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Abstract— In this paper, we present the first large-scale
synthetic dataset for visual perception in disaster scenarios,
and analyze state-of-the-art methods for multiple computer
vision tasks with reference baselines. We simulated before
and after disaster scenarios such as fire and building collapse
for fifteen different locations in realistic virtual worlds. The
dataset consists of more than 300K high-resolution stereo
image pairs, all annotated with ground-truth data for semantic
segmentation, depth, optical flow, surface normal estimation
and camera pose estimation. To create realistic disaster scenes,
we manually augmented the effects with 3D models using
physical-based graphics tools. We use our dataset to train state-
of-the-art methods and evaluate how well these methods can
recognize the disaster situations and produce reliable results on
virtual scenes as well as real-world images. The results obtained
from each task are then used as inputs to the proposed visual
odometry network for generating 3D maps of buildings on fire.
Finally, we discuss challenges for future research.

I. INTRODUCTION

There have been many works on high-quality image ac-
quisition and recovery in bad weather conditions such as
fog, noise, and haze. Convolutional neural networks (CNNs)
trained with large-scale datasets allow obtaining high-quality
images from images captured under bad weather conditions.
Works in [1], [2] address an image dehazing problem via
multi-scale CNNs which learn effective features to infer the
scene transmission of single hazy images. Deep convolu-
tional generative adversarial networks have shown promising
results in generating clean images from images corrupted by
noise [3] and rain [4] etc.

However, few works for extreme conditions such as disas-
ter environments have been studied even though vision-based
autonomous vehicles and robots to survey damage after a
disaster are in demand for rescue systems. One reason for the
lack of works under disaster conditions is a lack of suitable
datasets. It might be impossible to accurately obtain images
with well-annotated ground-truth before and after the disaster
conditions.

As a solution to this problem, one research direction that
has gained interest involves generating synthetic images with
the corresponding ground truth using 3D computer graphics
[5], [6], [7], [8], [9], [10], [11], [12], [13]. The various
features of graphics tools, such as texturing and shading
effects, allow full control over the virtual 3D environment,
thus ensuring lower costs, greater flexibility, limitless variety,

1The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213-3890, USA. (Primary contact: haegonj@andrew.cmu.edu)

2The Robotics and Computer Vision Lab., KAIST, Daejeon 34141,
Republic of Korea.

3Department of Information and Communication Engineering, Hanbat
National University, Daejeon 34158, Republic of Korea.

Quaternion = [0, 0.957831, 0, -0.28733]

Position = [1037.457, 41, 975.7672 ]

Focal length = 436.6324

Stereo image pair Depth map Surface normal

Optical flow Semantic label Camera poses

(a) Before disaster situations
Fire case Label for fire Label for smoke

Collapse case Depth for collapse Label for collapse

(b) After disaster situations
Fire scene Underwater Burned place

Semantic label Depth map Surface normal

(c) Real-world results

Fig. 1: Examples of the DISC: We provide stereo image
sequences with corresponding ground-truth data including
depth map, surface normal, optical flow, semantic label and
camera poses for both before and after disaster scenarios.

and quantity. Moreover, the physics engine built into the tools
supports an approximate simulation of certain physical sys-
tems, such as fire, smoke, and fluid dynamics. This synthetic
dataset simulated using physical phenomena can extend the
range of visual perception to include severe conditions which
the existing public datasets do not cover [5], [6].

In this paper, we present a large-scale synthetic Dataset
for dIsaster SCenarios, referred as DISC, simulated using a
physics engine in normal and disaster scenarios as shown
in Fig.1(a) and (b), respectively. Our main contributions are
summarized as below:

• We introduce a dataset with 300K images with two
types of damage scenarios: collapsing and fire scenarios.
The input modality is high-resolution stereo video and
its well-annotated ground-truth is provided for scene
understanding and visual perception tasks.

• We present a manual process for augmenting and re-
touching disaster effects to achieve photorealistic dis-
aster effects, which could not be made automatically.
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Fig. 2: Virtual 3D models to generate the DISC with vari-
ous scene contexts, light conditions and materials. (Indoor)
furniture shop, living room, office, police station, residence,
warehouse, school and old castle. (Outdoor) city scape1, city
scape2, suburban and park. (Underground) subway station,
tunnel and underpass.

In addition, we show a technique for extracting a mask
for fire and fog, and labels for the rubble of collapsed
buildings in disaster scenes. (see Sec.II)

• We perform extensive experiments to evaluate the per-
formance of state-of-the-art methods for semantic seg-
mentation, surface normal estimation, depth estimation,
optical flow estimation, and camera relocalization for
before and after disaster scenarios of DISC. In par-
ticular, the state-of-the-art methods finetuned on DISC
show significant performance improvements for disaster
scenes as well as real-world disaster imagery in Fig.1(c).
(see Sec.III)

• We propose a visual odometry network for generating
3D map of buildings on fire. For this, our network takes
the experimental results as input, and predicts accurate
camera poses in disaster conditions. (see Sec.IV)

II. DATA GENERATION

In this work, we simulate and render before and after
disaster scenarios of 15 virtual places including indoor,
outdoor and underground scenes in Fig.2. We use public
3D models to ensure the scalability of our synthetic data.
For each 3D model, we capture stereo video sequences
following pre-defined camera paths in normal situations. We
then composite realistic disaster effects on the 3D model
and re-capture them in the same paths. Our project page
is https://sites.google.com/site/hgjeoncv/
disc-project-page.

A. Simulation of disaster effects

To generate realistic disaster scenarios, we introduce effi-
cient ways to composite the disaster effects on normal 3D
models. The disaster effects are inevitably composed manu-
ally because there are no public 3D models with realistic
disaster effects. We then present an approach for rapidly
producing 3D models with corresponding ground-truth data.
For this task, we utilize Unity [14] which is widely used for
modern 3D computer games.
Fire cases We define fire scenes as combinations of smoke
and flame, and soot. The colors of flame and smoke depend
on several factors, such as the materials being burned and

(a) (b) (c)

Fig. 3: An example of simulating fire scenarios. (a) Soot
image samples. (b) Soot patch composition. (c) Adding light
sources

the ambient temperature. In addition, smoke from a fire in
an indoor environment significantly reduces visibility. With
this observation, we create 3D models including flames, soot
on object surfaces and shorten visibility distances of cameras
caused by smoke. To produce these effects, however, a great
deal of manual work is required. We introduce efficient ways
to reduce the amount of manual work.

Instead of making flames with the corresponding smoke
for every 3D model, we generate a number of flame samples
and smoke, and randomly augment them in the 3D models.
Using particle effects in Unity, we design 25 different flames
and synthesize them with various colors on the 3D models.
The shapes of the flames are determined by the direction
of the surface from which they originated, such as walls,
floors, or ceilings. Note that we can generate more diverse
flames if we employ a variety of colorful flame images, such
as with green or blue. Smoke effects are generated by the
particle tools, and their colors are randomly selected from
black to white. The scale of the effects is also determined
by manually tuning the starting points and end points of the
flame.

Before compositing the fire effects, we synthesize the
smoke images in advance with ignition spots in the 3D model
in Fig.3(b). Using the spray effect in Unity, we generate
diverse smoke and soot images, as shown in Fig.3(a). Their
sizes depend on the scale of the fire effects. For indoor
scenes, we additionally simulate thick smoke in rooms with
reduced visibility of the cameras. We utilize a particle tool
for fog, which involves overlaying a color onto objects based
on their distance from the camera. The fog color is randomly
augmented, and the fog density is manually set. As the last
step for realistic fire effects, we add emissive lighting sources
at each of the ignition spots, as shown in Fig.3(c). The
intensity of the emitted light is also set in proportion to the
flame scale.
Collapse Collapse is a phenomenon commonly observed
in disasters such as earthquakes and hurricanes. In this case,
it is necessary to bring down an object in the 3D model or
to disintegrate debris from a wall or ceiling and then scatter
it onto the floor. We use destructive models in the physics
engine of Unity to produce various collapse scenarios.

We use a mesh collider in Unity with a manual fracture as
the destructive method. We directly apply the mesh collider
into target objects or 3D meshes such as walls and ceilings.
We are able to control the strength of the collider and then
generate randomly distributed fragments on a scene floor.
More diverse collapse scenarios which cannot be achieved
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Fig. 4: An example of simulating collapse scenarios. (a)
Before collapse. (b) Cracking 3D model. (c) Scattering small
debris.

with the mesh collider are generated by a manual fracture.
For this, we select a particular 3D model in Fig.4(a) and
make cracks using the fracture model in Unity in Fig.4(b).
These cracked 3D objects are then manually spread over the
3D space. We perform rotation and flipping of the cracked
objects to create a greater variety of screen configurations.

Lastly, we produce the effect of scattering the debris
objects of the building on the floor. Small objects such
as sample building debris provided by Unity are sprinkled
around the collapsing 3D object in the scene (see Fig.4(c)).
The arrangement, rotation, and size of each piece of the
debris are manually determined to reflect the position and
type of destruction of the collapsed 3D model. Because the
types of building debris provided in Unity are limited, this
augmentation is very useful for creating diverse scenarios
without sacrificing the realistic nature of the result.

B. Acquisition of ground-truth data

A virtual environment has the benefit of easily obtaining
ground truth data such as the depth, optical flow, surface
normal and camera poses. Unity supports depth, optical flow
and surface normal information with sub-pixel precision,
but camera parameters for computer vision tasks cannot
be directly recovered from this graphics tool. Moreover,
although the semantic segmentation data is also directly
generated by outputting a unique color on the surface of an
object, accurately labeling materials such as flame and smoke
using only graphics tools, including Unity is not feasible. We
present two ways to solve these problems.
Camera Setting We generate dataset with a fixed vertical
field-of-view (FOV) for both left and right camera as 60◦

(horizontal FOV varies depending on the aspect ratio a).
In out setup, we set an optical axis of a right camera to
be parallel to that of left camera with 0.2m baseline on a
horizontal axis. The focal length f of the cameras can be
simply computed as:

fx =
f̂ · px
mx

, fy =
f̂ · py
my

, where f̂ =
my

2 tan( FOV
2 )

, (1)

where mx,my are the size of the senor in the x, y axes.
The stereo cameras used have the same intrinsic parameters
as each other, do not suffer from optical distortions. The
principal point of the camera is located in the image center.
Fluids labeling strategy Because fluids such as flames and
smoke are created by particle effects, directly labeling each
particle is the most intuitive idea to obtain the ground truth
labels for a fluid. We paint each particle and render label

(a) Direct labeling in Unity (b) Our labeling strategy

Fig. 5: Comparison labeling fluids such as flame and smoke
in Unity with in the video editing program.

Fig. 6: An example of provided labels for fire cases. Dark
gray: smoke (soft label), light yellow: fire (soft label), gray:
smoke, red: fire, yellow: furniture, orange: wall, purple: ceil-
ing. The soft label represents a highly detailed transparency-
preserving segmentation of flame and smoke.

images of these types of fluids as an example. However,
this approach fails to obtain the correct labels as shown
in Fig.5(a). This problem may be due to a resolution issue
related to labeling functionality for particles in Unity or
Blender. To address this, we introduce a fluid labeling
technique using a video editing program (Adobe Premiere).

First, we assign color labels to objects in the 3D models,
but not for the fluids. In this state, we render the 3D model
into sequential images. We select each colored region and
remove all of them using the background removal func-
tionality of the video editing program. After removing the
colored regions, only the pixels corresponding to the flames
are left. By colorizing the remaining pixels in the video
editing program, we are able to obtain an accurate label
for the flames as shown in Fig.5(b). This process is equally
applied to the smoke. Finally, we synthesize the labels on
the scene for normal situations. In this process, we provide
three types of semantic labels: object-smoke, object-fire and
object-smoke-fire in Fig.6.

C. Dataset

We generate a total of 300,000 stereo image pairs with
1280×720 resolution as video sequences. We create a syn-
thetic dataset suite that consists of 15 subsets and provide
a complete ground-truth depth in metric scale, optical flow,
semantic label, surface normal and camera poses. We render
all image data using a virtual FOV of 60◦. DISC provides 14
semantic labels (loads, sidewalks, cars, walls, ceilings, furni-
ture, trees, sky, buildings, electric devices, fences, stairs, fire
and smoke). For applications to indoor navigation systems,
we individually label fences and stairs.

A machine equipped with an Intel i7 3.40GHz CPU, 32GB
RAM and GTX 1070 Ti GPU is used for the rendering step.
The rendering time is 15 seconds for one stereo pair with
the corresponding ground truth on average. When render-
ing scenes in the presence of particle effects, the average
rendering time is significantly increased. To accelerate the



Method Normal
Fire Collapse

w/o FT w/ FT w/o FT w/ FT

FC-DenseNet 0.573 0.427 0.500 0.481 0.540
SegNet 0.706 0.466 0.574 0.517 0.687

DeepLab 0.549 0.420 0.527 0.506 0.521
PSPNet 0.636 0.458 0.593 0.478 0.590

DenseASPP 0.560 0.471 0.533 0.431 0.499

TABLE I: Semantic segmentation for 16 classes without and
with finetuning (FT) on the DISC. (Measure: mean IoU)

(a) The DISC. (left to right) Images, GT, without and with FT.

(b) Real-world results
Fig. 7: Examples of semantic segmentation benchmark.

rendering speed, we deactivate the physical engine during
the rendering procedure, after which we are able to achieve
a time of approximately 20 seconds per one stereo pair.

III. BASELINES AND ANALYSIS

In order to demonstrate the usefulness of DISC, we set up
several experiments on semantic segmentation, surface nor-
mal estimation, depth estimation, optical flow and camera re-
localization. In particular, we show that CNNs used for these
experiments achieve remarkable results in disaster scenarios
after training on DISC. The performance improvements are
indicated in bold. To establish concrete benchmarks, we split
the DISC dataset into a BEfore Disaster set (BE-D) and an
AFter Disaster set (AF-D) such as fire and collapse scenarios.

For qualitative evaluations on real-world disaster imagery,
we downloaded real-world images for the semantic segmen-
tation and surface normal from the Internet using the Google
image search tool. We captured real-world smoke scenes in
the public safety training center for firefighters to acquire
calibrated stereo pairs and sequential images. These images
and videos were used for stereo matching and optical flow
estimation, respectively.

(a) The DISC. (left to right) Image, GT, without and with FT.

(b) Real-world results. (left to right) Images, without and with FT.

Fig. 8: Surface normal estimation. Baseline: FCN-Skip

A. Semantic segmentation

One of major difficulties with visual perception tasks is
the extraction of features of objects in the presence of flame
and smoke, which interfere with vision, and collapses, re-
sulting in significant changes of scene configurations. In this
experiment, we trained the networks on the BE-D dataset,
and compared the performance degradations on the AF-D
dataset. We also demonstrate performance improvements in
the disaster scenarios when the networks were finetuned on
the AF-D dataset.

We evaluated five semantic segmentation networks
on the DISC dataset: FC-DenseNet [15], SegNet [16],
DeepLab [17], PSPNet [18] and DenseASPP [19], and we re-
port the mean intersection over union (IoU) as a performance
measure. We used approximately 20K images for training
and allocated 3K images for testing and validation from eight
indoor scenes. There was no temporal overlap between the
training and test splits.

As shown in Table.I, we draw several conclusions. First,
DISC is more challenging than [5] consisting of mainly
road scenes: while PSPNet is above 0.73, it is at 0.63 on
DISC. Second, we observed that performance degradations
occurred in disaster scenes. In particular, the performance
degradation in dense smoke regions is particularly remark-
able as compared to that in other disaster scenarios. To
achieve a robust solution to the smoke conditions, we trained
state-of-the-art networks on AF-D. The training sets (about
5% of AF-D) and the test sets for disaster scenes were
temporally separated1. Fig.7(a) shows that AF-D helps the
networks to recognize scene conditions, and improves the
performance for both disaster cases in Fig.7(a). We also
show real-world results of fire scenes from SegNet, which
achieved the best performance in our experiment. As shown
in Fig.7(b), SegNet finetuned on AF-D works with real-world
fire scenes well.

B. Surface Normal Estimation

Next, we evaluated state-of-the-art surface normal estima-
tion using single images, specifically in relation to VGG-

1The same experimental strategy in [5] is adopted in our benchmarks.



Method Normal
Fire (◦ / ◦ / %) Collapse (◦ / ◦ / %)

w/o FT w/ FT w/o FT w/ FT

VGG-Multiscale 22.19 / 19.57 / 30.12 40.03 / 35.14 / 11.19 27.61 / 22.59 / 25.45 28.90 / 22.07 / 22.31 25.42 / 20.36 / 27.09
FCN-Skip 13.92 / 8.78 / 57.23 28.87 / 25.14 / 19.42 22.24 / 16.30 / 31.37 16.65 / 14.09 / 41.88 14.20 / 10.18 / 45.67

HourglassNet 19.75 / 13.02 / 39.34 38.07 / 31.92 / 12.48 24.58 / 18.37 / 28.75 22.71 / 16.35 / 30.02 20.53 / 15.55 / 38.58

TABLE II: Surface normal from single images. Mean and median of angular error (the lower the better), and percentage of
pixels with error smaller than 11.25◦ (the higher the better).

Method
BPR5 (%) BPR7 (%) RMSE (pixel)

w/o FT w/ FT w/o FT w/ FT w/o FT w/ FT

MC-CNN 20.02 15.97 12.49 9.41 5.37 4.38
DispNet 25.26 24.26 16.92 16.65 5.15 4.60
PSMNet 18.03 17.94 10.75 8.99 4.80 4.17

TABLE III: Stereo matching. Averaged bad pixel rate as the
disparity error smaller than 5 pixels (BPR5) and 7 pixels
(BPR7), and RMSE in smoke scenes (the lower the better).

Multiscale [20], FCN-Skip [21] and HourglassNet [22]. Sim-
ilar to Sec.III-A, we show that the performance capabilities
of networks trained on BE-D degrade and that these methods
yield reliable results after finetuning on AF-D in disaster
scenarios.

Our benchmark in Table.II indicates that although the
collapse situations change the compositions of scenes, the
performance degradation of the networks is relatively minor.
On the other hand, fire situations exhibit limited visibility
and irregular lighting changes, which are the main causes of
inaccurate surface normal estimations. Another cause of the
prediction error is the soot, which makes the surfaces of a
scene black. In this situation, FCN-Skip and HourglassNet
work well after finetuning on AF-D as shown in Fig.8. Both
methods use skip links between each pair of corresponding
convolution layers in the encoder and decoder of the net-
works. In particular, the multi-scale feature maps in VGG-16
used in FCN-Skip appear to be advantageous when used to
extract informative features in these situations.

The scene understanding benchmarks in Sec.III-A and III-
B inform that its performance is mainly determined by how
to preserve both high-level and local information and to
aggregate context information. The skip link of SegNet and
the multi-scale pooling modules of PSPNet are effective in
dealing with the disaster effects.

C. Stereo Matching

We evaluate CNN-based stereo matching methods in fire
scenarios, especially those with smoke. First, we bench-
marked MC-CNN [23] based on a local window matching-
based method, DispNet [11] using semantic information
from stereo images, and PSMNet [24] which is an end-to-
end network exploiting global context information of input
images and a cost volume regularization. We subsequently
compared the baseline networks with the finetuned networks
to validate the effectiveness of the DISC dataset. In Table.III,
we report the results of quantitative evaluations using the bad

(a) Input (b) GT (e) w/o FT (f) w/ FT
Fig. 9: Stereo matching results on DISC. Baseline: PSMNet.

(a) Input (b) [25] (c) w/o FT (d) w/ FT
Fig. 10: Stereo matching results on real-world scenes.

pixel rate (BPR) and the root mean square error (RMSE) as
performance measures.

We are able to draw two conclusions from this exper-
iment. First, finetuning the networks using AF-D worked
well in smoky conditions. In particular, the performance
improvement was apparent on all baseline approaches in all
error measurements. We found that the depth map accuracy
increased the most for poorly visible pixels, as shown in
Fig.9. Second, we observed that the performance drop of
DispNet was more drastic on disaster scenes. The perfor-
mance degradation of DispNet is likely due to its high-
level feature matching strategy. Direct matching with local
windows of the MC-CNN or the spatial pyramid pooling
strategy of PSMNet are suitable for depth estimation in
smoky areas, and training on AF-D allows the performance
to be improved in challenging conditions.

We also conducted a qualitative experiment on real-world
datasets, and compared the performance of PSMNet with
[25] which is a specially designed stereo matching method
for defogging. As shown in Fig.10, the real-world results
indicate that the CNN-based stereo matching with training
on the DISC dataset works well in practice. In particular, the
PSMNet finetuned on AF-D in Fig.10(d) shows promising
results over [25] even with little computation (1s vs. 10min).
In contrast, finding correspondences in scattering media [25]
(e.g. fog, haze, or turbid water) causes a heavy computational



Method
BPR3 (%) BPR5 (%) EPE (pixel)

w/o FT w/ FT w/o FT w/ FT w/o FT w/ FT

FlowNet2 20.44 4.53 8.25 1.04 2.81 0.69
DCFlow 19,83 2.25 10.10 0.73 2.17 0.30
PWCNet 18.88 1.30 9.15 0.37 2.37 0.31

TABLE IV: Optical flow. Averaged BPR and EPE in smoke
scenes (the lower the better).

(a) Input (b) GT (e) w/o FT (f) w/ FT
Fig. 11: Optical flow results on DISC. Baseline: PWCNet

burden, and spatially-variant smoke density levels in real-
world data complicate the matching step in Fig.10(b).

D. Optical Flow

We also evaluated state-of-the-art optical flow estimation
methods: FlowNet2 [26], DCFlow [27] and PWCNet [28].
Similar to Sec.III-C, we compared these networks trained on
BE-D and finetuned networks on AF-D. Errors are measured
regarding the average bad pixel rate and end-point error
(EPE) in Table.IV.

Fires in indoor environments change lighting conditions,
which causes inaccurate optical flows. As a result, inferred
optical flows exhibit texture-copy artifacts in Fig.11(b), and
this tendency could be seen in the real-world imagery as
well in Fig.12(b). In this experiment, we observe significant
performance improvements when examples are available
for training fire situations. The networks trained on AF-D
predict accurate optical flows robust to lighting changes and
scattering media in Fig.11(c). As shown in Fig.12(c), the
realistic disaster simulations of AF-D alleviate the negative
influence of varying levels of illumination in real-world
scenes.

Note that noticeable performance improvement of PWC-
Net is achievable by the use of a pyramid feature extractor
and a context network based on dilated convolutions [29].
We found that multi-scale feature extraction and context
information from CNNs are beneficial for correspondence
estimation, particularly in reduced visibility conditions.

E. Camera Relocalization

Given the 3D geometry of a scene, monocular camera
relocalization, which is an important task for rescue robots in
disaster scenarios, is used to infer the camera’s 6-DoF pose
relative to the scene. Following a training and test procedure
similar to Sec.III-A, we benchmarked the following state-of-
the-art camera relocalization methods: SCoRF [30], which
uses a regression forest to predict camera poses by estimating
the correspondences between input a RGB-D image2 and 3D

2We used depth maps computed from PSMNet in Sec.III-C as input.

(a) Input (b) w/o FT (c) w/ FT
Fig. 12: Results from PWCNet and interpolation errors
between the reference images and warped images on real
world scenes.

Method Normal
Fire (m/ ◦) Collapse (m/ ◦)

w/o FT w/ FT w/o FT w/ FT

SCoRF 0.03 / 0.20 0.75 / 6.78 0.03 / 0.17 0.58 / 4.48 0.10 / 0.76
PoseNet 0.16 / 0.46 4.83 / 31.18 0.73 / 2.96 2.09 / 26.35 0.34 / 1.34
DSAC 0.03 / 0.19 1.72 / 16.92 0.18 / 2.49 0.84 / 17.36 0.11 / 1.01

TABLE V: Camera relocalization. Average positional and
angular error (the lower the better).

Before collapse After collapse

w/o FT

w/ FT

GT

Fig. 13: Camera relocalization result in a collapse scenario.

points in a scene; PoseNet [31], which infers camera poses
from a GoogLeNet-style network [32]; and DSAC [33],
which is a VGG-style architecture [34] with differentiable
sample consensus. We used a furniture shop, an office, a
police station and a school, whose spatial extents are 21, 34,
297 and 4942 m2, respectively.

In Table.V, the significant drop in the pose accuracy can
be explained by the fact that disasters drastically affect the
appearance of scenes. In particular, because PoseNet does
not use any geometry cue to predict camera poses, its result
is worse than those by the other methods. After finetuning
the networks on AF-D, their overall accuracy improved. We
visualize an example of results from PoseNet which shows
the most significant performance improvement in Fig.13.

SCoRF achieves the best performance because it takes the
RGB-D data of a scene as input. Initial pose hypotheses
based on the scene depth account for the uncertainty in the
camera location, in spite of scene changes. Scene repre-
sentation from CNN features and the geometric consensus
of DSAC also allow one to infer accurate camera poses
even when only partial information is preserved over normal
scenes. We conclude that CNN-based camera relocalization
robust to disaster scenarios can be achieved if the geometry
information of a scene, such as the depth and surface normal,
is available.
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Fig. 14: Overview of the proposed visual odometry network.

IV. VISUAL ODOMETRY FOR 3D MAP GENERATION

We can imagine that it is helpful for firefighters if a 3D
map indicating ignition spots is available before they go to
a building on fire. As an application, we initially estimate
the camera poses of each frame through visual odometry
using the depth and optical flow and then make a dense 3D
map with ignition spots marked as estimated from semantic
segmentation.

For visual odometry, we propose a multi-stream network
for encoding x, y and z-axis motions between two frames
as shown in Fig.14. In a manner similar to LVONet [35],
we use the optical flow O and depth flow D between frames
t−1 and t as the input. The input optical flow and depth map
are estimated from PWCNet and PSMNet, which show the
best performance for fire cases in Sec.III-C and Sec.III-D,
respectively. The depth flow D is defined as follows:

Dt(u, v) = D̂t((u, v) +Ot(u, v))− D̂t−1(u, v), (2)

where D̂t is the depth map of frame t and (u, v) represents
the pixel coordinates.

The input optical flow passes through three multi-scale
dilated convolution modules consisting of three convolution
layers with different filter sizes and dilations. The output
filters are concatenated into a single output vector forming
the input of the next layer [32]. Receptive fields with various
sizes are beneficial for camera pose estimations because input
optical flows computed from fire scenes are noisy. We also
encode the depth flow using four convolution layers. We
empirically observe that embedding the depth flow feature
prior to the fully-connected layers enables a significant
improvement in the pose estimation accuracy by correcting
the motion distortions caused by noisy optical flows.

Instead of direct regression of camera poses from CNNs
like [31], [36], we use the bivariate Gaussian probabilistic
density function based on the visual odometry uncertainty
from CNNs [37]. Our network predicts the outputs of
translation rpred = (µpred,σpred, ρ, ypred) and rotation
(rxpred, r

y
pred, r

z
pred) in Euler angles. µ = (µx, µz) are two

mean variables in the x, z-axis motion, σ = (σx, σz) are

Method
Positional error (m) Angular error (◦)

w/o FT w/ FT w/o FT w/ FT

LVONet 6.6118 3.7440 1.1847 0.7279
Proposed 6.9023 1.5479 0.3756 0.0690

TABLE VI: The comparison of the performance of the pro-
posed network against LVONet. We report average positional
and angular error (the lower the better).

Top view

Fig. 15: 3D map reconstruction in a building on fire (School).
Ignition spots are marked in red.

the corresponding standard deviations, ρ is the correlation
coefficient of the translation between the x and z-axis motion
and ypred is the translation of the y-axis. Using the predicted
outputs, we minimize the loss function L, as below:

L =
∑[

− log
(

exp(−0.5Ψ)/Γ
)

+ λ1‖ygt − ypred‖2 + λ2‖rgt − rpred‖2
]

s.t. Ψ = (µpred − µgt)
T Ω−1(µpred − µgt),

Γ = (2π)2|Ω|0.5 and Ω =

[
σ2
x ρσxσz

ρσxσz σ2
z

]
, (3)

where ‖·‖2 is the L2-norm and | · | is the determinant of
the matrix. λ1 and λ2 are user-defined parameters and are
both set to 0.1 in our implementation. At test time, we draw
random samples from the bivariate normal distribution for the
mean and standard deviation of the x, z-axis motions. We set
the number of samples to 10K, and the final translation is
obtained by averaging the samples.

In the training procedure, we use a furniture shop, police
station, warehouse, and city from BE-D with the ground-
truth depth, the optical flow and the camera poses. We train
our network from scratch with 32K iterations in total and use
the ADAM optimizer (β1 = 0.9, β2 = 0.999), whose starting
learning rate is 10−4 and the decay is set to 0.5 for every
5K iterations. The spatial resolution of the input optical flow
and depth flow is 120 × 320 and the batch size is 50. The
training is performed with Tensorflow on an NVidia 1080
GPU, which usually takes 12 hours.

We compare the performance of the proposed network



with LVONet3 in Table.VI for a subway station, a park, a
school and a residence. The input optical flow and depth
map estimated from the finetuned networks provide the most
performance improvement of the visual odometry task. Our
multi-scale dilated convolution module enables the handling
of noisy inputs by aggregating multi-scale motion informa-
tion. Using the estimated camera poses and depth maps,
we make a 3D map indicating the ignition spots, as shown
in Fig.15. The fire labels estimated from SegNet are mapped
to the 3D map, which represents regions with burring.

V. CONCLUSION

We present a new dataset for simulating disaster scenarios,
termed the DISC dataset. The dataset includes ground-truth
data for low-level and high-level computer vision tasks. The
total number of images exceeds 300K sequential images for
15 different places. As demonstrated by the experiments,
state-of-the-art CNNs trained by the DISC dataset were
highly effective in disaster conditions, especially those with
real-world disaster imagery.

We expect that the release of our challenging datasets
with various scenes and realistic disaster effects will stim-
ulate the development of new computer vision tasks, such
as obstacle avoidance and trip hazard affordance [38]. As
future work, we plan to simulate more challenging disaster
conditions such as underwater conditions [39], [40] and to
generate multi-spectral images in virtual worlds for fire-
fighting equipment [41].
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