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Abstract

Due to a plethora of applications of resource-constrained Micro Air Vehicles (MAV), there has been an

increasing demand to fly aggressively high-speed flights to accomplish the tasks in the minimum amount

of time for maintaining the resources. However, as the MAV executes these high-speed behaviors, the

safety of the vehicle is often compromised in order to achieve the desired acceleration and aggressive

behaviors. We enhance Robust Experience-driven Predictive Control (R-EPC) strategy with the ability

to track aggressive a priori specified trajectories perfectly. This is achieved by appropriately handling

higher order derivatives of the provided trajectories and appropriately formulating the Quadratic Program

optimization problem to account for the higher order derivatives. Implications of leveraging full state

dynamics of the MAV in a single control loop over separated cascaded control loop is also considered for

situations where the feedforward terms are not readily available.

R-EPC generates a set of parameterized controllers for specific scenarios which can be stored and re-

used to reduce the expensive online optimization costs onboard a computationally constrained platform,

while the robust behavior tightens those constraint bounds to induce a conservative behavior in the pres-

ence of uncertain state estimates to further enforce safety. We further increase the efficiency of R-EPC to

allow it to run on severely computationally constrained platforms effectively. This is done using a Markov-

chain based control-law transition prediction strategy as well as an intelligent computation cache. Finally,

model learning strategies are introduced which can adapt, learn, and compensate unmodeled exogenous

disturbances acting on the vehicle online. This technical report also discusses the practical considerations

and overall software organization of the predictive control architecture.
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1 Introduction

Due to the recent advances in technology, Micro Air Vehicles (MAVs) have become an essential part of critical

scenarios such as search and rescue, inspection, and exploration missions. However, due to the limited battery

life, a MAV is often tasked to finish the above tasks in a limited amount of time. Due to this constraint, there

is a considerable demand for MAVs operating at high speeds while maintaining the safety of the vehicle

robustly in such uncertain scenarios.

This report tackles the demand for executing aggressive and accurate trajectory tracking by leveraging

feedforward terms in the control law, which improves the trajectory tracking by anticipating the trajectory

behavior in a look-ahead fashion. The implications of using full state dynamics of the multirotor in a single

control loop are then discussed over the traditional cascaded control loops for executing aggressive trajecto-

ries which require sudden angular acceleration changes. Although aggressive flight performance is achieved

using simple reactive controllers coupled with higher order feedforward terms [1], constrained control strate-

gies are often required to handle the infeasible state and control inputs demanded from the higher level

trajectory planning subsystems. This report introduces constrained Model Predictive Control (MPC) with

experience-driven strategies such as Experience-driven Predictive Control (EPC) [2]. While MPC empha-

sizes the importance of enforcing state and input constraints for executing aggressive trajectories, EPC em-

phasizes the importance of reusing the parameterized controllers generated beforehand by limiting the use of

solving expensive quadratic programs online computationally constrained systems. Although EPC generates

a varied set of parameterized controllers online, it is often computationally expensive to check each of the

controllers in the database for a specific situation. Thus, Markov chain based ordering is then introduced [3]

for efficient querying of the controller database. Experiments onboard a computationally constrained plat-

form along with mean control loop timing is discussed to verify the real-time capabilities of these constrained

control strategies. Constrained predictive control during poor state estimation is also discussed, which shows

that the safety of the vehicle is further enforced conservatively by varying the bounds of constraints in the

presence of uncertain state estimates. Lastly, this technical report discusses the implications of using different

online model adaptation strategies coupled with the control strategies introduced in the preceding chapters to

fly aggressively in an uncertain environment with considerable external disturbances while maintaining the

safety of the vehicle.
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1.1 Feedforward terms

While performing accurate and agile trajectory tracking, it is essential to calculate higher order state refer-

ences and input information of upcoming trajectories using a differentially flat model [4] as evident in Fig. 2.4.

Hence, when designing a control law, it is beneficial to anticipate the states from reference trajectories us-

ing the feedforward terms. Feedforward terms for the positional control can be calculated from the desired

trajectory by extracting the higher order components such as the desired acceleration. Similarly, angular

feedforward terms for obtaining desired angular velocity and desired angular acceleration can be calculated

from the jerk and snap components of the higher order trajectory. These terms inform the control strategy

for future trajectory behavior, and they can be used with any feedback control strategy, such as PD Control,

Linear Quadratic Regulator Control, or Model Predictive Control. It is worth noting that feedforward terms

are only calculated if some information about the desired trajectory is available; for example, feedforward

terms will have no contribution during a step input as shown in Fig. 2.5.

1.2 Full State Multirotor Dynamics

Previous works have shown examples of complex, aggressive maneuvers [4, 5, 6] showing excellent tracking

for a given trajectory. State-of-the-art approaches in control and trajectory generation exploit the time-scale

separation and differential flatness of the systems [7]. These approaches leverage cascaded control schemes

and separate the attitude and positional control dynamics via a geometric tracking controller [8]. Desired

acceleration is calculated by the outer loop (position control) which generates the references for inner loop

(attitude control), a setup which is directly affected by the over-imposed position and velocity control. Direct

attitude control is therefore lost, and the demanded acceleration is dependent on several limitations in the

change of rate, magnitude, and direction. Also, using desired acceleration to generate references for attitude

control leads to complexities since it ignores the attitude dynamics and thus requires planned smooth trajec-

tories, which should also account for actuator saturation. This requirement fails to hold for high-speed flight,

where rapid changes in direction require large attitude swings that do not happen instantaneously. To tackle

this problem, this technical report proposes to consider full state dynamics of the MAV, which explicitly

model attitude’s effect on positional control in a single control loop.
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1.3 Constrained Control with Robust Experience-driven Predictive Control

The ability of a MAV to track highly aggressive and fast maneuvers depends on the availability of feedback

control strategies which can ensure safety by enforcing constraints on desired acceleration, angular veloc-

ity, and other states and inputs. Following [2], a linear MPC formulation is leveraged to design an optimal

and safe control strategy in this report. MPC problem can be solved by a constrained linear or quadratic

program [9], provided the system does not deviate significantly from the linearization point. However, ag-

gressive flights do not assume a linearized model (generally around hover), and hence MAVs must account

for nonlinear dynamics to ensure that the optimization is performed with respect to an accurate system model.

Although a nonlinear model predictive control (NMPC) formulation [10] is generally used for dealing with

nonlinear dynamics of a multirotor system, the use of nonlinear dynamics in the optimization formulation

increases the computational complexity which is detrimental for computationally constrained platforms such

as MAVs. Hence, explicit MPC and linear MPC based approaches, such as Experience-driven Predictive

Control (EPC) are leveraged in this work, which eliminates the need for online optimization by constructing

a database of locally-optimal controllers derived via a receding horizon optimal control formulation [11, 12].

EPC stores a database of locally optimal controllers obtained by solving a Quadratic Program (QP) for spe-

cific scenarios with the intent of reusing them in future scenarios. Thus, an adaptive feedback control strategy

is presented in this report that leverages a pre-computed database of controllers to ensure accurate trajectory

tracking and constraint satisfaction.

The requirement of enforcing the constraints pose a threat of violation when passing through a region

of poor state estimates due to the inaccurate odometry data. Thus, a robust formulation of the constrained

predictive formulation with experience reuse is also considered, which uses covariance data from the pose

estimates to adapt and tighten the constraints in the predictive formulation. This constraint tightening serves

as a conservative approach for maintaining the safety of the vehicle, leading to reduced constraint violations.

1.4 Model Learning

Finally, model accuracy for predictive control is addressed, which is required for MPC based approaches to

compensate for the unmodeled acceleration and torque disturbances acting on the multirotor system. Model

learning formulations seek to estimate the error in the model dynamics and update the predictive model
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accordingly [13, 14], by estimating the disturbances acting on the system. High-rate adaptive formulations

combine MPC formulation with an online parameter estimator, e.g., a Luenberger observer or Kalman filter,

to achieve more accurate, deliberative actions [15, 16, 17]. However, when the robotic system is subjected to

complex, exogenous disturbances such as aerodynamic effects, treating all model uncertainty as parameters

to estimate in the state-dependent disturbance observer can limit the overall model accuracy. Thus, model

learning approaches are leveraged in this work, which augments a structured system model with a non-

parametric, online-learned component, e.g., via a Gaussian process [18]. This semi-parametric model is

then queried within the MPC formulation while continuing to adapt to the model changes. Since Gaussian

process regression-based techniques are known to scale poorly with the amount of training data, kernel-

based approaches such as Locally Weighted Projection Regression (LWPR) and Incremental Sparse Spectrum

Gaussian Process Regression (ISSGPR) are leveraged in order to incorporate the data more efficiently via

linear basis functions [13] and trigonometric approximations [14], respectively.

This technical report is structured in the following way. Importance of feedforward terms along with full

state MAV dynamics with predictive control formulation is discussed in Chapter 2. Consequences of enforc-

ing constraints for safe and agile performance with robust experience-driven predictive control formulation is

detailed in Chapter 3. Model learning characteristics is discussed in Chapter 4. Finally, a detailed overview

of the software organization used to validate the controller strategies proposed throughout this report are

introduced in Chapter 5.
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2 Predictive Control Strategies

While executing fast and aggressive maneuvers, the MAV consistently moves away from the assumed lin-

earization point. Hence, more accurate trajectory tracking is obtained by leveraging the control strategies

which explicitly deals with nonlinear system dynamics. Although applying predictive control techniques

such as nonlinear model predictive control (NMPC) to nonlinear systems such as the MAV is beneficial,

this strategy incurs a substantial computational penalty or may even be intractable on computationally con-

strained platforms [19]. Therefore, linear model predictive control (MPC) based strategy, experience-driven

predictive control (EPC) [2] is used throughout this report, which employs infrequent online optimization,

thus providing a middle ground between simple, reactive controllers and infinite horizon constrained optimal

control requirements. This chapter introduces the EPC strategy by Desaraju [2] that leverages an online-

updated database of past experiences to achieve high-rate, locally-optimal feedback control with constraint

satisfaction. The versatility of this control strategy is discussed in this chapter by considering the full state

dynamics of the multirotor in a single control loop instead of separated cascaded control loops [20] for the

application of aggressive flight maneuvers.

Moreover, this chapter also introduces the feedforward terms, which anticipates the future state and con-

trol inputs into the control law for better trajectory tracking. Feedforward terms for position control loop

are calculated by higher-order state references that are derived from the desired trajectory, while the angular

feedforward terms for the attitude control loop are calculated using the jerk and snap references.

This chapter starts with describing the system model and linearization of the dynamics when considering

full state system dynamics of a multirotor through a single control loop in Sec. 2.1. The derivation for angular

feedforward terms is described in Sec. 2.2.1. The predictive control formulation by Desaraju [2] is restated

in Sec. 2.4. Practical considerations when using the predictive control formulation using cascaded and full

state dynamics is introduced in Sec. 2.5. Finally, the results in a simulation environment and real platforms

are presented in Sec. 2.6 showing the real-time capability and improved trajectory tracking performance by

the predictive control strategies that are discussed throughout this chapter.
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2.1 Full State Multirotor Control Dynamics

Due to the versatile nature of the experience-driven predictive control formulation [2], it becomes simplified

to model full state dynamics of the multirotor in a single control loop. Multirotor controllers usually employ

a cascaded loop system where an outer loop controls the positional references, and an inner loop controls the

attitude references. In this setup, the outer loop computes the desired attitude and thus generates references

for the inner loop, which outputs motor RPM values as described in [20]. Such a setup simplifies the system

that is not straightforward to control using a single PID control, into two systems that are easily controlled

using the cascaded control loop.

Thus, simple control techniques such as PID can be used for adequate control performance. However,

since the positional control loop assumes that the desired attitude is realized at all times, this assumption

might fail for high-speed flights, where rapid changes in direction necessitate large attitude swings that do not

happen instantaneously. Furthermore, since MAVs are assumed to operate near hover due to a linearization at

level attitude, this assumption might be harmful while executing high-speed flights. Thus, a control strategy

is proposed in this section that is not biased towards the level attitude state by considering the full dynamics

of the multirotor in a single loop. This consideration explicitly models the inner loop’s effect on the outer

loop. The dynamics now consists of 12 degrees of freedom due to consideration of the position and attitude

information into a single state vector.

2.1.1 Multirotor dynamics and linearization

The state of the multirotor system for the full state controller dynamics, x ∈ R12 is given by the position,

velocity of the center of mass, orientation (locally parameterized by Euler angles) and the angular velocity as

x =
[
px, py, pz, vx, vy, vz, φ, θ, ψ, ωx, ωy, ωz

]> (2.1)

while control input to the system is given by

u =
[
F, τx, τy, τz

]> (2.2)
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Figure 2.1: Reference frames for the multirotor dynamics. World frame is centered at the world origin, W ,
and body frame is centered at the multirotor center of mass. ~rB,W is the position vector of body frame with
respect to world frame expressed in world frame.

where F is the force from all the propellers and τx, τy, τz are the moments about the body frame axes. Z −
Y − X Euler angle notation is used to model the rotation of the multirotor in the world frame. To get from

W to B, a rotation takes place about ZW by the yaw angle, ψ, followed by rotation about the intermediate

y-axis by the pitch angle, θ, and finally a rotation about the x-axis by the roll angle, φ for the reference frame

shown in Fig. 2.1. The rotation matrix for transforming coordinates from B to W in SO(3) is given by

WRB =


cosψ cos θ cosψ sinφ sin θ − cosφ sinψ cosφ cosψ sin θ + sinφ sinψ

cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ

 (2.3)
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The forces on the multirotor system are gravity, in the −ZW direction, and the forces from each of the rotors

F , are in the ZB direction. The equation governing the acceleration of the center of mass is

mr̈ =


0

0

−mg

+ WRB


0

0

F

 (2.4)

The time derivatives of position are calculated as

ṗx = vx

ṗy = vy

ṗz = vz

(2.5)

Substituting (2.3) into (2.4), the time derivatives of velocity are computed as

v̇x =
F

m
(cosφ cosψ sin θ + sinφ sinψ)

v̇y =
F

m
(− cosψ sinφ+ cosφ sin θ sinψ)

v̇z =
F

m
(cos θ cosφ− g)

(2.6)

The angular acceleration determined by the Euler equations is

I


ṗ

q̇

ṙ

 =


τx

τy

τz

−

p

q

r

× I

p

q

r

 (2.7)

where ω =


p

q

r

 is body frame angular velocity in x, y, z axis respectively and I is the moment of inertia

matrix referenced to the center of mass along the XB − YB − ZB axes. (2.7) can be rewritten as

ω̇ = I−1(τ − ω × Iω) (2.8)
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The derivatives of orientation states are calculated as

φ̇ = ωx + ωy sinφ tan θ + ωz cosφ tan θ

θ̇ = ωy cosφ− ωz sinφ

ψ̇ = ωy
sinφ

cos θ
+ ωz

cosφ

cos θ

(2.9)

Partial derivatives of the time derivatives of all the state variables with respect to all state and input

variables (Eq. (2.5) − (2.9)) are calculated for linearization. The derivatives with respect to state A (having

dimension of 12× 12) are calculated in (2.10) as

∂ṗx
∂vx

=
∂ṗy
∂vy

=
∂ṗz
∂vz

= 1

∂v̇x
∂φ

=
F

m
(cosφ sinψ − cosψ sinφ sin θ)

∂v̇x
∂θ

=
F

m
(cosφ cosψ cos θ)

∂v̇x
∂ψ

=
F

m
(cosψ sinφ− cosφ sinψ sin θ)

∂v̇y
∂φ

=
F

m
(− cosφ cosψ − sinφ sinψ sin θ)

∂v̇y
∂θ

=
F

m
(cosφ cos θ sinψ)

∂v̇y
∂ψ

=
F

m
(sinφ sinψ + cosφ cosψ sin θ)

∂v̇z
∂φ

=
F

m
(− cos θ sinφ) ;

∂v̇z
∂θ

=
F

m
(− cosφ sin θ) ;

∂v̇z
∂ψ

= 0
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∂φ̇

∂φ
= ωy cosφ tan θ − ωz sinφ tan θ ;

∂φ̇

∂θ
= ωz cosφ sec2 θ + ωy sinφ sec2 θ ;

∂φ̇

∂ψ
= 0

∂θ̇

∂φ
= −ωz cosφ− ωy sinφ ;

∂θ̇

∂θ
= 0 ;

∂θ̇

∂ψ
= 0

∂ψ̇

∂φ
= ωy

cosφ

cos θ
− ωz

sinφ

cos θ
;

∂ψ̇

∂θ
= (ωz cosφ+ ωy sinφ) sin θ sec2 θ ;

∂ψ̇

∂ψ
= 0

∂φ̇

∂ωx
= 1 ;

∂φ̇

∂ωy
= sinφ tan θ ;

∂φ̇

∂ωz
= cosφ tan θ

∂θ̇

∂ωx
= 0 ;

∂θ̇

∂ωy
= cosφ ;

∂θ̇

∂ωz
= − sinφ

∂ψ̇

∂ωx
= 0 ;

∂ψ̇

∂ωy
=

sinφ

cos θ
;

∂ψ̇

∂ωz
=

cosφ

cos θ

∂ω̇

∂ωx
= −I−1(e1 × Iω + ω × I1) ;

∂ω̇

∂ωy
= −I−1(e2 × Iω + ω × I2) ;

∂ω̇

∂ωx
= −I−1(e3 × Iω + ω × I3)

(2.10)

where ei is the ith unit vector and Ii is the ith column of matrix I . Similarly, derivatives with respect to input

B (having dimension of 12× 4) are calculated in (2.11) as

∂v̇x
∂F

=
1

m
(cosφ cosψ sin θ + sinφ sinψ)

∂v̇y
∂F

=
1

m
(− cosψ sinφ+ cosφ sin θ sinψ)

∂v̇z
∂F

=
1

m
cos θ cosφ

∂ω̇

∂τ
= I−1

(2.11)

Linearization of the full state multirotor dynamics described in (2.10) (2.11) can be used with the predictive

control formulation to realize full-state dynamics of the multirotor in a single control loop.
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2.2 Anticipating Trajectory Behavior using Feedforward terms

Feedforward terms comprise of desired acceleration for the positional control loop and desired angular ve-

locity, desired angular acceleration for the attitude control. These state-dependent feedforward terms can be

realized for reactive as well as predictive control formulations such as PD control and EPC, respectively. It is

worth noting that the EPC control law, being an optimal control strategy comprising of state and input vari-

ables in the cost function is also able to anticipate the input-dependent references, apart from state-dependent

references. This anticipative nature allows for perfect tracking of given higher order trajectories under the

idealized point mass model.

Using a predictive control strategy requires specifying a reference to be followed for the duration of

the full prediction horizon. In the case of a position controller, the position reference (and its higher order

derivatives) comes from a pre-computed desired trajectory that specifies the desired state of the vehicle in

space over time. For an attitude controller, the reference needs to specify the desired orientation, angular

velocity, and angular acceleration of the vehicle. These can be computed from the position reference using

the differential flatness transformation [4]. The position references can be used over the attitude control

horizon to compute orientation references. This requirement is fulfilled for the predictive attitude controller

if the position controller is also a predictive controller, thus providing acceleration inputs for a horizon which

is at least as long as the attitude control horizon. The position control output can be used to build reasonable

attitude controller references for the full attitude control horizon. Since the cascaded position control runs at

a lower rate than the attitude controller, not all of the resulting acceleration output can be used to build the

attitude reference. If the attitude controller runs at 200 Hz and the position controller runs at 100 Hz, and

if both the control strategies are using the similar number of time steps in the prediction horizon, then only

half of the acceleration output from the outer loop can be used to calculate the inner loop reference. The

outer loop output references are doubled for compensating this limitation for the presented formulation. The

effects of this limitation can be diminished by leveraging a full state EPC controller which runs at a unique

update rate for a single control loop, thus generating required references for the full horizon.

Section 2.6.2 discusses results that shows the importance of enforcing the feedforward terms while exe-

cuting aggressive trials through simulation as well as hardware studies. Fig. 2.4b shows dire consequences of

not utilizing the feedforward terms for aggressive trajectories, that culminates in a crash, resulting in physical
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damage to the multirotor system.

2.2.1 Deriving feedforward terms

Following [4], the derivation for the desired angular velocity and desired angular acceleration using the jerk

and snap components of the trajectories is presented in this section.

Following terminologies are used for this section. World frame is represented byW , and the body frame

of the multirotor is represented by B. The angular velocity of the multirotor is represented by ωBW , denoting

angular velocity of the body frame in the world frame. The body frame angular velocity components p, q,

and r along x, y, and z axis respectively can then be written as

ωBW = pxB + qyB + rzB (2.12)

The reference position for the multirotor in world frame is denoted by r. Referring the application of New-

ton’s equation of motion, F = ma, where m is the mass of the vehicle and a is the reference acceleration,

and considering that the forces acting on the vehicle are gravity, in the −zW direction and the sum of forces

(thrust) from each rotors, u1, in the zB, the following vector differential equation can be written

mr̈ = −mgzW + u1zB (2.13)

zB is calculated from the reference acceleration. Desired angular velocity is calculated by taking the first

derivative of (2.13). To get an expression containing desired angular acceleration, two derivatives of (2.13)

are calculated. The third derivative of position, r, is jerk and the fourth derivative, snap. Thus, the trajectory

jerk vector and snap vector are used to calculate the desired angular velocity and desired angular acceleration

vectors, respectively. First derivative of (2.13) is found by applying the product rule to (2.13), thus generating

the expression for desired angular velocity. Since the world frame z-axis is constant, its derivative comes out

to be zero.

mȧ = u̇1zB + u1żB (2.14)

For calculating the derivative of zB, the velocity of a rigid body rotating with ωBW is always perpendicular to
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the axis of rotation and to the direction vector from the origin to the rigid body. The magnitude of the linear

velocity of the rigid body thus depends on the perpendicular distance from the body to the axis of rotation

(leading to v = ωr). This distance to the axis of rotation scales with sin(θ) where θ is the angle between the

axis of rotation and the rigid body, leading to a cross product. Thus, the derivative of zB is ωBW × zB. The

desired force vector for the controller is denoted as Fdes. Following [4], this report makes an assumption to

ignore the feedback terms in Fdes. Using the product rule on u1 = 〈Fdes, zB〉

u̇1 = 〈Ḟdes, zB〉+ 〈Fdes, żB〉

u̇1 = 〈Ḟdes, zB〉+ 〈Fdes, ωBW × zB〉
(2.15)

Since feedback terms in Fdes are ignored, the second term in (2.15) becomes zero. Thus, u̇1 is

u̇1 = 〈Ḟdes, zB〉

u̇1 = 〈mȧ, zB〉 = zB ·mȧ
(2.16)

Projecting (2.14) along the body z-axis and using the fact that żB = ωBW × zB, is substituted u̇1 from (2.16)

into (2.14) to define the vector hω as

hω = ωBW × zB =
m

u1

(
ȧ− (zB · ȧ)zB

)
(2.17)

(2.17) enables the calculation of desired roll and pitch angular velocity by projecting m
u1

ȧ onto the xB − yB
plane. Following the right-hand rule, a positive roll corresponds to a negative motion in the body frame

y−axis and a positive pitch corresponds to a positive motion along the body frame x−axis. Desired roll and

pitch angular velocity can then be written, from (2.12) as

p = −hω · yB, q = hω · xB (2.18)

The desired angular velocity in yaw, r is calculated by utilizing the first order desired yaw component, ψ̇

from the trajectory as

r = ψ̇ · zB (2.19)

For calculating the desired angular acceleration components, a second derivative of (2.14) is calculated by
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applying the product rule again

mä = ü1zB + u̇1żB + u̇1żB + u1z̈B

mä = ü1zB + 2u̇1żB + u1z̈B

(2.20)

Double derivative z̈B is calculated by taking a derivative of żB = ωBW × zB. Applying the product rule

on this equation results in final double derivative solution: z̈B = ω̇BW × zB + ωBW × (ωBW × zB). ü1 is

calculated in a similar manner by taking another derivative of (2.16)

ü1 = m
(
〈ä, zB〉+ 〈ȧ, żB〉

)
(2.21)

Substituting u̇1, ü1, żB, z̈B into (2.20) and solving for ω̇BW × zB

mä = ü1zB + 2u̇1żB + u1z̈B

mä = m
(
〈ä, zB〉+ 〈ȧ, żB〉

)
zB + 2〈mȧ, zB〉

(
ωBW × zB

)
+ u1

(
ω̇BW × zB + ωBW × (ωBW × zB)

)
u1
m

(
ω̇BW×zB + ωBW × (ωBW × zB)

)
= ä−

(
〈ä, zB〉+ 〈ȧ, żB〉

)
zB − 2〈ȧ, zB〉

(
ωBW × zB

)
ω̇BW × zB =

m

u1

(
ä− (〈ä, zB〉+ 〈ȧ, żB〉)zB − 2〈ȧ, zB〉(ωBW × zB)

)
− ωBW ×

(
ωBW × zB

)
(2.22)

For computing the desired angular acceleration coefficients, an approach similar to the desired angular veloc-

ity calculation is used
ṗ = −〈ω̇BW × zB,yB〉

q̇ = 〈ω̇BW × zB,xB〉
(2.23)

Finally, the desired angular acceleration in yaw, ṙ can be calculated by utilizing the second order desired yaw

component, ψ̈ from the trajectory as

ṙ = ψ̈ · zB (2.24)



22

2.3 EPC Control Formulation

For a model predictive control strategy, the affine linear system model with constraints is given by

x̄k+1 = x̄nom
k+1 + p̂

= Ax̄k + Būk + c + p̂

= Ax̄k + Būk + c̃

(2.25)

with linear state and input constraints
Gxxk+1 ≤ gx

Guuk ≤ gu

(2.26)

where the corresponding prediction output from model learners is given by the vector, p̂ =

[
p0, p1, . . .

]>
(detailed in Chap. 4). Here, x denotes the state vector, and u denotes the input vector. Affine model (2.25)

automatically adapts to capture the effects of nonlinearities and unmodeled dynamics.

Following [2], the receding-horizon control problem as a quadratic program can be formulated as

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)

>Qk+1(x̄k+1 − r̄k+1) +
1

2
(ūk − ūref

k )>R(ūk − ūref
k )

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxk+1
x̄k+1 ≤ gxk+1

Guk
ūk ≤ guk

∀k = 0, . . . , N − 1

(2.27)

where ūref
k consists of prediction output with feedforward control input references, x denotes the state vector,

r denotes the reference or desired state, u denotes the input vector, and Q and R define the LQR-style cost

function. Taking the current state as the nominal state, x? = x0 with N reference states r1, . . . , rN, let

r̄ = r− x?.
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To simplify the notation, x =

[
x̄>1 , ..., x̄

>
N

]>
, r =

[
r̄>1 , ..., r̄

>
N

]>
,u =

[
ū>0 , ..., ū

>
N−1

]>
,uref =

[
ūref>
0 , ..., ūref>

N−1

]>
,

B =


B 0 · · · 0

AB B · · · 0
...

... . . .

AN−1B AN−2B · · · B

 , c =


c̃

(A + I)c̃
...∑N−1

i=0 Aic̃

 (2.28)

Q = diag(Q1, · · · ,QN),R = diag(R0, · · · ,RN−1),Gx = diag(Gx1 , · · · ,GxN
),Gu = diag(Gu0 , · · · ,GuN−1

),

gx =

[
g>x1

, · · · ,g>xN

]>
, and gu =

[
g>u0

, · · · ,g>uN−1

]>
. Provided x̄0 = 0, we can rewrite (2.27) as

argmin
u

1

2
(x− r)>Q(x− r) +

1

2
(u− uref)>R(u− uref)

s.t. x = Bu+ c

Gxx ≤ gx

Guu ≤ gu

(2.29)

We can reconstruct an equivalent QP entirely in terms of u by substituting the dynamics constraints and

dropping constant terms in the cost function

argmin
u

1

2
u>Hu+ h>u

s.t. Γu ≤ γ
(2.30)

whereH = B>QB +R, h = B>Q(c− r)−Ruref

Γ =

GxB
Gu

 and γ =

gx − Gxc

gu


Defining λ as the vector of Lagrange multipliers and Λ = diag(λ), the first two Karush-Kuhn-Tucker (KKT)
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conditions for optimality (stationarity and complementary slackness) for the QP can then be written as

Hu+ h+ Γ>λ = 0

Λ(Γu− γ) = 0
(2.31)

Considering only the active constraints (i.e., with λ > 0) for a given solution, we can reconstruct u and λ by

solving a linear system derived from (2.31), where the subscript a indicates rows corresponding to the active

constraints H Γ>a

Γ a 0

u
λa

 =

−h
γa

 (2.32)

The resulting QP control law, u, is affine in the predicted state error, r, and parameterized by the system

dynamics as

u = E5r −
(
E5c− E4Ruref + E3


g+x − Gxc

−g−x + Gxc

g+u

−g−u


a

)
(2.33)

where E1 = Γ aH−1, E2 = −(E1Γ>a )−1, E3 = E>1 E2, E4 = H−1 + E3E1, and E5 = E4B>Q. Also, since

the coefficients in (2.33) are all functions of A,B, and c̃, the overall control law κ(x0, r1, · · · , rN) can be

written in terms of a parameterized feedback gain matrix K and feedforward vector kff and hence can be

calculated on each control loop iteration.

κ(x0, r1, · · · , rN) = K(A,B, c̃)r + kff(A,B, c̃) (2.34)

This parameterization then extends to the KKT condition checks to determine whether a previously computed

controller is locally optimal. The active Lagrange multipliers λa follow a similar form to the control law

λa = −E6r −
(
E6c− E>3Ruref + E2


g+x − Gxc

−g−x + Gxc

g+u

−g−u


a

)
(2.35)
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Algorithm 1 Experience-driven Predictive Control

1: M← ∅ orMprior

2: while control is enabled do
3: x← current system state
4: r ← current reference sequence
5: A,B, c̃← current dynamics model from disturbance observer
6: for each element mi ∈M do
7: Compute u,λa via (2.33), (2.35)
8: Store parameterized E1 · · ·E6 from (2.33), (2.35) for each set of active constraints
9: if x, r satisfy parameterized KKT criteria then

10: importancei← current time, sortM
11: controller_found← true
12: Apply affine control law (2.34) from mi

13: end if
14: end for
15: if controller_found is false then
16: Apply intermediate control via linear MPC (2.37) with slack variables
17: Update QP formulation with the current model
18: Generate new controller via QP (2.30) (in parallel)
19: if |M| > maximum table size then
20: Remove element with minimum importance
21: end if
22: Add mnew = (K,kff,importance) toM
23: end if
24: end while

where E6 = E>3 B>Q

2.4 EPC Algorithm Overview

As described in Alg. 1, EPC constructs a database defined as a mappingM from experiences to controllers.

For each control iteration, EPC queries the current state and reference, as well as the current affine model

from the corresponding disturbance observer, A,B, c̃. The parameterized mapping (line 6) is then queried,

and if the KKT conditions are satisfied for an element fromM, the corresponding controller is applied. If

any element satisfies the criteria, its importance value is updated to the current time, and a corresponding

affine controller is applied. In this case, no online optimization is required to generate a locally optimal
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feedback control law. If no element inM satisfies the criteria (line 15), a parallelized approach is used to

compute and add new element toM without blocking the main control loop. A local QP is solved (line 17)

and corresponding element is added to M. To control the amount of time spent querying the mapping,

as new controllers are added to the database, less valuable controllers (indicated by a lower importance

score) are removed (line 20) to bound the number of elements that may be queried in one control iteration,

thereby ensuring computational tractability. With EPC, the local controllers are fully parameterized, allowing

controllers computed using past experience to be adapted to the future scenario.

While the new element of M is being computed, an intermediate/safety controller is used to quickly

compute suboptimal commands which ensure stability and constraint satisfaction (line 16). The intermediate

controller as a linear MPC with a shorter horizon Ñ and soft constraints is formulated as

argmin
uk,εk

Ñ−1∑
k=1

1

2
(x̄k+1 − r̄k+1)

>Qk+1(x̄k+1 − r̄k+1) +
1

2
(ūk − ūref

k )>R(ūk − ūref
k ) +

1

2
ε>k Sεk

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxk+1
x̄k+1 − εk ≤ gxk+1

Guk
ūk ≤ guk

∀k = 0, ..., N − 1

(2.36)

The bounds on the control inputs are enforced as hard constraints to ensure the resulting commands are

feasible, while slack variables εk are added to the state constraints to allow violations with some cost penalty,

S. The slack variables are unconstrained to ensure the existence of a solution.

As in the local QP, (2.36) can be re-written such that uk and εk are the only decision variables

argmin
u,ε

1

2
u>Hu+h>u+

1

2
ε>Sε

s.t. Γu− ε ≤ γ
(2.37)

where S and ε are aggregated from S and εk, respectively.

As this process iterates,M gets populated by the most useful elements, reducing the dependence on the
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intermediate/safety controller (2.37). The combination of controllers queried fromM and the intermediate

controller ensures the existence of a locally optimal feedback controller at every iteration. Since the com-

putationally expensive components of the algorithm are run in parallel, EPC is able to compute high-rate,

stabilizing commands at all times, thus enabling fast, nearly optimization-free control that improves over

time.

2.5 Practical considerations

This section introduces some practical insights for leveraging the predictive control formulation strategies

by providing considerations for tuning the EPC formulation described in Sec. 2.3 - 2.4. The tuning strategy

discussed in this section takes insights from classical control theory of Linear Quadratic Regulator (LQR).

2.5.1 Tuning cascaded EPC gains

For tuning the cascaded predictive control formulation such as EPC, PD control gains are selected which are

comparable to an unconstrained version of linear MPC (i.e., finite horizon LQR) to maintain uniformity in

the analysis of results. In hindsight, tuning the weights for cascaded EPC formulation is equivalent to tuning

this finite horizon LQR formulation. Restating the theory for LQR controller, for a discrete-time system

xt+1 = Axt + But, a quadratic cost function is defined as

J(U) =
N−1∑
τ=0

(
x>τ Qxτ + u>τ Ruτ

)
+ x>NQfxN

and U =
(
u0, · · · ,uN−1

)
,

(2.38)

where Q = Q> ≥ 0, Qf = Q>f ≥ 0, R = R> ≥ 0 are state cost, final state cost, and input cost matrices

respectively. Here, N is called finite time horizon. First term, second term, and last term measures the state

deviation, input/actuator authority, and final state deviation. Q and R set relative weights of state deviation

and input usage. R represents any nonzero input adds to cost J . The LQR problem then finds ulqr
0 , · · · ,u

lqr
N−1

that minimizes J(U). Dynamic programming (DP) solution gives an efficient, recursive method to solve this
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LQR problem. To adopt the DP approach, a value function (Bellman equation) is defined

Vt(z) = min
ut,··· ,uN−1

N−1∑
τ=t

(
x>τ Qxτ + u>τ Ruτ

)
+ x>NQfxN

subject to xt = z, xτ+1 = Axτ + Buτ , τ = t, · · · , T . Vt(z) gives the minimum LQR cost-to-go, starting

from state z at time t, while V0(x0) is minimum LQR cost. For the above value function, Vt is quadratic,

i.e., Vt(z) = z>Ptz, where Pt = P>t ≥ 0. Pt is found recursively, working backward from t = N and the

LQR optimal u can be expressed in terms of Pt. Cost-to-go with no time left is then just the final state cost:

VN(z) = z>Qfz. Thus, PN = Qf is obtained. The dynamic programming principle states that

Vt(z) = min
w

(
z>Qz + w>Rw + Vt+1(Az + Bw)

)
(2.39)

where z>Qz+w>Rw is the cost incurred at time t if ut = w and Vt+1(Az+Bw) is the minimum cost-to-go

from t+ 1. Following the fact that minimization is executed in any order, (2.39) can be written as a Bellman

equation for LQR as

Vt(z) = z>Qz + min
w

(
w>Rw + Vt+1(Az + Bw)

)
(2.40)

(2.40) gives Vt recursively in terms of Vt+1. Any minimizing w gives optimal ut as

ulqr
t = argmin

w

(
w>Rw + Vt+1(Az + Bw)

)
Assuming Vt+1(z) = z>Pt+1z, with Pt+1 = P>t+1 ≥ 0, by DP, (2.40) can be written as

Vt(z) = z>Qz + min
w

(
w>Rw + (Az + Bw)>Pt+1(Az + Bw)

)
(2.41)

(2.41) can be solved by setting the derivative w.r.t. w to zero

2w>R + 2(Az + Bw)>Pt+1B = 0
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Hence, optimal control input is

w∗ = −
(
R + B>Pt+1B

)−1
B>Pt+1Az (2.42)

while Vt(z) is

Vt(z) = z>Qz + w∗>Rw∗ + (Az + Bw∗)>Pt+1(Az + Bw∗)

= z>
(
Q + A>Pt+1A−A>Pt+1B(R + B>Pt+1B)−1B>Pt+1A

)
z

= z>Ptz

where Pt for t = N · · · 1 is

Pt−1 := Q + A>PtA−A>PtB(R + B>PtB)−1B>PtA (2.43)

Kt for t = 0, · · ·N − 1 from (2.42) is

Kt := −
(
R + B>Pt+1B

)−1
B>Pt+1Az (2.44)

which follows the optimal control law ulqr
t = Ktxt. Eq. (2.43), (2.44) run in recursion to compute the finite

horizon LQR solution.

For the final application of calculating LQR gains for a comparable feedback response to PD, this report

relies on matching the gain matrix generated from LQR formulation to a desired gain matrix obtained from

a tuned PD controller. A cost function searches over the values of Q and R and minimizes the difference

between two gain matrices, Klqr
t and KPD

des. Thus, an optimization solver is ran to solve the following cost

function using values from (2.43), (2.44)

J(Q,R) =
∑(∣∣∣Klqr

t −KPD
des

∣∣∣ ) (2.45)

With the required components in place, the strategy outlined below is leveraged for obtaining a compara-

ble feedback response of cascaded EPC with respect to a PD controller
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Algorithm 2 Gain tuning strategy for cascaded EPC
1: N← Horizon Length
2: KPD

des← Finite Horizon LQR gain matrix consisting of PD gains initially
3: A,B← Linearized dynamics model matrices.
4: while Updating cost function (2.45) do
5: P = Q
6: for Horizon Length from 1, . . . , N do
7: Calculate Klqr

t from (2.43), (2.44)
8: end for
9: end while

10: gains← Retrieve Q and R at the end of optimization routine (line 4)

1. Tune the PD control gains to obtain a performance for comparison and store the gains in a desired gain

matrix, KPD
des. (line 2 of Alg. 2)

2. Generate system linearization matrices, i.e., A and B, as shown in line 3.

3. Decide the number of optimization variables – this number corresponds to elements inside matrices Q

and R.

4. Leverage the cost function (line 4) defined in (2.45) and calculate the values of Klqr
t in recursion using

any optimization solver (line 7).

5. The cost function is an absolute difference between the predicted and desired gain matrices. Minimized

solution corresponds to the optimal Q and R values (line 10).

2.5.2 Tuning Full State EPC gains

PD controller is generally easy to tune because there are only two numbers which need to be altered. However,

the full state EPC controller deals with 16 values at the same time. For tuning the full state EPC, the general

idea should be to get the feedback response similar to a PD since an unconstrained full state EPC feedback

control response is similar to feedback control response obtained from zeroth LQR controller. Consequently,

for the experimental purposes of this work, manual hand-tuning of the full state EPC weights is carried out for

generating comparable feedback response to PD. To make sure that the feedback response of full state EPC
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controller is similar to PD, step inputs in X , Y , and Z directions are analyzed as shown in Fig. 2.2a. Since

step responses are based on pure feedback control component, this experiment confirms that the feedback

response between full state EPC controller and PD controller is comparable.

2.6 Results

The versatility of the EPC controller is that it can be leveraged for any dynamic model. Throughout this

report, illustrative examples for the usage of EPC on position and attitude control (cascaded control), as well

as full state controller, are discussed.

This section starts with showing comparable feedback response of full state EPC controller with the PD

controller, followed by trials emphasizing the importance of using this full state EPC controller for trajecto-

ries requiring sudden acceleration and attitude changes. The real-time performance of full state EPC (FSE)

controller on a hexarotor is then presented showing the real-time performance of FSE on a computationally

constrained system. This section then presents the results which establish that the feedforward terms are

crucial for executing aggressive trajectories.

To assess the performance of the predictive control strategies introduced in this chapter, a set of simula-

tion studies and hardware experiments are conducted with a hexarotor aerial vehicle. Experimental studies

with the hexarotor demonstrate the performance of predictive control strategies during aggressive maneuvers.

Through this section, following results are demonstrated: RS1, real-time computation of control commands;

RS2, improved trajectory tracking performance while leveraging full state multirotor dynamics; and RS3,

improved trajectory tracking performance by anticipating future states through feedforward terms. While

RS shorthand represents the simulation results, RH shorthand represents the corresponding hardware results.

The experimental hardware platform utilized for this section is a 3.86 kg hexarotor, and the control algorithms

are implemented on the hexarotor’s NVIDIA TX2 CPU (2 GHz ARM Cortex-A57, 2 GHz NVIDIA Denver2,

8 GB RAM).

2.6.1 Full State EPC controller

To maintain the uniformity in comparison, the full state EPC (FSE) controller is tuned to achieve a comparable

feedback response similar to a PD controller. Step responses inX , Y , and Z directions are analyzed as shown
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(a) Comparable feedback control response.

Figure 2.2: Figure 2.2a shows step response analysis confirming that a comparable feedback control response
is achieved between full state EPC controller and PD controller strategy.

in Fig. 2.2a. The mean control loop time while using FSE for this trial was 2.58ms, which is well beyond the

required control rate (RS1), thus proving real-time computation of control commands. A flight trial is also

conducted on real system hardware on NVIDIA TX2 using the same gains tuned for simulation trials. The

vehicle achieved a mean control loop timing of 5.40 ms (RH1), which is again within the required control

rate, thus supporting the real-time control update rate for FSE.

To show the importance of full state controller over a cascaded controller, a high-speed trajectory is com-

manded without feedforward terms. This experiment emphasizes that full state controller performs relatively

well, when executing an aggressive trajectory without the feedforward terms as shown in Fig. 2.3a where the

mean absolute tracking error for full state controller in Z direction was 0.6129 cm compared to 3.6556 cm

for the cascaded controller. Figure 2.3a shows that full state controller performs well in Y direction as well,

with 2.4505 cm mean absolute tracking error for full state controller compared to 3.6180 cm mean absolute

tracking error for the cascaded controller.
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2.6.2 Feedback and Feedforward response

A 4 m long 7th order polynomial trajectory was commanded with a duration of 1.5 seconds on a multirotor

platform for conducting this experiment in simulation. Tracking error analysis for this aggressive trajectory is

carried out to show improved trajectory tracking with state and input feedforward terms. FSE and Cascaded

EPC controller strategy performance are compared with (Fig. 2.3b) and without (Fig. 2.3a) the feedforward

terms. Quantitative analysis of the results from Fig. 2.3 suggests that trajectory tracking is substantially

improved when state and input references as feedforward terms are utilized in the control formulation (RS3).

Finally, a 2.5 m long 7th order polynomial trajectory is commanded with a duration of 1.3 seconds on a

hexarotor platform to validate the results on the real hardware system. Flight performance showing improved

trajectory tracking is shown in Fig. 2.4 (RH3). This figure shows that an aggressive flight is safely executed

using feedforward terms (Fig. 2.4a), which otherwise fails when no feedforward terms are utilized (Fig. 2.4b).

Aggressive flight video of EPC controller using no feedforward terms, and EPC controller using feedforward

terms on a real system are available as embedded links.

For completeness, the difference between feedback response and feedforward response is shown in Fig. 2.5

for full state EPC controller where the feedback response is visible initially for the commanded step inputs

(till ≈ 40 seconds), which diminishes to almost 0 when a higher order (7th order) polynomial trajectory with

feedforward terms is commanded.

2.7 Conclusion

This chapter discussed the predictive control formulation, and also introduced the importance of using a

controller which considers full state dynamics of the multirotor in a single control loop, instead of a naive

cascaded control law strategy. Simulation and hardware results presented in this chapter shows that the

proposed predictive control strategies with anticipative nature, derived from feedforward terms improves the

trajectory tracking while executing aggressive flights.

https://youtu.be/Y7G2Fw6qN6Y
https://youtu.be/dpbOSPLMbBs
https://youtu.be/dpbOSPLMbBs
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Figure 2.3: Figure 2.3a and Fig. 2.3b compares aggressive trajectory tracking performance between full State
EPC and cascaded EPC controller without using feedforward terms and with using feedforward terms respec-
tively. Figure 2.3a also shows that full State EPC controller performs better than cascaded EPC controller,
which is clearly visible by improved tracking performance in Z direction.

(a) Aggressive trajectory using EPC controller with feed-
forward terms enabled.

(b) Aggressive trajectory using EPC controller without
feedforward terms enabled.

Figure 2.4: Figure 2.4a and Fig. 2.4b shows overlaid aggressive trajectory execution using EPC controller
with feedforward terms enabled and without feedforward terms enabled respectively.
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Figure 2.5: This figure shows feedback response for step inputs given to the full state EPC controller till
≈ 40 seconds, followed by feedback and feedforward response of the controller for the 7th order polynomial
trajectory utilizing jerk and snap components. Above figure shows that feedback input is large for step inputs
while the feedback component of control input is almost zero for the trajectories with feedforward terms.
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3 Robust Constraint Satisfaction for Aggressive Flights

This chapter details the importance of enforcing state and control input constraints using a finite-horizon

predictive controller strategy, Experience-driven Predictive Control (EPC) described in Sec. 2.3. EPC reuses

the experience to reduce online optimization through the use of stored parameterized controllers. Efficient

implementation of EPC on computationally constrained platforms is discussed in this chapter by leveraging

explicit EPC with Markov Chain simplification [3].

There is a considerable demand for flying aggressive and high speed controlled flights for fast exploration

and inspection missions where resources to fly for a long duration are severely constrained [21]. Moreover,

drone racing has also become very popular nowadays, demanding accuracy as well as safety while executing

such aggressive maneuvers [22]. While flying aggressively, the MAV is prone to disastrous crashes due to

the inability of the control strategies for adapting to the sudden changes in the vehicle’s angular acceleration.

It is thus, essential to enforce safety using predictive control strategies. Predictive control strategies such as

Model Predictive Control (MPC) generates safe control commands by enforcing constraints on the system

state and control input. Unconstrained controller strategies such as a PD control or an LQR controller cannot

handle sudden significant changes in desired control input and state during aggressive flights. This is because,

with the unconstrained inputs, the system might hit its physical actuator limits while trying to maneuver

the aggressive trajectory. Such significant and sudden changes in the system’s attitude can lead to large

required angular acceleration, causing motor saturation. Thus, unconstrained control strategies result in poor

performance by violating the safety of the MAV for maneuvering aggressive trajectories. Hence, when an

unconstrained controller is used to track an aggressive trajectory, a disastrous situation might arise as shown

in Fig. 3.2d where the robotic system crashes, resulting in substantial damages to the system. In order to face

such situations, nonlinear model predictive control (NMPC) strategies are often leveraged for a nonlinear

system such as the MAV. However, due to the shortcomings of NMPC (described in Sec. 2), a linear MPC

control formulation is leveraged which stores the parameterized controller in a database for future re-use,

using an approach known as EPC [23]. While there are certain merits of using EPC, this approach still needs

to solve a QP in parallel and rely on a suboptimal solution such as shorter-horizon QP if the controller is not

found in its parameterized controller database. It is thus not efficient to query every parameterized controller

in the database which might destabilize the control update rate due to the exceeding time delays.
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During real flights, the system only uses a small number of the potential controllers that nominal EPC

approach generates. To enhance the efficiency of controller queries, the transitions between the database

queries is modeled as a Markov chain empirical transition probabilities. There transition probabilities are used

to specify a partial ordering on successors for each controller [3]. This approach improves the efficiency of

database queries and permits further reductions of the database size, thereby enabling use on computationally

constrained platforms.

The task of enforcing constraints for maintaining the safety of the MAV is challenged in the presence of

uncertain state estimates. Robust predictive control strategies deal with such situations by using a conser-

vative solution of tightening/decreasing the constraint bound limit. Due to the tightening of constraints, the

system always tries to stay within the constraint bound, thus enforcing safety. Following [23], Robust EPC

is presented in this chapter, which tightens the constraint bounds in the presence of uncertain state estimates

and stores the parameterized robust controllers in a database for reusing them when a similar scenario is

encountered. Explicit Robust EPC with Markov Chain simplification is also presented in this chapter which

models the transitions of robust controllers to define an efficient query order for efficient query times.

This chapter is detailed as follows – Section 3.1 details the explicit EPC formulation with Markov Chain

ordering simplification algorithm overview. Section 3.2 describes the robust formulation for constrained

predictive control strategies using Robust EPC. Finally, Sec. 3.3 presents the results of constrained predictive

control using EPC, and explicit EPC with Markov Chain ordering simplification. Results for cached matrices

logic for EPC are also presented in this section, that introduces a factor of speedup in querying the database.

Along with this, the results for Robust EPC, and explicit Robust EPC with Markov Chain ordering are also

discussed in Sec. 3.3.4 - 3.3.5. All the experiments are conducted in simulation as well as real hardware

systems that shows the viability of real-time control command generation of the presented control strategies.

3.1 Explicit EPC with Markov Chain Ordering

In this section, the algorithm overview for the efficient implementation of the constrained controller strategies

using Markov Chain (MC) simplification is discussed. This MC simplification defines a partial ordering of

controller query priority in the database.
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Algorithm 3 Controller Database Generation using EPC

1: M← ∅, Φ← 0, j ← 0
2: while control is enabled do
3: x← current system state
4: r ← current reference sequence
5: for each element mi ∈M do
6: Compute u,λa via (2.33), (2.35)
7: Store parameterized E1 · · ·E6 from (2.33), (2.35) for each set of active constraints
8: if x, r satisfy parameterized KKT criteria then
9: importancei← current time, sortM

10: controller_found← true
11: Apply affine control law (2.34) from mi

12: Φij ← Φij + 1, j ← i
13: break
14: end if
15: end for
16: if controller_found is false then
17: Apply intermediate control via linear MPC (2.37) with slack variables
18: Update QP formulation with the current model
19: Generate new controller via QP (2.30) (in parallel)
20: if |M| > maximum table size then
21: Remove element with minimum importance
22: end if
23: Add mnew = (K,kff,importance) toM
24: j ← |M|, Φjj ← 1
25: end if
26: end while
27: Apply a first order Markov Chain to compute ordering (Ω) over the obtained transition matrix (Φ) which

consists of transition frequencies between most probable states.

3.1.1 Controller Database Generation

In order to generate a database,M, of affine feedback controllers, regular EPC algorithm is initialized (pre-

viously described in Alg. 1) with an empty database, as shown in Alg. 3. A transition frequency matrix, Φ

is introduced, that records the number of transitions between each pair of controllers added to M (line 1).

As the MAV encounters new scenarios and increases the current database of controllers, Φ is incremented

accordingly (line 12). If the relevant controller is not found in the database, EPC solves QP (2.30)(line 19)

and adds the resulting controller to the database (increasing the size of Φ as well) (line 23), while using a



39

Algorithm 4 Querying MC simplified controller database online
1: Inputs: M and Ω from Alg. 3, Current x, r, Previous controller index j?

2: for each element mi ∈M ordered by Ωj ? do
3: if x, r satisfy KKT criteria (2.31) then
4: controller_found← true
5: return u← κi(x, r)
6: end if
7: end for
8: if controller_found is false then
9: Apply intermediate control via linear MPC (2.37) with slack variables

10: end if

suboptimal shorter horizon intermediate controller (line 17).

At the end of the trial, an order-1 Markov chain is defined that represents the transitions between con-

trollers, with empirical transition probabilities defined by Φ̄ = Φ with normalized rows. Sorting the outgoing

transitions from each state of the Markov chain according to the probability of occurrence yields a partial or-

dering, Ω, of the controllers (line 27). This ordering informs the online query process detailed in Sec. 3.1.2.

To know more about the benefits of this ordering strategy, the reader is encouraged to refer [3, 24].

3.1.2 Querying the MC ordered EPC database online

After the controller database,M, is populated from Alg. 3, it enables high-rate, online control that recovers

the functionality of (2.30). As discussed in Alg. 4, M is queried in each control iteration to identify the

appropriate controller κi. Since every control iteration is a state transition in the Markov chain, the next

transition (next controller) is identified by iterating throughM according to the order specified by entry j?

in Ω, where j? is the index of the previous controller applied (line 2). This MC ordering makes it possible

to reduce the number of controllers that must be checked (because evaluating the KKT conditions is com-

paratively more expensive than a lookup table query), thus improving the query efficiency relative to simple

ordering from nominal EPC.

Moreover, since the controller database query is only as good as the experiences collected by flying online,

it cannot guarantee perfect coverage. Generation of an extensive synthetic experience database as detailed

in [3] might be helpful here. Therefore, if no controller in the database is suitable, an intermediate/safety
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controller (e.g., a short horizon MPC with soft constraints) is applied until the system returns to the region

covered byM.

3.2 Robust Predictive Control

In this section, an extension of the EPC algorithm [25] to achieve high-rate predictive control with robust

constraint satisfaction is presented following [23]. Robust EPC algorithm parameterizes the controllers in the

database similar to the EPC algorithm presented in Sec. 2.4 by an online updated estimate of the uncertainty

in the system state. The state estimate is derived from the estimator covariance and thus enables the use of

a belief propagation approach to create an uncertainty tube for the evolution of the state over the prediction

horizon. Following nonlinear dynamics and observation model is considered for the Robust EPC algorithm

presented in this section
xk+1 = f(xk,uk) + wk

zk = h(xk) + vk
(3.1)

with xk being the system state, uk being the control input to the system, wk~N (0,Wk), and vk~N (0,Vk)

denoting the process and measurement uncertainties, respectively. To linearize the system dynamics about

nominal state x? and nominal input u?, first order Taylor-series approximation of (3.1) is required

xk+1 ≈ Ak(xk − x?) + Bk(uk − u?) + c̃ + wk

zk ≈ Ck(xk − x?) + vk
(3.2)

Extending (3.1) to a standard Kalman filter belief state update law following the insight from [23] yields an

estimate of the state xk~N (µk,Σk), which models the evolution of this uncertain system

µk+1 = f(µk,uk) + PkC
>
k L−1k

(
zk+1 − h(µk)

)
Σk = Pk −PkC

>
k L−1k CkPk

(3.3)
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where Pk = AkΣkA
>
k + Wk and Lk = CkPkC

>
k + Vk. Simplifying further by taking zk+1 = h(µk)as the

maximum likelihood observation following assumption from [23]

µk+1 = f(µk,uk)

Σk+1 = Pk −PkC
>
k L−1k CkPk

(3.4)

Restating [23], the tube MPC formulation enforces state and input constraints by assuming that the admissible

state and input sets, Xk and Uk, respectively can be approximated by polytopes, yielding a set of half-plane

constraints
Gx(xk+1 − x?) ≤ gx

Gu(uSk − u?) ≤ gu

(3.5)

where uSk is the combination of MPC output, uk, and an ancillary stabilizing controller with gain matrix Sk,

as proposed by [23]. To maintain stochastic nature of the dynamics model, a chance constrained formulation

is applied over (3.5), to hold with probability 1− α

P

(
Gx

(
xk+1 − x?

)
≤ gx

)
≥ 1− α

P

(
Gu

(
uSk − u?

)
≤ gu

)
≥ 1− α

(3.6)

The ellipsoidal bounds, defined byX2, containing (1− α) of the probability mass is given by

(x− µ)>Σ−1(x− µ) = X2
n(α) (3.7)

The ellipsoidal bound δx
k+1 is approximated by its axis-aligned bounding box is given by

δx
k+1 =

√
X2

n(α)diag(Σk+1) (3.8)

yielding final tightened state constraint bounds. Since the ancillary controller is a function of uncertain future

state, a similar bound on control command is formulated

δu
k =

√
X2

n(α)diag(SkΣkS>k ) (3.9)
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Finally, the generated probabilistic state and input bounds are converted into tightened deterministic con-

straints as
Gx(µk+1 − x?) ≤ gx −Gxδ

x
k+1 = g̃x

Gu(uk − u?) ≤ gu −Guδ
u
k = g̃u

(3.10)

3.3 Results

This section starts with results emphasizing the importance of constrained control strategies over non-constrained

control strategies for executing aggressive flight maneuvers. This set is then followed by the discussion of

results, which shows that Markov Chain Ordered (MCO) database with explicit EPC gives substantially ef-

ficient control update rate with reduced safety control calls. Computational savings memoization is then

introduced to further improve the controller database querying by precomputing and caching the expensive

matrices in EPC formulation so that the cost is incurred only once on database entry and not every control

iteration, i.e., we are proposing to tradeoff memory for CPU time. A similar set of results are also presented

for the robust counterpart of EPC for proving the viability of the presented control strategies during varying

state uncertainty. To enforce the versatility of the EPC controller, illustrative results for the usage of EPC on

cascaded control, as well as full state controller are also discussed similar to Sec. 2.6.

To assess the performance of the predictive control strategies, a set of simulation studies and hardware

experiments are conducted with a hexarotor aerial vehicle. Experimental studies with the hexarotor demon-

strate the performance of predictive constrained control strategies during aggressive maneuvers. Through

this section, following results are demonstrated: RS1, real-time computation of control commands; RS2, im-

proved trajectory tracking performance; RS3, constraint satisfaction; RS4, improved tracking performance

during uncertain state estimates; RS5, constraint satisfaction during uncertain state estimates; RS6, reuse of

past experiences to improve control update rate and performance; and RS7, improved control update rate

and performance by precomputing and caching expensive EPC matrices. While RS shorthand represents the

simulation results, RH shorthand represents the corresponding hardware results. The experimental hardware

platform utilized for this section is a 3.86 kg hexarotor, and all the control algorithms are implemented in

C++ via ROS [26] and run in real time on the hexarotor’s NVIDIA TX2 CPU. The communication latency

from the TX2 to the motor controllers is sub-millisecond.
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Figure 3.1: Figure 3.1a shows that only the EPC controller with constraints enforced on the outer & inner
loop is able to track the extremely aggressive trajectory. Consequently, the trajectory tracking error for
this controller reduces in Z after subsequent experience generation and reuse. Figure 3.1b shows controller
switching and experience reuse for cascaded EPC controller when the constraints are enforced on desired
acceleration (outer loop) as well as roll/pitch angles (inner loop) – y axis represents controller indices and the
value on y axis at a given time (x axis) shows the index of the controller that was used.

3.3.1 Constrained controller implications for aggressive flights

In this section, the performance analysis of constrained predictive controllers for highly aggressive trajec-

tories is conducted. The experiments in this section show that enforcing constraints helps MAV track the

otherwise infeasible aggressive trajectory. For extremely aggressive trajectories, it is often required that con-

straints on desired acceleration (outer loop) and roll/pitch angles or angular velocity (inner loop) are enforced

to maintain the feasibility of the trajectory instead of just enforcing the constraints on desired acceleration

(outer loop). To validate the proposed controller strategies, a trajectory with desired speed ≈ 12 m/s, and

peak acceleration reaching ≈ 20 m/s2 ≈ 2g is commanded to the MAV in simulation.

Figure 3.1a shows that an unconstrained EPC/PD controller, as well as a cascaded EPC controller with

a constraint of 14.6 m/s2 enforced only on desired acceleration (outer loop) were not able to execute the

aggressive trajectory which required sudden attitude changes and very high desired acceleration values at

the same time. Thus, the above trajectory was only realized when the constraints of 14.6 m/s2 and 1.3 rad

were enforced on desired acceleration and roll/pitch angles simultaneously. This experiment shows that the

simultaneous constraints on state and control inputs enforce better safety and hence provide more stable as

well as improved control performance (RS2, RS3) as compared to the unconstrained controllers. Figure 3.1b
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Query time (ms) QP (ms) Intermediate QP(ms) Total solve time (ms)
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Inner
loop

0.1319 0.3250 1.8752 1.3388 2.0582 0.9003 1.6083 1.1232

Outer
loop

0.2571 2.0559 1.3465 0.7490 0.4459 0.2005 2.2414 3.4469

Table 3.1: Timing characteristics for cascaded EPC controller strategy (shown in Fig. 3.1) when constraints
are enforced on the outer and inner loop. Each column represents the mean and standard deviation timing for
querying the cascaded EPC controller database, solving the quadratic program when an optimal controller is
not found in the database, solving a shorter horizon quadratic program (intermediate QP) while solving full
horizon quadratic program, and total control loop response time respectively. The bold values represent the
timing values to be well-within the stable control rate required for cascaded outer and inner loops.

shows that past experiences are reused to improve the trajectory tracking performance (RS6). Mean control

loop update time for this trial is well within the update rate required for cascaded controllers to function

correctly as shown in Table 3.1, thus proving real-time generation of control commands (RS1).

A similar experiment is conducted on a real hardware system for validating the real-time control up-

date rate on computationally constrained systems. Aggressive higher order polynomial trajectories are com-

manded similar to the simulation experiment discussed above, with the state and control input constraints

enforced on the controller. A straight line trajectory of 7th order polynomial along the y-axis is commanded

to the MAV over 4 meters in 1.2 seconds. A similar comparison study is then carried out between un-

constrained EPC / PD controller and constrained cascaded EPC with tight control input constraints of 14.6

m/s2. Figure 3.2a shows that constrained controllers perform better over unconstrained controllers in that

the constrained controllers are able to track the corresponding aggressive trajectories safely without crashing

on real systems (RH2, RH3) along with reusing previous controllers online as shown in Fig. 3.2b (RH6).

Constrained cascaded EPC controllers takes 2.9 ms mean total control loop time, with a standard deviation

of 0.5877 ms showing real-time computation of control commands (RH1). Figure 3.2c shows an overlaid

image of successful execution of an aggressive flight trial when constraints are enforced on the controller

while Fig. 3.2d shows an overlaid image of MAV crashing due to the non-enforcement of constraints.

Large step inputs are generally an aggressive form of controller behavior. The next experiment trial is

designed to compare the feedback response of the controllers when given a large step response, a common
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(c) Constrained controller performance (safe) (d) Unconstrained controller performance (fail)

Figure 3.2: (On real systems) Figure 3.2a shows that unconstrained EPC is unable to track the aggressive
trajectory whereas constrained EPC is able to track the trajectory along with storing and switching the cor-
responding controllers in the database (Fig. 3.2b). Figure 3.2c shows an overlaid image of the constrained
controller safely executing aggressive trajectory, while Fig. 3.2d shows an overlaid image of MAV crashing
while executing the same aggressive trajectory. This image emphasizes the harmful consequences of not
enforcing constraints on the controller.

situation when trying to execute an aggressive trajectory. To support the versatility of EPC controller, exper-

iments using Full State EPC (FSE) controller with similar constraints on control input and roll/pitch angles

as above, are conducted and compared with cascaded EPC and PD controller counterparts. Hence, a 6m step

response is analyzed for comparing FSE, cascaded EPC, and PD controller strategy. As evident in Fig. 3.3,

FSE provides smoother and comparatively better step response over cascaded PD controller. The cascaded

PD controller accumulates substantial error in Z, thereby affecting trajectory tracking performance. (RS2,

RS3). Mean control update time for FSE is 3.1377 ms with a standard deviation of 1.6793 ms, which

shows the real-time computation of control commands (RS1). Figure 3.3b also shows that FSE re-uses past
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(b) Controller switching for full state EPC controller.

Figure 3.3: Figure 3.3a shows that the controller performance is substantially improved when a full state
EPC controller is used for handling large step inputs when compared to a PD and a cascaded EPC controller,
evident by reduced tracking error in Z direction. Controller switching (y axis represents controller indices)
and control loop timing analysis for full state EPC controller is shown in upper and lower parts of Fig. 3.3b
respectively

.

experiences over the course of trial for efficient control update rate (RS6).

3.3.2 Explicit EPC with Markov Chain Ordering

Cascaded EPC controller with Markov Chain Ordering (MCO) simplification strategy described in Sec. 3.1.2

gives substantially better control-loop update rate by specifying a prioritized ordering of the controller database.

While executing long duration trajectories of back and forth trials, regular EPC is unable to maintain the

nominal control-loop update rate after a large number of controllers are computed, resulting in subpar control

performance. Linear MPC (QP controller), on the other hand, solves a quadratic program on each iteration

and gives an optimal solution in comparatively much less time. This control-loop update rate issue is a strong

motivation for leveraging Markov Chain (MC) transition logic mentioned in Sec. 3.1.2 for retrieving the op-

timal control-loop update rate while leveraging previous collective experience. This experiment thus details

the comparison between linear MPC (QP controller), regular EPC, and MCO-EPC.

MCO-EPC is capable of performing similar to a linear MPC controller as shown in Fig. 3.4a, with rea-

sonable query times by collectively leveraging previous experience in an efficient query order (RS1, RS2,

RS6). On the other hand, regular EPC control-loop update rate is considerably worse, as shown in Fig. 3.4b
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(b) Timing Characteristics

Figure 3.4: 3.4a shows that QP and Markov Chain (MC) Ordered EPC perform well here, while regular EPC
(Original EPC) controller performs considerably worse after learning most of the controllers. Figure 3.4b(i)
shows query time for MC Ordered EPC is comparatively much less than regular EPC because of the transition
matrices logic, but sometimes the timing for MC Ordered EPC is more than QP when the constraints are
active. Figure 3.4b(ii) shows that regular EPC controller runs into timing issues as more and more controllers
are computed, while MC ordered EPC leverages the previous experience and performs ≈ similar to QP
controller. Videos executing above aggressive trial in simulation, with excerpts from 70− 100 seconds using
QP control, regular EPC, and MC Ordered EPC are available here, here, and here respectively.

which explains the subpar control performance in Fig. 3.4a.

Similar aggressive trajectory trial is conducted on a real hardware system using NVIDIA TX2 in or-

der to confirm the real-time viability of MCO-EPC on computationally constrained systems. The tracking

performance and controller database usage in Fig. 3.5 signifies improved tracking performance (RH2) of

MCO-EPC over regular EPC due to efficient ordering specified by Markov Chain simplification (RH6). The

controller database query time for regular EPC was 1.0671 ± 6.4080, while the query time for MCO-EPC

was 0.4100 ± 2.6307 (RH1). The stark difference in query time directly correlates with the improvement

in tracking performance observed in Fig. 3.5a.

For running the explicit MCO-EPC at the embedded level, position control and attitude control loops are

implemented to run on the separate threads so as not to block the control-loop update rate while querying

the controller database. To experimentally validate the MCO simplification strategy, a controller database is

generated by flying random trajectories in space. Explicit MCO-EPC at the embedded level shows real-time

computation of control commands, as (RH1) shown in Table 3.2, with a controller coverage of 97.2186%.

Constrained control (RH3) along-with experience re-use (RH6) by controller switching for this experiment

https://youtu.be/a6tAYwGkAZw
https://youtu.be/ZkIwUi9daMs
https://youtu.be/5dNgyguftAw
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Figure 3.5: Improved trajectory tracking using MCO is visible in Fig. 3.5a when the aggressive trial is
executed on NVIDIA TX2 (RH2). The controller switching in Fig. 3.5b shows that MCO-EPC uses the same
controllers from the regular EPC database with a different query priority for choosing the best-transitioned
controllers (RH6).

Mean
Query
Time

Std. Dev.
Query
Time

Size of
Controller
Database

Database
queries

Safety
Control
Calls

Coverage

Regular EPC 2.09 ms 2.39 ms 72 - - -
Explicit MCO-EPC 1.96 ms 0.32 ms 72 20637 574 97.2186 %

Table 3.2: Timing statistics showing real-time computation of control commands for a computationally con-
strained system (RH1).

is shown in Fig. 3.6b and Fig. 3.6a respectively.

3.3.3 Precomputing and Caching Expensive Matrices

Precomputing and caching E1, . . . ,E6 matrices of (2.33), (2.35) for each set of active constraints as new con-

trollers and corresponding active constraint sets are calculated, is a potential area of improving the querying

efficiency. Analyzing the compute times for EPC, it is evident that precomputing the E1, . . . ,E6 (2.33), (2.35)

for each set of constraints can speedup control-loop update rate by reducing the query time, so that the cost is

incurred only once on database entry and not on every control iteration, i.e., tradeoff memory for CPU time.

Hence, E1, . . . ,E6 can be stored and remembered alongside each controller, as they are generated, since they

do not depend on the state or reference.
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(a) Controller switching (b) Velocity constraint satisfaction

Figure 3.6: Figure 3.6a shows controller switching (R5) based on the ordering of controllers (successors)
from MC simplification. Figure 3.6b shows velocity constraint satisfaction (R2).

For checking the validness of this approach, a trial was conducted by executing the same aggressive back

and forth trajectory as previous set of experimental results with constraints enforced on desired acceleration

input so that a large number of controllers are generated in the database. Table 3.4 shows that the mean

and standard deviation query times, controller addition to the database time, as well as total control-loop

update time for cached matrices logic, is substantially better than regular EPC for more than 100 controllers

(RS1). It is worth noting that the cached matrices logic reduces the QP control callback frequency, as shown

in Fig. 3.7c by generating a feasible controller database faster compared to non-cached matrices logic as

detailed in Fig. 3.7d (RS6). Since the control loop timing is improved, the consequent improvement in

tracking the trajectories is visible in Fig. 3.7a, which shows reduced tracking error for cached matrices logic

compared to regular EPC (RS7). The total control loop timing is shown in Fig. 3.7b.

For completeness, another trial was conducted by executing a circular trajectory with tight linear velocity

constraints of 1.65 m/s in X − Y directions. As expected, cached matrices based EPC gave a substantial

improvement in timing efficiency, as shown in Table 3.5. It is worth noting that cached matrices based EPC

satisfied the velocity constraints with much fewer violations compared to the non-cached EPC, and almost

equivalent to QP based controller strategy as shown in Fig. 3.8a and Table 3.3 below. Table 3.5 also shows

that the query times for cached matrices based EPC is less than QP solve times. Moreover, a similar trial

with only linear MPC based controller (QP controller) also shows that the total time for linear MPC based

controller is
(
1.3764 ± 0.5907

)
ms which is more than the cached matrices based EPC total control loop
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Cached (m/s) Non-Cached (m/s) QP (m/s)
X 1.6542 1.6997 1.6533
Y 1.6528 1.6840 1.6539

Table 3.3: Maximum velocity achieved while enforcing the constraints.

PE add (ms) PE Query (ms) QP (ms) Total time (ms)
Cached Non-

Cached
Cached Non-

Cached
Cached Non-

Cached
Cached Non-

Cached
Iterations 182 166 36295 32748 182 166 36497 36497

Mean 1.1254 28.8307 0.5065 1.0129 0.5984 0.6359 1.3482 2.2009
STD 2.5327 32.7990 1.3292 6.3277 0.2253 0.2528 1.4079 8.3199

Table 3.4: Timing characteristics for EPC with cached speedup while control input constraints are enforced.

PE add (ms) PE Query (ms) QP (ms) Total time (ms)
Cached Non-

Cached
Cached Non-

Cached
Cached Non-

Cached
Cached Non-

Cached
Iterations 114 79 7413 6794 114 79 7528 6920

Mean 0.1289 21.0327 0.1790 1.1906 0.8562 0.9342 1.0577 2.5531
STD 0.6897 17.4881 0.4334 4.4867 0.4045 0.4687 0.7369 6.3469

Table 3.5: Timing characteristics for EPC with cached speedup while state constraints (linear velocity) are
enforced.

timing of
(
1.0577± 0.7369

)
ms, as shown in Table 3.5.

Future avenues for increasing the querying efficiency include computing the cached matrices once per

control iteration and reusing them for all the queries in that iteration. Currently, each row corresponding to

the active set is selected to compute the above-mentioned cached matrices. We propose a selector matrix that

can be introduced as a variable which can restrict the matrix calculation for increasing the querying efficiency.

Apart from that, leveraging the transition matrices online during regular EPC by bootstrapping the already

learned transitions can also improve the querying efficiency.
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Figure 3.7: Cached matrices logic shows substantial improvement in total control loop timing resulting in
improved trajectory tracking performance for a controller database of more than 100 controllers as shown
in Fig. 3.7a, 3.7b. Figure 3.7c and 3.7d shows that the non-cached matrices based EPC calls QP control
with a higher frequency compared to cached matrices based EPC and controller database growth comparison
between the two techniques, respectively.

3.3.4 Robust Constrained Control

This section discusses the results of robust constraint tightening for enforcing a safe behavior of the MAV

conservatively. All the features discussed above for cascaded and full state EPC controller applies on Robust

EPC formulation as well. For proving the viability of running this predictive controller strategy real-time,

robust EPC on real hardware systems, as well as on the Hardware-in-Loop (HIL) systems is tested. In the

HIL system, the simulation environment onboard the computationally constrained platform is setup to mimic

the real flight behavior.

A back and forth trial is conducted on a computationally constrained real system with time-varying state
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Figure 3.8: Cached matrices logic shows substantial improvement in total control loop timing resulting in
improved trajectory tracking performance for a controller database of more than 100 controllers.
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Figure 3.9: Time-varying state constraint bounds onboard a real system changes, that introduce robustness
in enforcing the constraints as shown in Fig. 3.9a. Due to the enforced robustness in the presence of noisy
odometry data, robust formulation improves the tracking performance in Z direction, as shown in Fig. 3.9b.
Real-flight videos showing nominally constrained EPC and robustly constrained EPC are embedded here.

uncertainty. Figure 3.9a shows that robust EPC always satisfies the enforced constraint of 1.6 m/s in linear

velocity even in the presence of time-varying state uncertainty (RH5), resulting in improved tracking behavior

in Z direction as shown in Fig. 3.9b (RH4).

Angular velocity constraints are crucial for enforcing a reduction in sudden jerks in the vehicle’s orien-

tation, thereby enforcing safety. HIL trials with the similar aggressive back and forth trajectory are executed

on NVIDIA TX2 by injecting distance varying state uncertainty, which results in constraint tightening as

https://youtu.be/g5Yc04TzUM8
https://youtu.be/fqKORBg4l6w
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Figure 3.10: Figure 3.10a shows a distance-varying angular velocity constraint bound that tightens constraints
when the MAV enters a specific region in space. Nominal EPC with no robust constraint tightening fails to
track the trajectory in the presence of uncertain state estimates. Figure 3.10b shows the roll rate constraints
are satisfied for the commanded aggressive trajectory except for 4 violations, resulting from a sudden large
step input.

shown in Fig. 3.10a. Due to the noisy odometry data, nominal EPC with non-robust bounds fails to track the

trajectory while robust formulation enforces safety by tightening the roll rate bounds (RH5). Improvement in

tracking the trajectory is clearly visible in Z direction from Fig. 3.10a (RH4). Even though robust formula-

tion tightens the constraints, 4 constraint violations are still visible in Fig. 3.10b due to the chance-constrained

nature of the presented robust formulation that enforces constraints with α = 99.997% probability. Moreover,

the query time for robust angular velocity constrained HIL experiment is 0.5426 ± 2.4979, which is well

within the stable control-loop update rate for attitude control (RH1).

3.3.5 Explicit Robust Constrained Control

Finally, to improve the querying efficiency of Robust EPC, Markov Chain Order (MCO) simplification of the

database is applied to the generated controller database. HIL experiment with constraints enforced on desired

acceleration is executed to provide real-time viability of the presented control strategies on computationally

constrained MAVs. The mean query time for this explicit Robust EPC trial on NVIDIA TX2 is 0.4978 ±
3.6846 while the query time for regular Robust EPC was 1.1808 ± 7.6683, proving that explicit MCO-

Robust EPC approach improves query efficiency of the controller database (RH1).
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4 Model Learning

Model learning strategies can compensate low-frequency noise acting on the MAV such us unmodeled exoge-

nous disturbances. This chapter details the evaluation of model learning strategy with cascaded and full state

EPC controller in simulation as well as hardware systems. A strategy to generate wind-field disturbance in

the simulation is discussed in this chapter followed by online model adaptation experiments using cascaded

EPC controller strategy.

Restating the model learning formulations given in [23], predictive control techniques for nonlinear sys-

tems use a nonlinear dynamics model that involves the complexity of solving nonlinear programs, or a com-

putationally efficient local approximation of the nonlinear dynamics. Thus, given the nonlinear dynamics

ẋ = f(x,u), nominal state x?, and nominal control u?, we define x̄ = x − x? and ū = u − u? and

correspondingly derive an affine approximation of the dynamics via a first-order Taylor series expansion,

x̄nom
k+1 = Ax̄k + Būk + c. This model can then be extended with an online-learned component which esti-

mates nonlinear perturbations, modeling errors, and unmodeled exogenous forces acting on the MAV. In this

chapter, two online model learning techniques, LWPR and ISSGPR, along with one reactive adaptation strat-

egy, Luenberger disturbance observer is discussed for compensating unmodeled disturbances acting on the

MAV. Online model learning techniques model a nonlinear function (from an input z to an output p) using

a Gaussian-weighted combination of simple basis functions (linear and sinusoidal in LWPR and ISSGPR,

respectively). Due to their recurrent and incremental online model update capability with the oncoming new

data, these model learning strategies are able to retain information on past experiences while adapting their

estimates to changing dynamics.

As discussed, this chapter details the implications of leveraging online model learning techniques while

flying through a simulated wind-field environment. Unmodeled exogenous disturbances are applied on the

vehicle from a random simulated wind field described in Sec. 4.3. Consequently, simulation studies are

presented showing the improvement of tracking performance by leveraging online model learning techniques

over reactive model adaptation strategies in Sec. 4.3.1.

To close the loop with (2.25), z is defined as z =
[
x>k u>k

]>
and p = x̄k+1 − x̄nom

k+1. The corresponding

prediction output p̂ =
[
p0, p1, . . .

]> gives the estimated perturbation at a query point z which applies to

predictive dynamics model given by (2.25) from Chapter 2.
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4.1 Online Model Adaptation

4.1.1 Model Learning using LWPR

Partial least squares is used by LWPR for estimating the basis functions, which projects the inputs onto

a lower dimensional space defined by projection direction vectors νr and ρr, as detailed in [13]. It also

computes slope coefficients βr for each projection direction and an offset β0 to generate a prediction of a

scalar output. The dynamics model of the MAV is fit element-wise [27] – for the ith element in p, local linear

model j (with rj projection directions) is given by

Ψ = β0 +
[
β1, · · · , βrj

]


ν>1

ν>2 P1

...

ν>rj(P1 · · ·Prj−1)

 (z−mj)

= αj + β>j (z−mj)

(4.1)

where Pr = I − diag(ρr)
[
νr, · · · ,νr

]>. The prediction model (consisting of Ni local models with weights

wj defined by a Gaussian kernel with mean mj and covariance Dj) is

pi(z) =
1

W

Ni∑
j=1

wj(z)Ψj(z)

wj(z) = exp
(
− 1

2
(z−mj)

>Dj(z−mj)
)

W =

Ni∑
j=1

wj(z)

(4.2)

4.1.2 Model Learning using ISSGPR

The radial basis function kernel in ISSGPR is approximated by a vector ofD sinusoidal features with random

frequencies

φ(z) =
σf√
D

[cos(ω>1 z), sin(ω>1 z), · · · , cos(ω>Dz), sin(ω>Dz)] (4.3)
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where the parameter σf corresponds to the signal variance, the frequencies ω ∼ N (0,M), and M is a

diagonal matrix of characteristic length scales. The length scales reflect the size and importance of each input

dimension [14]. Detailed formulation on online model learners is given in [23].

4.1.3 Online model adaptation using Luenberger observer

L1 adaptive control based disturbance observer is also considered in this chapter, which is a reactive adap-

tation strategy unlike the model learning strategies described above. This approach employs a nonlinear

Luenberger disturbance observer which is driven by the difference between the state predicted via a nonlinear

dynamics model and the state reported by the state estimator.

4.2 Practical considerations

4.2.1 Bandwidth considerations

For the online model adaptation approaches described in Sec. 4.1, the insight from L1 adaptive control is

followed, and a low-pass filter to the output of the observer is applied before it is passed to the controller.

The bandwidth parameter of this filter is tuned to the system’s response time to avoid destabilizing the system

with rapid model perturbations.

4.3 Generating wind disturbance in simulation

In order to test the model learners presented in this chapter, simulated wind-field is generated which adds

more variability to the drag disturbance.

For generating the wind-velocity, coordinate location of fans in the space is noted as

sx = db cos(}− π)

sy = db sin(}− π)
(4.4)

where db and } correspond to the perpendicular distance (in the xy-plane) from world origin to the line of

wind-generating fans, and wind heading in the world frame respectively.
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Direction vector of the row of fans in world frame is

db_x = cos(}− π/2)

db_y = sin(}− π/2)
(4.5)

Defining the linear portion of the wind velocity magnitude as a function of distance in front of the fans

k =
(vmin − vmax)

(df − dc)

b = vmax − (dck)

(4.6)

where vmin, vmax correspond to minimum wind velocity, and maximum wind velocity, respectively. df is any

location in space in front of the fans which has a constant wind velocity of vmin and dc is any location in

space in front of the fans, or at any location behind the row of fans which has a constant wind velocity.

Radial vector in the world frame is

VX⊥ = (x− sx)− ((x− sx)(db_x) + (y− sy)(db_y))db_x

VY⊥ = (y− sy)− ((x− sx)(db_x) + (y− sy)(db_y))db_y

(4.7)

where x and y correspond to world frame position in x and y respectively. sx, sy,db_x,db_y are calculated

from (4.4), and (4.5) respectively.

Using (4.7), the norm of radial vectors can be calculated as

Vnorm =
√

(VX⊥)2 + (VY⊥)2

ζ = tan−1
VY⊥

VX⊥

(4.8)

where ζ is termed as drag coefficient.

If heading of the radial vector matches that of wind heading, then the query point is in front of the fans;

otherwise, it is behind the fans
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if(ζ − }) > 0.01

VX⊥ = −VX⊥

VY⊥ = −VY⊥

Vnorm = −Vnorm

(4.9)

Final magnitude of velocity based on norm of the velocity and distance from source ((4.6), (4.8)) is

Vmag =


vmax, if Vnorm < dc

kVnorm + b, if Vnorm < df

vmin, otherwise

(4.10)

Wind velocity after multiplying norm of radial vectors and random Gaussian noise is

Vwind =


(VmagVX⊥)/Vnorm

(VmagVY⊥)/Vnorm

0


Vwind + = vσ × random(3, 1)

(4.11)

where vσ is the standard deviation of isotropic Gaussian noise added to wind velocity.

Final wind drag acceleration disturbance that is added to the simulator is

vrelB = (RW
B )>(vw − Vwind)

awind = −RW
B

(
ζ

m

)
vrelB

aW+ = awind

(4.12)

where vrelB ,R
W
B , vw, awind,m, and aW correspond to relative velocity in body-frame (of MAV), rotation matrix

for body-frame to world-frame transformation, linear velocity in world-frame propagated in the simulator,

linear acceleration generated in the world frame, mass of the MAV, and linear acceleration in world frame

propagated in the simulator respectively. Visualization of wind field disturbance for the results presented in
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Figure 4.1: Wind field disturbance visualization in Matlab.

Sec. 4.3.1 is shown in Fig. 4.1.

4.3.1 Online model adaptation in windy environment

This experiment is designed to test the online model adaptation capabilities using model learning strategies,

followed by reactive disturbance adaptation strategies in the simulated wind-field environment. Cascaded

EPC controller with LWPR model learner and Luenberger disturbance observer is leveraged to fly aggressive

circle trajectories in an environment with wind flowing diagonally across the MAV at 6 m/s. Figure 4.2 and

Table 4.1 shows the reduced tracking error for LWPR in all the three directions compared to the Luenberger

observer.

Model learning strategies can be coupled with the predictive control strategies with cascaded as well as

full state multirotor dynamics (FSE controller) described in previous chapters, for increasingly aggressive

flights in uncertain environments.
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Figure 4.2: Tracking error in position for a circle trajectory flown in an environment with simulated wind-field
disturbance. This figure shows that model learning disturbance compensation strategy outperforms reactive
disturbance compensation strategy, as evident by the reduced tracking error.

X (mm) Y (mm) Z (mm)
LWPR 24.3059 39.2606 19.6424

Luenberger 30.1953 84.5195 23.8440

Table 4.1: Mean absolute tracking error in position while executing a circle trajectory with simulated wind-
field disturbance.
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5 Software Organization and Code Interface

In this section, we describe the software system developed for the multirotor control architecture presented in

this report. A high-level overview of the interaction between various components in the control architecture

is provided in Sec. 5.1, in a package named nonlinear_mpc. We then provide UML activity diagrams for

the components of nonlinear_mpc (NMPC) components in Sec. 5.2, followed by a description of each

class in the NMPC package in Sec. 5.3. The following codebase supports doxygen; therefore, finer details can

be accessed via the compiled doxygen documentation.

5.1 High-level Control Architecture

The control architecture presented in this section serves to provide a generalized interface for the multirotor

systems and ensures safe operation as the system transitions between operating modes such as takeoff, land-

ing, providing polynomial inputs for trajectory tracking, and providing step inputs. High-level components

such as planners interact with the control architecture by sending trajectories to be tracked by the specified

controller, and by sending events to trigger changes in the operating modes. A diagram of system components

in a typical configuration is shown in Fig. 5.1.

Each dynamics model in the nonlinear_mpc (NMPC) package is written as a class and hence the

codebase is designed for general usage with any dynamics model. A base class supporting outer, inner, and

full state dynamics model is written as DynLinQuadOuter, DynLinQuadInner, and DynNLQuad3D

respectively. This structure allows for flexible extensions of the proposed framework at different levels, e.g.,

to extend and switch between different multirotor dynamics, different controller usage, between experience

generation and experience re-use for EPC controllers, and so on.

5.2 System Interaction

The control architecture receives current state information from one of the state estimator sources which is

passed to a standalone class of motion manager, that consists of the interaction between finite state machines,

trajectory managers, controllers, and disturbance observers. Although not explicitly stated, the wrapper for

disturbance observer lies alongside the wrapper of controllers in Fig. 5.1.
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Figure 5.1: High-level summary of the major components of the control architecture and their interactions.

5.3 Class Description

Software for nonlinear model predictive control codebase (NMPC) is detailed in this section. The software

organization for nonlinear_mpc (NMPC) is structured in a class hierarchy to make simplifed setup for

changing and prototyping different controller strategies in the system. Codebase (NMPC) is structured to

make modifications and future prototyping easy and hence modularity of different subsystems within NMPC

package is kept into consideration while designing the software. A concise class diagram for the NMPC

codebase is described in Fig. 5.2. Class hierarchy and the corresponding usage of classes are shown as a

UML acitivity diagram in Fig. 5.2, which comprises the following

• NMPC: Top level templated package class supporting the nonlinear model predictive control based

controller configurations.

• Following controller configurations are supported in our software architecture:

EPC: Class handling EPC, EPC with Markov Chain simplification (EPC-MCO), and Robust EPC

components.

QP-based linear MPC: QP controller solving linear MPC that is called separately from

NMPC.
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Controller Class 

Figure 5.2: High-level summary of the major components of the nonlinear_mpc (NMPC) package and
their interactions shown as a UML activity diagram. For further detail on each of the classes, please refer the
doxygen documentation.

• DynBase: Base class for handling system dynamics of the MAV.

DynLinQuadOuter: Dynamics for multirotor position control.

DynLinQuadInner: Dynamics for multirotor attitude control.

DynNLQuad3D: Dynamics for multirotor full state control.

• QP: Class responsible for linearizing dynamics, formulating and solving a quadratic program using

third-party libraries such as qpoases. Controllers (EPC, QP-based linear MPC) use this class

for the aforementioned tasks of dynamics linearization and quadratic program setup.



64

QPSlack: Inherited from QP base class. Used to calculate intermediate/safety controllers by

adding slack formulation and the corresponding slack variables.
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