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Abstract

While researchers have made great improvement on generating syn-
tactically correct sentences by learning from large image-sentence paired
datasets, generating semantically rich and controllable content has re-
mained a major challenge. In image captioning, sequential models are
preferred where fluency is an important factor in evaluation, e.g., n-gram
metrics; however, sequential models generally result in over-generalized
expressions that lack the details which may be present in an input image
and offer no controllability. In this article, we propose two models to
tackle this challenge from different perspective. In the first experiment,
we aim to generate more detailed captions by incorporating compositional
components into a sequential model. In the second experiment, we explore
an attribute-based model with the ability to include selected tag words
into a target sentence.

1



Contents
1 Introduction 3

2 Related Work 7

3 Modular Attribute Networks (MAN) 9
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Recurrent Neural Network Trio . . . . . . . . . . . . . . . 9
3.1.2 Stacked Noisy-Or Object Detection . . . . . . . . . . . . . 11
3.1.3 Modular Attribute Detection . . . . . . . . . . . . . . . . 12
3.1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Implementation details . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Amazon Mechanical Turk setup . . . . . . . . . . . . . . . 15

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Human Evaluation using Amazon Mechanical Turk . . . . 18
3.3.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Soft-Insertion Network (SIN) 20
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Two-Step Generation . . . . . . . . . . . . . . . . . . . . . 21
4.2 Stacked Noisy-Or Attribute Detection . . . . . . . . . . . . . . . 22

4.2.1 Trigger Mechanism . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Web-crawled Multi-label Data . . . . . . . . . . . . . . . 24

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Gated Attribute Example . . . . . . . . . . . . . . . . . . 25
4.4.2 Insertion Example . . . . . . . . . . . . . . . . . . . . . . 25

5 Robot Testing 28

6 Future Work 30
6.1 Visual Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Bayesian Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 31

7 Conclusion 31

2



1 Introduction
Image Captioning: The task of image captioning lies at the intersection of
computer vision and natural language processing. Given an image, the task is to
generate a natural sentence describing the information present in the input image.
Image captioning has received increasing attention over the years. The prevalent
encoder-decoder frame work [20] serves as the backbone of many derived models.
[21] and [35] introduced and refined the attention mechanism which allows for
better feature extraction and interpretability. [30] further used Faster-RCNN [18]
to replace the fixed resolution attention mechanism. Researchers [29] [37] also
found out that high-level concepts such as attributes provide a more concise
representation for an image.

Main drawbacks: First, the majority of existing approaches follows the
sequential model where words in the caption are produced in a sequential manner–
i.e., the choice of each word depends on both the preceding word and the image
feature. Such models largely ignore the fact that natural language has an
inherent hierarchical structure [1] [5]. For example, each object can be associated
with various attributes. Even with better feature representations and attention
mechanisms, the sequential structure of these models tends to lead to generic
descriptions that lack specificity. The models [38] [36] exploring compositionality
have been shown to produce more accurate, specific, and out-of-distribution
sentences. Compositional models, however, do not compare well to the sequential
models on the n-gram metrics such as BLEU [2]. Because semantic evaluation
metrics such as SPICE [23] ignore fluency and assume well-formed captions,
the n-gram metrics are still important in judging the fluency of the generated
captions.

Second, training a model on large datasets does not guarantee any control-
lablity on the output. Often a generated caption describes a given image without
specific focus. If a more detailed description is desired for a class of objects,
most state-of-the-art models do not accommodate additional inputs to control
the focus of a caption on a user-defined target. For example, when a dedicated
detector detects different hair styles, it is desired to include such detail in the
target sentence where the appearance of a person should be emphasized. If the
selected words can be included in the target sentence at appropriate place, users
will have more control over the output and the model will be able to produce
more detailed captions.

Our approach: In the first experiment we propose an image captioning model
that combines the merit of sequential and compositional models by following
a word-by-word generation process and combining grounded attributes from
specialized modules. A high-level illustration of the workflow at one time step
and visualization of the module attention is shown in Figure 1. More specifically,
the algorithm first proposes regions of interest and then chooses a region to
focus on depending on the context. The chosen region and the whole image
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Figure 1: Top: Visualization of attribute attention over time: the line plot
shows one instance of time varying module attention. Note: Init.Est. stands for
initial estimation. Bottom: An example of the workflow is shown in a diagram
for time step 1 where the word “two” is generated. The model first chooses a
region to focus on in the input image and the modules predict the attributes
associated with the region. Note: SEM and SPA stand for semantic and spatial
modules, respectively.

are fed to a collection of functionally specialized modules where each module is
delegated to predict one aspect of the objects such as count, color, and size. This
is analogous to the Neural Module Networks (NMN) [24], where each module
is responsible for a specialized functionality and the final result is a dynamic
composition of different modules. In our case, the model generates the final
caption by dynamically attending to different modules. The attributes, therefore,
have a hierarchical dependency on and are grounded to the proposed regions.
With the proposed Compositional Neural Module Networks, we aim to generate
detailed, specific captions without losing fluency, e.g., “a red apple” instead of “a
piece of fruit” or “three people” instead of “a group of people.” Overall, the main
contributions of the first experiment are:

• We develop a hierarchical model, Modular Attribute Network (MAN),
that employs both compositionality and sequentiality of sentence genera-
tion.

• Quantitatively, the model outperforms a state-of-the-art model on a set
of conventional n-gram metrics and yields a noticeable improvement over
the subcategories f -scores of the SPICE metric that is a more meaningful
measurement of the semantics of generated captions.

• Qualitatively, we perform human evaluation using Amazon Mechanical
Turk. According to the results, our model more often produces more de-
tailed and accurate sentences when compared to the state-of-the-art model.
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Figure 2: Example of "soft" insertion. In the first example (top), "short hair",
"red shirt are the attributes. In the second example (bottom), "long hair", "black
skirt" are the attributes

A further analysis shows that the empirical results correlate positively with
the quantitative results.

In the second experiment we propose a soft-insertion architecture and a trigger
mechanism for an attribute based image captioning model. The model follows a
two-step generation process and uses two attribute detectors. One detector,the
concept attribute detector, is used for extracting high level concepts from an
image in the form of unordered attributes. The other detector,the human
attribute detector, is responsible for detecting specific user-defined attributes and
trained on separate datasets. The first attribute detector is an integral part
of the language model whereas the second detector is modular and used only
during inference. Therefore, the trigger mechanism is used only at test time to
"softly" insert specific attributes at appropriate time. Two examples are shown
in Figure 2. Overall, the main contributions of the second experiment are:

• We develop a Soft-Insertion Network (SIN) for image captioning which
follows a two-step generation process to predict the next word based on
ranked attribute detection.

• We propose an inference algorithm based on a trigger signal to give more
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detailed description about a user-defined class of objects by leveraging
additional datasets.

• Qualitatively, we show that our model can generate more detailed descrip-
tion about people.

Paper Organization: In section 2, related works relevant to both models
are discussed. The two proposed models will be discussed in sections 3, 4 with
corresponding methods, experiments and results sub-sections. In the end, we
will conclude by discussing future directions.
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2 Related Work
In this section, we briefly introduce related and similar works and emphasize the
differences of our model.

Sequential Models: Most recent state-of-the-art models adopt the encode-
decoder paradigm, NIC [20], where the image content is vectorized by a convo-
lutional network and then decoded by a recurrent network into a caption. In this
paradigm, attention-based models have been explored widely. AdaptATT [35]
follow a top-down attention approach where attention is applied to the out-
put of CNN layers. [29] used a word-based bottom-up attention mechanism.
Top-Down [30] proposed a feature based bottom-up attention mechanism which
retains spatial information whereas the word-based approach does not.

Compositional Models: [36] presented a coarse-to-fine two-stage model.
First, a skeleton sentence is generated by Skel-LSTM, containing main objects
and their relationship in the image. In the second stage, the skeleton is enriched
by attributes predicted by an Attr-LSTM for each skeletal word. ComCap [38]
proposed a compositional model, where a complete sentence is generated by
recursively joining noun-phrases with connecting phrases. A Connecting Module
is used to select a connecting phrase given both left and right phrases and an
Evaluation Module is used to determine whether the phrase is a complete caption.
In this work, noun-phrases are objects with associated attributes. In general,
compositional models exhibit more variation and details in generated captions;
however, they tend to perform poorly on the conventional n-gram metrics which
are important measurements of fluency.

Neural Module Network (NMN): Researchers have tried to explicitly
model the compositionality of language in Question Answering (QA). This line of
research shares a similar paradigm, namely, module networks. Module networks
are an attempt to exploit the representational capacity of neural networks and
the compositional linguistic structure of questions. [24] learns a collection of
neural modules and a network layout predictor to compose the modules into a
complete network to answer a question. Rather than relying on a monolithic
structure to answer all questions, the NMN can assemble a specialized network
tailored to each question. We adopt this idea in QA to design a one-layer NMN
with a collection of modules and a composition mechanism in the Modular
Attribute Model. The model can compose a customized network depending on
the context of a partially generated sentence.

Image Captioning with Attributes: [29] combines visual features with
visual concepts in a recurrent neural network. LSTM-A5 [37] also mines
attributes as inputs to a captioning model. Although our models also use
attributes, they differ significantly in several aspects. First, the MAN model
is hierarchical because attributes are grounded exclusively to selected regions
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that change over time. Second, it is compositional because it combines grounded
attributes and objects from separate detectors to predict the next word. Third,
the attention is over the set of functionally specialized modules instead of
individual visual concepts. Each module specializes in a single descriptive aspect
of an object and determines the most probable attribute for that subcategory.
For example, the color module generates different predictions for different objects
in an image depending on where the model’s focus is. Lastly, The SIN model
uses two attribute detectors, one of which is only used during inference time and
is trained on separate mulit-label classification datasets.

Guided Image Captioning: Similar in spirit to our Soft-Insertion Net-
work is [22]. The paper introduces a constrained beam search algorithm to force
the inclusion of selected tag words in the output sentence which can be expressed
in a finite state machine. The model uses attributes at test without the need to
retrain a model. This algorithm focuses on novel scenes and objects captioning
whereas our model emphasises detailed description for a specific target. Also
our model does not require expensive beam search at test time.

Multi-Instance Multi-Label Learning: Multi-Instance Multi-Label (MIML)
learning is a more realistic problem. Traditionally, supervised learning associates
one feature vector with one label exclusively. In the context of classification, an
image is summarized into a single feature vector and an algorithm outputs a
single class prediction for that that image. [6] provides a formal definition for
MIML, i.e., an image usually contains multiple patches, each of which can be
described by a feature vector, and the image can belong to multiple categories
since an image can contain more than one class of label. [13][37] adopt Noisy-Or
Multi-Instance Learning formulation to classify multiple labels from the same
image. [39] proposes an attention-based MIL model. Essentially, the Noisy-Or
approach looks at each image patch separately whereas the attention-based
model looks at the weighted sum of all image patches. We combine the two
approaches into a Stacked Noisy-Or model.

8



3 Modular Attribute Networks (MAN)

3.1 Method
The proposed hierarchical model for image captioning consists of three main
components: Recurrent Neural Network (RNN) Trio, Stacked Noisy-Or Object
Detection, and Modular Attribute Detection. We describe the overall captioning
architecture as shown in Figure 3, followed by technical details for the three
components in Section 3.1.1 –3.1.3 and the objective function used for training
in Section 3.1.4.

Inspired by recent successes of region-level attention mechanism [30] [40] [15],
we use a Faster-RCNN in conjunction with a Resnet-101 backbone [27] to segment
an image into a set of regions that likely contain objects of interest and encode
each region r as a fixed-length feature vector {v1, ..vDr} ∈ RDv where Dr is the
number of regions, and Dv, the size of the feature vector. The feature vectors
are used as inputs to other parts of the network.

The captioning model selects which region to attend to depending on the
context. Given the region proposals, the stacked noisy-or object detection
mechanism operates to estimate all possible objects in the image regions. The
modular attribute-detection mechanism operates on the attended regions to
determine appropriate attributes for the attended region at each time step. The
object and attribute detection makes up the compositional component while the
RNN trio incorporates the detection results to generate a sentence in a sequential
manner.

Visual-Nouns and Attributes: Similar to [23], we divide the vocabulary
into meaningful subcategories: an object set and five attribute sets which are
color, size, count, spatial relationship, and semantic relationship. We select the
six word-lists based on the occurrence frequency1. The object set consists of
visual nouns and the other attribute sets consist of adjectives. For example, red,
green, blue are in the color set and sitting, playing, flying are in the semantic
relationship set.

3.1.1 Recurrent Neural Network Trio

The captioning model uses three recurrent neural networks, namely, Attention
(A)-LSTM, Visual (V)-LSTM and Semantic (S)-LSTM, to guide the process
of generating captions sequentially. The input vector to the A-LSTM at each
time step consists of the previous output of the S-LSTM, concatenated with
the mean-pooled image feature v̄ = 1

D

∑D
i=1 vi and encoding of the previous

word. The attended image region feature, ṽt, is used as input to the V-LSTM to
make an initial estimation of the next word based purely on visual evidence. In
the final step, the information from the initial estimation, htv, objects detection,
wobj

t , and attributes detection, ĉt, are combined to make the final prediction of
the next word.

1The lists will be provided in the appendix in the final version.
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Figure 3: Overview of the architecture: Right(Black): Recurrent Neu-
ral Network Trio, Top-Left(Blue): Modular Attribute Detection, Bottom-
Left(Red): Stacked Noisy-Or Object Detection. Note: SE denotes Semantic
and SP denotes Spatial.
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The attended image region feature ṽt is obtained through the Region Attention
mechanism after the A-LSTM:

at = softmax(WT
b tanh(WvV + (Woht−1)))

ṽt =

D∑
i=1

at,ivi

where V ∈ RDv×Dr is the set of image region features.

3.1.2 Stacked Noisy-Or Object Detection

Multi-label classification is a difficult task, where classes are not mutually
exclusive in an image. Here, we propose a stacked model that consists of two
types of Multiple Instance Learning (MIL) object detectors to consider both
image regions and the entire image simultaneously. First, following the Noisy-Or
Multiple Instance Learning (MIL) model used in [4] [16], we devise a noisy-or
detector to predict a distribution over a set of b labels. The noisy-or operation
(Or-MIL) is suitable to this task because it operates on each region separately
and a positive detection from any region yields a high probability for the whole
image. Second, inspired by [39], we adopt an attention based MIL (Att-MIL)
detector to consider the whole image, which contains large background objects
such as “grass.” The two detection probabilities are combined with a second
Noisy-Or operation, thus named the stacked approach.

Suppose that, for a given image I, there are V = {v1, v2, ..., vDr} ∈ RDv

image region features proposed by the Faster-RCNN network. The probability
of an image containing object aj is calculated by a Noisy-Or operation on all
image regions of this image as follows:

P
aj

I,or = 1−
∏
vi∈V

(
1− paj

i

)
where paj

i is the probability of object aj in image region vi; p
aj

i is calculated
through a sigmoid layer on top of the image region features.

For the attention-based MIL detector, instead of an additional attention
mechanism, we use the mean-pooled image region feature v̄ as follows:

P
aj

I,att =
1

1 + e−fj,att(v̄)

where fj,att denotes parameters in a two-layer fully connected network.
The final prediction, P aj

I , is computed using a second Noisy-or operation to
combine the two probabilities P aj

I,att and P
aj

I,or:

P
aj

I = 1−
(

1− P aj

I,or

)(
1− P aj

I,att

)
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We also design a gating mechanism to refine the object detection result at
each time step. For example, if the word “cat” has already appeared in a sentence,
we decrease its priority in the detection result for later time steps even though
“cat” remains a positive instance for the image:

P
aj

I,t = relu
(
Whh

s
t−1 +Wv ṽt

)
◦ P aj

I

where blue P aj

I,t ∈ RDobj is the time-dependent prediction; Dobj , the size of the
object set; hst−1, the output of the S-LSTM at the previous time step; and ṽt,
the attended image region feature at time t.

The output of the object detection module is a word-vector, wobj
t = EobjP

aj

I,t,
where Eobj ∈ RDvoc×Dobj is a word embedding matrix from distribution over
labels, Dobj , to the word-embedding space, Dvoc. The word-vector wobj

t is used
as an input to the S-LSTM for the final decoding.

3.1.3 Modular Attribute Detection

Attribute detection is achieved by using a collection of modules, each module
m ∈ M = {m1, ...mk} with associated detection parameters θm and a Module
Attention mechanism to predict the layout of the modules. In this section, we
describe the set of modules and the composition mechanism.

We use k = 5 modules corresponding to different attributes of an object. They
are: color, count, size, spatial relationship and semantic relationship modules.
The modules map inputs to distributions over discrete sets of attributes. Each
module has its own labels and, therefore, learns different behaviours.

The modules all share the same simple architecture. Customizing module
architectures for different purposes might result in better performances as in [40]
and [31]; in this paper, however, we focus on the overall architecture and leave
more sophisticated module architecture designs to future work. The distribution,
Pm
t , over labels for module m at time t is computed using a softmax-activated

function denoted by fm:

Pm
t = fm(ṽt, h

s
t−1, w

obj
t ).

The outputs of the modules are word vectors wm
t = EmP

m
t , where Em is the

word embedding matrix for module m.
Next, we describe the compositional Module Attention mechanism that selects

which module to use depending on the context. Inspired by [35], we use an
adaptive attention mechanism and a softmax operation to get an attention
distribution of the modules:

zt = WT
z tanh(Wmwm,t + (Wghl,t−1))

αt = softmax(zt)

ct =

k∑
i=1

αt,iwt,i
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where wm,t ∈ RDvoc×k is the module network outputs at time t. k denotes the
number of modules in consideration. We add a new element winit

t = Eyinitt to the
attention formulation. This element is the word vector of the initial estimation
of the next word from the V-LSTM.

α̂ = softmax
(
[zt;W

T
z tanh(Wiw

init
t + (Wgh

s
t−1))]

)
βt = α̂[k + 1]

ĉt = βtwv,t + (1− βt)ct

Depending on the context, the network composes a different set of modules to
obtain word-vector ĉt ∈ RDvoc for the S-LSTM.

3.1.4 Objectives

Our system is trained with two levels of losses, sentence-level loss and word-
level loss. We first describe the more conventional sentence-level loss and then
the auxiliary word-level losses.

Sentence-Level Loss We apply two cross entropy losses to the V-LSTM and
S-LSTM respectively:

LV/S = −
T∑

t=1

log p(yt|y1, ..., yt−1; I; θ)

where θ are the parameters of the models; I, the image; and y = {y1, y2, ..., yT },
the ground truth sequence.

Word-Level Loss We subdivide the word-level loss into two types: loss Latt/or
mil

to train the object and attribute detectors, and loss Lm to train the module
attention mechanism for composing attributes.

Loss from Stacked Noisy-Or object detection: as described in 3.1.2, the
MIL object detection has a stacked design. We train the noisy-or detector and
attention-based detector using the two sigmoid cross entropy losses respectively:

L
att/or
mil =

∑
aj

−yaj log(paj ) + (1− yaj ) log(1− paj )

where yaj is 1 when ground-truth object aj is present and 0 otherwise. paj ∈
{P aj

I,att, P
aj

I,or} is a sigmoid-activated function.
Loss from Modular Attribute detection: we use five masked cross entropy loss

to train the attribute detection modules:

Lm =

T∑
t=1

Mm
t (−yt log(Pm

t ) + (1− yt) log(1− Pm
t ))

where m ∈M and Mm
t is 1 if an attribute from set m is present and 0 otherwise

at time t.
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Model BL1 BL4 ROUGE CIDER SPICE

NIC** - 30.2 52.3 92.6 17.4
AdaptATT** - 31.2 53.0 97.0 18.1
LSTM-A5** - 31.2 53.0 96.6 18.0
Top-Down** - 32.4 53.8 101.1 18.7
CompCap* - 25.1 47.8 86.2 19.9
Top-Down 76.7 32.0 59.0 105.4 19.9
Ours:Module 77.2 33.0 59.4 108.9 20.4

Table 1: Performance on the COCO Karpathy test split [13]. Higher is better
in all columns. * indicates results from the original paper. ** indicates re-
implementation of the original papers by [38]. Note: our implementation of the
Top-Down model and the proposed model do not use beam-search whereas other
results do. BL4/1 denotes BLEU-4 and BLEU-1 respectively.

The composition mechanism is trained with the following additional loss:

Lc =

T∑
t=1

Mt (ym,t log(α̂) + (1− ym,t) log(1− α̂))

where Mt is 1 if any ground-truth attribute is present and 0 otherwise. ym,t ∈
Rk+1 is a one-hot vector indicating which module is active at time t.

The final loss is a summation of all losses:

L = LV + LS + Latt
mil + Lor

mil +
∑
m∈M

Lm + Lc

where m ∈M denotes an individual loss for each attribute module.

3.2 Experiments
3.2.1 Datasets

We use MSCOCO [10] for evaluation. MSCOCO contains 82,783 training
and 40,504 validation images; for each image, there are 5 human-annotated
sentences. We use the widely-used Karpathy Split [13] to incorporate portion
of the validation images into the training set. In total, we use 123,287 images
for training and leave 5K for testing. As a standard practice, we convert all
the words in the training set to lower cases and discard those words that occur
fewer than 5 times and those do not intersect with the GloVe embedding. The
result is a vocabulary of 9,947 unique words. For usage of the Visual Genome
dataset [34], we reserve 5K images for validation, 5K for testing and 98K images
as training data. We refer the readers to [30] for more details on training of the
Faster-RCNN network.
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Model OBJ ATTR RE CL CT SZ

Top-Down 38.0 8.27 6.83 6.59 9.12 3.86
Ours:Module 38.7 9.39 7.23 7.92 14.70 4.10

Table 2: SPICE subcategory f -score breakdown on the COCO Karpathy test
split [13]. Higher is better in all columns. Note the following abbreviations:
OBJ-object, ATTR-attribute, RE-relations, CL-color, CT-count, SZ-size.

3.2.2 Implementation details

We set the number of hidden state units in all LSTMs to 512, and the size of
input word embedding to 300. We use a pre-trained GloVe embedding [12] and
do not finetune the embedding during training. The pre-trained embedding is
from a public website2 and consists of 6B tokens in total. In training, we set
the initial learning rate as 1e-4 and anneal the learning rate to 5e-3 at the end
of training starting from the 20th epoch using a fixed batch size of 128. We
use the Adam optimizer [9] with β1 to be 0.8. We train the Stacked Noisy-Or
Object Detector jointly for 5 epoches and stop. The training is complete in 50K
iterations.

To ensure fair comparison, we re-train the Top-Down using the same hyper-
parameters as the proposed model. We report the results with greedy decoding
to reduce the effect of hyperparameter search for different models.

We use the top 36 features in each image as inputs to the captioning models
and do not finetune the image features during training.

3.2.3 Amazon Mechanical Turk setup

Amazon Mechanical Turk (AMT) is a popular crowdsourcing service from Ama-
zon. To investigate the effect of using compositional modules qualitatively, we
design a Human Intelligence Task (HIT) to compare two captions generated
from our implementation of the top-down model and the proposed compositional
module networks. Each turker is asked to select from four options as shown
in Figure 5: either of the two captions, equally good, or equally bad. For each
image, we ask 5 workers to evaluate.

For 1,250 images, 6,250 turkers participated. The images are uniformly sam-
pled from the test split; those images with identical captions from the two models
are discarded. We design a qualification test to test workers’ understanding
of the problem and English proficiency. We adopt a max voting scheme to
determine the quality of captions per image. When there is a clear winner, we
use it as the result for that image. In the case of ties, we give one vote to each
tied option.

2https://nlp.stanford.edu/projects/glove/
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Figure 4: Qualitative examples of captions generated by the Top-Down model
(blue) and the proposed compositional module model (green). The proposed
model produces more specific action attributes, e.g., “leaning” instead of “stand-
ing,” due to the semantic module.

Figure 5: Left: Human evaluation results on the Caption Comparison task. The
pie plot shows percentage of votes for different options. There are four options
for participants, Option 1: caption 1, Option 2: caption 2, Option 3: equally
good, Option 4: equally bad. Right: We count the number of occurrences of
words from each subcategory word list in the 5K test split. The pie plot shows
the ratio of word occurrences between the two models. We also show two specific
examples from the count list, e.g., two and three.
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3.3 Results
We compare our proposed model with our implementation of the Top-Down
model [30], which achieved state-of-the-art performance on all evaluation metrics
previously. We also list the published results of CompCap [38], which is
another recent compositional model. We also include the published performance
of NIC [20], AdaptATT [35], Top-Down and LSTM-A5 [37] re-implemented
by [38] because the re-implementations use comparable visual features and are
evaluated on the same test split. There are other models with better performances
such as the model proposed by [40], which uses additional datasets to train
spatial and semantic relationship detectors. Our work is a fair comparison to
the Top-Down model since both models use only MSCOCO as the main training
data and Visual-Genome to train the Faster-RCNN, which is also used in [40].
Our implementation of the Top-Down achieves better performance than the
implementation by [38] and we use our implementation as the baseline for all
comparison.

Shown on the right side of Figure 5, a preliminary analysis of the generated
captions shows that our proposed compositional module modle is able to generate
captions that include more specific attribute words such as color and count. For
example, the proposed model includes 4 times more of specific counts such as
three in its generated captions.

3.3.1 Evaluation Metrics

We evaluate the approaches on the test portion of the Karpathy Split and
compare the proposed approach against best-performing existing models using
a set of standard metrics SPICE [23], CIDEr [19], BLEU [2], ROUGE [3], and
METEOR [8] as in Table 1. Our proposed model obtains significantly better
performance across all n-gram based metrics.

The n-gram metrics alone do not tell the whole story. We also report
the performance on a recent metric, SPICE, and its subcategories f -scores
in Table 2. When compared to Top-Down, our module model achieves noticeable
improvement on all subcategories but one. The count subcategory is improved
the most. We hypothesize that counting is an inherently difficult task for neural
networks and sequential models tend to “play safe” by using generic descriptions
instead. This result demonstrates the effect of having dedicated functional
modules for composition. It also shows that our proposed model can generate
more detailed captions while improving fluency according to the n-gram metrics.

We also note that the size subcategory does not gain improvement over the
Top-Down model. We hypothesize that this is due to the simple design of the
module. Because the concept of size is a comparison between one object and its
environment, our design only considers the object itself and the whole image. A
more explicit representation of the concept of size such as bounding box might
also be helpful.
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Figure 6: Interpretable visualization of Module attention over time. Note:
Init.Est. stands for the Initial Estimation from the V-LSTM

3.3.2 Human Evaluation using Amazon Mechanical Turk

We report the human judgment on the captions generated by the module model
and the Top-Down model. As shown in Figure 5, 5% more people prefer our
model over the Top-Down. The difference becomes more significant when we
consider subsets of the images. We split the evaluation set into subsets depending
on whether their 5 ground truth sentences contain related attributes. For example,
images in the Color subset contain at least one ground-truth sentence with a color
attribute. The difference is 7% in the color subset and 14% in the count subset.
This highlights the strength of our model in the subcategories. The human
evaluation results qualitatively indicates that there is a discernible improvement
recognized by human users.

3.3.3 Qualitative Analysis

Figure 10 shows sample captions generated by the Top-Down model and our
proposed model. The examples show that our model gives more accurate
description of counting and actions e.g., more precisely describing a person’s
bent-over pose in the picture by using “leaning” instead of “standing.”

Figure 7 shows two examples of changing module attention over time. From
the visualization we can analyze the model’s choice of attributes in the generated
caption. We observe that the color, count, and size modules are more active at
the beginning of a sentence and the initial estimation appears more dominant in
the later half. More investigation will be needed to draw a conclusive explanation,
but we hypothesize that it may be due to the fact that verbs and objects come
first in the English language structure.

3.3.4 Ablation Study

To show the effectiveness of each component, we conduct ablation study on
different variants of our model and compare the performance on SPICE f-scores
and n-gram metrics. To be more specific, Mod stands for the modular attribute
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Model SPICE OBJ ATTR RE CL CT SZ

1. Top-Down 19.9 38.0 8.27 6.83 6.59 9.12 3.86
2. Ours:w/o Mod 20.5 38.8 8.80 7.02 6.29 11.9 4.33
3. Ours:w/o MIL 20.0 38.0 8.94 6.87 7.80 12.2 4.11
4. Ours:w/o (Mod+MIL) 20.1 38.3 8.20 6.89 6.03 9.23 4.32
5. Ours:w/o (Mod+AMIL) 20.2 38.5 8.64 7.01 6.51 9.37 4.45
6. Ours:Complete 20.4 38.7 9.39 7.23 7.92 14.70 4.10

Table 3: Ablation study: SPICE subcategory f -score breakdown on the COCO
Karpathy test split [13]. Higher is better in all columns. Note the following
abbreviations: OBJ-object, ATTR-attribute, RE-relations, CL-color, CT-count,
SZ-size.

detectors; MIL stands for the stacked Noisy-Or object detectors; AMIL stands
for the attention based MIL detector. For example, Ours:w/o (Mod+AMIL)
is a model without modular attribute detectors or stacked MIL detector (but it
has a single layer Noisy-Or detector).

In ??, comparing row 2 and row 6 shows that the modular attribute detectors
do not contribute to the improvement on n-gram metrics. Comparing row 4, 5,
and 6 indicates that the MIL object detectors contribute the most to improvement
on those metrics (cider 106.1→107.1→108.9) and our stacked design further
improves the single layer Noisy-Or detector.

In table 3, comparing row 3 and 6, we can see that the MIL object detectors
contribute to the object subcategory the most and also affects the performance on
other subcategories a little. However, the absence of modular attribute detectors
hurts the performance on other subcategories more, such as count (11.9→14.0)
and color (6.29→7.95) when comparing row 2 and 6.

In summary, the MIL object detectors contribute to the improvement on
n-gram metrics and object subcategory, while the attributes modules improve
on the other subcategories. The attribute detectors are responsible for improved
semantics and object detectors are primarily responsible for improved fluency.
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Figure 7: Overview of the two step generation architecture.wattr is the attributes
detected with a staked MIL detector described in Section 3.1.2. Dashed lines
mean no gradient calculation and backprobagation. wattr is the attributes
from the concept attribute detector and whum is the attributes from the human
attribute detector.

4 Soft-Insertion Network (SIN)

4.1 Method
In this section, we will describe the proposed soft-insertion network and trigger
mechanism. Section 4.1.1 describes the overall architecture. Section 4.2.1 gives
more details on the trigger mechanism and Section 4.2.2 discusses the objective
functions used in training the model.

Normally, during inference time, the trajectory of generating a sentence is
not controllable and the generated sentences are subject to strong dataset bias.
To give more informative description about an object of interest in the target
sentence, we design a look-ahead architecture to predict the next word and a
trigger module to signal the network to shift focus. For example, if we want
to focus more on the appearance of a person, relevant attributes to the person
will be prioritized at appropriate time. We show example captions on pictures
crawled from Google Image. The examples demonstrate that the model is able
to emphasize specific attributes of a person with the help of an additional human
attribute detector.
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Figure 8: a diagram showing how the trigger signal is used to inject human-
centric attributes. The (Flag&Trigger) and (!Flag&!Trigger) signals show
when human-centric attributes are injected. Flag and Trigger are boolean
variables and ! is a not operator

4.1.1 Two-Step Generation

The goal of the two-step generation is to look ahead on the predicted words
and to produce more relevant word proposals. More importantly, it allows for a
trigger mechanism to bring in task specific attributes at appropriate time.

At each time step, a look-ahead prediction is generated by stepping forward
using the LSTM conditioning on the previous word and attributes wattr from
the concept attribute detector. The previous hidden and cell states ht−1, ct−1

are saved. A selector, similar to the gating mechanism in section 3.1.2, is used
to refine a list of attributes by conditioning on the predicted next word w̃t. A
refined prediction is made by using the ranked attributes and saved previous
states. The trigger mechanism is used only during inference time and therefore
has no impact in training. In training, losses do back-probagate to the LSTM
during look-ahead prediction.
Look-ahead prediction:

h̃t = fL(wattr, ht−1, ct−1, wt−1)

Refined prediction:

ht = fL(wattr
t , ht−1, ct−1, wt−1)

wt = fd(It, h
t)

where fL is the LSTM and fd is the decoder which is a two layer MLP with
softmax. Note that during training, the trigger mechanism and human attriubte
detecotr are not used. During test time, wattr

t is a combination of attributes from
the concept attribute detector and the human attribute detecotr. An inference
algorithm with trigger mechanism is presented in the next section.

The two detectors used in the model are stacked Noisy-Or MIL detectors
similar to the detector in section 3.1.2. We use the concept attribute detector
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to extract high level concepts from the image in the form of unordered list of
attributes,wattr. The list is refined at everytime step to give more appropriate
proposals wattr

t via a selector which is similar to the gating mechanism in Sec-
tion 3.1.2. The human attribute detector is used only during inference to detect
specific attributes relevant to the appearance of a person,whum

t .

4.2 Stacked Noisy-Or Attribute Detection
The concept attribute detector in this model is slightly different from the Noisy-
Or model in MAN because we use a ResNet[27] instead of a Faster-RCNN
backbone as the vision engine. Therefore, it has a dedicated attention module.
Given the output from the last convolution layer from a pre-trained ResNet, let
H = {h1, h2, ..., h49} denotes the features of an image, where hi ∈ R2048. The
attention module is formulated as follows:

z =

49∑
k=1

αkhk (1)

αk = softmax(wT (tanh(V hTk )� σ(UhTk ))) (2)

where w ∈ RL, V ∈ RL×2048, U ∈ RL×2048 are parameters to be learned and
z is the resultant context vector.

The Noisy-Or operator applies a classifier to each region of an image. As
long as one region gives high visual confidence on the presence of an attribute,
the whole image will be marked as a positive example for that attribute.

The only difference is that the concept attribute detector uses a dedicated
attention module and context vector z whereas the object detector in section 3.1.2
uses a mean-pooled image region feature ṽ

4.2.1 Trigger Mechanism

The trigger module is responsible for swapping between the two attribute de-
tectors. In this model, the module is trained to respond to key words related
to people. When the predicted next word is about a person, the module will
prioritize detected human attributes and force the model to describe more about
the person in the picture.

A carefully designed trigger signal,Trig, ensures that human attributes are
prioritized at the appropriate time. The human attributes are injected once
before the key word appears in the target sentence and once after the word
appears.

Empirically, we found that some human attributes appear after the word
"person" and some before it, e.g., "a short haired man" and "a man in short
hair" are both valid descriptions. To accommodate this heuristic, one auxiliary
signal,the Flag signal, is introduced and a visualization is provided in fig. 8.
In Figure 2, we show that by manipulating the timing of insertion the same set
of attributes shows up in different places in the target sentences.
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We also remove human attributes that have been used in the process to avoid
repeated inclusion. This is done by keeping track of a list of used attributes.

The architecture of the trigger mechanism is a two-layer MLP. It is trained
with sigmoid cross entropy loss jointly with the overall model. A complete
algorithm with the trigger mechanism is presented below.

Algorithm: Inference with Trigger Mechanism

Given detected attributes wattr;
Flag = 1;
UsedList = {};
while sentence not end do

Detect whum
t ;

Obtain ranked attributes wattr
t ;

if wt−1 in whum
t then

if wt−1in UsedList then
UsedList+ = wt−1;

else
Remove wt−1 from whum

t ;
end

end
if whum

t is emtpy then
EFlag = 0;

else
EFlag = 1

end
if triggerlevel ≥ 0.3 then

Trig = 1;
end
wattr

t = (1−Trig×Flag×EFlag)×wattr
t +Trig×Flag×EFlag×whum

t ;

wattr
t = (1− (1− Trig)× (1− Flag)×EFlag)× wattr

t + (1− Trig)×
(1− Flag)× EFlag × whum

t ;
Flag = 1− Trig;

end

4.2.2 Objectives

The Noisy-Or MIL detector and overall language model are trained with the
same losses as described in section 3.1.4. The human attribute detector also
uses the same MIL detector design. We will describe the training objective for
the trigger mechanism below. A bag of trigger words3 related to humans are

3The list will be provided in the appendix

23



Model BL1 BL2 BL3 BL4 ROUGE CIDEr

Baseline 71.8 51.5 36.3 26.4 55.2 88.3
Ours:MLE 72.9 53.6 39.0 28.4 56.3 92.7
Ours:REINFORCE 75.3 56.7 42.0 30.9 57.8 103

Table 4: Model performance on BLEU, ROUGE and CIDEr

selected.

Ltrig =

T∑
t=1

zt ∗ − log(σ(ftrig(h̃t, It))) + (1− zt) ∗ − log(1− σ(ftrig(h̃t, It)))

where ftrig(h̃t, It)) is a two layer MLP that takes the current estimation of the
next hidden state and the attended image as input.

4.3 Experiments
4.3.1 Datasets

We use MSCOOCO for training and evalutation. To train the concept attribute
detector, we sample 1000 most frequently used words without stop words in
MSCOCO dataset as a predefined set of attributes. This setting fits perfectly in
multi-instance multi-label learning. Please refer to section 3.2.1 for more details
on MSCOCO.

4.3.2 Web-crawled Multi-label Data

To demonstrate the capability of our trigger mechanism, we create a multi-label
classification dataset for training and evaluation of the human attribute detector.
The images are crawled from Google Image search and do not overlap with the
MSCOCO dataset. To be more specific, we specify 2 attributes for the style of
hair and shirt respectively, i.e., "long hair" , "short hair", "striped shirt", "plaid
shirt". The images fall into four categories "long hair striped shirt", "long hair
plaid shirt", "short hair striped shirt" and "short hair plaid shirt". There are
597, 659, 366 and 499 images for each category. We mix and divide the image
into a training set consisting of 2000 images and an evaluation set consisting of
121 images. This is a multi-label dataset where each image contains two labels.

4.4 Results
We first show the performance of our proposed model on the standard n-gram
metrics which measure fluency of the generated captions. We compare our
attribute boosted model with a baseline model that dose not have attributes.
Note that the trigger mechanism is not used in this comparison. We also used
REINFORCE[28] to train the model. Table 4 shows that attribute boosting
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Model Recall Precision AUC

Overall 0.87 0.79 0.90
Short Hair 0.85 0.73
Long Hair 0.86 0.82
Plaid Shirt 0.85 0.84
Stripped Shirt 0.86 0.70

Table 5: Human Attribute Detector performance

Shirt Plaid Striped Short Hair Long Hair Ave.length

W/Trigger 104 4 3 4 0 9.94
Trigger 184 3 2 9 0 10.04

Table 6: Comparison on 499 "Short hair Plaid shirt" images from Google Image.

increases performance and our model is able to generate fluent captions.
We also report the performance of our human attribute detector on our

dataset. Table 5 shows that our detector works very well on the small multi-
label dataset. It can accurately predict the occurrence of the four attributes in
an image.

4.4.1 Gated Attribute Example

In this section, we show the effect of our attribute selector. It functions similarly
to the gating mechanism in section 3.1.2. In fig. 9 we can see that when
predicting the phrase "a man standing", the attention mechanism focuses on
the person and the concept attributes are mostly related to the person whereas
when predicting the phrase "on a street", the attention is on the surrounding
and the attributes are more related to the environment. Note that the concept
attribute detector and the selector proposes multiple possibilities at each time
step; "standing","wearing", "young" are all valid attributes to a person.; "road",
"sidewalks" and "street" are interchangeable in meaning. A possible way to
increase diversity in caption would be to sample from the list of attributes from
the concept attribute detector.

4.4.2 Insertion Example

In this section, we show results on our multi-label dataset. We run the captioning
model together with the human attribute detector and trigger mechanism on
the whole multi-label dataset. We count the number of mentioning of the key
words in the generated sentence.

Examining table 6 to 10 shows that our the insertion model is able to
significantly increase the number of mentioning of ’Long hair’ (21 → 88 in
table 7, 19→ 90 in table 9) and "Striped shirt" (32→ 62 in table 8, 45→ 94 in
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Figure 9: Example of spatial attention and selector. The attributes proposal
changes with time depending on the context

Figure 10: Example of insertion

Shirt Plaid Striped Short Hair Long Hair Ave.length

W/Trigger 105 0 10 0 21 9.27
Trigger 191 1 10 0 88 10.04

Table 7: Comparison on 659 "Long hair Plaid shirt" images from Google Image.
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Shirt Plaid Striped Short Hair Long Hair Ave.length

W/Trigger 71 0 32 0 8 10.0
Trigger 156 0 62 10 9 10.27

Table 8: Comparison on 366 "Short hair Striped shirt" images from Google
Image.

Shirt Plaid Striped Short Hair Long Hair Ave.length

W/Trigger 144 4 45 3 19 9.86
Trigger 248 0 94 1 80 10.08

Table 9: Comparison on 597 "Long hair Striped shirt" images from Google
Image.

table 9 and 23→ 49 in table 10) in images where those attributes are actually
present.

However, attributes "short hair" and "plaid shirt" do not get boosted from
the insertion network. We hypothesize that this is due to a dataset bias in the
MSCOCO dataset. Our insertion mechanism is "soft" because the proposed
attributes are used as inputs to the LSTM instead of directly to the final decoding
layer. This means that the LSTM can choose to use or ignore input attributes
based on its trianing. The hypothesis is supported by the fact that the word
"plaid" is only mentioned 169 times in MSCOCO whereas "striped" is mentioned
528 times in a total of 82783 captions. Whether the word embedding of "plaid"
is not trained well or the LSTM fails to recognize a "plaid" attribute needs
further analysis. In either case, dataset bais clearly affects the success rate of
"soft" insertion.

In the first example of fig. 10, we compare the results from three scenarios.
The first sentence is generated with no trigger mechanism and therefore no
human attributes are present, a typical over-generalized caption from sequential
models. The second sentence is generated with the trigger mechanism and
human attribute classifier trained on the multi-label dataset. The last sentence
is generated with the trigger mechanism and a ground truth attribute "striped
shirt". Comparing the three results shows that even though the suggested human
attributes are not inserted into the target sentece, the sentences with trigger

Shirt Plaid Striped Short Hair Long Hiar Ave.length

W/Trigger 52 0 23 0 0 9.86
Trigger 102 0 49 2 0 10.04

Table 10: Comparison on 185 "person in Striped shirt" images from Google
Image.
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Figure 11: Example of captioning model on robot

mechanism empahsize more on the appearence of the woman in the image. This
reflects the "soft" nature of this approach since the influence of the human
attributes can be direct in the form of insertion and "soft" in the sense that they
shift the focus of the target sentece.

5 Robot Testing
As part of the research project, we depolyed the Insertion Network model on
a robot platform, named Husky. Husky is a four wheel mobile robot fig. 11.
It has a range of capabilities and is loaded with sensors, e.g., LIDAR sensors,
Navigation sensors, platform electronics, etc. The main software interface is
Robotics Operating System (ROS)[7].

Here we show example captions from the perspective of the robot in fig. 12–14.
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Figure 12: Example of captioning model on robot

Figure 13: Example of captioning model on robot
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Figure 14: Example of captioning model on robot

6 Future Work

6.1 Visual Reasoning
Image captioning finds its root in machine translation. Inspired by the stellar
performance of Recurrent Neural Networks in machine translation, researchers
have made great progress with the prevalent CNN-RNN framework. Attention
mechanism is also originated from the machine translation community[17][11]
and is now widely used in image captioning to provide spatial attention over
the entire image. I want to argue that image captioning is very different from
machine translation and that the direct input-output mapping algorithm is not
sufficient to perform complex scene understanding. In machine translation, input
and output contain equal amount of information and direct mapping is desired.
However, in image captioning, the information in an image is much richer than
the target sentence which only captures the essence and salient objects. Also,
the "translation" between sentence and image is the least bijective,i.e., an image
can be described in so many different ways. Therefore, the prevalent sequential
models tend to explore dataset biases rather than learning to performing visual
reasoning on objects’ attributes and relations. [32] introduces a model for
viusal reasoning that has a program generator which constructs an explicit
representation of the reasoning process. [40] constructs a scene graph which
summarizes semantic and spatial relationships, for all the objects in an image
in the form of feature vectors. It is apparent that more explicit modeling of
reasoning patterns is needed to achieve data-efficiency and generalization. Neural
Module Networks provide a good starting point to think about the task in a
distributed manner.
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6.2 Bayesian Deep Learning
Attribute detection has become an import part of compositional image captioning
models. Unlike classification where a single prediction is suffice, image captioning
needs more than just a prediction,i.e., uncertainty in prediction is also desired.
A common mistake of sequential models is the hallucination of objects that
are not present in an image due to dataset bias. Ideally, attribute detectors
should detect objects with confidence scores and the captioning model generates
a sentence conditioning on detection results. Low confidence should result in
omission whereas high confidence should be given more attention.

Most deep learning models do not come with uncertainty measurement.
The softmax output is often incorrectly interpreted as confidence. Bayesian
Nets provide a framework for estimating uncertainty on parameters as well
as on the predictions. [26] provides a mathematical proof that Stochastic
Optimization Techniques such as dropout, is in effect performing Bayesian
inference. Uncertainty measurements for classification, regression [33], CNN [14]
and RNN [25] can be extracted from existing models with no modification. The
only trade-off is the increase of time complexity at test time because the method
requires multiple stochastic passes to obtain uncertainty.

Research in Bayesian Deep Learning can be integrated into the construction
of image captioning models to further improve performance and break dataset
bias.

7 Conclusion
In this article, we exploit the benefit of using attributes to boost image captioning
models to give more detailed descriptions. We investigate two different models;
the modular attribute model uses module-level attention to encourage more
details about objects in an image by detecting grounded attributes; the soft-
insertion model adopts a test time insertion algorithm to promote more details
about a user-defined class of objects in an image, which offers some degrees of
controllability in the output. A direction for future research is about composi-
tional reasoning on various properties of objects and sequential integration of
the properties into fluent natural language.
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