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Abstract

Supervised learning has been used in robotics to solve various tasks like
navigation, fine manipulation, etc. While it has shown a promising result,
in most cases the supervision comes from the human agent. However,
relying on human is a huge bottleneck to scale up these approaches. In
this thesis, we try to take the human out of the loop and try to solve
the task in a self-supervised manner. More specifically, we have applied
self-supervised learning to 2 tasks, for drone navigation and exploration in
reinforcement learning. In drone navigation, drone first collides with lots of
objects and based on it, it learns a policy to avoid them. In reinforcement
learning, we try to learn exploration policy in a self-supervised manner
for both stochastic and deterministic environment.

How do you learn to navigate an Unmanned Aerial Vehicle (UAV) and
avoid obstacles? One approach is to use a small dataset collected by
human experts: however, high capacity learning algorithms tend to overfit
when trained with little data. An alternative is to use simulation. But
the gap between simulation and real world remains large especially for
perception problems. The reason most research avoids using large-scale
real data is the fear of crashes! In this work, we propose to bite the
bullet and collect a dataset of crashes itself! We build a drone whose
sole purpose is to crash into objects: it samples naive trajectories and
crashes into random objects. We crash our drone 11,500 times to create
one of the biggest UAV crash dataset. This dataset captures the different
ways in which a UAV can crash. We use all this negative flying data
in conjunction with positive data sampled from the same trajectories to
learn a simple yet powerful policy for UAV navigation. We show that this
simple self-supervised model is quite effective in navigating the UAV even
in extremely cluttered environments with dynamic obstacles including
humans.

Exploration has been a long standing problem in both model-based and
model-free learning methods for sensorimotor control. There have been
major advances in recent years demonstrated in noise-free, non-stochastic
domains such as video games and simulation. However, most of the current
formulations get stuck when there are stochastic dynamics. In this work,
we propose a formulation for exploration inspired from the work in active
learning literature. Specifically, we train an ensemble of dynamics models
and incentivize the agent to maximize the disagreement or variance of
those ensembles. We show that this formulation works as well as other
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formulations in non-stochastic scenarios, and is able to explore better in
scenarios with stochastic-dynamics. Further, we show that this objective
can be leveraged to perform differentiable policy optimization. This leads
to a sample efficient exploration policy. We show experiments on a large
number of standard environments to demonstrate the efficacy of this
approach. Furthermore, we implement our exploration algorithm on a
real robot which learns to interact with objects completely from scratch.
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Chapter 1

Self-Supervised Drone Navigation

Policy

1.1 Introduction

How do you navigate an autonomous system and avoid obstacles? What is the right

approach and data to learn how to navigate? Should we use an end-to-end approach

or should there be intermediate representations such as 3D? These are some of the

fundamental questions that needs to be answered for solving the indoor navigation of

unmanned air vehicle (UAV) and other autonomous systems. Most early research

focused on a two-step approach: the first step being perception where underlying

occupancy/obstacle map is estimated; the second step is to use the predicted depth

map to issue motor commands to travel in freespace [52], [65], [26]. While the two

step-approach seems reasonable, the cost of sensors and unrecoverable errors from

perception make it infeasible.

Another alternative is to use a monocular camera and learn to predict the motor

commands. But how should we learn the mapping from input images to the motor

commands? What should be the right data to learn this mapping? One possibility

is to use imitation learning [49]. In imitation learning setting, we have a user who

provides trajectories to train the flying policy. In order to visit the states not sampled

by expert trajectories, they use the learned policy with human corrective actions to
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CHAPTER 1. SELF-SUPERVISED DRONE NAVIGATION POLICY

train the policy in iterative manner. But learning in such scenarios is restricted to

small datasets since human experts are the bottlenecks in providing the training data.

Therefore, such approaches cannot exploit high-capacity learning algorithms to train

their policies.

Recently, there has been a growing interest in using self-supervised learning for

variety of tasks like navigation [68], grasping [46] and pushing/poking [3]. Can we

use self-supervised learning to remove the labeling bottleneck of imitation learning?

But how do we collect data for self-supervised learning? In contemporary work,

Sadeghi and Levine [51] use Reinforcement Learning (RL) in simulation to train the

navigation policy of the drone. They focus on using simulations to avoid collisions

that are inevitable since RL-techniques involve a trial-and-error component. They

also demonstrate how a policy learned in simulation can transfer to real world without

any retraining. But is it really true that simulation-based training can work out of

box in real world? Most approaches in computer vision suggest otherwise and require

small amounts of real-world data for adaptation. We note that the testing scenarios

in [51] consist mostly of empty corridors where perspective cues are sufficient for

navigation [7]. These perspective cues are captured in simulation as well. However,

when it comes to navigation in cluttered environment (such as one shown in figure ??),

the gap between real and simulation widens dramatically. So, how can we collect

data for self-supervised learning in real-world itself? Most approaches avoid self-

supervised learning in real-world due to fear of collisions. Instead of finding ways to

avoid collisions and crashes, we propose to bite the bullet and collect a dataset of

crashes itself! We modified the publicly available Parrot Ar-Drone 2.0 and developed

a software to enable it to crash autonomously into obstacles and recover from the

impact. This enabled us to collect data for around 11,500 crashes. This dataset

represents the different ways in which UAV can collide with obstacles. It also encodes

the information about how a drone should not fly. Based on how far (in terms of

time) data was collected from the time of collision, we annotated the data into a

positive and a negative class. Using this self-annotated data we learned a simple

binary classifier network which a given image tries to predict whether the drone

should move forward or not. We show that this simple self-supervised paradigm is

quite effective in navigating the UAV even in extremely cluttered environments with

dynamic obstacles like humans.
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CHAPTER 1. SELF-SUPERVISED DRONE NAVIGATION POLICY

Figure 1.1: In this paper, we focus on learning how to navigate an UAV system.
Specifically, we focus on indoor cluttered environment for flying. Instead of using
small datasets of imitation learning or performing navigation via intermediate rep-
resentations such as depth; we collect a large-scale dataset of drone crashes. This
dataset acts as a negative instruction and teaches the drone how NOT to crash. We
show our simple learning strategy outperforms competitive approaches using the
power of large data.

1.2 Related work

This work, which combines self supervised learning with flying a drone in an indoor

environment, touches upon the broad fields of robot learning and UAV control. We

briefly describe these works and their connections to our method.

1.2.1 UAV control

Controlling UAVs has been a widely studied area motivated by applications in

surveillance and transportation. The most prevalent approaches make use of onboard

range sensors to fly autonomously while avoiding obstacles [9, 48, 52]. This is however

not practical for publicly available drones that often have low battery life and low

load carrying capacity. One can also use stereo vision based estimation [2, 18] with

light and cheap cameras. However stereo matching often fails on plain surfaces like

the white walls of an office.

Most of the methods described so far use multiple sensors to decide control

parameters for an UAV. This often leads to higher cost, poor realtime response and
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CHAPTER 1. SELF-SUPERVISED DRONE NAVIGATION POLICY

bulkier systems. [50] used cheap, light optical flow sensors to control an UAV in

indoor setting, but was not able to achieve full autonomy without human intervention.

[6] showed promising use of optical flow for full autonomy. However results have only

shown on limited outdoor environment (which are not as cluttered as the one we face

in indoor setting). Monocular camera based methods [7] use vanishing points as a

guidance for flying drone in indoor environment, but still rely on range sensors for

collision avoidance.

A more recent trend of approaches has been in using learning based methods

to infer flying control for the UAVs. Researchers [49] have used imitation learning

strategies to transfer human demonstrations to autonomous navigation. This however

fails to collect any negative examples, since humans never crash drones into avoidable

obstacles. Because of this data bias, these methods fail to generalize to trajectories

outside the training demonstrations from human controllers. [30] has shown successful

onboard implementation of self-supervised depth estimator from images to control

miniature UAV. However results are shown in single, small indoor environment.

Another recent idea is to use simulators to generate this drone data [51, 58].

However transferring simulator learned policies to the real world works well only in

simplistic scenarios and often require additional training on real-world data.

1.2.2 Deep learning for robots

Learning from trial and error has regained focus in robotics. Self supervised methods [3,

33, 45, 46], show how large scale data collection in the real world can be used to

learn tasks like grasping and pushing objects in a tabletop environment. Our work

extends this idea of self supervision to flying a drone in an indoor environment. Deep

reinforcement learning methods [39] have shown impressive results, however they are

too data intensive (order of million examples) for our task of drone flying.

A key component of deep learning, is the high amount of data required to train

these generalizable models [22, 29]. This is where self-supervised learning comes

into the picture by allowing the collection of high amounts of data with minimal

human supervision. To the best of our knowledge, this is the first large scale effort in

collecting more than 40 hours of real drone flight time data which we show is crucial

in learning to fly.
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CHAPTER 1. SELF-SUPERVISED DRONE NAVIGATION POLICY

Figure 1.2: We randomly hit objects with our drone more than 11,500 times over a
diverse range of environments, This collection of collision trajectories is performed
completely autonomously.

1.3 Approach

We now describe details of our data driven flying approach with discussions on

methodologies for data collection and learning. We further describe our hardware

setup and implementation for reproducibility.

1.3.1 Hardware Specifications:

A important goal of our method is to demonstrate the effectiveness of low cost

systems for the complex task of flying in an indoor environment. For this purpose,

we use the Parrot Ar-Drone 2.0 which, due to its inaccuracies, is often run in outdoor

environments as a hobby drone. We attach no additional sensors/cameras in the

flying space in the data collection process. The key required components for the

drone is it’s inbuilt camera which broadcast 720p resolution images at 30 hz, it’s

inbuilt accelerometer and a safety hull to collide with objects without damaging the

rotors. We externally attach a small camera of the same specification as of drones

inbuilt camera to aid in localization during data collection.

1.3.2 Data Collection:

We use a two-step procedure for data collection. First, we sample naive trajectories

that lead to collisions with different kind of objects. Based on these sampled we then
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Algorithm 1 Data Collection

1: Init: Track position error using PTAM from intial Take Off location
2: while No Crash do
3: Choose a random direction
4: while No Collision do
5: Continue in the same direction
6: end while
7: while Position error > ε do
8: calculate control command based on position error
9: end while

10: end while

learn a policy for navigation. These initial naive trajectories and collisions provide a

good initialization for reward leading to sampling more complex trajectories. This

policy is then used to collect more example akin to hard example mining approach.

At this stage, we can obtain much better trajectories that only collide when the

learned strategy fails. This sampling of hard negatives has been shown to improve

performance [46, 59].

Collecting collision data

Most methods for learning with drones [7, 49] often have very few examples of colliding

with objects. Our focus is however to collect as much of collision information as

possible. This large amount of crashing data should teach our learning model how

not to crash/collide with objects.

But how should we collect this collisions data? One way would be to manually

control the drone and crash into objects. But this would severely bias the dataset

collected due to human intuition. Another way to collect this data is by commanding

the drone to autonomously navigate the environment by SLAM based approaches

[40, 64] and collect failure cases. But we again have dataset bias issues due to failure

modes of SLAM along with sparse collision data. What we need is a method that has

low bias to objects it collides with and can also generate lots of collision data. Our

proposed method for data collection involves naive random straight line trajectories

described in Figure 1.2.

Algorithm 1 describes our method of data collection in more detail. The drone
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is first placed randomly in the environment we desire to collect collision data. The

drone then takes off, randomly decides a direction of motion and is commanded to

follow a straight line path until collision. After a collision, the drone is commanded

to go back to its original position followed by choosing another random direction

of motion. This process is continued until the drone cannot recover itself from a

collision. After Nenv trial crashes, the drone collision data collection is restarted in a

new environment. For each trajectory, we store time stamped images from the camera,

estimated trajectories from IMU readings and accelerometer data. The accelerometer

data is used to identify the exact moments of collision. Using this, we create our

dataset D = {di} where di = {I it}
Ni
t=0. For the ith trajectory di, image I i0 is the image

at the beginning of the trajectory far away from the collision object, while image I iNi

is the image at the end of the trajectory after Ni timesteps when the drone hits an

object.

A key component of this data collection strategy is the ability of the drone to

come back to its initial position to collect the next datapoint. However due to cheap

low accuracy IMU, it isn’t possible to do accurate backtracking using these naive

sensors. For this purpose, we use PTAM [27] module that localizes the robot and

helps it backtrack.

We collect 11,500 trajectories of collisions in 20 diverse indoor environments

(Figure 1.3). This data is collected over 40 drone flying hours. Note that since the

hulls of the drone are cheap and easy to replace, the cost of catastrophic failure is

negligible.

Data processing

We now describe the annotation procedure for the collected trajectories. The tra-

jectories are first segmented automatically using the accelerometer data. This step

restricts each trajectory upto the time of collision. As a next step, we further need to

segment the trajectory into positive and negative data i.e. di = d+i
⋃
d−i . Here d+i

is the part of the trajectory far away from the collision object while d−i is the part

of the trajectory close to the colliding object. Note the positive part of the dataset

correspond to images where the control signal should be to continue forward. This

segmentation is done heuristically by splitting the first N+ timesteps of the trajectory

7
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Figure 1.3: Given the data collected from drone collisions, we can extract portions of
trajectories into two sections; first one very close to the objects (red box) & second
far away from the objects (green box).

as positive and the last N− timesteps as negative trajectories. We ignore the images

in the middle part of the trajectory. We now have a dataset with binary classification

labels.
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Figure 1.4: We employ deep neural networks to learn how to fly. The convolutional
weights of our network (in grey) are pretrained from ImageNet classification [29],
while the fully connected weights (in orange) is initialized randomly and learnt entirely
from the collision data. At test-time, crops of the image are given as input, and the
network outputs the probability of taking control actions.

1.3.3 Learning Methodology

We now describe our learning methodology given the binary classification dataset

we have collected. We will first describe our learning architecture and follow it with

description of test time execution.

Network architecture

Given the recent successes of deep networks in learning from visual inputs, we employ

them to learn controls to fly. We use the AlexNet architecture [29]. We use ImageNet-

pretrained weights as initialization for our network [22]. This network architecture

is represented in Figure 1.4. Note that the weights for last fully connected layer is

initialized from a gaussian distribution. We learn a simple classification network

which given an input image predicts if the drone should move forward in straight

line or not. Therefore, the final layer is a binary softmax and the loss is negative

log-likelihood.

Test time execution

Our model essentially learns if going straight in a specific direction is good or not.

But how can we use this model to fly autonomously in environments with multiple

obstacles, narrow corridors and turns? We employ a simple approach to use our

binary classification network to fly long distances indoors. Algorithm 2 succinctly

9
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Algorithm 2 Policy for flying indoor

1: while No Crash do
2: Input : Real time image
3: P(L), P(S), P(R) = Network{image, left & right crop}
4: if P(S) > α then
5: Linear Velocity = β
6: Angular Velocity ∝ P(R) - P(L)
7: else
8: Linear Velocity = 0
9: if P(R) > P(L) then

10: while P(S) < α do
11: P(S) = Network{image}
12: Take Right turn
13: end while
14: else
15: while P(S) < α do
16: P(S) = Network{image}
17: Take Left turn
18: end while
19: end if
20: end if
21: end while

describes this strategy which evaluates the learned network on cropped segments

of the drone’s image. Based on the right cropped image, complete image and left

cropped image network predicts the probability to move in right, straight and left

direction. If the straight prediction (P(S)) is greater than α, drone moves forward

with the yaw proportional to the difference between the right prediction (P(R)) and

left prediction (P(L)). Intuitively, based on the confidence predictions of left and right,

we decide to turn the robot left and right while moving forward. If the prediction for

moving straight is below α (going to hit the obstacle soon), we turn the drone left

or right depending on which crop of the image predicts move forward. Intuitively,

if the network is fed with only the left part of the image, and the network believes

that it is good to go straight there, an optimal strategy would be take a left. In this

way we can use a binary classification network to choose more complex directional

movements given the image of the scene. This cropping based strategy can also be

extended to non planar flying by cropping vertical patches instead of horizontal ones.

10
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Table 1.1: Average distance and average time before collision

Glass door NSH 4th Floor NSH Entrance
Avg Dist (m) Avg Time (s) Avg Dist (m) Avg Time (s) Avg Dist (m) Avg Time (s)

Best Straight 3.3 3.0 6.2 7.0 2.7 3.0
Depth Prediction 3.1 5.0 14.0 28.3 13.4 22.6

Our Method 27.9 56.6 54.0 120.4 42.3 78.4
Human 84.0 145.0 99.9 209.0 119.6 196.0

Hallway Hallway With Chairs Wean Hall
Avg Dist (m) Avg Time (s) Avg Dist (m) Avg Time (s) Avg Dist (m) Avg Time (s)

Best straight 6.2 6.6 2.7 3.1 4.2 4.6
Depth Prediction 24.9 26.6 25.5 43.5 11.6 22.1

Our Method 115.2 210.0 86.9 203.5 22.4 47.0
Human 95.7 141.0 69.3 121.0 70.6 126.0

1.4 Experimental Evaluation

We now describe the evaluation procedure of our method on indoor environments

and compare with strong depth driven baselines.

Figure 1.5: Floor plans for the testing environment are shown here: (a) NSH Entrance,
(b) Wean Hall, (c) NSH 4th Floor, (d) Glass Door and (e) Hallway. Note that ‘Hallway
with Chairs’ environment has the same floorplan as ‘Hallway’ but with chairs as
additional obstacles.

1.4.1 Baselines

To evaluate our model, we compare the performance with a Straight line policy, a

Depth prediction based policy and a human controlled policy.
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Straight line policy

A weak baseline for indoor navigation is to take an open-loop straight line path.

For environments that contain narrow corridors, this will fail since errors compound

which results in curved paths that will hit the walls. To strengthen this baseline, we

choose the best (oracle) direction for the straight line policy.

Depth prediction based policy

Recent advances in depth estimation from monocular cameras [15] have shown

impressive results. These models for depth estimation are often trained over around

220k indoor depth data. A strong baseline is to use these depth prediction network

to generate a depth map given a monocular image. From this depth map, 3 crops,

similar to test time execution of our algorithm, are extracted. Based on the average

depth of these crops, the direction of movement is calculated.

Human policy

One of the strongest baseline is to use a human operator to fly the drone. In this

case, we ask participants to control the drone only given the monocular image seen

by the drone. The participants then use a joystick to give the commanded direction

of motion to the drone. We also allow the participants to fly the drone in a test trial

so that they get familiar with the response of the drone.

1.4.2 Testing Environments

To show the generalizaility of our method, we test it on 6 complex indoor environments:

‘Glass Door’, ‘NSH 4th Floor’, ‘NSH Entrance’, ‘Wean Hall’, ‘Hallway’ and ‘Hallway

with Chairs’. Floor plans for these environments can be seen in Figure 1.5. These

environments have unique challenges that encompas most of the challenges faced in

general purpose indoor navigation. For each of these environments, our method along

with all the baselines are run 5 times with different start orientations and positions.

This is done to ensure that the comparisons are robust to initializations.

12
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Glass Door

This environment is corridor with a corner that has transparent doors. The challenge

for the drone is to take a turn at this corner without crashing into the transparent

door. Most depth based estimation techniques are prone to fail in this scenario (depth

sensing is poor with transparent objects). However data driven visual techniques

have been shown to perform reasonably with these tough transparent obstacles.

NSH 4thFloor

The second environment we test on is the office space of the 4th floor of the Newell

Simon Hall at Carnegie Mellon University. In this environment, the drone has the

capacity to navigate through a larger environment with several turns in narrow

corridors.

NSH Entrance

In this environment, the drone is initialized at the entrance of the Newell Simon Hall

at Carnegie Mellon University. Here the challenge is manoeuvre through a hall with

glass walls and into an open space (atrium) that is cluttered with dining tables and

chairs.

Wean Hall

This environment has small stretches of straight path which are connected at 90

degree to each other. Drone needs to take required turn to avoid collision at the

intersection.

Hallway

This is a narrow (2m) dead end straight corridor where drone has keep in the center

to avoid the collision with the wall. At the dead end, the drone needs to take a turn

and fly back. While flying back, the drone will again meet the dead end and can turn

back again. This environment tests the long term flight capacity of the drone.

13
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Hallway With chairs

To the explicitly test the robustness of the controller to clutter and obstacles, we

modify ‘Smith Hallway’ with chairs. The controller has to identify the narrow gaps

between the chairs and the walls to avoid collisions. This gap can be less than 1m at

some points.

We would like to point out that 2 out of 6 environments were also seen during

training. These correspond to the NSH 4th Floor and NSH Entrance. The remaining

4 environments are completely novel.

1.4.3 Results

To evaluate the performance of different baselines, we used average distance and

average time of flight without collisions as the metric of evaluation. This metric also

terminates flight runs when they take small loops (spinning on spot). Quantitative

results are presented in Table 1.1. We also qualitatively show in Figure ?? the

comparison of trajectories generated by our method vs the depth prediction based

baseline.

On every environment/setting we test on, we see that our method performs much

better than the depth baseline. The best straight baseline provides an estimate of

how difficult the environments are. The human controlled baselines are higher than

our method for most environments. However for some environments like ‘Hallway

with Chairs’, the presence of cluttered objects makes it difficult for the participants

to navigate through narrow spaces which allows our method to surpass human level

control in this environment.

A key observation is the failure of depth based methods to (a) glass walls and

doors, and (b) untextured flat walls. Glass walls give the depth based models the

impression that the closest obstacle is farther away. However our method, since it has

been seen examples of collisions with glass windows may have latched onto features

that help it avoid glass walls or doors. Another difficulty depth based models face

are in untextured environments like corridors. Since our model has already seen

untextured environments during training, it has learned to identify corners and realise

that moving towards these corridor corners isn’t desirable.

The results on the ‘Hallway’ environments further cements our method’s claim by

14
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autonomously navigating for more than 3 minutes (battery life of drone in flight use

is 5 minutes).

1.5 Conclusion

We propose a data driven approach to learn to fly by crashing more than 11,500

times in a multitude of diverse training environments. These crashing trajectories

generate the biggest (to our knowledge) UAV crashing dataset and demonstrates

the importance of negative data in learning. A standard deep network architecture

is trained on this indoor crashing data, with the task of binary classification. By

learning how to NOT fly, we show that even simple strategies easily outperforms depth

prediction based methods on a variety of testing environments and is comparable to

human control on some environments. This work demonstrates: (a) it is possible to

collect self-supervised data for navigation at large-scale; (b) such data is crucial for

learning how to navigate.
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Chapter 2

Self-supervised Exploration via

Disagreement

2.1 Introduction

Exploration for sensorimotor control have been addressed in literature using both

model-free and model-based methods. Most recent successes in Reinforcement Learn-

ing (RL) have been achieved when exploration is done in the context of external

reward function which is dense and well-shaped, e.g., a running “score” in a video

game [38]. However, designing a well-shaped reward function is a challenging en-

gineering problem. Therefore, an alternative approach has been to focus on using

“intrinsic” rewards for exploration i.e. rewards computed based on the agents model

of the environment. These rewards are denser compared to external rewards and

hence provide early feedback to the exploration policy. Some examples of intrinsic

rewards include “curiosity” [42, 44, 53] where prediction error is used as reward signal,

“diversity rewards” [16, 31, 32] which discourages the agent from revisiting the same

states (or similar states).

Intrinsic reward-based exploration requires building a predictive model of the

world. However, there is a critical issue with building predictive models: how should

the stochastic nature of agent-environment interaction be handled? Stochasticity

could be caused by several sources: (1) stochastic observations, (2) noise in execution
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Figure 2.1: Learning to Explore via Disagreement: At time step t, the agent in the
state xt interacts with the environment by taking action at sampled from the current
policy π and ends up in the state xt+1. The ensemble of forward models {f1, f2, ..., fn}
takes this current state xt and the executed action at as input to predict the next state
estimates {x̂1t+1, x̂

2
t+2, ..., x̂

n
t+1}. The variance over the ensemble of network output σ

is used as intrinsic reward rit to train the policy. In practice, we encode the state x
into an embedding space φ(x) for all the prediction purposes.

of agent’s action (slipping) (3) stochasticity in the effect of the agent’s action (noisy

TV, coin flipping). One straightforward way is for the agent to learn a “stochastic”

forward model itself! There have been several works in the literature [11, 25], but we

know that learning such models from high dimensional image space is difficult to scale

and extremely challenging. An alternative way to handle stochasticity is to build a

deterministic prediction model and use its error as reward. Recent work proposed

building such models in inverse model space that handle noise in observations but

fail on stochastic nature of actions [e.g. [10]].

Beyond handling the stochastic nature, there is a bigger issue in the current

formulations for intrinsic rewards. The agent performs an action and then computes

the reward based on its own model and environment behavior. For example, in

curiosity [44], if the internal model and the observed environment disagree, then the

policy is rewarded. From an exploration viewpoint, this seems like a good formulation

i.e. rewarding actions whose effects are poorly modeled. But the reward is a function

of environment dynamics with respect to the performed action. Since the environment

behavior function is unknown, it is treated as black-box and hence the gradients have

to be estimated using approaches like REINFORCE [66] which are sample inefficient.

18



CHAPTER 2. SELF-SUPERVISED EXPLORATION VIA DISAGREEMENT

We address both challenges by taking inspiration from active learning. In the

current curiosity formulation, one has to compare the predicted future state to

“ground-truth” future state by performing the action. However, in active learning

the rewards are not computed by looking at the ground-truth but rather by looking

at the state of the model itself. In classical active learning, we decide what sample

to label next based on confidence of the classifier or the entropy/variance of the

output. Since, most of the high-capacity networks tend to overfit, confidence is not a

good measure of uncertainty. Instead, inspired by the classical Query-by-Committee

algorithm [57], we use a simple approach: we train an ensemble of forward dynamics

models and incentivize the agent to explore the action space where there is maximum

disagreement or variance among the models of this ensemble. We show that this

formulation works as well as other formulations such as curiosity in non-stochastic

scenarios. On the other hand, our approach is able to explore better in stochastic-

dynamics scenarios because all the models in the ensemble converge to mean, reducing

the variance of the ensemble. But more importantly, we show that our new objective

is a differentiable function so as to perform policy optimization using likelihood

maximization – much like supervised learning instead of reinforcement learning. This

leads to a sample efficient exploration policy. We show experiments on large number

of standard environments to demonstrate the efficacy of this approach.

2.2 Related Work

The problem of exploration is a well-studied problem in the field of reinforcement

learning. Early approaches focused on studying exploration from theoretical per-

spective [61] and proposed Bayesian formulations [13, 28] which are hard to scale in

higher dimensions. In this paper, we focus on the specific problem of exploration

using intrinsic rewards. A large family of approaches use “curiosity” as a reward for

training the agents. A good summary of early work in curiosity-driven rewards can

be found in [42, 43]. Most approaches use some form of prediction-error between

the learned model and environment behavior [44]. This prediction error can also be

formulated as surprise [1, 53, 63]. Other forms of curiosity can be to explore states

and actions where prediction of a forward model is highly-uncertain [25, 60]. Finally,

approaches such as [36] try to explore state space which help improve the prediction
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model most. However, most of these efforts have still studied the problem in context

of external rewards. These intrinsic rewards just guide the search to the space where

forward model is uncertain or likely to be wrong.

Another approach for intrinsic rewards is using explicit visitation counts [4, 19].

These exploration strategies guide the exploration policy to “novel” states [4]. A

closely related work uses diversity as a reward for exploration and skill-learning [16].

However, both visitation counts or measuring diversity requires learning a model which

keeps the distribution of visited states. Learning such a model does not seem trivial.

Another issue is the transferable properties and generalization of such approaches

unless the state features are transferable themselves.

Finally, apart from intrinsic rewards, other approaches include using an adversarial

game [62] where one agent gives the goal states and hence guiding exploration.

Gregor et.al. [23] introduce a formulation of empowerment where agent prefers to go

to states where it expects it will achieve the most control after learning. Researchers

have also tried using perturbation of learned policy for exploration [17, 47] and using

value function estimates [41]. Again these approaches have mostly been considered in

context of external rewards and turn out to be sample inefficient.

Our work is mostly inspired from large-body of work in active learning (AL). In

AL setting, given a collection of unlabeled examples, a learner selects which samples

will be labeled by an oracle [56]. Common selection criteria include entropy [12],

uncertainty sampling [34] and expected informativeness [24]. Our work is inspired

from the classical work of [57], where they use disagreement among classifiers to select

the datapoint. In this work, however, we apply the ideas in a completely different

setting of exploration and show its applicability to environments with stochastic

dynamics and improving sample-efficiency.

2.3 Exploration by Disagreement

Consider an agent interacting with the environment E . At time t, it receives the

observation xt and then takes an action predicted by its policy, i.e., at ∼ π(xt; θP ).

Upon executing the action, it receives, in return, the next observation xt+1 which

is ‘generated’ by the environment. Our goal is to build an agent that chooses its

action in order to maximally explore the state space of the environment in an efficient
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manner. There are two main components to our agent: an intrinsic model that

captures the agent’s current knowledge of the states explored so far, and a policy to

output actions. The policy is incentivized to take actions that lead to states where

the intrinsic model is uncertain.

As our agent explores the environment, we learn a forward model that predicts

the consequences of its own actions. The prediction uncertainty of this model is

used to generate intrinsic rewards that incentivize the agent to visit states with

maximum uncertainty. Both measuring and maximizing model uncertainty are

challenging to execute with high dimensional raw sensory input (e.g. images). More

importantly, the agent should learn to deal with ‘stochasticity’ in its interaction

with the environment. This could either be caused by noisy actuation of the agent’s

motors, or the environment could be inherently stochastic. A deterministic prediction

model will always end up with a non-zero prediction error allowing the agent to get

stuck in the local minima of exploration.

A similar behavior would occur if the task at hand is too difficult to learn. Consider

a robotic arm manipulating a keybunch and observing its outcome. Predicting the

change in pose and position of the keys in the keybunch is extremely difficult.

Although the behavior is not inherently stochastic, our agent could easily get stuck

in playing with the same keybunch and not try other actions, or even other objects.

Existing formulations of curiosity reward or novelty-seeking count-based methods

(tabular or continuous space extensions) would also suffer in such scenarios. Learning

probabilistic predictive models to measure uncertainty [25], or measuring learnability

by capturing change in prediction error [42, 53] have been proposed as solutions, but

have been demonstrated in low-dimensional state space inputs and are difficult to

scale to high dimensional image inputs.

2.3.1 Disagreement as Intrinsic Reward

Instead of learning a single model and using its prediction error as the measure of

intrinsic rewards, we propose an alternate formulation that avoids the pitfalls of prior

approaches inspired from the active learning [57] literature. This is also known as

optimal experimental design [8] in statistics. In active learning scenario, the goal is

to find the optimal training examples to label such that the accuracy is maximized
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at minimum labeling cost. Exploration-driven learning is concerned with policy

optimization while active learning deals with minimizing optimal cost with analytic

policy. While the two might look different, we argue that active learning objectives

could inspire powerful intrinsic reward formulations. In this work, we leverage the

idea of model-variance maximization to propose exploration formulation.

As our agent interacts with the environment in a rollout trajectory, it collects

transition data of the form {xt, at, xt+1}. After each rollout in the environment, the

collected transition trajectories are used to train an ensemble of multiple prediction

models (aka forward models) {fθ1 , fθ2 . . . , fθk} of the environment. Each of the

model is trained to map a given tuple of current observation xt and the action at to

the resulting state xt+1. These models are trained using straightforward maximum

likelihood estimation that minimizes the prediction error, i.e, ‖f(xt, at; θF )− xt+1‖2.
To maintain the diversity across the individual models of ensemble, we train each of

them on different subsets sampled randomly with replacement (bootstrap).

A good intrinsic reward formulation would be the one that encourages the agent to

perform actions that lead to most informative examples. Each model in our ensemble

is trained to predict the ground truth next state. Hence, the parts of the state

space which have been explored by the agent well will have gathered enough data

to train each model leading to agreement between the models. Since the models

are learned (and not tabular), this property should generalize to unseen but similar

parts of the state-space. However, the areas which are novel and unexplored would

have high prediction error for each model with disagreement about the next state

prediction because none of them are yet trained on such examples. Hence, we use

this disagreement as an intrinsic reward. Concretely, the intrinsic reward rit is defined

as the variance across the prediction of different models in the ensemble:

ritEθ
[
‖f(xt, at; θ)− Eθ[f(xt, at; θ)]‖22

]
(2.1)

Note that the expression on the right does not depend on the next state xt+1 — a

property which will exploit in Section 2.3.3 to propose efficient policy optimization.

Given the agent’s rollout sequence and the intrinsic reward rit at each timestep t, the

policy is trained to maximize the sum of expected reward, i.e., maxθP Eπ(xt;θP )

[∑
t γ

trit
]

discounted by a factor γ. The agent policy and the forward model ensemble are
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simultaneously trained in an online manner on the data collected by the agent during

exploration. This objective can be maximized by a number of policy optimization

techniques. In the experiments of this paper, we use proximal policy optimization

(PPO) [55] to train the policy using exploration reward.

2.3.2 Exploration in Stochastic Environments

Consider a scenario where the next state xt+1 is stochastic with respect to the current

state xt and action at. The source of stochasticity could be noisy actuation, difficulty

or inherent randomness. Given enough samples, a dynamic prediction model should

learn to predict the mean of the stochastic samples. Hence, the variance of the outputs

in ensemble will drop preventing the agent from getting stuck in stochastic local-

minima of exploration. Note this is unlike prediction error based objectives [44, 54]

which will settle down to a constant value after large enough samples. And because

the constant value is different from the ground-truth state the prediction error remains

high and therefore the agent remains curious about the stochastic behavior. We

empirically verify this intuition by comparing the behavior of variance of output with

respect to a prediction error based objective in an MNIST based toy-prediction task,

described in Section 2.5.2.

2.3.3 Differentiable Exploration for Policy Optimization

One commonality between different exploration methods [4, 25, 44], is that the

forward model is usually learned in a supervised manner and the agent’s policy is

trained using reinforcement learning either in on-policy or off-policy manner. Despite

several formulations, the optimization procedure for training policies to maximize

these intrinsic rewards has more or less remained the same – i.e. – treating the

intrinsic reward as a “black-box” even though it is generated by the agent itself.

Let’s consider an example to understand the reason behind the status quo. Con-

sider a robotic-arm agent trying to push multiple objects kept on the table in front

of it by looking at the image from an overhead camera. Suppose the arm pushes

an object such that it collides with another one on the table. The resulting image

observation will be the outcome of complex real-world interaction, the actual dynam-

ics of which is not known to the agent. More importantly, note that this resulting
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image observation is a function of the agent’s action (i.e., push in this case). Most

commonly, the intrinsic reward ri(xt, at, xt+1) is function of the next state (which is

a function of the agent’s action), e.g., prediction error, information gain, etc. This

dependency on the unknown environment dynamics absolves the policy optimization

of computation of analytical gradients with respect to the intrinsic rewards. Hence,

the standard way is to optimize the policy to maximize sequences of intrinsic rewards

using reinforcement learning, and not make any use of the structure present in the

design of rit.

We formulate our proposed intrinsic reward as a differentiable function so as to

perform policy optimization using likelihood maximization – much like supervised

learning instead of reinforcement. If possible, this would allow the agent to make use

of the structure in rit explicitly, i.e., the rewarder could very efficiently inform the

agent to change its action space in the direction where forward prediction loss is high,

instead of providing a scalar feedback as in case of reinforcement learning. Explicit

reward (cost) functions are one of the key reasons for success stories in optimal-control

based robotics [14, 21], but they don’t scale to high-dimensional state space such as

images and rely on having access to a good model of the environment.

We first discuss the one step case and then provide the general setup. Consider

the intrinsic reward shown in Equation (2.1), and note that our formulation does not

depend on the environment interaction at all. It is purely a mental simulation of the

rewarder based on the current state and the agent’s prediction action. Hence, instead

of maximizing the intrinsic reward in expectation via PPO (RL), we can optimize for

policy parameters θP using direct gradients by treating rewarder as a differentiable

loss function. The objective for a one-step reward horizon is:

min
θ1,...,θk

(1/k)
k∑
i=1

‖fθi(xt, at)− xt+1‖2 (2.2)

max
θP

(1/k)
k∑
i=1

[
‖fθi(xt, at)− (1/k)

k∑
j=1

fθj(xt, at)‖22
]

s.t. at = π(xt; θP )

This is optimized in an alternating fashion where the forward predictor is optimized

keeping the policy parameters frozen and vice-versa. Note that both policy and
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forward models are trained via maximum likelihood in a supervised manner, and

hence, efficient in practice.

Generalization to multi-step reward horizon To optimize policy to maximize

a discounted sum of sequence of future intrinsic rewards rit in a differentiable manner,

the forward model would have to make predictions spanning over multiple time-

steps. The policy objective in Equation (2.2) can be generalized to the multi-step

horizon setup by recursively applying the forward predictor as
∑

t r
i
t(x̂t, at) where

x̂t = f(x̂t−1, at; θ), x̂0 = x0, and rit(.) is defined in Equation (2.1). Alternatively, one

could use LSTM to make forward model itself multi-step. However, training a long

term multi-step prediction model is challenging and an active area of research.

2.4 Implementation Details and Baselines

Learning forward predictions in the feature space It has been shown that

learning forward-dynamics predictor fθP [10, 44] in some feature space leads to better

generalization instead of making predictions in raw pixel space. Our formulation

is trivially extensible to any representation space because all the operations can be

performed with φ(xt) instead of xt. Hence, in all of our experiments, we train our

forward prediction models in feature space. In particular, we use random feature space

in all video games and navigation, classification features in MNIST and ImageNet-

pretrained ResNet-18 features in real wolrd robot experiments. We use 5 models in

the ensemble.

Back-propagation through forward model To directly optimize the policy with

respect to the loss function of the forward predictor, as discussed in Section 2.3.3,

we need to backpropagate all the way through action sampling process from the

policy. In case of continuous action space, one could achieve this via making policy

deterministic, i.e. at = πθP with epsilon greedy sampling [35]. For discrete action

space, we found that straight-through estimator [5] works well in practice.

Baseline Comparisons ‘Disagreement’ refers to our exploration formulation op-

timized using PPO [55] as discussed in Section 2.3.1, unless mentioned otherwise.
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Figure 2.2: Sanity Check: Comparing our policy trained using different intrinsic
reward formulation on 3 Atari games. Our approach compares favorably and does
not loose accuracy in non-stochastic scenarios.

‘Disagreement [Differentiable]’ refers to the direct policy optimization for our for-

mulation as described in Section 2.3.3. ‘Pathak et.al. [ICML 2017]’ refers to the

curiosity-driven exploration formulation based on prediction error of the learned

forward dynamics model in inverse model action space [44]. ‘Burda et.al. [ICLR

2019]’ refers to the random feature based prediction-error [10]. Final ‘Pred-Error

Variance’ is an alternate ablation of our method where, instead of measuring variance

of the output of models (i.e., disagreement), we train the agent to maximize variance

of prediction error as opposed to variance of output itself.

2.5 Experiments

In this paper, we evaluate our approach on several environments including atari

games, 3D navigation in unity, MNIST, object manipulation in mujoco and real

world robotic manipulation task using sawyer. Our experiments can be divided into

3 parts: a) verifying the performance on standard non-stochastic environments; b)

comparison on environments with stochasticity in either dynamics or observations;

and c) validating the efficiency of differentiable policy optimization facilitated by our

objective.
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2.5.1 Sanity Check in Non-Stochastic Environments

We first verify whether proposed formulation of incentivizing agent via disagreement

is able to maintain the performance on standard environment as compared to state of

the art exploration techniques. Although the primary advantage of our approach is in

handling stochasticity and improving efficiency via differentiable policy optimization,

it should not come at the cost of performance in nearly-deterministic scenarios. We

run this sanity check on standard Atari benchmark suite, as shown in Figure 2.2.

These games are not completely deterministic and have some randomness as to where

the agent starts when ever the game resets [38]. The agent is trained with only

intrinsic reward, without any external reward from the game environment. The

external reward is only used as a proxy to evaluate the quality of exploration and not

shown to the agent.

The performance is compared to curiosity formulation [44], curiosity with random

features [10] and methods which use variance of prediction error. We also compare our

performance to Bayesian Neural Networks. In particular, we compared to Dropout

NN [20]. In our method, the ensemble of models is trained in the embedding space of

random network as discussed in Section 2.4. As seen in the results, our method is as

good as or slightly better than state-of-the art exploration methods in most of the

scenarios. Overall, these experiments suggest that our exploration formulation which

is only driven by disagreement between models output compares favourably to state

of the art methods and significantly better than variance of prediction error. We now

discuss the more interesting setups: (a) deal with stochasticity and (b) real world

exploration using robots.

2.5.2 Exploration in Stochastic Environments

Most of the exploration algorithms show evaluation on standard benchmarks which are

nearly deterministic, for instance, Atari benchmark suite or mujoco gym environments.

Impressive results have been shown on these environments where an agent learns

skills like playing games etc, only using the intrinsic reward [16, 44]. However, these

approaches collapse to the degenerate behaviours in the presence of stochasticity in

the transitions [10].
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A) Noisy MNIST. We first build a toy task on MNIST to intuitively demonstrate

superiority compared to a prediction error based method [44]. The states are rep-

resented as the raw images. In this task the agent spawns randomly either with an

image of label 0 or label 1. The dynamics of the environment are defined as follows:

1) images with label 0 always transition to another image of label 0. 2) Images with

label 1 always transition to a randomly chosen image of label 2 to 9. This ensures

that transitions from states of images with label 0 has low stochasticity (transitions to

same label). On the other hand, states of images with label 1 have high stochasticity

(transition to 1 out of 8 labels). The ideal intrinsic reward function should give almost

similar importance (reward) to both the states after the agent has observed significant

number of transitions. The prediction error based model assigns more importance

to the states with higher stochasticity i.e. images with label 1. This behaviour is

detrimental since the transition from states of images with label 1 cannot ever be

perfectly modeled and hence the agent will be stuck. We compare our ensembles

based approach to the prediction error based method quantitatively. Figure 2.3 shows

the performance of these methods on test set of MNIST as a function of number of

states visited by agent. Even after convergence, the prediction error based approach

assigns higher importance/reward to state associated with the images label 1, however

ensemble based method gives almost same reward to both the states.
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Figure 2.3: Performance of disgreement across ensemble vs prediction error based
reward function on Noisy MNIST environment. This environment has 2 sets of state
with different level of stochasticity associated with them. The disagreement based
reward function achieves the ideal behaviour of assigning the same reward value
for both states. However, the prediction error based reward function assigns a high
reward to states with high stochasticity.

B) 3D Navigation. In this 3D navigation, the goal is to train the agent to reach

a target location in the maze. The agent receives sparse reward of +1 on reaching

the goal. For all the methods, we train the policy of the agent to maximize the joint

combination of intrinsic with extrinsic reward. This particular environment is replica

of VizDoom-MyWayHome environment in unity ML-agent and was developed in Burda

et.al. [10]. Interestingly, this environment has 2 variants, one of which has a TV on the

wall. Agent can change the channel of the TV but the content is stochastic (random

images appear after pressing button). The agent can start randomly anywhere in

the maze in each episode, but the goal location is fixed. We compare our proposed

method with state-of-the-art prediction error-based exploration [10]. The results are

shown in Figure 2.4. Our approach performs similar to the baseline in the non-TV

setup, and outperforms the baseline in the presence of the TV by a significant margin.

This result demonstrates that an ensemble-based disagreement could be a viable
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Figure 2.4: Comparing prediction error based curiosity to disagreement based explo-
ration on 3D navigation task in Unity with and without the presence of TV.

alternative in realistic setups.

C) Atari with Sticky Actions. As discussed in the previous section, the usual

Atari setup is nearly deterministic. Therefore, a recent study [37] proposed to

introduce stochasticity in Atari games by making actions ‘sticky’. That is, the agent’s

intended action is executed with half the probability at each step and otherwise the

previous executed action is repeated. As shown in Figure 2.5, our disagreement based

exploration approach out performs previous state-of-the-art approaches. In Pong, our

approach starts slightly slower than Burda et.al. [10], but eventually achieves higher

score. These experiments along with the navigation experiment, demonstrate the

potential of ensembles in the face of stochasticity,

2.5.3 Differentiable Exploration in Structured Envs

We now evaluate the differentiable exploration objective proposed in Section 2.3.3.

As discussed earlier, the policy is optimized via direct analytic gradients from the
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Figure 2.5: Evaluating the robustness of disagreement-based exploration when there
is stochasticity in the Atari(‘sticky’) environment.

exploration module. Therefore, the horizon of exploration depends directly on the

horizon of the module. Since training long-horizon models from high dimensional

inputs (images) is still an unsolved problem, we evaluate our proposed formulation

on relatively short horizon scenarios. However, to compensate for length of horizon,

we test on large action space setups for real world robot manipulation task.

A) Enduro Video Game. In this game, the goal of the agent is to steer the car

on racing track to avoid enemies. We trained our agent via purely intrinsic rewards

and extrinsic reward is only used for evaluation. In order to steer the car, the agent

doesn’t need to model long range dependencies. Hence, in this environment we

combine our differentiable policy optimization with reinforcement learning (PPO)

to maximize our disagreement based intrinsic reward. The RL captures discounted

long term dependency while our differentiable formulation should efficiently take

care of short horizon dependencies. We compare this formulation to purely PPO

based optimization of our intrinsic reward. As shown in Figure 2.6, our differentiable

exploration expedites the learning of the agent significantly. This suggests the efficacy
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Figure 2.6: Performance on Enduro Atari Environment. We compare the performance
of with or without the differentiable policy optimization.

of direct optimization. We now evaluate the performance of only differentiable

exploration (without reinforcement) in short-horizon and large-structured action

space setups.

B) Object Manipulation by Exploration.

We consider the task of object manipulation in complex scenarios. Our setup consists

a 7-DOF robotic arm that could be tasked to interact with the the objects kept on

the table in front of it. The objects are kept randomly in the workspace of the robot

on the table. Robot’s action space is 4 dimensional: a) location (x, y) of point on

the surface of table, b) angle of approach θ and c) gripper status, a binary value

indicating whether to grasp (open the gripper fingers) or push (keep fingers close).
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All of our experiments use raw visual RGBD images as input and predict actions as

output. Note that, to accurately grasp or push objects, the agent needs to figure out

an accurate combination of location, orientation and gripper status.

The action space is discretized into 224 × 224 locations, 16 orientations for

grasping (fingers close) and 16 orientations for pushing [67]. The policy takes as input

a 224× 224 RGBD image and produces push and grasp action probabilities for each

pixel. Instead of adding the 16 rotations in the output, we pass 16 equally spaced

rotated images to the network and then sample actions based on the output of all

the inputs. This exploits the convolutional structure of the network. The task has a

short horizon but very large state and action spaces.

We make no assumption about either the environment or the training signal. Our

robotic agents explore the work-space purely out of their own intrinsic reward in a

pursuit to develop useful skills. We have instantiated this setup both in simulation

and in the real world.

B1) Object Manipulation in MuJoCo. We first carry out a study in simulation

to compare the performance of differentiable variant of our disagreement objective

against the reinforcement learning based optimization of disagreement. We used Mu-

JoCo to simulate the robot performing grasping and pushing on table top environment

as described above.

To evaluate the quality of exploration, we measure the frequency at which agent

the agent interacts with the object. Note, this is just a proxy and is not used for

training the agent. It represents how quickly our policy learns to explore interesting

part of space. Figures 2.7 show the performance when the environment consist of

single object. Our approach is able to exploit the structure in the loss, resulting in

order of magnitude faster learning than REINFORCE.

B2) Real-World Robotic Manipulation. We now deploy our sample-efficient

exploration formulation on real-world robotic setup. The real-world poses additional

challenges unlike simulated environments in terms of behavior, dynamics of varied

objects available in the real world. Our robotic setup consisted of a Sawyer-arm with

a table placed in front of it. We mounted KinectV2 at a fixed location from robot to

receive RGBD observations of the environment. In every run, the robot starts with 3
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object placed in front of it. If either the robot completes 100 interactions or there are

no objects in front of it, objects are re-placed manually.

We again use the same metric (number of object interactions) as before to measure

effectiveness of the exploration policy. We monitor the change in the RGB image

to see if the robot has interacted with objects. Figure 2.8 shows how effective our

differentiable curiosity module is and how it learns to interact with object even in

less than 1000 examples.

We further test the skills learned by our robot during its curious exploration

by measuring interaction frequency on a set of held-out objects. Out of total of 30

objects, we created set of 20 objects for training and 10 objects for testing. Both, our

method and reinforce were trained for 700 robot interaction with the environment.

Both models were evaluated based on the 80 robot interaction. During testing,

environment reset was done after every 10 robot steps. Our final trained exploration

policy interacts approximately 67% of times with unseen objects whereas random

performs 17%. On the other hand, it seems that REINFORCE just collapses and

only 1% of actions involve interaction with objects. Please see robot videos in the

supplementary.

34



CHAPTER 2. SELF-SUPERVISED EXPLORATION VIA DISAGREEMENT

[b]0.32

0 2 4 6 8 10

Number of training steps (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

M
e
a
n
 R

e
w

a
rd

s

Disagreement [Differentiable]

Disagreement [Reinforce]

Figure 2.7: Mujoco
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Figure 2.8: Real Robot
Figure 2.9: Interaction Rate vs. Number of Samples for mujoco and real-world robot.
We measure the exploration quality by evaluating the object interaction frequency of
the agent. Note that the Mujoco plot is in log-scale. For both the environments, our
differentiable policy optimization explores much efficiently.
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