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Abstract—The effective detection of curbs is fundamental and
crucial for the navigation of a self-driving car. This paper presents
a real-time curb detection method that automatically segments
the road and detects its curbs using a 3D-LiDAR sensor. The point
cloud data of the sensor are first processed to distinguish on-road
and off-road areas. A sliding-beam method is then proposed to
segment the road by using the off-road data. A curb-detection
method is finally applied to obtain the position of curbs for each
road segments. The proposed method is tested on the data sets
acquired from the self-driving car of Laboratory of VeCaN at
Tongji University. Off-line experiments demonstrate the accuracy
and robustness of the proposed method, i.e., the average recall,
precision and their harmonic mean are all over 80%. Online
experiments demonstrate the real-time capability for autonomous
driving as the average processing time for each frame is only
around 12 ms.

Index Terms—self-driving, 3D-LiDAR sensor, sliding-beam
model, road segmentation, curb detection.

I. INTRODUCTION

UTONOMOUS driving technology is growing rapidly

to meet the needs of road safety and transportation
efficiency. Self-driving cars can be used in many applications
where it may be inconvenient, dangerous, or impossible to
have a human driver on site. Environment perception is
essential for vehicle autonomy, and road boundary detection
is a fundamental problem.

In most urban driving scenarios, the road boundary is
defined by the position of curbs on both sides. Since curbs
are an essential feature distinguishing driving corridors and
restricted areas, they are significant for the safety of self-
driving. Curbs usually are on both sides of the road and are
continuous along the road. However, they are segmented at
intersections, which makes the curb detection complicated. In
order to obtain curb information on various kinds of roads, it
is necessary to develop a method capable of detecting curbs
based on intersection recognition.

A. Related work on curb detection

The problem of curb detection has been a popular research
topic for decades. A variety of methods have been proposed
to detect curbs on urban roads by using their spatial features.
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Camera-only methods have been extensively studied as
cameras are relatively inexpensive and intuitive for humans.
In [1], a digital elevation map was established by a stereo
vision system. Based on the height difference between the
curbs and the road surface, the Hough transformation method
was applied to extract the curb segments. In [2], a digital
elevation map was used and a conditional random field method
was proposed to propagate the curb position. A polynomial
curve-fitting method was then applied to represent the curbs.
Recently, a Naive Bayes framework was proposed in [3] to
detect the road boundary using stereo vision and the method of
support vector regression was used to fit curb curves. However,
it is hard for camera-based methods to accurately detect the
position of curbs due to the slight difference in color between
the road surfaces and curbs. Moreover, these methods are
usually sensitive to lighting and weather conditions.

Unlike passive sensors such as cameras, the millimeter
wave radars (MMWRSs) are not susceptible to ambient light.
The MMWRs even have a longer detection range of over
100 meters. In [4], an MMWR was used to obtain depth
information and a model-matching method was proposed to
obtain the road curve information. In [5], the image of a
camera was fused with the information of an MMWR by using
a Bayesian method, which improved the accuracy of road curb
positions. However, the accurate information of road curbs was
hard to obtain due to the low resolution and narrow field-of-
view of the MMWRs.

Laser scanners usually have a much higher resolution of
curb positions and therefore are widely used in environmental
perception. In [6], the point cloud data of a 2D-LiDAR sensor
were projected onto a plane vertical to the ground in order
to extract the elevation feature of curbs. In [7], a 2D-LiDAR
sensor was used to detect and track the road boundary and
an extended Kalman filter (EKF) was used to enhance its
efficiency and accuracy. The road boundary detection method
using 2D-LiDAR sensors was time-efficient, but the true posi-
tive rate of boundary detection remained low due to the limited
sensing data. In comparison with the 2D-LiDAR sensors, 3D-
LiDAR sensors are able to provide a large amount of sensing
data with a 360° coverage. Thus, the 3D-LiDAR sensors have
been increasingly employed to percept the environment. In the
previous DARPA Challenge, many teams were equipped with
the 3D-LiDARs for environmental perception [8], [9]. In [10],
a 3D-LiDAR sensor was used to obtain a large amount of data
about surrounding environment. Off-line experiments showed
that the proposed method was accurate and robust in most
scenarios. However, it is essential to design an online method
for autonomous driving. In our previous work [11], a real-



time method was proposed and tested for curb detection and
tracking. The experimental results showed that the method
was time-efficient and accurate, but could not deal with
intersections. More recent work on curb detection via a 3D-
LiDAR sensor also illustrated the advantages of the sensor and
their robust performances [12], [13].

The problem of curb detection has also been studied in
the remote sensing domain. The methods of road boundary
detection were proposed using 3D point-cloud data of high-
resolution [14], [15], [16] or aerial images [17]. In addition,
the mobile laser scanning (MLS) system has recently been
generally used in the areas of transportation, navigation and
autonomous driving [18]. The dense point cloud of the MLS
can provide high resolution information of environment, which
makes it perfect for building a digital map. Many researchers
focused on road information extraction via the MLS systems.
In [19], [20] and [21], road markings were extracted and clas-
sified automatically by using the point cloud of MLSs. High
completeness and correctness were achieved in these papers.
Road boundary extraction or curb detection were also studied
using the MLS systems. In [22], a moving window operator
was used to filter out non-ground points and a feature-based
search method was then applied to extract the curb points. The
experiments were carried out via a MLS system, and provided
promising results of curb extraction. In their recent work [18],
a supervoxel generation and road boundary extraction method
was proposed. The detection results were accurate with whole
context information. However, the sensing range was limited
for self-driving, and the sensing data in one frame may not
contain enough features. More importantly, the computation
cost was too high to provide real-time information processing.

The aforementioned methods all assumed that curbs were
continuous and can be fitted as a curve. However, the curbs at
intersections are segmented and discontinuous in sight, which
cannot be represented as a curve. Instead, the road should first
be segmented, and then the continuity can be assumed for each
segment.

B. Related work on intersection recognition

Many researchers have been working on the problem of
intersection recognition. In [23], a monocular vision system
was applied to obtain the image, and a learning method was
proposed to recognize the shape of intersections. In [24],
a threshold-based method was proposed to detect the shape
of intersections by using a monocular vision system. The
method was time-efficient but relatively less accurate. In [25],
a feature-based method was proposed to detect the edges
of roads with intersections by using a 2D-LiDAR sensor.
In [26], a single-beam model was proposed to classify the
types of intersections by using a 3D-LiDAR sensor. In [26],
[27], some trial-and-error rules were used to recognize the
types of intersections. However, it is difficult to identify the
parameters of the rules for various road scenarios. In [28],
[29], machine learning methods were employed to classify the
road shape by using beam models. In [30], multiple LiDAR
sensors were fused to identify geometric features of roads, and
a fast convolution method was proposed to evaluate the fitness

of the given shapes of roads. In [31], the data of 2D-LiDAR
sensors and 3D-LiDAR sensors were fused to establish the
visibility map and the road was divided into several zones. A
zone-checking method was proposed to recognize the shapes
of intersections and to extract the boundaries of each zone. In
our previous work [32], a double-layer beam model was built
to recognize the type of the intersections, based on which the
road boundary was detected. The drawback of our previous
method is that the approximate position of intersections should
be available from maps before recognizing intersection shapes.

In this paper, a 3D-LiDAR sensor is utilized to sense the
surrounding environment. Sensor calibration is carried out and
a flat filtering method is applied to distinguish the on-road
and off-road point clouds. Based on off-road data, a sliding-
beam method is used to segment the road and recognize road
shapes, and the curbs are then extracted. The framework of
this paper is shown in Fig. 1. This paper makes the following
contributions:

o The proposed method is able to recognize the road shape
and extract the curbs in each segment, allowing it to
handle the curb detection problem at intersections.

e We propose an improved sliding-beam method for road
segmentation which is robust to various road shapes (e.g.,
+-shape, T-shape, Y-shape).

o We propose a search-based method to extract the curbs
in each road segment based on the spatial features of the
point cloud data.

o The proposed method ensures real-time performance for
self-driving.

The remainder of this paper is organized as follows. Sec-
tion II describes the sensor calibration method and the plain-
based filtering method. Section III details the method of road
segmentation and curb detection. Section IV evaluates the pro-
posed method through comprehensive experiments. Section V
summarizes the contribution of the paper and maps out the
directions for future research.

II. DATA PRE-PROCESSING

This section proposes the sensor calibration method and a
plane-based filtering method to extract the on-road and off-
road data.

A. Sensor calibration

The HDL-32E LiDAR sensor by Velodyne features up to 32
lasers vertically aligned from +10° to —30°, and its rotating
head delivers a 360° horizontal field of view. It generates a
point cloud of 700,000 points per second with a range of 70
m and typical accuracy of 2 cm [33].

In this paper, the 3D-LiDAR sensor is mounted on the top
of a self-driving car of VeCaN Laboratory at Tongji University
and the raw data of the sensor are in a 3D polar coordinate.
The coordinates can be converted into the sensor coordinate
as shown in Fig. 2. Each point contains a Cartesian coordinate
(x,y, z) and the corresponding laser line [ € {1,2,3,---,32}.
The relationship between the laser line ! and the vertical
pointing angle 6¢ is shown in Table L.
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Fig. 2. Description of the coordinate systems. Left: front view. Right: side
view.

TABLE I
RELATIONSHIP BETWEEN [ AND 6g [33]

U 60 l 0¢(°) Lo G)

1 —30.67 9 —25.33 | 17 —=20.00 | 25 —14.67
2 —9.33 | 10 —4.00 | 18 1.33 | 26 6.67
3 —2933 | 11 —24.00 | 19 —1867 | 27 —13.33
4 —8.00 | 12 —2.67 | 20 2.67 | 28 8.00
5 —=2800 | 13 —2267 | 21 —1733 | 29 —12.00
6 —6.66 | 14 —1.33 | 22 4.00 | 30 9.33
7 —26.66 | 15 —21.33 | 23 —-16.00 | 31 —10.67
8 —5.33 | 16 0.00 | 24 5.33 | 32 10.67

The method of sensor calibration is detailed in [34]. First,
the points in the sensor coordinate are transformed into the
vehicle coordinate based on the installation deviation angles
(6 and f). In the experimental car, the height of the sensor
is 1.5 m, § = 04° and 55 = —2.5° with respect to
the vehicle coordinate. Then, a differential global positioning
system (DGPS) and an inertial navigation system (INS) are
utilized to obtain the information of vehicle motion. The
typical positioning accuracy is 5 cm and the accuracy of the
acquired point cloud is about 2 cm. The average number of
points in each frame is about 60,000. Based on the roll angle
0y and the pitch angle B, of the host vehicle, the points are
transformed into the ground coordinate and the origin is in the
center of the sensor. Let P denote the calibrated dataset and
each point be p;; = [zi, i1, 21 where [ is the number of
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the corresponding laser line.

B. Plane-based filtering method

Fig. 3 shows the road geometry. The on-road area consists of
sidewalks, curb surfaces and road surfaces. The off-road area
usually consists of trees, buildings and other objects. After
sensor calibration, relatively accurate data are obtained. Here
we propose a plane-based filtering method to distinguish on-
road and off-road areas.
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Fig. 3. Road geometry description.

The plane is defined by a linear equation and a simple
least-square method is then applied to plane fitting. First, all
points in P with negative vertical pointing angle are selected.
Then a random sample-consensus method is implemented to
estimate the parameters of the plane [35]. The extraction of
on-road areas does not require high precision because the curb
detection method will be further applied. Thus, based on the
average elevation of curbs, we set the threshold to 0.2 m, which
determines whether a point is on-road or off-road. Note that the
plane cannot accurately extract the road surface or sidewalk,
neither of which is necessary for the further process. In [18],
the road surface was represented by a set of facets which may
accurately extract the road surface area. However, the method
was time-consuming because it traverses all the points to find
their nearest k-neighbors in order to calculate the smoothness
and normal vector for each small plane. It then traversed all
the points which meet the criteria of the road surface feature
and generate several large facets to represent the road surface.



In our method, the “rough” on-road data is processed in the
next section to extract the curbs for which the single-plane
fitting method is able to provide enough data and reduce most
of the outliers simultaneously.
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Fig. 4. An example of the flat filtering method.

One sample of the plane-based filtering method is shown in
Fig. 4, where on-road points shown in red are used to extract
curbs and off-road points are used to segment the road and
recognize its shape. Let Py, denote the on-road data and P
the off-road data.

III. CURB DETECTION

This section proposes the curb detection method. A sliding-
beam method is presented, and a search-based method is
applied to detect the curbs in each frame from the on-road
point cloud.

A. Sliding-beam segmentation

It is necessary for self-driving cars to recognize the road
shape, especially the shape of intersections and to find the
drivable corridors. The beam model approximates the phys-
ical model of range finders and has been widely used in
robotics [36]. It is a sequence of beams from a launching point
where the range finders are originated and evenly spaced with
a given angle resolution §,. In on our previous work [32], we
set a beam model at a fixed distance to detect the intersections.
However, it is hard to determine a fixed distance which is
robust to various kinds of intersections. Therefore we now
propose a sliding-beam model which does not rely on a
determined distance to launch the beam model. The beam
model contains two parts, i.e. a bottom-layer model and a
top-layer one.

1) Bottom-layer beam model: The bottom-layer beam
model determines the beam angles for the road segmentation.
The angles represent the road direction with respect to the
current location of the vehicle. By setting the vehicle position
as the launching point, the beam angles are determined by a
peak-finding method.

Based on the feature of the LiDAR sensor and the instal-
lation position, the data of point cloud are sparse beyond 30
meters. Thus the region of interest is defined by {(z, y)|—30 <
x < 30,-30 < y < 30}. In order to determine an accurate
beam angle, the angle resolution 6, is set to 1° in this paper.
Furthermore, the beam length in the classic model is calculated
by the launching point and the nearest point along the beam
angle. We expand the beam into a beam zone Z;, which defined

by
7 _ Y=Y k-m
k=1 (@) <ot | ) = 360
)

where (zp, yp) is the launching point and k € {1,2,--- ;360}.
The beam length in a zone is defined by the shortest distance
of the points in the zone to the launching point, i.e.,

di = miin \/(Jcz —xp)® + (yi — vp)? 2

where (x;,y;) € (Zr, N Posr). Then a rule-based peak-finding
method in [37] is applied to find the segmenting beam angles
on road. The beam length in each zone is normalized by

- dy,
di, = 3
T maxg yez, /(@ - m)? + (4 - w)? &
Note that, d;; = 1 means that there are no off-road points in
the kth zone and there might be a branch of the road. The
following metrics are defined to extract segmenting angles on
the road:

o The threshold of the peak-beam length is set to 1. If the
beam length reaches the threshold, i.e. di. = 1, no off-
road obstacles are in the kth zone.

o The distance of two adjacent non-peak beams is defined
as the distance from the endpoint of the shorter beam to
the longer beam. The distance threshold is set to Dy,.
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Fig. 5. An example of the bottom-layer beam model.

One example of the bottom-layer beam model is illustrated
in Fig. 5. The off-road points are shown in black, the purple
point is the launching point and the blue lines are in the middle
of each beam zone. The green line represents the angle of road
segment. In this case, we assume that the road is segmented
into two parts, which can also be represented as no intersection
at the current position of the host vehicle. By applying the
bottom-layer beam model, we are able to segment the road



according to the current position of the host vehicle, but
we cannot determine whether there is an intersection ahead.
Thus, the top-layer beam model is applied next to find the
intersections ahead of the host vehicle.

2) Top-layer beam model: The top-layer beam model is
built to segment the road ahead of the host vehicle, i.e. to
recognize the road shape ahead and especially intersections.
A sliding-beam method is then applied. By assuming the initial
angle is 6y, the set of launching points of the top-layer beam
model is given by

Ty =dp-i-cosby |
b . . ,16{1,2,"‘,7%}
Y =dp - 1 -sinby

where (x(;,:;) is the launching point of the top-layer beam
model, dp, is the distance interval between two launching
points, and 7, is the number of beam models. Note that z
and ¥, ; should be in the region of interest. Another important
parameter is the beam angle resolution 6, which also affects
the computation time and the resolution of road segmentation.

After launching n; beam models, the peak-finding method
is applied again to obtain the segmenting beam angles in each
beam model. The output of each beam model is denoted by
B; = (N, 04, i, Yii), where 6, ; are the segmenting beam
angles in the ith beam model, N; is the number of 6, ;, and
(xt,i, yr,i) is the launching point. Then a voting method given
in Algorithm 1 is employed to determine the final segmenting
beam angles and the launching point.

An example of the top-layer beam model is shown in Fig. 6,
where d, = 1, Dy, = 6 and n, = 28. The maximal N; is 4
and the corresponding indices are from 7 to 15 which is larger
than 6, so the final road segmentation can be decided from the
beam model with ¢ = 11.

Algorithm 1 The voting method

Input: A set B of top-layer beam models B; where ¢ € n,

Output: Final road segmentation {z,, Yo, 6o }

Sort B; by N; and count the number of same elements in V;;
for all different elements in N;, starting from the maximum
element in N; do

if number of elements is larger than Dy/d;, then
Calculate the mean index value in B with the current
element, and find the nearest index k to the mean
value;
To = T ks Yo = Yt,k-0o = b and break loop;
end
end

B. Segment-specific curb detection

Based on the road segmentation, the curb detection method
is proposed in the following. First, the spatial features of
curbs are defined and extracted. Then the feature thresholds
are determined and a curb searching method is used to detect
the curbs in each segment.
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Fig. 6. An example of the top-layer beam model. The sliding beam transfered
from the current position of the vehicle to the edge of the region to detect
the segments on road.

1) Spatial feature extraction: Curbs have many spatial fea-
tures different from road surfaces. The curb height is generally
10 cm to 15 cm, and the elevation changes sharply. In addition,
the road surface points are smooth and continuous, and the
curb usually appears on the sides of the road. As shown in
Fig. 7, H, represents the curb height, which is set to 0.15 m
in this paper. Based on these features, three indices are defined
to extract the curbs in each frame.

e Oy, Tepresents the distance between two adjacent points
of a road surface in the /th laser line. It sets the horizontal
threshold for determining whether the point is on the road
surface. It is defined by

70,
180

where H; is the sensor height, 6 is the vertical pointing
angle of the /th laser line and 6, is the angular resolution
of the sensor. The parameter 6, is usually in the range of
[0.1°,0.4°] and is set to 0.4° in this paper.

6xy,l = HS - cot ef’l . (4)
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e 0, is the vertical distance between two adjacent road
surface points in the same laser line, and is used to set
the vertical threshold to determine the road surface points.
It is defined as

0y, = Oxy, - Sin B¢y )

We assume that the points on the curb surface are
uniformly spaced and ¢, ; is the average distance between
two points projected to the curb surface.

o 0; is the angle between two vectors originating from the
same point p;;, where p; ; represents the ith point in /th
laser line. The angle 0, ; is defined as

07;,1 — COS_l ﬁ
Va| : ‘Vb|
1 [& ny
Va= - Z(xi*k’l — Zig), Z(yz’—k,z —Yi1)
Ty
k=1 k=1
1 Ty ny (6)
Vo= Z($i+k,l = iy), Z(%‘—O—k,l —Yi1)
™ L= k=1

Ny = 71—[0
v sin 91‘71 . 5,(},71

where n, is the theoretical number of laser points on
a curb surface, v, and vy are the vectors along the
laser points as shown in Fig. 7. When the point p;;
is on the road surface and near the curb, v, represents
an approximate direction on the road surface and vy
consists of points on the curb surface. In that case, the
angle between two vectors is less than the angle between
two vectors on a road surface. An example is shown in
Fig. 7, where there is an obvious difference between the
angles of Point A and the Point B. Based on the road
segmentation, the initial searching point in each segment
is on road surfaces. Then the curb searching method can
be used to extract all the curbs.

2) Curb searching: The points in each segment are sorted
anticlockwise for the curb searching process. The curb should

be searched in both directions because a given road segment
usually have two curbs. The following steps determine the
features of curbs. Step 1

1) Horizontal continuity: the horizontal distance between
two adjacent points is calculated. If the distance is larger
than dy;, the point is possibly a curb point.

2) Vertical continuity: the vertical distance between two
adjacent points is calculated. If the distance is larger
than 6, , the point is possibly a curb point.

3) Angle threshold: when a possible curb point occurs, 6; ;
is then calculated. The angles of points on the road
surface are nearly 180° like Point B in Fig. 7 and the
angles of points on curbs are on average 100° like Point
A. Therefore, the angle threshold is set to 150°. It is
a relatively loose threshold as there are further filtering
steps.

4) Elevation threshold: when 6; ; of a possible curb point is
less than the angle threshold, the elevation distribution
is calculated in the points of two vectors. If elevation
of points in v}, is increased and the maximum elevation
between p;in,,; and p;; is greater than H,, the point
pi, is counted as a curb point.

Once all laser line points are checked, the whole set of curb
points is obtained. There may be a few false positive points,
but the precision and recall are relatively high as demonstrated
in the following experiments.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed method, extensive off-line ex-
periments have been carried out. In this section, five testing
scenarios are selected to evaluate the proposed method. In
addition, an online road test is conducted to evaluate the
accuracy of the detection results and the capability of real-
time computation for self-driving.

A. Road segmentation experiments

As shown in Fig. 8, five different scenarios are extracted,
including the straight road, curve road, T-shape intersection,
+-shape intersection and Y-shape intersection. The first three
scenarios consist of 50 frames each. The +-shape intersection
consists of 30 frames and the Y-shape intersection consists of
20 frames. Three key parameters listed in Table II must be
determined for the road segmentation.

TABLE 11
KEY PARAMETERS IN ROAD SEGMENTATION
Parameters ~ Physical meanings Considered values  Units
Dy Distance threshold 4,6, 8 m
dy, Sliding beam model interval 0.5, 1, 2, 3, 4 m
Or Beam angle resolution 1,2, 3,4 °

A combination testing method is used to search for the
appropriate parameters. To reduce the complexity, these pa-
rameters are confined to a certain range empirically. For
each scenario, 60 experiments are conducted to analyze the
parameters. The testing results are listed in Table III and each
value is the average true detection rate from five scenarios.
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Fig. 8. Bird view of five testing scenarios, red dot is the start point and green dot is the end point. Trajectory is illustrated in white.

The true detection rate is defined as the ratio of correctly
detected frames to all frames. The true segmentation result is
manually labeled in each scenario. For example, in Fig. 8(a),
we labeled all 50 frames as a three-segment intersection
because the intersection is in the region of interest from the
start to the end of the scenario and should be detected. If the
road segmentation number is 3 and the direction is correct, the
result is a true segmentation. If the road segmentation number
is 3 but the final road segment angles are not right, the result
is counted as a wrong segmentation. In addition, if the number
is not 3, it is counted as a false segmentation. In this parameter
determination experiment, we only use the true segmentation
rate (TSR) as the evaluation metric.

After the experiment, we can analyze the key parameters.
In the testing scenarios, the road width is approximately 8
meters (two lanes) and that is the reason we choose 4 m,
6 m and 8 m as the distance thresholds. When D, is set to
4 m, some gaps such as the gap between two trees are falsely
detected as a road branch. In Fig. 8(d), the right branch of
the intersection is a one-lane narrow road which is about 6
m wide. For this case, D, = 8 m causes a missed detection
of that branch. Different choices of d;, also lead to different
true detection rates. For example, when dp is set to 4 m in
Fig. 8(a), the distance between two sliding beam models is
too large to find the branch. The different setting of 6, almost
has the same effect as that of dy, , i.e., a large 6, may cause the
beam to miss some branches. Theoretically, the true detection
rate will be higher if d}, and 6, become smaller, because dense
beam models will be instantiated to cover the intersection.
However, instantiating a dense beam model is time-consuming.
By balancing the processing time requirement and the true
detection rate, we choose Dy, = 6 m, d, = 2 m and 6, = 3°
for the method.

In order to demonstrate the robustness of the proposed
method, we compare it with two state-of-the-art methods
in [26], [27]. Two more quantitative metrics are introduced to
evaluate these methods: the wrong segmentation rate (WSR)
and the false segmentation rate (FSR). Experimental results
are shown in Table IV.

In [26], the beam model was set to a constant distance
to detect the intersection, and therefore it can only detect an
intersection at a specific location. In [27], the launching point
of the beam model was determined by a function of vehicle
speed and a parameter. It is difficult to tune the parameter for
each scenario. The proposed method in this paper is robust to

various kinds of road shapes and the appropriate parameters
are determined from experiments. In conclusion, the proposed
method demonstrates a promising quality of road segmentation
and is robust to various shapes of intersections.

B. Curb detection experiments

Five scenarios are used to evaluate the proposed curb
detection method. We have manually labeled the curbs in each
frame of the above scenarios. The data of the labeled curbs are
available online' for researchers to implement their methods.
Five different methods together with the proposed method
are tested on the labeled data. Three quantitative metrics
are introduced for a comprehensive evaluation. Moreover, the
distance threshold of true detection is set to 10 cm according
to the positioning error and the labeling error. The distance is
calculated by the detected curb and its nearest labeled curb.

e Precision, or positive predictive value (PPV) is the frac-

tion of the curbs detected correctly out of all the curbs
detected in one frame, i.e.

TP

- TP +FP
where TP is the true positive numbers and FP is the false
positive numbers (false alarm).

e Recall, or true positive rate (TPR), is the fraction of the
curbs detected correctly out of all the labeled curbs, i.e.

Y

~ TP+FN
where FN means false negative (missed detection).

e I Score is the harmonic mean of the precision and the
recall, i.e.

PPV

TPR

PPV - TPR
PPV + TPR

The results of four examples of curb detection are illustrated
in Fig. 9. The green squares are the manually labeled curb data
and the red dots represent the detected curbs. In each scenario,
the road is segmented by the green lines and on-road data in
each segment are denoted by colors. Most of the labeled curbs
are detected by the proposed method.

In order to demonstrate the effectiveness of the proposed
method, the following state-of-the-art methods are also em-
ployed for comparison:

=2

IThe data of all the labeled curbs can be found on the website of VeCaN
Laboratory: http://vecan.tongji.edu.cn/?research



TABLE III
TSR IN THE PARAMETER COMBINATION EXPERIMENT

dp =2

dp =3

dy =4

0.8840 + 0.1367
0.9453 + 0.0628
0.9840 £ 0.0358
0.9580 + 0.0694

0.9160 + 0.1315
0.9387 + 0.0717
0.9533 £+ 0.0650
0.9340 + 0.0760

0.8973 + 0.1694
0.8853 £+ 0.1099
0.9427 + 0.0802
0.9033 + 0.1121

0.9800 + 0.0447
0.9867 + 0.0298
1.0000 £ 0.0000
0.9833 + 0.0236

0.9800 + 0.0447
0.9693 + 0.0580
0.9853 + 0.0202
0.9687 + 0.0301

0.9633 + 0.0650
0.9480 + 0.0867
0.9680 + 0.0460
0.9513 + 0.0549

0.9800 + 0.0447
0.9533 £ 0.0650
0.9500 + 0.0866
0.9333 + 0.1027

0.9833 + 0.0236
0.9393 + 0.0987
0.9087 + 0.1556
0.8987 + 0.1539

0.9533 + 0.0650
0.9040 + 0.1228
0.8980 + 0.1689
0.8827 + 0.1996

Mean =+ Std. d, = 0.5 d, =1
6 =1 | 0.8040 £ 0.2233  0.8160 + 0.2326
D.—4 6 =2 | 0.8840 £ 0.1389  0.9520 + 0.0672
b 6: =3 | 0.9020 4+ 0.1588  0.9540 4+ 0.0780
6, =4 | 0.83800 £ 0.2168  0.9300 + 0.1304
6 =1 | 09620 £ 0.0634  0.9800 + 0.0447
Dy =6 6 =2 | 09900 £ 0.0224  0.9900 + 0.0224
6 =3 | 1.0000 £+ 0.0000 1.0000 + 0.0000
6 =4 | 09900 £ 0.0224  0.9900 + 0.0224
6. =1 | 09700 £ 0.0671  0.9800 + 0.0447
Dy =8 6 =2 | 09833 £ 0.0236 0.9700 + 0.0447
b 6, =3 | 09767 £ 0.0325 0.9767 + 0.0325
6 =4 | 09800 £ 0.0447  0.9600 4+ 0.0548

TABLE IV

COMPARISON RESULTS OF ROAD SEGMENTATION (THE DATA ARE IN THE

FORMAT OF MEAN + STANDARD DEVIATION)

Zhu [26] Li [27] Proposed
TSR 0.5887 4+ 0.2545 0.7087 £ 0.2320 1.0 £ 0.0
FSR 04213 £ 0.2552  0.2733 + 0.2147 0.0 + 0.0
WSR  0.0300 + 0.0283  0.0180 4+ 0.0249 0.0 £ 0.0

y (m)

30

20

y (m)
y (m)

-20 0 20

2 (m)

(d) Y-shape intersection

(c) Straight road

Fig. 9. Examples of the curb detection method.

e Zhang [11]: Our previous sliding-window method

o Peterson [30]: The wavelet transformation method

o Kang [7]: The hough transformation method

e Zai [18]: The supervoxel generation and road boundary

extraction method

« Yang [22]:The feature-based search method

The quantitative evaluation and comparison are given in
Table V. It is clear that the proposed method is robust and
achieves the best performance. In addition, the other five
methods achieve relatively poorer performance for the 4-shape
and Y-shape intersections than the straight road, curve road and

T-shape intersections. It indicates that these methods cannot
handle the curb detection problem at complex intersections.

In Zhang’s method, the performance depends on the param-
eters that are difficult to tune. Moreover, It cannot deal with the
intersection because it assumes that both sides of the road are
continuous without intersections. In Perterson’s method, the
threshold of wavelet transformation is difficult to determine
due to the different elevations on the road. In addition, wavelet
transformation may produce many false positive points as
shown in Table V. Although the recall of this method is higher
than that of the proposed method for the straight-road scenario,
the precision is too low, i.e. there are many false positive
outputs. In Kang’s method, the first thing to determine is the
distance and angular difference between two adjacent points
in the horizontal plane. However, the elevation information is
not considered. it is also hard to tune the parameters. In Yang’s
method, the parameters of the defined rules for elevation jump,
point density and slope change are difficult to identify because
the vertical pointing angle of each laser in our dataset is
different while the angle is constant in their dataset. In Zai’s
method, the proposed method is applied to extract the road
boundaries according to the trajectory data as an input. In
our dataset, we do not input the vehicle trajectory information
because self-driving cars process the data frame by frame and
do not have the future trajectory of the vehicle. In addition,
our point cloud is sparse, which makes it hard to reveal the
smoothness and normal vector of the supervoxel generated by
the K -neighbor method. Furthermore, the processing time of
Zai’s method is about 60 seconds per frame because the search
of K -neighbors and the computing of normal vectors for each
point is time consuming.

An example in Fig. 10 illustrates the different performances
of these methods. The green squares are the labeled curbs.
Results of each method is shown in color dots. Zhang’s method
cannot deal with all lasers because there is an intersection and
the method is not designed to find curbs in each segment.
Peterson’s method detects most of the labeled curbs, but
produces many false positive points. It is thus unable to
represent the curbs without further processing. Kang’s method
assumes a gap on a road surface as a curb point because the
elevation information is not considered. Yang’s method needs
some parameters difficult to tune, therefore some near noise
data may be detected as curbs while missing the curbs in



TABLE V
CURB DETECTION RESULTS

Mean + Std. T-shape intersection Curve road Straight road +-shape intersection  Y-shape intersection
Proposed 0.8498 £ 0.0697 0.8764 £ 0.0390  0.8230 £ 0.0616 0.8584 £ 0.0637 0.8373 £ 0.0645
Zhang [11] 0.4421 + 0.0643 0.4464 + 0.0322  0.4721 £ 0.0633 0.3900 % 0.1160 0.3336 £+ 0.0587
PPV Peterson [30] 0.0434 + 0.0032 0.0750 &+ 0.0097  0.0889 =+ 0.0089 0.1005 + 0.0155 0.0776 + 0.0068
Kang [7] 0.2394 + 0.0271 0.3888 + 0.0431  0.2337 £ 0.0481 0.3638 + 0.0691 0.2790 + 0.0381
Zai [18] 0.4790 £ 0.0428 0.4525 + 0.1052  0.6312 £ 0.0728 0.4009 + 0.0361 0.3609 + 0.0613
Yang [22] 0.3240 + 0.0365 0.4130 + 0.0324  0.3883 £ 0.0478 0.2850 + 0.0587 0.3382 + 0.0207
Proposed 0.8928 £ 0.0275 0.8227 £ 0.0362  0.7716 £ 0.0550 0.7834 £ 0.0562 0.8734 £ 0.0308
Zhang [11] 0.4724 + 0.0451 0.4895 4+ 0.0376  0.5019 £ 0.0471 0.2985 + 0.1048 0.3845 + 0.0738
TPR  Peterson [30] 0.7915 £ 0.0605 0.7052 + 0.0558  0.9154 £ 0.0434 0.6938 + 0.0806 0.7731 £+ 0.0479
Kang [7] 0.2930 + 0.0366 0.4726 + 0.0468  0.2587 £ 0.0534 0.4689 + 0.0661 0.3827 + 0.0423
Zai [18] 0.6801 + 0.0506 0.6387 4+ 0.0505  0.6576 £ 0.0629 0.4821 + 0.0860 0.5941 + 0.0452
Yang [22] 0.4883 + 0.0422 0.6597 + 0.0598  0.4892 £ 0.0438 0.5443 + 0.0924 0.5580 + 0.0403
Proposed 0.8698 £ 0.0460 0.8483 £ 0.0327  0.7957 £ 0.0520 0.8179 £ 0.0501 0.8539 £ 0.0422
Zhang [11] 0.4562 + 0.0540 0.4668 + 0.0335  0.4861 £ 0.0543 0.3351 + 0.1038 0.3567 + 0.0640
Fy Peterson [30] 0.0823 £ 0.0061 0.1355 £ 0.0167  0.1619 £ 0.0147 0.1752 £ 0.0253 0.1410 £ 0.0116
Kang [7] 0.2623 + 0.0247 0.4264 + 0.0437  0.2450 £ 0.0488 0.4091 + 0.0675 0.3223 + 0.0390
Zai [18] 0.5617 + 0.0440 0.4920 + 0.0385  0.6436 £ 0.0653 0.4638 + 0.0890 0.4476 + 0.0572
Yang [22] 0.3892 + 0.0380 0.5076 + 0.0397  0.4325 £ 0.0454 0.3718 + 0.0655 0.4209 + 0.0251

distance. Zai’s method achieves more accurate detection rate,
but it is difficult to obtain an perfect result on such a sparse

dataset compared to the dataset used in [18]. 30 T - T 30 .
The off-line experiments illustrate that the proposed method 20 - 20 .
is accurate and robust for various road scenarios. Besides 0 . 0 . .

performing the quantitative evaluation, we also tested the
computation time of the proposed method, since self-driving

y (m)
Y

requires the real-time processing ability. -10 ': i -10 =
20 . 20 .

C. Online experiments . . .

The proposed method is tested on our self-driving car -20 0 20 -20 0 20
platform, which uses NI PXI-8109 as the controller. The core @ (m) @ (m)
of the controller is an Infel i7-620M processor with a base (a) Proposed (b) Zhang [11]
frequency of 2.66 GHz. The proposed method is implemented 30 . 30 .
in Visual C in a Windows-7 Operating System. The online test 20 J5 20 —
takes about 6 minutes to process 3600 frames of LiDAR data o] wwt? . N = .
and the trajectory is about 2.9 km long with an average speed = ). = 1 \|
of 28.6 km/h. We have transmitted the curbs in each frame = °[° " " '0\ 8"./ <0t \ .('“
to the data log process by Ethernet and the results are then -10 ‘ : -10 [
analyzed. 20 - 20 .-

The average processing time is about 12 ms, which is faster b *

. . -30 30

than the previous curb detection method [11] because the 20 0 20 20 0 20
searching procedure and the feature calculation are optimized. z (m) @ (m)
To obtain the ground truth of the curb position, we used a (c) Peterson [30] (d) Kang [7]
high-resolution digital map as a benchmark, which is created 30 ! ! ! 30
by our team in [34]. The DGPS is applied to obtain an accurate 20 : 20
position of the vehicle and all the curbs are projected onto a ”
local map corresponding to the start point. Note that even the o "
DGPS contains about 5 cm localization error. The average i/ o = . - % 0
curb position error is 32.42 cm, which is not accurate overall. 10 'c' i " 10
However, over 90% of the curbs are within 10 cm deviation, 0 = 0
which means that there are a few false positive detections
may have large distance deviations. Moreover, some false S0 0 2 S0 0 20
detections and miss detections are actually caused by damaged z (m) x (m)
curbs on campus roads. (e) Zai [18] (f) Yang [22]

Experimental results are shown in Fig. 11. The curbs

Fig. 10. Comparison results of the curb detection method in Scenario (d).

detected by the proposed method are shown in small red dots,
the trajectory of the host vehicle is represented in blue. The
start position is in black and the end position is in green. The
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Fig. 11. Results of the real-time experiment.

overview of the real-time experiment is shown on the left side
with a Google Earth view attached. Six scenarios are illustrated
on the right side and the small black squares are the reference
curbs on the high-resolution map. As shown in the figure,
the detected curbs are accurate in the straight and the curve
roads while there are some noise in other complex scenarios.
One main reason is the localization error from DGPS, and
the localization error may produce a slight deviation to the
projection of the curbs when the vehicle travels the same
intersection in multiple times.

V. CONCLUSION AND FUTURE WORK

This paper develops a real-time curb detection method for
self-driving based on the road segmentation. The method
captures the road curbs in various road scenarios including
straight roads, curved roads, T-shape intersections, Y-shape
intersections and +-shape intersections. The curb information
forms the foundation of decision making and path planning
for autonomous driving. Comprehensive off-line and real-time
experiments demonstrate that the proposed method achieves
high accuracy of curb detection in various scenarios while
satisfying the stringent efficiency requirements of autonomous
driving. The off-line experiment demonstrates that the curbs
can be robustly extracted. The average precision is 84.89%,
the recall is 82.87%, and the average Fj score is 83.73%.
Furthermore, the average processing time in the real-time
experiments is around 12 ms per frame, which is fast enough
for self-driving.

In order to reduce the false positive detections, the context
information of the road need to be considered and a filtering
method should be adopted to improve the detection results.
Furthermore, it is still a challenge to detect the curbs with
obstacles such as other vehicles or pedestrians on the road.
The detection method will be further modified and extended to
enhance its accuracy and robustness under such circumstances.
In addition, road context should be taken into consideration to

filter the outliers and thereby improve the accuracy of the curb
position.
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