clouds respectively. We will seek to find
the rigid-body transform T ∈ SE(3) which best aligns source PS to template PT .
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Figure 4.1: PCRNet, consisting of five MLPs having size (64, 64, 64, 128, 1024). The
source and template point clouds are sent as input through a twin set of MLPs,
arranged in a Siamese architecture. Using a max-pooling function, we obtain global
features. These features are concatenated and provided as an input to five fully
connected layers having size (1024, 1024, 512, 512, 256), and an output layer of size
7. The first three output values represent the translation and the last four, after
normalization, represent the rotation quaternion.

4.1.1 PCRNet

This section introduces the PCRNet architecture. A block diagram of the archi-
tecture is shown in Fig. 4.1. The model consists of five multi-layered perceptrons
(MLPs) similar to the PointNet architecture having size (64, 64, 64, 128, 1024). The
MLPs are arranged similar to a Siamese architecture [41]. Both source PS and tem-
plate PT are given as input to the MLPs, and a symmetric max-pooling function
is used to find the global feature vectors φ(PS) and φ(PT ). Weights are shared
between MLPs used for source and template.

The global features are concatenated and given as an input to a number of fully
connected layers. In this work, we choose five fully connected layers, as they seemed
to be sufficient enough for robust performance. In initial experiments, using lesser
number of FC layers, the performance of the network was strictly worse.

The FC layer shown by the red block in Fig. 4.1 has five hidden layers of size
(1024, 1024, 512, 512, 256) and an output layer of size 7 whose parameters will repre-
sent the estimated transformation T. The first three of the output values we use to
represent the translation vector t ∈ R3 and last four represents the rotation quater-
nion q ∈ R4, qTq = 1. In this way, the transformation T which aligns φ(PS) and
φ(PT ) is estimated with a single forward pass, or single-shot, through the network.
The single-shot design lends itself particularly well to high-speed applications, which
will be discussed further in Section 4.2.3.

4.1.2 Iterative PCRNet

In this section, we present a network with an iterative scheme similar to ICP and
Lucas-Kanade for image alignment as shown in Fig. 4.2. We retain the structure of
PCRNet, but modify the number of layers. For the iterative implementation, we use
three hidden FC layers having size (1024, 512, 256), and an output layer of size 7.
Also, we include an additional dropout layer before the output layer, to avoid over-
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Figure 4.2: Iterative PCRNet, which uses a modified form of PCRNet described in
Fig. 4.1 and iteratively improves the estimate of the PCRNet. In the first itera-
tion, the source and template point clouds are given to PCRNet which predicts an
initial misalignment T1. The source point cloud is transformed using T1 and the
original template are given as input to the PCRNet, in the next iteration. After per-
forming n iterations, we combined the poses from each iteration to find the overall
transformation between the original source and template.

fitting. We empirically observe that introducing iterations allows us to use lesser
number of hidden layers compared to PCRNet, and yet obtain robust performance.

In the first iteration, the original source and template point clouds are given to
PCRNet, which predicts an initial misalignment T1 between them. For the next
iteration, T1 is applied to the source point cloud and then the transformed source
and the original template point clouds are given as input to the PCRNet. After
performing n iterations, we find the overall transformation between the original
source and template point clouds by combining all the poses in each iteration:

T = Tn ×Tn−1 × · · · ×T1. (4.1)

4.1.3 PointNetLK

In the case of PointNetLK, we seek to learn φ such that, for the best aligning T, we
have φ(PT ) = φ(T ·PS). We formulate an optimization as follows. Let PT , PS be
template and source point clouds respectively. We will seek to find the rigid-body
transform T ∈ SE(3) which best aligns source PS to template PT . The transform
T will be represented by an exponential map as follows:

T = exp

(∑
i

ξiGi

)
ξ = (ξ1, ξ2, ..., ξ6)T , (4.2)

where Gi are the generators of the exponential map with twist parameters ξ ∈ R6.
The 3D point cloud alignment problem can then be described as finding T such
that φ(PT ) = φ(T · PS), where we use the shorthand (·) to denote transformation
of PS by rigid transform T. This equation is analogous to the quantity being
optimized in the classical LK algorithm for 2D images, where the source image is
warped such that the pixel intensity differences between the warped source and
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template are minimized. It is worth noting that we do not include the T-net in our
PointNet architecture, since its purpose was to transform the input point cloud in
order to increase classification accuracy [68]. However, we instead use the LK layer
to estimate the alignment, and the T-net is unnecessary.

Another key idea that we can borrow from the LK algorithm is the Inverse Com-
positional (IC) formulation [7]. The IC formulation is necessitated by the fact that
the traditional LK algorithm has a high computational cost for each iteration of the
optimization. This cost comes from the re-computation of an image Jacobian on
the warped source image, at each step of the optimization. The insight of the IC
formulation is to reverse the role of the template and source: at each iteration, we
will solve for the incremental warp update to the template instead of the source,
and then apply the inverse of this incremental warp to the source. By doing this,
the Jacobian computation is performed for the template instead of the source and
happens only once before the optimization begins. This fact will be more clearly
seen in the following derivation of the warp update.

Restating the objective, we seek to find T such that φ(PT ) = φ(T ·PS). To do this,
we will derive an iterative optimization solution.

With the IC formulation in mind, we take an inverse form for the objective:

φ(PS) = φ(T−1 ·PT ) (4.3)

The next step is to linearize the right-hand side of (4.3):

φ(PS) = φ(PT ) +
∂

∂ξ

[
φ(T−1 ·PT )

]
ξ (4.4)

Where we define T−1 = exp(−
∑

i ξiGi).

We will denote the Jacobian J = ∂
∂ξ

[
φ(T−1 ·PT )

]
, where J ∈ RK×6 matrix. At

this point, computing J would seem to require an analytical representation of the
gradient for the PointNet function with respect to the twist parameters of T. This
analytical gradient would be difficult to compute and quite costly. The approach
taken in the classical LK algorithm for ND images is to split the Jacobian using the
chain rule, into two partial terms: an image gradient in the ND image directions,
and an analytical warp Jacobian [7]. However, in our case this approach will not
work either, since there is no graph or other convolutional structure which would
allow taking gradients in x, y and z for our 3D registration case.

We instead opt to compute J using a stochastic gradient approach. Specifically, each
column Ji of the Jacobian can be approximated through a finite difference gradient
computed as

Ji =
φ(exp(−tiGi) ·PT )− φ(PT )

ti
(4.5)
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Where ti are infinitesimal perturbations of the twist parameters ξ. This approach to
computing J is what allows the application of the computationally efficient inverse
compositional LK algorithm to the problem of point cloud registration using Point-
Net features. Note that J is computed only once, for the template point cloud, and
does not need to be recomputed as the source point cloud is warped during iterative
alignment.

For each column Ji of the Jacobian, only the ith twist parameter has a non-zero
value ti. Theoretically, ti should be infinitesimal so that J is equal to an analytical
derivative. In practice, we find empirically that setting ti to some small fixed value
over all iterations yields the best result.

We can now solve for ξ in (4.4) as

ξ = J+ [φ(PS)− φ(PT )] (4.6)

Where J+ is a Moore-Penrose inverse of J.

In summary, the iterative algorithm consists of a looping computation of the optimal
twist parameters using (4.6), and then updating the source point cloud PS as

PS ← ∆T ·PS ∆T = exp

(∑
i

ξiGi

)
(4.7)

The final estimate Test is then the composition of all incremental estimates computed
during the iterative loop:

Test = ∆Tn · ... ·∆T1 ·∆T0 (4.8)

The stopping criterion for iterations is based on a minimum threshold for ∆T. A
graphical representation of our model is shown in Fig. 4.3.

4.1.4 Loss Functions

The loss function used during training for registration is an important consideration,
and there may not be a single loss function which works equally well for training
across all types of data (noise-free, noisy, partial view). We consider two loss func-
tions, one which is data-dependent, and the other which is dependent only on the
estimated transforms.

A data-dependent loss function is targeted at minimizing the point-point distance
between two point clouds. One such loss function we experiment with is the Earth
Mover Distance (EMD), which was introduced in [28]. The Earth Mover Distance is
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Figure 4.3: The PointNetLK architecture. Point cloud inputs source PS and tem-
plate PT are passed through a shared MLP, and a symmetric pooling function, to
compute the global feature vectors φ(PS) and φ(PT ). The Jacobian J is computed
once using φ(PT ). The optimal twist parameters are found, which are used to
incrementally update the pose of PS , and then the global feature vector φ(PS) is
recomputed. During training, a loss function is used which is based on the difference
in the estimated rigid transform and the ground truth transform.

a bijective point-point distance between template and source point clouds, defined
as

EMD(Pest
S ,PT ) = min

ψ:Pest
S →PT

1

|Pest
S |

∑
x∈Pest

S

‖x− ψ(x)‖2, (4.9)

where PT is the template point cloud and Pest
S is the source point cloud PS , trans-

formed by the estimated transformation T. This function finds a bijection ψ and
minimizes the distance between corresponding points based on ψ.

A transformation-dependent loss function is targeted at minimizing the difference
between the estimated transform Test and the ground truth transformation Tgt. This
could be expressed as the Mean Square Error (MSE) between the twist parameters
ξest and ξgt. Instead, we use

||(Test)
−1 ·Tgt − I4||F , (4.10)

which is more efficient to compute as it does not require matrix logarithm operation
during training, and follows in a straightforward way from the representation of
Test,Tgt ∈ SE(3).

For the following experiments, we have found that the PCRNet architectures are
more easily trained using the data-dependent loss function, while PointNetLK is
more easily trained using the transformation-dependent loss function. We attribute
this to the fact that PCRNet must learn the registration task from scratch in the
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final FC layers and is more object-specific since registration is entirely data-driven,
and therefore benefits from the more object-specific EMD loss which is a function
of object shape as well. This is opposed to PointNetLK, which does not learn
the registration task but rather only fine-tunes the PointNet latent representations.
In this more general framework, it may be better to take a data-independent loss
approach so that the PointNet latent representations may be unspecific to objects
as possible.

4.2 Experiments

In this section, we compare performance of our networks on various test data. ICP
is used frequently as a basline (point-to-point implementation).

We experiment with synthetic data of multiple object categories, a specific object
category, or a specific object, to exhibit various traits of the 3 proposed networks.
We show how PCRNet variants are generally better suited to object-specific and
category-specific scenarios, while PointNetLK is better-suited to general registration
tasks with no assumption on the test data.

We experiment on synthetic data with added noise, repeating the object specificity
experiments from above. We find that PCRNet architectures generally handle noisy
data better PointNetLK, most likely due to their increased model capacity.

Based on the observation that PointNetLK is less object-specific, we also extend
PointNetLK to perform partially visible registration on multiple synthetic categories,
and also on partial real-world Kinect data.

We allow a maximum of 20 iterations for both iterative PCRNet and PointNetLK
while performing tests, while the maximum iterations for ICP (point-to-point) was
chosen as 100. We found these cutoffs to be more than enough in a vast majority
of cases. In addition to maximum iterations, for all algorithms we also use the
convergence criteria

∥∥TiT
−1
i−1 − I

∥∥
F
< ε, (4.11)

where Ti,Ti−1 ∈ SE(3) are the transformations predicted in current and previous
iterations, and the value of ε is chosen to be 10−7.

In order to evaluate the performance of the registration algorithms, a metric we use
is area under the curve (AUC). Plots showing success ratio versus success criteria on
rotation error (in degrees) are generated for ICP, iterative PCRNet and PointNetLK.
Fig. 4.4 shows examples of these curves. The area below the curves in these plots,
divided by 180 to normalize between 0 and 1, is defined as AUC 1. We measure the
misalignment between predicted transformation and ground truth transformation

1We define success ratio as the number of test cases having rotation error less than success
criteria.
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and express it in axis-angle representation and we report the angle as rotation error.
As for the translation error, we report the L2 norm of the difference between ground
truth and estimated translation vectors.

4.2.1 Synthetic Data

We use models from the ModelNet40 dataset [89] for the following experiments. We
sample 1000 points from the model faces uniformly weighted on face area, template
point clouds are normalized into a unit box, and their mean is shifted to origin. We
randomly choose 5070 transformations with Euler angles in the range of [−45◦, 45◦]
and translation values in the range of [-1, 1] units. We apply these rigid transfor-
mations on the template point clouds to generate the source point clouds.

For this experiment, Iterative PCRNet and PointNetLK are trained on 20 differ-
ent object categories from ModelNet40 with total of 5070 models. We do not use
one-shot PCRNet for this experiment, since we found it has limited success with
multi-category or single-category registration, and is better-suited to single-model
registration. We perform tests using 100 models chosen from 5 object categories
which are not in training data (referred to as unseen categories) with no noise in
point clouds. Results for this experiment are shown in Fig. 4.4. Also shown are
results from training the networks with objects from the same category (car) as the
test-set. Here, we see a large improvement for Iterative PCRNet, while ICP and
PointNetLK retain similar performance.

These results emphasize that the Iterative PCRNet, when retrained with category-
specific data, provides improvement over ICP and is comparable to PointNetLK.
However, PointNetLK shows better generalization than Iterative PCRNet across
various object categories. We attribute this to the inherent limitation of the learning
capacity of Iterative PCRNet to large shape variations, while PointNetLK only has
to learn the PointNet representation rather than the task of alignment. However,
in the next set of experiments, we demonstrate the advantages of PCRNet-based
architectures over PointNetLK and other baselines, especially in the presence of
noisy data.

4.2.2 Noisy Synthetic Data

In order to evaluate the robustness of our networks to noise, we perform experi-
ments with Gaussian noise in the source points. For our first test, we use the same
training dataset as described in the previus section Sec. 4.2.1. We sample noise
from Gaussian distribution for each point in source point cloud with 0 mean and
a standard deviation varying in the range of 0 to 0.04 units. For these results, we
trained Iterative PCRNet and PointNetLK with noisy source point clouds using 20
different object categories and a total of 5070 models.

During testing, we compare ICP, PointNetLK and Iterative PCRNet. Fig. 4.5a
shows results for noisy point cloud testing on multiple object categories. We
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(a) Multiple categories, no noise.
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(b) Single category (car), no noise.

Figure 4.4: Results for Sec. 4.2.1. PointNetLK has an advantage over PCRNet-
based architectures for no-noise registration scenarios. PointNetLK performs better
across multiple object categories, and has remarkable ability to handle large ini-
tial perturbation. When training and testing on a single object category (car), we
find that Iterative PCRNet has improved performance although still cannot match
PointNetLK.

observe that Iterative PCRNet has a higher number of successful test cases with
smaller rotation error as compared to ICP and PointNetLK, which shows that It-
erative PCRNet is robust to Gaussian noise. PointNetLK performs the worst and
is very sensitive to noisy data, and in fact, during training PointNetLK appears
to have difficulty converging for noisy training data. The results emphasize that
Iterative PCRNet works quite well in the presence of noise in the source data, and
across multiple categories.

For the second test, we used the dataset as described in Sec. 4.2.1 and added Gaus-
sian noise in source point clouds as described above. We train the networks on a
specific object category (car) and test them on the same category, using 150
models of cars. The result in Fig. 4.5b shows that Iterative PCRNet performs the
best and has the highest number of successful test cases.

We compare the success ratio of networks when training and testing on only one
noisy car model (see Fig. 4.5c). Iterative PCRNet once again exhibits a high suc-
cess ratio, which is better than ICP and PointNetLK. Finally, we compare PCRNet
that is trained without noise and tested on noisy data, with ICP and PointNetLK.
While not being as good as ICP, the result is still competitive, and performs better
than PointNetLK (See Fig. 4.5d).

We show some qualitative results of the performance of Iterative PCRNet in Fig. 4.6.

Fig. 4.7 shows success ratio versus change in the amount of noise added to source
point clouds during testing. Both Iterative PCRNet and PointNetLK are trained
on multiple object categories with Gaussian noise having a maximum standard de-
viation of 0.04. We observe a sudden drop in the PointNetLK performance as the
standard deviation for noise increases above 0.02. On the other hand, iterative
PCRNet performs best in the neighbourhood of the noise range that it was trained
on (0.02-0.06), and produces results comparable to ICP beyond that noise level.
This shows that PCRNet-based network are more robust to noise as compared to
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(a) Training and testing: Multiple object
categories with noise.
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(b) Training and testing: Multiple models of
a category with noise
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(c) Training and testing: Only one model
with noise
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(d) Trained on one model without noise and
tested on data with noise

Figure 4.5: Results for Section 4.2.2, noise testing. The y-axis is the ratio of experi-
ments that are successful and the x-axis shows value of the maximum rotation error
that qualifies the estimation to be a success. (a), (b) and (c) show results for com-
parisons of Iterative PCRNet with ICP and PointNetLK using three different types
of datasets. We observe superior performance of Iterative PCRNet in most cases as
compared to ICP and PointNetLK. We observe that PointNetLK is quite sensitive
to noise in this range (up to 0.04 std. dev.) and has difficulty converging during
training. (d) PCRNet, which has not seen noise during training, is tested with noisy
data and shows good performance while being faster than ICP and PointNetLK.
Speed considerations are discussed in Sec. 4.2.3.
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(a) Trained on one car. It-
erative PCRNet: (2.14◦,
0.0056)

(b) Trained on multiple
cars. Iterative PCRNet:
(2.14◦, 0.0056).

(c) Trained on multiple
categories. Iterative PCR-
Net: (3.07◦, 0.0107).

(d) Trained on multiple
categories. Iterative PCR-
Net: (0.34◦, 0.0048). ICP:
(43.62◦, 0.2564).

(e) Trained on multiple
categories. Iterative PCR-
Net: (5.55◦, 0.0042). ICP:
(45.15◦, 0.1767).

(f) Trained on multiple
categories. Iterative PCR-
Net: (5.96◦, 0.0035). ICP:
(75.02◦, 0.0683).

Figure 4.6: Qualitative results for Section 4.2.2, with final (rot., trans.) errors
reported. For each example, the template is shown by a gray CAD model, purple
points show initial position of source, red points show converged results of iterative
PCRNet trained on data with noise, and green points show results of ICP. (a), (b),
(c), (d) and (e) show the results for objects from seen categories, while (f) shows
results of unseen category.

PointNetLK.

4.2.3 Computational Efficiency

In this experiment, we use a testing dataset with only one model of car from Mod-
elNet40 dataset, with Gaussian noise in the source data. We apply 100 randomly
chosen transformations with Euler angles in range of [−45◦, 45◦] and translation
values in range of [-1, 1] units. The networks are all trained using multiple models
of same category (i.e. car). We compared the performance of Iterative PCRNet,
PCRNet, PointNetLK, ICP and GO-ICP, as shown in Table 4.1. We report the
rotation and translation error after registration, computation time (all on CPU),
and the AUC of the success ratio curve.

The results demonstrate that Go-ICP converges to a globally optimal solution with
a very small rotation error and translation error, but the time taken is three orders
of magnitude more than Iterative PCRNet and five orders of magnitude more than
PCRNet. The AUC value of Go-ICP is 1, meaning that it has converged in all
test cases, while Iterative PCRNet has the second best AUC value. This experi-
ment shows how the Iterative PCRNet is similar to Go-ICP in terms of accuracy,
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Figure 4.7: Results for Sec. 4.2.2. Iterative PCRNet and PointNetLK are trained
on multiple object categories with Gaussian noise, having maximum value of std.
dev. equal to 0.04. The x-axis shows different values of standard deviation in noise
used in testing. PointNetLK is most accurate in the absence of noise, while iterative
PCRNet is robust to noise around the levels that it has observed during training
(0.02-0.06). PointNetLK suffers at higher noise level, likely due to the fact that the
PointNet representation can be sensitive to outliers without the additional ability
to learn corrective alignment in later layers.

Table 4.1: Results from Section 4.2.3. Accuracy and computation time compar-
isons for registering noisy data (car category). Notice that both PCRNet models
achieve nearly the same AUC as Go-ICP while being orders of magnitude faster.
(All computations on CPU).

Rot. Err. (deg) Trans. Err. Time (ms) AUC
Algorithm Mean SD Mean SD Mean SD

PCRNet 8.8 4.8 0.0077 0.0008 19.7 0.30 0.95
Iterative PCRNet 1.0 2.6 0.0085 0.0024 307 81 0.99
PointNetLK 51.8 29.6 0.8783 0.0054 256 38 0.70
ICP [12] 11.8 31.9 0.0282 0.0392 407 128 0.93
GO-ICP [91] 0.4 0.2 0.0016 0.0007 2.7 · 105 1.5 · 105 1.00

but computationally much faster, allowing for use in many practical applications.
Further, while PCRNet is less accurate than Iterative PCRNet and Go-ICP, the
accuracy may be good enough as a pre-aligning step in applications such as object
detection and segmentation as was explored in [96].

4.2.4 Partially Visible Data

As PointNetLK is the architecture with the greatest generalizability across object
categories, we extend it for partial visibility experiments. In the real world, often-
times the template is a full 3D model and the source a 2.5D scan. One approach
in this case is to input the 2.5D source and 3D template directly into an alignment
algorithm and estimate the correspondence and the alignment. A second approach
is to use an initial estimate of camera pose with respect to the 3D model to sample
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visible points on the model, which can be compared with the 2.5D scan. The camera
pose can be iteratively updated until the visible points on the 3D model match the
2.5D scan.

We take the latter approach for testing PointNetLK, because the cost function
φ(PT ) − φ(T · PS) can tend to be large for input point clouds which are a 3D
model and 2.5D scan. Instead, it makes more sense to sample visible points from
the 3D model first based on an initial pose estimate, so that the inputs to Point-
NetLK are both 2.5D. This way, a correct final alignment is more likely to lead to
the cost function φ(PT )− φ(T ·PS) being close to zero.

Sampling visible points is typically based on simulating a physical sensor model for
3D point sensing, which has a horizontal and vertical field-of-view, and a minimum
and maximum depth [56, 26]. We adapt ModelNet40 data for partially visible testing
using a simplistic sensor model as follows. We sample faces from ModelNet shapes
to create a template, place the template into a unit box [0, 1]3, set the template
equal to the source, and warp the source using a random perturbation. Next we
translate the source and template both by a vector of length 2 in the direction
[1, 1, 1]T from the origin. Then we assign the visible points of the template Pv

T as
those satisfying (PT + 2 · [1, 1, 1]T ) < mean(PT + 2 · [1, 1, 1]T ). This operation can
be thought of a placing a sensor at the origin which faces the direction [1, 1, 1]T and
samples points on the 3D models which lie in front of it, up to a maximum depth
equal to the mean of the point cloud. We set the visible source points Pv

S in the
same manner. This operation returns about half of the points in both template and
source being visible for a given point cloud. We input the 2.5D visible point sets
Pv
T and Pv

S into PointNetLK, allowing a single iteration to occur for estimation of
the aligning transform Test. We then warp the original full source model PS using
the single-iteration guess Test, and re-sample Pv

S . We repeat the single-iteration
update and visibility re-sampling until convergence. We repeat the same procedure
for testing ICP.

We test on the ModelNet40 test set, using random translation [0, 0.3] for all tests.
The results are shown in Fig. 4.9. Notably, we find that PointNetLK is able to learn
to register objects using our sensor model, and generalizes well when the sensor
model is applied to unseen object categories. Example template and source pairs
for partially visible alignment are shown in Fig. 4.8 for ModelNet test dataset. We
observe that our approach generalizes well to unseen shapes as shown in Fig. 4.10
which is generated from RGBD sensor data [6].

4.2.5 Same Category, Different Models

We hypothesize that PointNetLK features could be useful for registering point clouds
of objects which are different but of the same category. An example of this is shown
for two airplane models in Fig. 4.11. We would hope that the registration error for
PointNetLK |φ(T · PS) − φ(PT )| is minimized when the airplane models, despite
being different, are aligned in orientation. This reaffirms that the feature vectors
learned for alignment are capturing a sense of the object category, and the canonical
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Figure 4.8: Results for Section 4.2.4. We test registration of partially visible Mod-
elNet data, comparing ICP (shown by orange points), and PointNetLK trained on
partially visible data (shown by blue points). We show that PointNetLK is able
to learn the distribution of partial data seen with a simulated sensor model, and
perform better at test-time.
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Figure 4.9: Results for Section 4.2.4. We test registration of partially visible Mod-
elNet data, comparing ICP (blue), PointNetLK trained on 3D data (orange), and
PointNetLK trained on partially visible data (green). Both PointNetLK models are
trained with max pool. We use 20 object categories for testing, which are unseen
during training. We find that training with partially visible data greatly improves
performance, even surpassing ICP. A registration is counted as successful if the fi-
nal alignment rotation error is less than 5 degrees and translation error is less than
0.01. Notice that PointNetLK has perfect performance at zero initial angle since we
subtract the mean of each point cloud, whereas ICP does not.

Figure 4.10: Results for Sec. 4.2.4. Registration of raw indoor RGBD scan from
Stanford S3DIS [6] with PointNetLK. The red cloud represents the full 3D template,
while the colored cloud represents the partial source scan to be registered. We use
a simulated sensor model as described in Sec. 4.2.4.
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orientation of that object. The network used for this experiment is trained using
max pool on full 3D models. We find that in many cases, such as in the airplane
example of Fig. 4.11, the PointNetLK cost function is globally minimized when
the correct orientation is attained, while the ICP cost function is not necessarily
minimized. In practice, this approach could work particularly well to identify the
correct orientation of objects within a category if the orientation is known up to one
or two axes of rotation.

4.3 Chapter Discussion

In this chapter, we have presented several methods for point cloud registration
using deep networks. These methods are each built upon the original PointNet
architecture, allowing our registration networks to process the point clouds directly
as opposed to through voxelization or other representations.

Some key takeaways from our analysis of deep registration methods are as follows:

• PointNetLK performs well in cases with low amounts of Gaussian-like noise
and when the template and source have similar sampling, and can both handle
large initial perturbations and small, fine alignments. When more noise is
present, PCRNet is a better option, likely because of the ability to learn the
registration task as opposed to PointNetLK.

• When the object category or specific object for registration is known, then
PCRNet has an advantage over PointNetLK. This is due to the ability to
learn object-specific registration representations from data.

• Our PointNet registration methods are competitive or better than ICP in many
cases, with comparable or less computation time even on CPU thanks to the
efficient computation of PointNet descriptors and lack of costly correspondence
step. Further, we can achieve results competitive with Go-ICP for a fraction
of the computational cost.

• For PointNetLK, we have shown the ability to learn better performance for
partially visible data, assuming that the sensor model is known during the
training phase. Further, we have shown that the network trained with the
sensor model on synthetic data (ModelNet40 [89]) can generalize to partially
visible data from real sensors (S3DIS [6]).

• For PointNetLK, we have shown the potential for registering different objects
of the same category. This has potential applications as part of a larger ob-
ject classification or semantic segmentation pipeline, where objects can be
registered to a canonical position to make object classification easier as was
explored in [96].

• An interesting extension of this work would be to use descriptors from the
PointNet++ network [69]. PointNet++ extends the global descriptor of Point-
Net, concatenating additional descriptors for local parts of a point cloud as
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Figure 4.11: Results for Section 4.2.5. PointNetLK can achieve a global minimum
when two different objects of the same category have the same orientation, whereas
ICP can fail. We use two different airplane models from ModelNet40, a biplane (a)
and a jetliner (b). (c) shows the initial (incorrect) configuration for alignment, where
the centroids each model are at the same location. The jetliner is then rotated about
the Z-axis through its centroid. The cost function for standard ICP and PointNetLK
during this rotation are plotted. The airplanes have the same orientation at −90◦

(ground truth). PointNetLK has a global minimum here, whereas ICP has global
minimum at 180◦. Points are sampled from object vertices.
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well. These local descriptors may enable a multi-scale registration approach
similar to that which is used frequently in image registration applications. In
such an approach, a coarse registration could be done on global descriptors,
followed by fine registration on progressively more local descriptors.
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Conclusion

This thesis has presented an exploration of registration techniques which utilize deep
learning. In the 2D case, we have shown the applicability of state-of-the-art deep
features for registration of UAV and satellite imagery for the task of UAV localiza-
tion. In the 3D case, we have shown how novel deep architectures can be developed
for point cloud registration, and how these architectures can lead to impressive
registration performance even on data which is far from the training distribution.

5.1 Benefits of Learning for Registration

Deep methods for registration continue to be an active topic of research, as we try
to ascertain the value of learning in registration. In registration, we have many
baseline methods which do not utilize machine learning and do not require large
datasets ahead of test time. It is therefore important to ask, what benefits have
been gained from adopting a machine learning approach for the classical problems
of registration?

A definite conclusion that we can draw about registration with deep learning, is
that it offers selectivity in the salient features for registration. Specifically, we can
train networks which place less weight on certain visual appearance charac-
teristics of template and source, and more weight on a shape similarities. For
instance, in the 2D case, we learned invariance to visual style (seasons, time of day)
and retained saliency of shape (buildings or other landmarks). In the 3D case, we
learned invariance to appearance variations such as noise, partiality, or even inter-
class variation, and retained saliency on overall object shape or object category to
perform successful registration. Indeed, this selectivity of shape over appearance is
often key in these and other registration problems, and should be considered a key
benefit of deep learning methods for registration.

Among other benefits of learning for registration, we have also seen a benefit of
speed as compared to many baseline methods. There is no need of costly point
correspondence and matching step as occurs in SIFT or ICP. This leads to deep
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registration methods having O(n) runtime as opposed to O(n2) in the number of
salient features. Further, deep methods are differentiable and can thus be integrated
into larger learning pipelines.

5.2 Future Work

As deep learning continues to penetrate classical robotics problems such as Simulta-
neous Localization and Mapping (SLAM), we will see increased interest in learning
pipelines for image and point cloud registration. Future work in this area is likely
to include more investigation into the possibility of Bundle Adjustment (BA) with
deep features, or differentiable BA which uses a final reconstruction to propagate
loss back into a learnable system.

Another important question to be addressed in future work is whether the loss func-
tion for registration should be based solely upon the data, solely upon the trans-
formation, or somewhere in between. For example, in the 2D case, loss functions
could be based on the pixel-wise (or feature-wise) error, on the error measured be-
tween the 8 parameters of estimated and ground truth homography, or the loss we
chose: the 4-corner loss, a proxy for the homography loss which is more conducive
to stochastic gradient descent since it is linear in the warp parameters. In the 3D
case, we have used both a Frobenius norm loss based on transformation parameters
(for PointNetLK) and an EMD loss computed directly on the data (for PCRNet
and Iterative PCRNet). These losses were chosen for each network specifically, and
we found that the Frobenius norm loss generally did not work well for PCRNet,
and the EMD loss did not work well for PointNetLK, however it is not abundantly
clear why. This discrepancy likely stems from the fact that PCRNet learns the task
of registration from scratch as opposed to PointNetLK, however we leave further
investigation of these properties to future work.
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