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Abstract

A dominant paradigm for learning-based approaches in
computer vision is training generic models, such as ResNet
for image recognition, or I3D for video understanding, on
large datasets and allowing them to discover the optimal
representation for the problem at hand. While this is an ob-
viously attractive approach, it is not applicable in all sce-
narios. We claim that action detection is one such challeng-
ing problem - the models that need to be trained are large,
and the labeled data is expensive to obtain. To address
this limitation, we propose to incorporate domain knowl-
edge into the structure of the model to simplify optimization.
In particular, we augment a standard I3D network with a
tracking module to aggregate long term motion patterns,
and use a graph convolutional network to reason about in-
teractions between actors and objects. Evaluated on the
challenging AVA dataset, the proposed approach improves
over the I3D baseline by 5.5% mAP and over the state-of-
the-art by 4.8% mAP.

1. Introduction

Consider the video sequence from the AVA dataset [15]
shown in Figure 1. It shows a person getting up and then
receiving a letter from another person, who is seated behind
a table. Out of the 2359296 pixels in the 36 frames of this
clip, what information is actually important for recognizing
and localizing this action? Key cues include the location
of the actor, his motion, and his interactions with the other
actor and the letter. The rest of the video content, such as
the color of the walls or the lamp on the table are irrelevant
and should be marginalized over. We use these intuitive
observations to design a new method for action detection.

State-of-the-art action detection approaches put a lot of
emphasis on actor localization [15, 21, 24, 48], but other
cues are largely ignored. For instance, Gu et al. [15] detect
humans and model their actions with an I3D [4] representa-
tion that is capable of capturing short-term motion patterns.
This allows them to achieve a significant improvement on
the challenging AVA dataset, but the performance on activi-
ties with large temporal extent remains poor. In our method,
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Figure 1. For action detection, it is critical to capture both the long-
term temporal information and spatial relationships between actors
and objects. We propose to incorporate this domain knowledge
into the architecture of deep learning models for action detection.

we aggregate local I3D features over actor tracks, which re-
sults in a significant gain in performance.

A few recent approaches model human-object interac-
tion. Gkioxari et al. [13] use a state-of-the-art 2D-object de-
tection framework [17] to detect action specific objects and
model human-object interactions in static images. Their ap-
proach assumes the object categories given and does not in-
tegrate any temporal information. Sun et al. [50] addressed
the problem of modeling human-human and human-object
interaction, by applying relational networks to explicitly
capture interactions between actors and objects in a scene.
Their method, however, does not directly model objects,
but instead considers every pixel in the frame to be an
object proxy. While this approach is indeed generic and
object-category agnostic, we argue that the lack of proper
object modeling hinders its performance. In a concurrent
work to [50], Wang et al. [56] use object proposals to lo-
calize the regions of interest and then employ graph con-
volutional networks [27] to combine the actor and object
representations and produce video-level action classifica-
tion. However, their approach does not address the action
detection problem. In our method we also model activ-
ities with actor-object graphs, but instead of aggregating
features over all the objects and actors in a scene we pro-
pose to structurally modeling actor-object and actor-actor
separately during both training and testing. Other works
that propose to capture action recognition with actor-object
graphs include [22, 40]. These methods, however, require
ground truth annotations of both actors and objects during



training and focus on a closed vocabulary of object cat-
egories. Our method addresses both of these limitations
by first adopting a weakly-supervised object detection ap-
proach for localizing the correct objects during training
time without explicit supervision, and secondly proposing a
simple modification to the state-of-the-art object detection
framework [17] which makes it category agnostic.

In this work we propose a model for action detection in
videos that explicitly models long-term human behaviour,
as well as human-human and human-object interactions. In
particular, our model extracts I3D [4] features for the frames
in a video sequence and, in parallel, detects persons and ob-
jects with an object detection approach modified from He
et al. [17] (Sec 3.1). It then tracks every actor over a 3-
second interval producing a set of tubelets, e.g. sequences
of bounding boxes over time [24, 26]. To this end a simple
and efficient heuristic tracker is proposed (Sec 3.2.1). The
tubelets are then combined with the detected objects to con-
struct an actor-centric graph (Sec 3.2.2). Features from an
I3D frame encoding are pooled to obtain a representation
for the nodes. Every edge in the graph captures a possible
human-human or human-object interaction. A classifier is
then trained on the edge features to produce the final pre-
dictions. Naively, such an approach requires ground truth
object annotation to train. To remove this requirement we
build on intuition from weakly-supervised object detection
and learn to integrate useful information from the objects at
training time automatically.

To summarize, this work has two main contributions: (1)
We propose a new method for action detection that explic-
itly captures long-term behaviour as well as human-human
and human-object interactions; (2) We demonstration state-
of-the-art results on the challenging AVA dataset, improv-
ing over the best published method by 4.8%, and provide a
comprehensive ablative analysis of our approach.

2. Related work
Action classification is one of the fundamental problems in
computer vision. Early approaches relied on hand-crafted
features [54] that track pixels over time and then aggre-
gated their motion statistics into compact video descriptors.
With the arrival of deep learning these methods have been
outperformed by two-stream networks [47] that take both
raw images and optical flow fields as input to CNNs [30],
which are trained end-to-end on large datasets. These meth-
ods are limited by the 2D nature of CNN representations.
This limitation has been addressed by Tran et al. [53] who
extended CNN filters to the temporal dimension resulting
in 3D convolutional networks. More recently, Carreira and
Zisserman [4] have integrated 3D convolutions into a state-
of-the-art 2D CNN architecture [51], resulting in Inflated
3D ConvNet (I3D). Wang et al. [55], have extended this ar-
chitecture with non-local blocks that facilitate fine-grained

action recognition. We use an I3D with non-local blocks as
the video feature representation in our model.
Action localization can refer to spatial, temporal, or spatio-
temporal localization of actions in videos. In this work we
study the problem of spatial action localization. Early ac-
tion detection methods [28, 39] generate hand-crafted fea-
tures from videos and train SVM classifier. Early deep-
learning based action localization models [14, 37, 44, 48,
57] are developed on top of 2D object detection architec-
tures. They detect actors in every frame and recognize ac-
tivities using 2D appearance features. Kalogeiton et al. [24]
proposed to predict short tubelets instead of boxes by tak-
ing several frames as input. However their model only uses
tubelets for temporal localization. In Li et al. [31] the au-
thors apply an LSTM [10] on top of the tubelet features to
exploit long-term temporal information for action detection.
However, their model also relies on a 2D representation and
is not trained end-to-end. TCNN [21] uses C3D as a feature
representation for action localization, but they only extract
features for a single bounding box in the middle of a short
sequence of frames. Finally, Gu et al. [15] propose to use
I3D as a feature representation, which takes longer video
sequences as input, but also does not aggregate the features
over a tubelet. Our model builds upon the success of I3D for
feature extraction. Instead of extracting I3D features for the
entire video given a single location, we track actors based
on their appearance and extract their feature representations
along the entire video clip, which enables learning discrim-
inate features for actions with long temporal dependency.
Object detection is a key component of most of the ac-
tion detection frameworks. Traditional approaches relied on
hand-crafted features and part-based models [9]. Modern
deep-learning based methods are either based on RCNN-
like [11, 12, 17, 42], or SSD-like architectures [33, 41]. In
our model, we use Mask-RCNN [17] for person and object
detection. To detect any objects that participate in interac-
tions we employ the method of Dave et al. [7], who propose
a simple modification of the training procedure of Mask-
RCNN, making the model category-agnostic.
Object tracking is a well studied problem. Traditional
tracking algorithms [1, 18, 23] used hand-crafted appear-
ance features to perform online tracking of the bounding
box in the first frame. Despite their efficiency, the perfor-
mance of these methods on realistic videos is sub-optimal.
State-of-the-art, deep learning-based trackers [8, 20, 34,
52, 61] demonstrate a better performance and are more ro-
bust. Our tracking module, following the tracking by de-
tection paradigm, first detects all humans in consecutive
video frames. Instead of online fine-tuning the model on
the detected actors in the first frame, we propose to train a
siamese-network [3] offline with a triplet loss.

Visual relationship modeling for human-human and
human-object pairs increases performance in a variety of
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Figure 2. Overview of our proposed framework. We model both long-term person behaviour and human-human, human-object interactions
structurally in a unified framework. The actors across the video are associated to generate actor tubelets for learning long temporal
dependency. The features from actor tubelets and object proposals are then used to construct a relation graph to model human-object
manipulation and human-human interaction actions. The output of our model are actor-centric actions.

tasks including action recognition [56] and image cap-
tioning [35, 38]. There have been several works [5, 13,
16] on human-object interaction modeling in images that
achieved significant improvements on HICO-DET [6] and
V-COCO [32] datasets. Kalogeiton et al. [25] train ob-
ject and action detection models together and jointly predict
object-action pairs. Their model requires all annotation of
objects and only uses 2D CNNs. Mettes et al. [36] encode
the features from actors, objects and their spatial relation
into a single representation to model actions for zero-shot
learning. Recently, Qi et al. [40] propose a framework for
action localization in videos which represents humans, ob-
jects and their interactions with a graphical model. It then
uses convolutional LSTMs [59] to model the evolution of
the graph over time. Their model, however, uses 2D CNNs
for feature representation, requires ground truth annotations
of the object boxes for training and is only evaluated on a
toy dataset [29]. Baradel et al. [2] propose to use object rela-
tion network to model the temporal evolution of objects for
action recognition. However, their method also relies on ob-
ject class annotation and they are not modeling the relation-
ship between the objects and the actors. Our model does not
require object annotations which allows us to demonstrate
results in a more realistic scenario. Similarly to us, Sun et
al. [50] propose to implicitly model the interactions between
actors and objects without object annotations for training.
To this end they use relational networks [45] which avoid
explicitly modeling objects by treating each location in an
image as an object proxy and aggregating the representa-
tions across all the locations. In our evaluation we show that
explicit modeling of objects and integration of the relevant
objects in a frame allows us to learn more discriminative
features.

3. Method

We propose a method for action detection in videos
that explicitly models the long-term behaviour of individual

people, along with human-human and human-object inter-
actions. The architecture of our model is shown in Figure 2.
It takes a sequence of video frames as input (a) and passes
them through an I3D network (b). In parallel, a state-of-
the-art object detection model [17] (c) is applied to each
frame to produce human and object bounding boxes. Hu-
man bounding boxes are then combined into tubelets (a se-
quence of bounding boxes over time) (d) with an association
module. The tubelets and object boxes (as nodes) are then
used to construct an actor-centric graph for every actor in
the video clip (e).

In the actor-centric graph, we define two kinds of nodes,
the actor node and the object node, along with two kinds of
edges, representing human-object manipulation and human-
human interaction. The object nodes are generated by per-
forming Region of Interest (ROI) Pooling from the I3D rep-
resentation. The actor nodes, whose temporal behavior we
wish to model, are obtained by aggregating I3D features
with graph convolutions over the corresponding tubelets.
The features from the graph edges are used as the final rep-
resentation for action classification. The whole model, ex-
cept for the 2D object detector, is trained in an end-to-end
fashion requiring only actor bounding boxes and ground
truth actions. In the rest of this section, we will first present
our models for video representation and object detection.
Then, we explain how we integrate temporal information
using an appearance-based multi-object tracking module.
Finally, we will demonstrate how we build the actor-centric
graph, and how it is used to generate action predictions.

3.1. Spatio-temporal feature extraction

The first step in our action detection pipeline is to extract
two sets of features from videos: an unstructured video em-
bedding, and a collection of object and actor region propos-
als.
Unstructured video embedding. To exploit the spatio-
temporal structure of the video input, we use an inflated 3D
ConvNet (I3D) with non-local layers [56]. In a 3D Con-



vNet, videos are modeled as a dense sampling of x, y, t
coordinates, and the corresponding learned filters operate
in both spatial and temporal domains, thus capturing short-
term motion patterns. We also use non-local layers [55] to
aggregate features across the entire image, allowing our net-
work to reason beyond the extend of local convolutional fil-
ters. In our scenario, the input is a 3 seconds video clip with
36 frames. Our final video embedding retains its temporal
dimension, enabling us to explicitly use temporal informa-
tion in the later stages of our model.
Appearance based actors/objects proposal. We take ad-
vantage of the success of RCNN-like models [42] for ob-
ject detection to identify regions of interest. In our model,
we are interested in identifying the spatial location of the
actors and potential objects that are being manipulated by
them. Since our goal is to understand actions performed by
humans, independent of the categories of objects, we use
a category-agnostic detector proposed in [7] to localize the
objects. This model achieves a higher recall for the objects
that are not among the 80 categories labeled in MS-COCO.
Specifically, we train Mask-RCNN [17] on MS-COCO [32]
by collapsing all the category labels into a single object
label, resulting in a category-agnostic object detector. We
use a standard person detector for localizing the actors [17].

3.2. Action detection with temporal context

To enable our action detection system to capture long-
term temporal dependencies, we integrate multi-object
tracking into our action detection framework. Instead of
generating explicit action proposals, we track each actor
across frames in the entire video. Then, with the actor ap-
pearance information stored in a node and tracking infor-
mation in edges, we aggregate each actor’s movement by
using graph convolutions.

3.2.1 Multi-actor association module

We note that some actions are composed of multiple unit
movements, for example, the action ’get up’ is composed
of siting, moving upward, and standing. We posit that con-
fidently tracking actors across multiple frames and integrat-
ing these local representations in a principled way is cru-
cial for learning discriminative representations for actions
that are composed of multiple movements. Previous meth-
ods that recognize actions from a few frames and link them
via actioness score [48] are not able to maintain consistent
tracks, since, unlike the appearance features, the features
of a model trained for action recognition differ significantly
across frames due to the actor’s movement.

Motivated by this observation, we introduce a multi-
actor association module that aims to associate the bound-
ing box proposals of each actor throughout the video clip.
Instead of linking action bounding box proposals based on

actionness scores, we associate actor bounding boxes based
on the similarity of actor appearance features.

We follow the tracking-by-detection paradigm, and build
an association module to perform the linking. Specifically,
we first train an appearance feature encoding, and then ex-
plicitly search over neighbor regions in the next frame for an
appearance match. To learn an appearance feature encoding
for distinguishing different actors, we train a Siamese net-
work [19] with a triplet loss [46]. After we obtain the ap-
pearance feature encoding, we search among the bounding
box proposals in consecutive frames and match the bound-
ing boxes with highest appearance similarity.

3.2.2 Actor tubelet learning using graphs

Recent works in action detection attempt to predict an ac-
tion directly from the features extracted from I3D [15]. We
claim that integrating I3D features over multiple frames is
crucial for recognizing long-term activities. A naive ap-
proach would be to simply average these features along
the temporal dimension. Instead we propose to model
the behavior of each actor with graph convolutional net-
works [27]. We propose to encode the nodes of the person
graph with features extracted from an I3D backbone with
RoIAlign [17]. The edges are obtained from the tubelets
constructed by our multi-actor association module. While
performing graph convolutions, the movement information
of each actor box is aggregated by the graph. Formally, let
us assume that there are N actors in a video. Each actor is
represented by a feature vector of dimension D. T is the
temporal dimension. We denote by G the affinity matrix of
the actor tubelet graph with dimensionN×T , and byX the
actor features with dimension T × D. The graph convolu-
tion operation can the be written as Y = GXW , where W
is the matrix of weights with dimension D×D. The output
of the graph Y has the dimension N × D and aggregates
the actors’ features along the temporal axis. The graph con-
volution operations can also be stacked in multiple layers to
learn more discriminative features.

3.3. Interactions between actors and objects

To recognize actions associated with interactions, it is
critical to exploit the relations between the actor of interest,
other actors, and objects in the scene. However, modeling
all such possible relationships can become intractable. We
propose to use class-agnostic features from ROI proposals
to build a relation graph and implicitly perform relation rea-
soning given only action annotations.

To integrate information from the other actors and ob-
jects, we construct two relation graphs, one to model
human-object manipulation and the other one to model
human-human interaction. The human-object graph con-
nects each actor of interest with the other objects and the



human-human graph connects each actor of interest with
the other actors. The features of actor nodes come from the
actor tubelets after the multi-actor association module and
we denote them with H = [h1, h2, ..., hN ] where N is the
number of actors in the middle frame of a clip. The features
of the objects are generated by ROI pooling of I3D repre-
sentation and are denoted as O = [o1, o2, ...oM ] where M
is the number of objects in the whole video.

To model relationships between a selected actor and
other subjects, we can build on the concepts of hard and soft
attention models [60]. One way to represent the features of
the actions is to first localize the correct subjects among all
the objects and all the other actors (except the target ac-
tor). Then, one can use the features from the actor and the
identified subjects, which we refer as hard relation graph.
Alternatively, in the soft relation graph, instead of explic-
itly localizing the subjects, we integrate this information by
implicitly learning how much they relate to the target actor.
We will further demonstrate how we implement soft rela-
tion graph and hard relation graph to learn discriminative
feature representation for interactions.
Hard relation graph. We explicitly localize the correct ob-
jects and actors for each target actor to represent the object
manipulation actions and human interaction actions. The
object manipulation action is represented through linking
an actor node and the object nodes, while the human in-
teraction action is represented through the edges between
one actor and the other actor nodes. Given actor node
features H = [h1, h2, ..., hN ] and object node features
O = [o1, o2, ...oM ], the object-manipulation relation fea-
ture for the ith target actor and the jth object can be repre-
sented by concatenating the features of the two nodes with

fhi,oj = Fo([hi, oj ]), (1)

where Fo is the feature extraction function for object ma-
nipulation. Similarly, with Fh being the feature extraction
function for human interaction, we represent the human in-
teraction relation feature for the ith and the kth actor with

fhi,hk
= Fh([hi, hk]), (2)

In the absence of ground truth annotations for the target
objects, we resort to an approach inspired by multi-instance
learning for object detection, and select the region with the
maximal score for the ground truth action. Specifically, for
an object manipulation action centered at the ith actor,

p̂io = max
j
σ(fhi,oj ), (3)

where σ is the sigmoid function, and p̂io is the human-
object manipulation action prediction for the ith actor. Sim-
ilarly, the prediction for human interaction actions is

p̂ih = max
k

σ(fhi,hk
), (4)

where p̂ih is the human-human interaction action prediction
for the ith actor.
Soft relation graph. The hard approach described above
is appealing conceptually, but results in instability during
training. We thus propose an alternative method that avoids
making hard decisions about the ground truth objects by ag-
gregating the information over all the objects in the scene.
We define the strength of a relation between the actor of
interest and another actor or object as the inverse of Eu-
clidean distance between the two nodes’ features after a fea-
ture transformation.

The transformations for actor features and object fea-
tures are defined with with φh and φo respectively. Given
actor node features H = [h1, h2, ..., hN ] and object node
features O = [o1, o2, ...oM ], we first transform them to
obtain φh(H) = [φh(h1), φh(h2), ..., φh(hN )], φo(O) =
[φo(o1), φo(o2), ..., φo(oN )]. The edge between the ith ac-
tor and the jth object is represented with

fo(hi, oj) =
1

‖φh(hi)− φo(oj)‖2
. (5)

The edge between the ith actor and the kth actor is repre-
sented similarly.

We further normalize the edge weights above so that they
sum to one. We adopt softmax function for each actor with

Go
ij =

exp fo(hi, oj)∑M
m=1 exp fo(hi, om)

, (6)

Gh
ik =

exp fh(hi, hk)∑N−1
n=1 exp fh(hi, hn)

, (7)

where k is 1...N except i.
After computing the graph representation, the object ma-

nipulation and human interaction actions for the ith actor
are represented with

F o
i = φh(hi) +

M∑
j=1

Go
ijφo(oj), (8)

Fh
i = φh(hi) +

N−1∑
k=1

Gh
ikφh(hk). (9)

The final action predictions are obtained by logistic clas-
sifiers applied to the feature representation in the Equa-
tions 8 and 9 for human-human, and human-object inter-
action classes respectively.

4. Experiments
In this section, we first introduce the dataset and the

metrics used for the evaluation of our model, and describe
the implementation details. Next, we perform an exten-
sive ablation analysis, demonstrating the effectiveness of
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Figure 3. Per-category results for the proposed model and the baseline on the validation set of AVA.

our model on integrating temporal and spatial context infor-
mation. Finally we compare our model with state-of-the-art
methods both quantitatively and qualitatively.

4.1. Datasets and metric

We develop our model on the AVA version 2.1 bench-
mark dataset [15], where action localization is evaluated
on the middle frame of three seconds videos clips. The
video clips are extracted from movies and extensively anno-
tated with bounding boxes of all the actors and the actions
they are performing. Thus, this dataset is realistic both in
terms of appearance and in terms of the label distribution.
It contains 211k training samples and 57k validation sam-
ples. There are 80 categories in the dataset and 60 categories
with no less than 25 validation samples are used for evalu-
ation. We report frame based mean average precision with
an intersection-over-union (IOU) threshold 0.5.

We also evaluate the performance of our model on the
UCF-101 [49] dataset. We report the results on split1 which
contains 2293 training and 914 validation clips. There are
24 action categories. As in AVA, we report frame based
mean average precision with an IOU threshold 0.5.

4.2. Implementation details

Our model is implemented in the Caffe2 framework. We
follow the schema as proposed in [4, 55] to pre-train our
video backbone model. We use the ResNet-50 architecture
and pretrain it on the ImageNet dataset [43]. The model is
then inflated into 3D ConvNet as proposed in [4] (I3D), and
pretrained on Kinetics dataset [4]. We augment our back-
bone model with non-local operations [55] after Res2, Res3,
and Res4 blocks. We further fine tune it end-to-end with
our proposed spatio-temporal model. Our video backbone
model takes video clips of 36 frames as input corresponding
to 3-second video clips at 12 fps. The frames are first scaled
to 272 × 272, and randomly cropped to 256 × 256.

For region proposal model, we use Mask-RCNN [17]
with a ResNet-50 backbone. We limit the set of labels to
person and object only. The region proposal model is
pretrained on COCO dataset [32] and further fine tuned on
AVA. We use 0.5 as threshold for object bounding boxes

Model mAP
Baseline 16.7

Person similarity graph on ROIs 20.1
Object similarity graph on ROIs 20.3

Actor tubelets model 21.1
Actor tubelets + hard relation graph module 21.5
Actor tubelets + soft relation graph module 22.2

Table 1. Analysis of different components of our model on the
validation set of AVA.

and 0.9 for person bounding boxes.
We trained our model on 8-GPU machine where each

GPU has 3 video clips as mini-batch. The total batch size
is 24. We freeze parameters in batch normalization layers
during training and apply a drop out layer before the final
layer. We use a drop out rate of 0.3. We first train for 90K it-
eration with learning rate 0.00125 and then train for another
10K iterations with learning rate 0.000125.

For the tracking module, we use a ResNet-50 architec-
ture for appearance feature encoding and triplet loss [46] to
learn representative appearance features for tracking actors
in the video. The model takes three images as input where
two of them are the cropped images of the same actor at dif-
ferent time (ranging from 0.02s to 10s) and the third one is
the cropped area of a different actor sampled from the same
period. The output feature dimension is 128 and we use
L2 distance as similarity metric. The model is fine tuned
from ImageNet pretrained weights for 100K iterations with
a batch size of 64. While tracking, we search over region
of interest proposals with an overlap larger than 0.5 with
the bounding box in the previous frame, and link the boxes
which minimize the L2 distance in the embedding space.

4.3. Ablation analysis

We first perform an ablation analysis of our framework
to understand the effect of each component of the model in
Table 1. We then perform a more in-depth analysis of the
model by separately evaluating human pose, object manip-
ulation, and human interaction classes in Table 2.

All our models are developed on the non-local aug-
mented I3D backbone. The baseline averages the I3D fea-



Model Human pose Object manipulation Human interaction
Baseline 35.7 8.9 16.9

Person similarity graph on ROIs 39.1 12.1 20.1
Object similarity graph on ROIs 39.3 13.0 20.0

Actor tubelets model 40.6 13.4 20.9
Actor tubelets + hard relation graph module 41.0 13.2 22.2
Actor tubelets + soft relation graph module 41.9 14.3 22.0

Table 2. Ablation analysis on human pose, human-object manipulation and human-human interaction categories.

tures over the temporal dimension, and uses actor bounding
boxes to pool the features for action recognition. It achieves
an mAP of 16.7 on the validation set, which is slightly im-
proved compared to the baseline established in [50].

We now introduce two additional baselines. Wang et al.
[56] propose to use a similarity graph and a spatio-temporal
graph to integrate information spatially and temporally for
action recognition. We adapt their work to the domain of
action detection, where actor proposals occur across the
frames and the similarity graph integrates information over
frames. We observe that the model that explicitly builds a
similarity graph on all human proposals in the whole video
achieves an mAP 20.1 on the validation set. As a second
baseline, we build a similarity graph model over all the ob-
ject proposals in the video clip. This model includes both
humans and objects to provide information for modeling in-
teractions, and achieves a score of 20.3 mAP. By integrating
information from regions of interest spatially and tempo-
rally, both the person similarity graph and the object simi-
larity graph achieve a significant increase over the baseline.

We now analyze different components of our approach.
The actor tubelets model explicitly connects the same actor
across frames and applies graph convolutions to aggregate
the motion information. This basic variant, which does not
model actor interactions achieves an mAP score of 21.1,
which is a 4.4% improvement over the baseline and 1%
improvement over the person similarity graph. Notice that
both approaches use person regions of interest. The better
performance of actor tubelets model shows that explicitly
tracking the actor helps our model to learn a better repre-
sentation for action detection. Next we evaluate our hard re-
lation and soft relation graph for learning actions involving
interaction. The hard relation graph model achieves mAP
21.5 and the soft relation graph model achieves the best
performance with mAP 22.2. This is probably due to the
instability in training of the hard variant. The performance
boost from our relation graph models further validates the
efficiency of our proposed structured network architecture
for modelling temporal dependencies and interactions.

In addition to the averaged score over all 60 test classes,
we also show performance on the three action categories:
human pose, object manipulation and human interaction in
Table 2. We observe that our actor tubelet model largely

Model mAP
Single Frame model [15] 14.2

ACRN [50] 17.4
Our model 22.2

Table 3. Comparison of our model to the state-of-the-art methods
on the validation set of AVA.

outperforms the person graph model and the baseline on
human pose categories and object manipulation categories.
Further with soft relation graph, we observe that the mAP
on human pose, object manipulation and human interaction
action increases 6.2, 5.4 and 5.1 compared to the baseline
respectively which demonstrates the effectiveness of our
model for modeling both temporal dependency and inter-
actions. We also visualize per-class mAP comparing our
actor tubelet with soft relation graph model and the baseline
in Figure 2. According to our observation, the largest im-
provement over the baseline is achieved on categories drive,
play musical instrument and hand clap which are actions re-
quiring learning long term temporal dependencies and cap-
turing interactions with objects.

4.4. Comparison to the state-of-the-art

In this section we compare our best model to the state-
of-the-art models on the AVA dataset and on UCF-101-24
dataset [49]. The performance on AVA is shown in the
Table 3. Our proposed approach outperforms the method
of Sun et al., [50] by 4.8%. This is due to the inductive
biases encoded into the architecture of our model via the
actor tracking module, human-human and human-object re-
lational graphs. In contrast, ACRN [50] models relation
by considering every pixel in the frame as an object proxy
which is a less strong constraint. It is also not able to inte-
grate long-term human motion information.

We additionally evaluate our model on UCF-101-24
dataset, where our model with an actor tubelet and a human-
object soft relation graph achieves an mAP score of 77.9,
compared to 72.0 achieved by the baseline. We note that our
model is still 0.9 mAP points bellow the state-of-the-art re-
ported in [58]. However, their model uses an S3D network
as a backbone, which is shown to give a 6.8 mAP boost
compared to the I3D. This suggests that our performance
can be further improved by switching to a better backbone.
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Figure 4. We visualize the performance of our model and the baseline. We show actor and object detections used by our model in the first
column, the corresponding instantiations of the graphs in the second column, and baseline results in the third column.

4.5. Qualitative analysis

In order to qualitatively evaluate our model, we verify its
ability to capture temporal information and contextual rela-
tions. We visualize video clips and provide a performance
comparison on several challenging examples in Figure 4. In
these examples actors are performing actions with nontriv-
ial temporal behavior and challenging object interactions.

In the first row, we show a man eating with a fork. The
baseline confuses the action with hold, failing to incor-
porate information spatially from the dining table and the
fork. Our human-object relational graph in contrast is able
to aggregate this information efficiently. As shown in the
third column, the edge between the person and the fork has
a high value, which helps our model to make a correct pre-
diction.

The second row shows two children who are fighting.
The baseline mistakenly predicts the category watch, since
it does not integrate the features from both actors. Our
model, however, use a human-human relation graph to rea-
son about both actors jointly. As shown in the visualization
of the graph, the edge between the key actor and the boy he
is fighting with has a high value, which helps our model to
correctly recognize the action.

In the third row, we show the action fall down. To
model this action, it is crucial to integrate information from
both temporal and spatial domains as it is uniquely defined
as a sequence of movements from standing to lying. Our
model is able to correctly recognize this class by accumu-
lating the temporal information with large spatial displace-

ments. However, the baseline model mistakenly predicts
the action as run, since it only integrates features in a fixed
bounding box area.

5. Conclusion
We proposed a structured model for action detection that

explicitly models long-term temporal behavior as well as
object manipulation and human interaction. Our model
demonstrates large performance gains over the state-of-the-
art, which highlights the effectiveness of our method in
modeling temporal dependencies and reasoning about inter-
actions. More importantly, the success of our model shows
the importance of integrating temporal and relational infor-
mation in the model architecture for the task of action de-
tection.
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[28] Alexander Kläser, Marcin Marszałek, Cordelia Schmid, and
Andrew Zisserman. Human focused action localization in
video. In ECCV, 2010. 2

[29] Hema S Koppula and Ashutosh Saxena. Anticipating hu-
man activities using object affordances for reactive robotic
response. TPAMI, 38(1):14–29, 2016. 3

[30] Yann LeCun, Yoshua Bengio, et al. Convolutional networks
for images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995. 2

[31] Dong Li, Zhaofan Qiu, Qi Dai, Ting Yao, and Tao Mei. Re-
current tubelet proposal and recognition networks for action
detection. In ECCV, 2018. 2

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014. 3, 4, 6

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In ECCV, 2016.
2

[34] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan
Yang. Hierarchical convolutional features for visual tracking.
In ICCV, 2015. 2

[35] Chih-Yao Ma, Asim Kadav, Iain Melvin, Zsolt Kira, Ghassan
AlRegib, and Hans Peter Graf. Attend and interact: Higher-
order object interactions for video understanding. CVPR,
2018. 3

[36] Pascal Mettes and Cees GM Snoek. Spatial-aware object
embeddings for zero-shot localization and classification of
actions. In ICCV, pages 4443–4452, 2017. 3

[37] Xiaojiang Peng and Cordelia Schmid. Multi-region two-
stream r-cnn for action detection. In ECCV, 2016. 2

[38] Julia Peyre, Ivan Laptev, Cordelia Schmid, and Josef Sivic.
Weakly-supervised learning of visual relations. In ICCV,
2017. 3

[39] Alessandro Prest, Vittorio Ferrari, and Cordelia Schmid.
Explicit modeling of human-object interactions in realistic
videos. TPAMI, 35(4):835–848, 2013. 2



[40] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen,
and Song-Chun Zhu. Learning human-object interactions by
graph parsing neural networks. ECCV, 2018. 1, 3

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, 2016. 2

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NIPS, 2015. 2, 4

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, 115(3):211–252,
2015. 6

[44] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Deep learning for detecting multi-
ple space-time action tubes in videos. BMVC, 2016. 2

[45] Adam Santoro, David Raposo, David G Barrett, Mateusz
Malinowski, Razvan Pascanu, Peter Battaglia, and Tim Lilli-
crap. A simple neural network module for relational reason-
ing. In NIPS, 2017. 3

[46] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
FaceNet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 4, 6

[47] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In
NIPS, pages 568–576, 2014. 2

[48] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. In ICCV,
2017. 1, 2, 4

[49] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. coRR, 2012. 6, 7

[50] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-
phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric
relation network. ECCV, 2018. 1, 3, 7

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 2

[52] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.
Siamese instance search for tracking. In CVPR, 2016. 2

[53] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In ICCV, 2015. 2

[54] Heng Wang, Alexander Kläser, Cordelia Schmid, and
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