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Abstract

Real-time traffic monitoring has had widespread success via crowd-sourced GPS
data. While drivers benefit from this low-level, low-latency map information, any
high-level traffic data such as road closures and accidents currently have very high
latency since such systems rely solely on human reporting. Increasing the detail
and decreasing the latency of this information has significant value. In this work
we explore the idea of real-time crowd-sourced map updates from visual data. We
propose a system that uses object detection to detect hazards which are then reported
via 4G LTE to a local server on the edge. This edge server aggregates the data and
relays updates to other vehicles inside its zone. We call our system LiveMap. We
demonstrate detection accuracy on hazards and characterize the system latency. We
propose and develop two extensions that can improve system functionality. The
first improvement is a semantic change detection pipeline, which can detect changes
between image pairs to provide high-level map updates as well as enable accurate
removal of stale hazards. Finally we develop a novel visual odometry algorithm to
improve hazard localization.
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Chapter 1

Introduction

Over 100-million active users benefit from Waze every month [[100]. This crowd-sourced ap-
plication allows drivers and passengers to report road events to a collecting entity that merges
information and overlays it on GPS navigation maps via the mobile Waze app [115]. Figure
shows the Waze app interface.

In 2013 Google purchased Waze for 1.15 billion dollars [100], which is an indication of
the perceived value for its service. Unfortunately the benefits of Waze come at the cost of user
distraction, which is known to be a major source of traffic accidents [8, [33]]. Since the majority
of vehicles have just the driver in the car with no passengers, Waze reports are typically made
by a driver who incurs distraction in creating and submitting the Waze report. In short, the
service is valuable but dangerous to not only the driver but also to nearby drivers, pedestrians,
and bicyclists. With advances in computer vision and edge computing, we ask the question: ”Can
we have the benefits of Waze without user distraction?”

An automated Waze-like system requires sensing capabilities to detect hazards, a means to
report the hazards, and an entity to synthesize hazard reports and distribute to other users. The
method of sensing must be both accurate and generalizable to a number of different types of
hazards. The system as a whole must be scalable to a large number of vehicles in order to
efficiently crowd-source and distribute the data.

Our approach to solve this challenging problem utilizes an in-vehicle camera with an in-
vehicle computer termed the Vehicle Cloudlet, to run computer vision algorithms to detect haz-
ards from visual data. We use the term cloudlet to refer to an edge-located server that is con-
nected via either a local area network (LAN) or wide area network (WAN) with few network
hops, and is responsible for providing edge computing, or computational services provided at
close network proximity. Hazards are then reported via 4G LTE to another cloudlet, termed the
Zone Cloudlet. The Zone Cloudlet aggregates the data, stores it in a database, and notifies other
Vehicle Cloudlets inside its zone of responsibility.

In order to detect hazards with computer vision we rely on a Convolutional Neural Net-
work (CNN). CNNs have been driving progress across various computer vision tasks for the last
decade. Hazard detection can be categorized as a type of object detection; thus we focus on
object detection architectures to sense hazards. CNNs are computationally demanding, which
requires the use of GPUs to efficiently run at or near real-time. Cloud or edge computing is
frequently turned to in order to provide the required compute services. We make a key distinc-



Chapter 1. Introduction

Mg duse o =~ Send a report

Figure 1.1: Left: A screenshot of Waze app with road events overlayed on GPS navigation map.
Right: A screenshot of the Waze hazard reporting interface.

tion between cloud and edge computing. Cloud computing requires the traversal of a WAN with
many network hops to access its services, whereas edge computing requires the traversal of either
a LAN or WAN with few network hops to access its services.

Real-time map updates can extend beyond hazard identification as well. It can also include
detection of changes to existing road maps. Such a system can be extremely useful to pro-
vide a wide range of map updates. Accurate maps are becoming increasingly important as the
number of self-driving car companies grow. Autonomous vehicles currently rely on accurate
maps for self localization and for detection and localization of other map features such as traffic
lights. Examples of useful map updates include the ability to identify new or removed signs and
buildings, construction, vehicles that are parked illegally or past expired time, or even removing
hazards that have disappeared, and more. Keeping maps up-to-date is a costly yet paramount
endeavor. The ability to crowd-source this information, and do so continuously has significant
value. Change detection requires the use of a generalizable pipeline that can detect well-defined
classes of change. We turn to the task of visual change detection to provide such functionality.
We create a custom CNN architecture that is capable of detecting change at a pixel level between
two aligned images.

While CNNs are useful for hazard and change localization at a pixel level, we require the
use of GPS in order to localize such updates on an actual map. Visual odometry (VO) and
simultaneous localization and mapping (SLAM) are examples of two such algorithms that can
enable more accurate vehicle localization as well as more accurate positioning of map updates.
The ability to more accurately localize hazards would enable the system to identify duplicate
reports with ease, or use a consensus from multiple vehicles to establish a higher confidence of
hazard detections. We create a novel visual odometry algorithm that can provide more accurate
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tracking of vehicle pose as well as hazard location.

1.1 Contributions

The core of this thesis focuses on a scalable system architecture along with a suite of vision tools
for accurate map updates. The contributions of this thesis are more explicitly stated as follows:

¢ An implementation of LiveMap, an automated hazard detection system.

¢ A semantic change detection pipeline that uses a novel Convolutional Neural Network
(CNN) architecture to localize and classify change at a pixel level.

® An edge-direct visual odometry algorithm that outperforms state-of-the-art methods on
public datasets.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 3| we present LiveMap [13]. We focus on the
architecture and development of a prototype for such a system, and demonstrate it detecting haz-
ards such as potholes which are frequently found locally for testing. We extend its capabilities
to be able to detect traffic cones. Since the system utilizes 4G LTE and requires processing of
high bandwidth data, we quantify the bandwidth saved by moving compute inside the vehicle.
In Chapter 4 we present our pipeline for semantic change detection, and benchmark its perfor-
mance compared to prior work. Finally, in Chapter |5| we present an edge-direct visual odometry
algorithm can enable more accurate vehicle tracking which would provide more accurate hazard
localization and map updates.
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Chapter 2

Background and Related Work

The crowd-sourcing of meaningful context from images requires both computer vision as well as
system design. An overview of relevant topics in computer vision and cloud and edge computing
is provided up until the point of writing this thesis. Advancements in computer vision have
brought about the need for cloud and edge computing to deliver the required computational
resources for such computationally demanding applications.

2.1 Deep Learning

The field of computer vision and machine learning has advanced tremendously with the help of
deep learning. Many areas within computer vision have seen great progress due to the advent
of Convolutional Neural Networks (CNNs). CNNs have enabled large performance gains across
several important tasks.

Neural networks are not new, and have been explored decades ago, such as in handwritten zip
code recognition [62] and in other works [[63),/94]. However, the size of linear layers has been pro-
hibitively expensive in terms of memory and compute for successive layers. The solution to this
issue was a combination of advances in GPU programming combined with advances in CNN
architectures. In 2012, AlexNet [58] kicked off the deep learning era by surpassing previous
methods on the ImageNet Large Scale Visual Recognition Challenge (ILSVR) [20} 89]. Since
then, CNNs have exploded in popularity for visual tasks which require complex information
extracted from images. In CNNss, hierarchical features are extracted through successive convolu-
tional layers. These features are then used as input into either a linear layer for regression tasks,
or upsampled or passed into transposed convolutional layers for pixel level classification tasks.
CNN s have achieved massive success is tasks such as: 1) object detection in which a bounding
box is proposed for an object and simultaneously classified, 2) semantic segmentation in which
an image is classified at a pixel-level, 3) change detection in which pixels are highlighted as
change across two images of the same scene, 4) instance segmentation where objects are lo-
calized with pixel-level masks and classified, and very recently 5) panoptic segmentation [54]]
which is a combination of semantic and instance segmentation. The use of CNNs has also been
extended to use on 3D data for tasks such as 3D Classification, 3D Segmentation, and Point
Cloud Completion, as well as for temporal video sequences such as action recognition which
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remains a difficult task even for deep CNNs. CNNs are very successful across tasks because they
can be trained efficiently with gradient descent, and compared to successive linear layers they
decrease the number of required parameters through the use of convolution.

When selecting a network architecture for a task and especially when creating one from
scratch, one must be concerned with network structure as well as weight initialization, activation
functions, optimizers, and hyper-parameter tuning. The field has been moving rapidly, and there
have been many advancements across all of these areas. Much of the success of deep learning is
due to the automated process of learning. Stochastic gradient descent [[7] has enabled fast training
on very large datasets of millions of filter parameters for feature extraction. Such automated
features have replaced hand-crafted features that were commonly used prior, such as Histogram
of Oriented Gradients (HOG) features, or Scale-Invariant Feature Transform (SIFT) [68]].

The convergence of stochastic gradient descent can often be problematic, as large gradients
cause convergence to be erratic which leads to poorly converged solutions. Mini-batch gradient
descent has emerged in response, which simultaneously provides more robust convergence prop-
erties as well as reduced training time due to less frequent parameter updates [64]. Even with
mini-batch gradient descent, optimization of CNNs is tricky and often difficult. The Adam op-
timizer [S3] is one such first-order gradient descent method that has seen widespread success in
deep learning. RMSProp [[108] and Adagrad [22] are two other commonly used optimizers. Re-
search on more robust optimizers is still ongoing. To complicate matters, network architectures
heavily impact the choice of optimizer and learning rate.

Gradient descent is well-studied and known to be sensitive to initialization. In [37] the au-
thors explored the effects of weight initialization, which led to the commonly used ’Xavier’
initialization which in turn led to more successful converged solutions and a higher rate of suc-
cessful convergence. This initialization works well for Sigmoid and Tanh activation functions
which are centered about the y-axis, which is not the case for the ReLU activation. This can
cause an issue as ReLU maps negative values to 0; thus, half of the initial gradients will be
0. He et al. [39] studied this problem and present an alternate initialization method for ReLU
activations, commonly referred to as the "He’ initialization method.

2.2 Network Architectures

2.2.1 Semantic Segmentation

Semantic segmentation has received increased interest [43] as the applications for pixel-level
understanding grows [32]. The rising number of applications for scene understanding extends
from augmented reality to autonomous driving to drone inspection and surveillance. The goal of
semantic segmentation is to predict the class of every pixel in the input image. In [96] the authors
show that fully convolutional neural networks can accurately generate pixel-wise classification.
They do this through an encoder-decoder style architecture. In this type of architecture, the im-
age goes through several convolutional layers and is successively reduced in spatial dimensions
through stride or max pooling, while simultaneously increasing in number of output channels.
This portion is termed the encoder, which can be viewed as a feature extractor. The encoder
network is often selected as a pre-trained network on a larger dataset such as ImageNet [20]. A

6



2.2. Network Architectures

Ini'lna%u(; > > ole o output
tile segmentation
map

. H.

¢ !

’I’l I’I‘I = conv 3x3, ReLU
& t copy and crop
i-E-u B # max pool 2x2

¥ $ - 4 up-conv 2x2
T i X
= conv 1x1

Figure 2.1: Architecture for U-Net [88]].
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Figure 2.2: Architecture for SegNet [5]].

pre-trained VGG-16 network [99] or ResNet variant [41] is often selected for the encoder. The
output of the encoder is then fed into the decoder, which uses either transposed convolution or
bilinear upsampling, along with additional convolution layers to upsample the features to higher
spatial dimensions. The output of the decoder is then sent into a softmax layer, which produces a
psuedo-probability corresponding to the prediction of the class of each pixel. Many architectures
feature an encoder-decoder style architecture. Several such networks include 77, 188].
The architectures for U-Net and SegNet are shown in Figure and Figure respectively.
Note that in [5] the authors report that the utilization of skip connections, in which residuals at
various spatial layers in the encoder are passed directly to the corresponding spatial layer in the
decoder, significantly helps the network performance. Context Encoders in contrast did not
use skip connections, and subsequently Pix2pix independently showed that a U-Net style
architecture with skip connections is able to outperform traditional encoder-decoder style archi-
tectures without skip connections. Through an ablation study, the authors showed that the skip
connections enable more accurate resolution in pixel detail.
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Figure 2.3: Architecture for Faster R-CNN [86].

2.2.2 Object Detection

Object detection has been heavily explored by the research community, achieving resounding
success since 2014. R-CNN [36] was the first to extend the success of CNNs to object detection,
and showed that CNNs could have success on other tasks, such as on the Pascal Visual Object
Classes (VOC) Challenge [31]. R-CNN utilized selective search [[110] to propose regions, ex-
tracted features from each region using AlexNet [58], and then used the extracted features to
classify the region using a Support Vector Machine (SVM) [16].

Test time was quite slow with R-CNN (47 seconds reported in [35], since each object proposal
required a forward pass through the network). SPPnets [40] and subsequently Fast R-CNN [35]]
drastically improved this time through the use of shared computation via spatial pyramid pooling
networks. Faster R-CNN [86] finally removes the dependency on selective search, which had
been the largest gating factor on speed costing reportedly 2 seconds on a CPU.

Parallel with Faster R-CNN, single shot detectors (SSD) emerged as popular detectors due
to their increased speed and comparable accuracy. YOLO [84, 185] emerged as a popular single
shot detector (SSD), along with Multibox [106], which was formulated as an SSD in [67]. Also
in parallel, R-FCN [18]] utilizes a fully convolutional network to run object detection. Object
detectors and their speed and accuracy are analyzed more in depth in [46].

2.2.3 Instance Segmentation

With the success of object detection and semantic segmentation, the community started pushing
for a more complete understanding of images by performing object detection with masks over
the object pixels. Several early works began adding instance awareness strategies to enhance
semantic segmentation networks [[17, 19, 165]. In 2017 Mask R-CNN [42] surpassed prior state-
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Backbone Network Smemsc
logits
Semantic
V 2 Head
t - | y
4 ., . Class L. Panoptic
1 - y p _[ Head
—_— V4 7 LoBax
Instance 1

1 - ! y Head Mask logits

! J Panoptic
1 y logits

Image FPN Feature

Figure 2.5: Architecture for UPSNet [119].

of-the-art methods on the Microsoft Common Objects in Context (COCO) Challenge [66] for
three tracks: 1) instance segmentation, 2) bounding box object detection, and 3) person keypoint
detection. The network architecture is shown in Figure The architecture extended Faster
R-CNN by adding a network branch for predicting segmentation masks on each region of
interest (ROI) in parallel with the branches for classification and bounding box regression.

2.2.4 Panoptic Segmentation

Panoptic Segmentation is the culmination of the field moving towards a better understanding
of the world from visual data. Panoptic segmentation focuses on the distinction between things,
which you can not only classify but also detect as distinct instances, and sfuff which you can only
classify [9]. Put simply, things you can count, while stuff you cannot. Panoptic segmentation
combines the task of pixel classification with instance detection. This task is relatively new,
having one of the first complete systems, UPSNet [119], set to be published in CVPR *19. Their
architecture is shown in Figure
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2.2.5 Datasets

Datasets have become one of the main bottlenecks in many computer vision applications. Anno-
tating images is both expensive and time consuming. Cityscapes [15] reported 1.5 hours per each
semantically segmented annotation. Looking at natural language processing, large corpuses of
data have provided significant advancements in performance [38]. The ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVR) dataset [20, 89] provides over 14 million annotated images
for classification, and more recently focuses on detection challenges. Many networks pre-train on
ImageNet to facilitate transfer learning for other vision tasks. The Pascal Visual Object Classes
(VOC) Challenge dataset [31] provides thousands of annotated images for training and testing
for tasks such as object classification, object detection, and object segmentation tasks. The VOC
2012 Challenge contains 20 classes, with a training and validation set of 11,530 images, and
6,929 segmentation annotations. Microsoft created the Common Objects in Context dataset [[66]]
which contains over 200,000 annotated images with 80 object categories and 1.5 million object
instances.

Since our work will focus on street-view scenes, we review several popular street-view
datasets. Cityscapes [15] is one such dataset that contains roughly 5,000 images of urban street
environment with semantically segmented annotations. For the task of change detection, Al-
cantarilla et al. [1] created a street-view change detection dataset containing 1,362 image pairs,
accurately aligned with annotated change masks for each image pair. Mapillary [75] has re-
leased a publicly available dataset for research purposes with street-view annotated images. It
contains 25,000 high resolution images with 66 object categories, and instance-specific labels
for 37 classes. The KITTI Vision Benchmark Suite [34]] contains a comprehensive set of vision
tasks such as stereo, VO and SLAM, and 3D object detection. The 3D object detection task has
12,000 images with 40,000 objects.

2.3 Loss Functions
We focus on the use of deep networks for hazard detection and change detection. For hazard

detection we utilize Faster R-CNN, and for change detection we utilize an architecture similar to
SegNet. We present the loss functions used below.

2.3.1 Classification

For classification problems, crossentropy is commonly used as the loss function for deep feed-
forward networks. Crossentropy is defined as

Lee==) dilog(y:) @2.1)

where ¢; is the ground truth value corresponding to class ¢, and y; is the predicted pseudo-
probability for class i.
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2.3.2 Faster R-CNN

Faster R-CNN utilizes a loss function for training the Region Proposal Network (RPN) as well
as a loss function for classifying the region object into object category. Crosentropy is used for
the latter, and is detailed in the subsection above. The RPN is responsible for classifying a region
as object or not object, as well as regressing the coordinates of the bounding box for the region.
The joint loss function for the RPN is:

L(p;, t;

Z Ecls pupz + A sz reg tm t (22)

cls

where p; is the predicted pseudo-probability of region 7 being an object, and p; is the ground
truth. Similarly, ¢; are the predicted two coordinates of the bounding box, and #; is the ground-
truth bounding box coordinates. The classification loss is the same as crossentropy defined in the
above section. The regression loss is defined as:

reg tzyt Z ‘SLI (23)

i€x,y,w,h

where Sy is defined as the smooth L; function:

0.522, if o] < 1
S - . 2.4
nfe) = {\x| — 0.5, otherwise 9

Moreover, the parametrization for the bounding box four coordinates are defined as:

T — Zg — Ya
" y—y

t = Y=

Wa h“h (2.5)
—log(—) t, = log(—)
wa ha ’

where x, y, w, and h correspond to the box’s center coordinates and width and height respectively.
The subscript a denotes that the parameters are of the region anchor box.

2.4 Edge Computing

The modern day computing landscape is much different than that in the 1950s and 1960s, at
which point in time batch-processing mainframes were being developed. Such systems were
physically large, extremely expensive, and were low compute. Then over time, the form factor of
computing systems shrunk along with cost, while compute drastically increased. Today, personal
computers are common, inexpensive, and provide significantly more compute. These systems are
nevertheless limited in compute, however, by size and thermal constraints. For computationally
intensive tasks, programmers turn to offloading computation to the cloud. This is true now more
than ever thanks in large part to deep learning. The computational demand of vision algorithms
have led many to turn to cloud computing. Several prominent cloud computing services are
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Figure 2.6: Illustration of tiered model from [92].

Amazon Web Services [95]], Microsoft Azure [2]], and Google Cloud [14]. For low latency and
high bandwidth applications, many have turned to edge computing [[12, 29] which is able to
provide higher performance due to network proximity to the client.

A pattern emerges in the computing landscape, as pointed out in [92]. The authors classify
modern day hardware into a four tiers, constructing what they call a tiered model. They classify
hardware by the dominant design constraints. Tier 1 includes cloud servers, which provide nearly
unlimited compute with high power consumption. Tier 2 provides high compute with low latency
due to network proximity. Tier 3 includes mobile computing, at which power consumption
becomes a defining constraint. Lastly, tier 4 includes embedded sensing. An illustration of
the tiered model is shown in Figure Since our application requires significant compute, we
consider tier 1 and tier 2. However, we also recognize that streaming videos over 4G LTE would
saturate the network. Thus, we turn to tier 2, but make the distinction that the compute must be
situated inside the vehicle. These design considerations lead us to our system architecture, which
we discuss in more detail in Chapter 3]

2.5 Crowd-sourcing Applications

Road networks are immense, which makes crowd-sourcing an attractive solution. There are many
applications that crowd-source road-related information. There are two tiers of crowd-sourced
applications: those that are automated, and those that require a human to actively submit updates.

Google Maps [71] is one of the original and most successful road map platforms developed
by Google. It crowd-sources data both automatically, as well as through active human input. It
performs crowd-sourcing in an automated fashion via GPS monitoring of users that are actively
using the app. This provides data in order to generate highly accurate traffic monitoring and
prediction capabilities that provide users with the ability to plan the best route. Google also
relies on active human efforts to keep its maps up-to-date. Google has vehicles drive the streets
all over the world with 360 degree cameras to take street-view images. Furthermore, Google
Maps has partner organizations that provide input data updates, as well as Google Maps users
that provide local information and road map updates.

OpenStreetMap [79] is an example of such a system that requires active user input. It is a
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project designed to provide accurate and public road maps. OpenStreetCam [78] is an exten-
sion of this project, which aims to improve OpenStreetMap via providing street-view images.
Mapillary, in addition to having a publically available dataset for research, also crowd-sources
street-view images, and has gathered millions of images. Lastly, there have been road monitoring
applications in research, such as the Pothole Patrol [30], which is discussed in more detail in the
related work below.

2.6 Related Work

2.6.1 LiveMap

To the best of our knowledge, no previous work has attempted to create a Waze-like real-time
data collection system for road monitoring without a human in the loop. From a broader perspec-
tive, there is a substantial amount of work relating to road condition monitoring [[11,/30, 74, [111]].
However, none of these can handle the wide variations in hazard types and durations of events
such as accidents, debris on the road, potholes, etc. Many of these systems focus on road infras-
tructure monitoring such as detecting potholes or general road health inspection.

A common approach for detecting potholes is to use an accelerometer with signal processing.
One such example, the Pothole Patrol [30], utilizes an accelerometer and on-board filtering to
determine likely locations of a pothole. Such a system has several drawbacks, the most significant
being that it requires the vehicle to physically run over the pothole for detection. This is harmful
to both the vehicle and uncomfortable for the driver. For this reason, it is not uncommon for
drivers to swerve in order to deliberately miss running over a pothole. Furthermore, it is limited
to a very specific type of road monitoring — that is, whatever the car physically hits. A non-
destructive alternative is to instead use image processing.

There has also been prior research in the field of vehicular distributed network system archi-
tectures. CarTel [47] has explored the development of such a system. They detail and prototype
a system that utilizes vehicles to collect sensor data, store it locally, and prioritize the dissemina-
tion of sensor data to a local server. The main disadvantage of their system is that, as described,
they have no significant on-board compute and cannot locally process data-rich media, such as
images. Thus, their system is limited to selective transmission as the only approach to dealing
with low-bandwidth situations. Furthermore, as it relies on opportunistically connecting to local
Wi-Fi hotspots, it suffers from frequent loss of network connectivity. The main advantage of
LiveMap is that it can process media rich sensor data such as video feed on-board the vehicle,
and can greatly save bandwidth by transmitting only distilled, interesting data, thus enabling
effective use of relatively low bandwidth, but ubiquitous 4G LTE networks.

A few companies offer commercial products that are relevant to our research. Waze [115]
utilizes user input in order to add detailed input to their maps. As previously discussed, the main
shortcoming of such a system is that it creates dangerous situations by distracting the driver, and
tends to incur high latencies and unreliable updates due to reliance on human reporting. In con-
trast, LiveMap is safe, automated, and real-time. Another relevant company is Roadbotics [87]].
At the time of writing, Roadbotics uses cameras to capture video data of roads from the wind-
shield, and uploads it to a server where machine learning algorithms score road conditions over
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10-foot intervals. In comparison to Roadbotics, LiveMap operates in real-time and is designed
to be generalizable to any hazards detectable through computer vision.

In prior work [45], it was shown that a 4G LTE network is sufficient to support such a large-
scale system with tens of thousands of participating vehicles, as demonstrated through simula-
tions in SUMO [57] (Simulation of Urban Mobility). While that work focused on the scalability
challenges of using LTE, in this work we focus on the architecture, implementation, and charac-
terization of the automated hazard reporting system.

2.6.2 Visual Change Detection

There have been prior works that explore change detection for various application domains.
Stent et al. [102,103]] proposed a change detection system for surface inspection of tunnel linings
for cracks based on images. The system involves a structure-from-motion (SfM) pipeline to
create panoramas of the tunnels. Image registration is then performed on similar patches from
different time instances. Finally, a two stream CNN takes as input the two image patches and
performs classification.

In 2015 Alcantarilla et al. [1]] created a full change detection pipeline, along with a novel
dataset for street-view change detection. This dataset, called the Visual-Localization CMU
Change Detection dataset (VL-CMU-CD), is the largest change detection dataset to date. It
contains 152 scenes, each with several image pairs, totaling 1,362 image pairs total. The image
pairs were extracted from the Visual-Localization CMU (VL-CMU) dataset [3, 4]. The VL-
CMU dataset consists of video of the same route driven throughout various times of the year,
and was originally created for long term topometric localization of a vehicle that can be invari-
ant across seasonal changes. The geographic location is in Pittsburgh, PA, USA which exhibits
significant seasonal changes that includes snow. The dataset consists of 1,362 image pairs split
into a train/test split of 929 image pairs for training, and 433 image pairs for testing (taken from
different sequences), with an annotated ground truth of which pixels changed along with the cor-
responding class. Example image pairs with ground truth are shown in Figure in Chapter
The authors created the dataset using GPS and feature descriptors to select similar images and
register the images, and then a computationally demaning 3D dense reconstruction pipeline to
warp the viewpoint of one camera to that of the other.

More recently Varghese et al. [[112] proposed a more modern network architecture for change
detection, published in ECCV *18 workshops. It consists of a ResNet-50 encoder [41] with pre-
trained weights on ImageNet, along with transposed convolutional layers to output a semantic
change detection mask. However, they only trained and tested on a subset of the data, only
testing on 177 out of 429 images. Unfortunately the train/test split used was unspecified, and
we were unable to replicate their results with the same architecture implemented as described.
Thus we cannot directly compare. There is no open-sourced code available for change detection
presented in both [1, [112].

Additionally, in 2016 Suzuki et al. [105] proposed a semantic change detection network that
utilized hypermaps for street-view panorama change detection, with stationary view point. In
2018, Lebedev et al. [61] trained a Generative Adversarial Network (GAN) on synthetic images
of shapes for change detection, as well as a custom dataset of satellite imagery for aerial change
detection.
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Change detection utilizing 3D models has also been explored [80, 82]. Such 3D methods
typically require a model as a prior, which is difficult to generate and error prone. In this data
flow, any error in 3D model building will propagate and directly affect the performance of the
change detection algorithm.

2.6.3 Visual Odometry

There are several different formulations of VO algorithms. Consequently, these algorithms can
be classified as either direct or indirect, and as dense or sparse.

Indirect methods, also commonly referred to as feature-based methods, extract and match
features. These features are engineered representations of high-level features in the image, usu-
ally corners. They must also store a representation of the feature that can be matched at a later
frame. This introduces two large sources of error. After matching features, such methods cal-
culate the fundamental/essential matrix or homography for planar scenes and scenes with low
parallax.

Due to the high level of inaccuracies present in feature extraction and matching, such al-
gorithms must compute the fundamental matrix or homography in a RANSAC loop. While
feature-based methods have achieved accurate results, they remain computationally wasteful due
to their reliance on RANSAC for robust estimation of such parameters. Several examples of such
systems that use indirect methods are ORB-SLAM, ORB-SLAM2 [72,[73]] and Parallel Tracking
and Mapping (PTAM) [56]. Alternatively, direct methods directly use the sensor inputs, such as
image intensities, to optimize an error function to determine relative camera pose.

In addition to being classified as direct or indirect, SLAM and VO algorithms can additionally
be classified as dense or sparse. Dense methods have the advantage that they use all available
information in the image, and can generate dense maps which is useful for robot navigation,
for example. Sparse methods have the advantage that since there are less points, it is generally
less computationally expensive which can lead to large computational savings, especially if the
algorithm requires many iterations or a loop to converge to a solution.

There have been many iterations of direct dense methods such as direct dense VO in [101],
RGB-D SLAM [51]], and LSD-SLAM [26]. Even using dense methods, these systems achieve
real-time performance on modern CPUs due to the highly efficient nature of these types of algo-
rithms. More recent advances highlight the fact that the information contained in image intensi-
ties are highly redundant, and attempt to minimize the photometric error only over sparse random
points in the image in order to increase efficiency and thus speed [27]. Another direct method
that has been used with success is the iterative closest point (ICP) algorithm, which is used in
systems such as [49, [116]. These systems minimize the difference between point alignment in
contrast to image intensities.

The extension of direct methods using edge pixels is a logical direction, yet to the best of our
knowledge no work has solely used edge pixels in a direct method minimizing the photometric
error. In [93] the authors reduce a Euclidean geometric error using the distance transform on
edges which does not utilize all information available in the scene. In [[118]] the authors minimize
a joint error function combining photometric error over all pixels along with geometric error
over edge pixels. Minimizing a joint error function always suffers from the decision on how
best to weight each function, and the weighting can have significant effect on the final converged
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solution. In [27], the authors threshold by gradients, which does not guarantee edges due to
noise. They additionally select texture-less regions as well.

We hypothesize direct methods have often avoided solely using edges due to several pit-
falls when extending direct methods. In particular, there is the question of which edges to use
among the reference and the new image. We have found that selecting the wrong edges produces
incorrect convergence. Additionally, edges are inherently unstable as changes in intensity and
geometric position result in large changes in intensity and geometric position respectively, and
incorrect formulation of the problem results in an incorrect solution. There have also been several
indirect systems that have experimented with various strategies for utilizing edge information to
track camera pose [23, 55,70, 107]. Such methods treat edges as features and use complicated
matching strategies which increase computation and add unnecessary heuristics. In contrast our
method simply extracts edges and incorporates it in a direct method. This simple yet elegant and
highly efficient sparse direct method provides lower drift than previous state-of-the-art visual
odometry methods.

Any system that extracts edges must choose between several edge extraction algorithms. The
most prominent are Canny edges [[10], followed by edges extracted from Laplacian of Gaussian
(LoG) filters which are efficiently implemented using Difference of Gaussians (DoG). Another
type of edge that is not as popular but is very simple are Sobel edges. More recently, there
has been research involving the learning of edge features. In [21] the authors utilize structured
forests, and in [117] the authors utilize deep learning. Instead of selecting one, we test various
edge extraction algorithms with our system select the optimal edge extraction algorithm. Note
that [[117] requires the use of a GPU and is far from real-time, so we do not consider this method.
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LiveMap

3.1 System Architecture

LiveMap [13] is designed to scale to a large number of vehicles [45]], and it is critical that our
system scales with increased bandwidth such that we do not saturate the 4G LTE network. Send-
ing video streams from every vehicle would quickly prove to be intractable. Instead, we harness
compute ability both in the vehicle and in the infrastructure on the edge to reduce network usage.

The key idea behind LiveMap is that it performs the heavy video analytics computations on-
board the vehicle. Each participating vehicle is required to have an on-board camera and GPS
module, as well as a computer, called the Vehicle Cloudlet. As the vehicle drives around, it runs a
Convolutional Neural Network (CNN) to detect various hazards. When a hazard is detected with
a confidence level greater than a threshold, the Vehicle Cloudlet reports it to the Zone Cloudlet
via a message containing the GPS coordinates, the annotated image identifying the hazard(s), as
well as the timestamp and other metadata pertaining to the drive. The Zone Cloudlet is respon-
sible for handling the incoming data, storing it in a database, and notifying the vehicles in the
vicinity of the hazard. See Figure [3.1|for a high-level overview of LiveMap. The Zone Cloudlet
is situated on the edge in order to provide more localized control of user data and privacy, as well
as for potential national security reasons to decentralize such information [91]. This is in con-
trast to Vehicle-to-Vehicle (V2V) Communication systems [97,120], which focus on addressing
issues such as immediate collision detection and avoidance, as well as highway platooning. V2V
communication exhibits additional security concerns, such as message accuracy and reliability,
etc. The Zone Cloudlet in contrast can address such issues by vetting information before sharing
it with other vehicles. Note that this pipeline would also enable autonomous vehicles to make
reports as well since it does not require a human in the loop.

There are several challenges associated with choosing when and how often to report hazards.
One such challenge is avoiding identical reports. For example, a vehicle stuck in traffic behind
an accident will repeatedly detect the same accident until the accident clears. Furthermore, many
other vehicles in-sight of the accident will also detect this accident. This single event may be
reported thousands of times. Such careless report sending policies would quickly saturate the
network with useless duplicate data.

To address this issue of duplicate data, we employ a policy that if a vehicle detects a hazard
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Figure 3.1: System Overview. Vehicle Cloudlets run hazard detection on live video feed, report-
ing any hazards to the Zone Cloudlet for dissemination to other vehicles and for display through
a web interface.

of the same type in close proximity to one that has previously been reported, it will not send the
report. This achieves the desired result of saving bandwidth by avoiding duplicate reports, with
the small cost of perhaps missing a few instances of the same class. We argue that this is indeed
an acceptable tradeoff with the following example: several objects fall from a truck in one area
on the highway, creating hazardous debris. A car driving by will detect multiple frames of debris,
but will only send one report. In general, this single report for multiple related hazards should
suffice.

Another such issue that complicates this design decision is the issue of hazard removal. Dif-
ferent types of hazards may have various temporal lifespans. For instance, some hazards like car
accidents are usually cleaned up and removed within a matter of hours, while potholes can exist
for several months. At the Zone Cloudlet, detecting when a hazard is no longer present can be
difficult. A naive solution would be to wait until reports of the hazard stop arriving. This idea is
flawed due to our previous design decision to not report duplicate hazards. It is difficult to know
if a hazard has “expired” or if the duplicate elimination policy is preventing further reports. It is
possible the Zone Cloudlet may never hear again about a long-lasting hazard.

To address this second issue, we use a polling scheme. In this polling scheme, the Zone
Cloudlet occasionally sends a message to vehicles near a previously-reported hazard asking them
if they still see the hazard, and optionally whether or not to send an image. The Vehicle Cloudlets
then send a “yes” or “no” reply back after validating the continued presence of the hazard, min-
imizing the bandwidth consumed for verifying the hazard presence. The rate at which such
verification polls are sent would be inversely proportional to the expected duration of the hazard,
based on the mean or median duration of the hazard class type. This can be further optimized as
the system collects more data and can generate more accurate predictions of when best to poll
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Figure 3.2: System Architecture. The Zone Cloudlet handles incoming hazard reports and noti-
fies other vehicles. It also runs an HTTP server that displays a map of detected hazards.

while minimizing network usage.

3.2 Implementation

3.2.1 Zone Cloudlet

In our experiments, the Zone Cloudlet is situated on the edge and is implemented on a server
on the Carnegie Mellon University (CMU) campus. Note that for cost reasons it might make
more sense to host this entity in the cloud. For security or privacy reasons it could also make
more sense to keep it at the edge. The Zone Cloudlet has a number of responsibilities, which
can be classified into two main functionalities: 1) hazard message operations and 2) web server
operations. Within the class of hazard message operations, the Zone Cloudlet must accept and
handle incoming hazard reports from vehicles, and transmit update data to vehicles. See Figure

When the Zone Cloudlet receives a hazard report, it queries its database for any matching
hazards previously reported within the tolerance of the GPS module (typically around 3-5 me-
ters). If no active matches are found (i.e., this is not a duplicate report), it adds the hazard to
its database. It then sends a message to all vehicles in its area of responsibility with the GPS
coordinates of the hazard, and an annotated image identifying the hazard.

For our implementation, we opted to use the Message Queuing Telemetry Transport (MQTT)
protocol, an ISO standard built on top of TCP/IP [24]. MQTT is a publisher-subscriber-based
messaging protocol intended for the “Internet of Things,” and is designed around the idea that
machine-to-machine communication will have limited network bandwidth and will suffer from
intermittent connectivity. This fits our application requirements, since moving vehicles will in-
variably be in a dead zone at one time or another, and the 4G LTE network has limited bandwidth.
For a Vehicle Cloudlet to receive updates from the Zone Cloudlet, it simply has to look up its
GPS coordinates, find the nearest Zone Cloudlet, and subscribe to the updates being published
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by the Zone Cloudlet. In order to avoid major security concerns, we limit communication in
LiveMap as follows: the Zone Cloudlet is the message broker, and the Vehicle Cloudlets are
the clients; no vehicle-to-vehicle communication is performed, and all messages to the Vehicle
Cloudlets must come from the Zone Cloudlet.

The second class of operations has to do with the presentation of hazard information, which
is done via a web-based interface. The Zone Cloudlet doubles as a web server, and actively
delivers hazard information on a map overlay to connected web clients. When a client, say a
city official, connects to the web server, the Zone Cloudlet sends all present hazards to the client,
which are displayed on the map as icons. The user can then click on the icon and have additional
information displayed, such as GPS coordinates and the annotated image of the detected hazard.
When a new hazard is added to the database, a notification is sent via web sockets to all connected
clients in real-time. An example screenshot of the web-based hazard display is shown in Figure
We use Leaflet [60] as our map serving framework, and Node.js to dynamically deliver
content. This web server display can effectively serve as a quality control measure. Since the
details of all hazards can be displayed on the map as annotated images, a city official can easily
verify the accuracy of hazard detections with a click on each hazard icon. This provides an
interface for human oversight of the system, letting an official reject any false positives before
notifying the appropriate response teams, for example.

3.2.2 Vehicle Cloudlet

The Vehicle Cloudlet performs image processing to find hazards. It utilizes a CNN to perform
object detection to identify road abnormalities, and then sends a message to the Zone Cloudlet
with accompanying data. When it detects a hazard, it checks its local database of current hazards
for a nearby hazard of the same type. If it doesn’t find any, it adds it to its database and sends a
message to the Zone Cloudlet. In doing this it avoids repeatedly sending notifications of known
hazards. When the Vehicle Cloudlet receives a hazard notification from the Zone Cloudlet, it
adds it to its database.

The precision and recall capability of the sensing is a function of compute capability, which
is a function of cost. We explore the trade-off between precision/recall and cost by experimenting
with two different designs and implementations for the Vehicle Cloudlet. One configuration is a
powerful server with state-of-the-art compute capability but can run reliably off of a car alterna-
tor. We call this the Big Vehicle Cloudlet (BVC). It can afford to use a more computationally ex-
pensive and memory intensive CNN architecture for detection, employing dual GPUs with high
bandwidth and large memory. The second option uses a mobile phone as the Vehicle Cloudlet,
which has significantly less compute capability and memory, but is an order of magnitude lower
in cost. We term this the Small Vehicle Cloudlet (SVC). We outline both implementations below
and highlight the key differences between them.

3.2.3 Big Vehicle Cloudlet

The first system we test is a ruggedized server, configured with 2 Intel® Xeon® Processors,
2 Nvidia Tesla V100 GPUs, and a liquid cooling system, shown in Figure This system
configuration can afford to run a large CNN model with a large number of weights, which is
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Figure 3.3: Map of Hazards. Icons for each hazard appear real-time. Clicking on each icon
displays more hazard information.

Figure 3.4: Big Vehicle Cloudlet setup in Navlab. The top unit is the pump with coolant, and the
bottom unit is the cloudlet.

both memory and compute intensive. On this system, we run Faster R-CNN [86] as our object
detector, which provides state-of-the-art accuracy, but is computationally demanding. The image
processing is run on both GPUs independently in order to double the processing frame rate. Each
GPU has a copy of the CNN weights and can run inference on an individual image independently.
The output image is the original image overlaid with annotations indicating where a hazard was
detected. If a hazard is detected and is not a duplicate, the Vehicle Cloudlet prepares a message
and sends it to the Zone Cloudlet. If the image is not interesting and no hazards were detected,
the system discards the image.

This setup provides the best scalability, as we have moved all of the compute to the vehi-
cle, and the aggregate compute capability will scale with number of vehicles. Furthermore, the
BVC is well-positioned to address privacy concerns that arise from recording people in such
video feeds. The BVC has enough compute to denature images, or remove privacy sensitive
information such as blurring faces, as done in [113].
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Table 3.1: Latency Measurements in ms
Config Detection RTT End-to-end

BVC 38.6 (3.1) 244.2 (50.3)
SVC+ZC 391.6 (67.1) 597.2 (83.7)
BVC: Big Vehicle Cloudlet, SVC: Small Vehicle Cloudlet

ZC: Zone Cloudlet, std. deviation in parentheses
Note that the latency for BVC is per GPU

205.6 (50.2)

3.2.4 Small Vehicle Cloudlet

The second system we test uses a smartphone-class device as the Vehicle Cloudlet. As this
platform is not capable of running a large CNN used for hazard detection, we employ the early
discard method proposed by [[114] that uses lightweight computations to selectively send only the
interesting images to the Zone Cloudlet, which would then run the hazard detection algorithm.
The small vehicle cloudlet is limited to making send-don’t send decisions using a small and
simple neural network model. The expensive hazard detection algorithm is then run on the Zone
Cloudlet. This significantly reduces costs of the vehicles, but comes at the expense of scalability,
since we move the hazard detection to the centralized Zone Cloudlet.
We implement the Small Vehicle Cloudlet using a Nexus 6 smartphone, and run MobileNet [44]

as the image classifier. This has significantly lower computational requirements than Faster-
RCNN, and can process roughly three frames per second on this platform.

3.3 Experimental Results

There are three aspects of performance that we consider when evaluating LiveMap. The first
is the end-to-end system latency for LiveMap given a new hazard. This is the time it takes
from the point at which a vehicle detects a hazard, sends it to the Zone Cloudlet, and the Zone
Cloudlet sends out the newly captured data to nearby vehicles. The second evaluation criterion
is the hazard detection precision and recall. Ideally we want high precision (quality detections
with a high ratio of true positives among all detections), as well as high recall (most hazards are
actually reported). Lastly, we need to quantify the bandwidth savings by moving compute into
the vehicle.

System latency can be further broken down into two categories: 1) detection latency, or the
time it takes to process a single image, and 2) message round-trip latency, or the time it takes to
send a message to the Zone Cloudlet and receive an acknowledgement. The detection latency
is dependent on the Vehicle Cloudlet server, while the round-trip time (RTT) is the same for
both configurations since they will both be using 4G LTE for transmission. Note that for the
Small Vehicle Cloudlet, the detection latency includes both the local image classification, which
gives a send-don’t send result, as well as the actual hazard detection run by the Zone Cloudlet
to annotate the hazards. To test the detection latency, we record the time the system takes to
process each frame over a one minute interval. See Table for RTT and Detection Latency
results. Note that the Big Vehicle Cloudlet has two GPUs, but Table[3.1|{shows latency per GPU.

22



3.3. Experimental Results

Figure 3.5: Examples of annotated pothole detections.

On an end-to-end basis, using the Big Vehicle Cloudlet incurs less than half of the latency as
using the Small Vehicle Cloudlet.

The camera frame rate is 30 fps, therefore the ideal processing latency is below 33 ms to
achieve real-time performance. Per-frame processing times greater than 33 ms would imply that
frames are dropped, or not processed. By utilizing 2 GPUs and alternating frames assigned to
each, the Big Vehicle Cloudlet can avoid dropping any frames. While it is great to process every
frame, it is often not necessary in order to detect hazards.

Our second metric attempts to quantify how well the system actually detects road hazards. We
consider this in two different ways. For the Big Vehicle Cloudlet we measure the mean Average
Precision (mAP), which is a common metric for evaluating bounding-box-based object detection
algorithms. We use the standard m A Ps, which defines a correct detection if the intersection over
union of the detected and the ground truth bounding boxes is greater than 50%. Note that we use
this metric to evaluate BVC’s detection algorithm, which is also run on the Zone Cloudlet for the
SVC configuration. We obtain this metric over all test images.

Frequently a hazard will be encountered more than in just one frame. In fact, we expect to
encounter any given hazard in multiple frames. Even if detection failed in one frame, the system
may still be able to identify the hazard in another one. To address this, we employ an event-level
recall metric, which we define as the number of distinct hazards correctly identified over the
total number of hazards. For the Big Vehicle Cloudlet we filter out duplicate detections based
on GPS location. If we detect a hazard of the same class in the same location, we can filter out
the message as it was likely the same instance of the hazard previously detected. Note that we
cannot utilize this for the Small Vehicle Cloudlet, as it only categorizes the image as interesting
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Table 3.2: Detection Results
Config FPS mAP Event Recall Avg. Mbps

BVC 30 527 92.3% 0.46
SVC+ZC 2.8  34.3% 84.6% 0.91

BVC: Big Vehicle Cloudlet, SVC: Small Vehicle Cloudlet,
ZC: Zone Cloudlet, *MobileNet at 0.9 Recall

or not interesting, and furthermore runs at a much slower frame rate.

Deep Neural Networks require large amounts of annotated data for training. For our proto-
type, it was not feasible to collect a large training set of accidents or debris on the road. Rather,
we focused our proof-of-concept on detecting hazards for which we could collect data, namely
potholes. We annotated approximately 3,000 pothole images to train our detector from a set of
set of driving videos we collected. Data collected consists of footage in the greater Pittsburgh
region across various lighting and weather conditions, as well as from various viewpoints. We
kept aside a portion of the data for testing. We show the metrics in Table and example posi-
tive detections in Figure Due to the limited processing rate of the SVC configuration, many
frames are dropped. This reduces its consumed bandwidth, but also reduces its event recall.

Finally, the third metric is the average bandwidth saved by utilizing compute in-vehicle. We
run both the Big and Small Vehicle Cloudlets on the same recorded driving video, and record the
amount of data transferred over TCP. We compare these to a third baseline option, in which the
compressed H.264 video is streamed to a central server for processing. Figure summarizes
our results. Here, the video stream rate of the baseline is plotted as a red line. The GPS-based
duplicate suppression is heavily dependent on the speed of the vehicle, and the rate at which we
encounter hazards. Therefore, we test the Big Vehicle Cloudlet with several different radii param-
eters for redundant hazard checking, ranging from 1 meter to 25 meters. We show the theoretical
best detector as the green star in the bottom right for reference, which exhibits perfect precision
and recall, as well as the lowest possible bandwidth (i.e., each unique hazard is reported exactly
once). Note that the consumed bandwidth is inversely proportional to the detection precision.

We can see that the Big Vehicle Cloudlet performs the best in terms of recall with GPS filter-
ing of radii 1m, 3m, and Sm. Using a larger GPS filtering radius decreases bandwidth consumed
at the cost of hazard recall. The Small Vehicle Cloudlet provides a reasonable compromise be-
tween the two. The SVC requires more bandwidth since it uses a “filtering out” approach, and
sends the image without knowing what the predicted class type is due to its limited memory and
compute capabilities. We cannot use such spatial filter strategies because the SVC does not know
what class of hazard was just detected. This is the main drawback of such a filtering out approach,
and it therefore tends to send images more frequently on average. Additionally, since it operates
at a low frame rate, it may be susceptible to missing hazards that are only visible briefly, a sit-
uation not reflected by these experiments. Overall, moving compute inside the vehicle reduces
the average bandwidth consumed by around 95% compared to the baseline. Streaming the data
costs nearly 9 Mbps uplink while our system used less than 0.5 Mbps with 5 meter GPS filtering.
Extrapolating from this, if the average vehicle is driven for 1 hour a day, over the course of a
month streaming video would require approximately 121 GB per vehicle, whereas our method
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Figure 3.6: Bandwidth uplink in Mbps. Y-axis shown in log scale.

would consume only 6.3 GB.

In Figure we can see that even the theoretical “perfect detector,” which exhibits perfect
precision and recall, still sends a significant amount of data detecting potholes. Further restricting
the report rate for non-urgent hazards would further reduce this number as well, as potholes in
some cities may be categorized as non-urgent and can be transmitted when connected to WI-
FI. This result illustrates the need to treat different types of hazards with a varying degree of
importance. One such solution is to for each Vehicle Cloudlet to contain a list of hazard types
with a possibly dynamic importance ranking for each hazard type. Hazards that are ranked with
high importance would be sent immediately, while those that are less serious can be deferred
until the Vehicle Cloudlet is connected to WI-FI in a garage, for example. This feature would
save bandwidth without sacrificing completeness.

3.3.1 Additional Hazards

Prior work [45]] has shown the detection of deer on the roadsid We have also recently demon-
strated the system detecting traffic cones’}, which often signal lane closures. See Figure[3.7]
and [3.10]for examples of LiveMap detecting traffic cones. Note that for these live demonstrations
we include minor adjustments such as relaxing the constraint on hazard filtering based on GPS
coordinates, and we continuously update the Zone Cloudlet with the vehicle’s position (shown
as a red vehicle, with previous positions marked with a blue dot). The list of objects that can be
detected is extensible: new object classes can be added to the system by providing a classifier
trained on the object data. Some other items that may be useful to detect include road closure
signs, road debris, construction equipment, and accidents. New detectors can be integrated as
they become available.

https://youtu.be/_GrP42359z8
https://youtu.be/TToOb2rTNZU
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Chapter 3. LiveMap

Figure 3.7: LiveMap example live run.
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Figure 3.8: LiveMap live run detection example.
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Figure 3.10: LiveMap live run multiple detection with missing detection example.
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Chapter 4

Visual Change Detection

In the previous chapter, a prototype for LiveMap was developed and validated. One limitation
of the system as presented was the inability to visually detect if a hazard had disappeared. If a
traffic accident or road closure sign was reported, a polling scheme was required to determine if
a hazard had disappeared. In order to overcome this limitation, visual semantic change detection
is required. More generally, semantic change detection provides the capability to monitor not
only road hazard updates, but also changes corresponding to various map aspects outside those
pertaining to hazards. For example, perhaps we wish to determine if a store has went out of
business, a road sign has been damaged or removed, or if there is graffiti on the side of a building.
In this chapter, we present a pipeline for detecting change via image registration followed by a
deep CNN. Note that this framework is generalizable to any class of change that we wish to
detect. In principle we can train it on the changes we wish to detect such as signs, bins, etc., and
it will learn to ignore changes that we do not care about, such as seasonal changes or weather.

4.1 Motivation

Visual change detection is a task that has many potential use cases. Such use cases include
crowd-sourcing map updates for regular or autonomous vehicles, smart cities that wish to react
quickly to road closures or accidents, surveillance of property or regions of interest for both
private and military industries, or even geographic surveying. Change is a certainty, and with
decreasing cost of camera sensors coupled with ever-increasing ubiquity, this task presents an
equally growing opportunity to benefit the community.

Change detection has a value proposition across the entire spectrum of transportation modal-
ities. Drones can utilize change detection to survey large areas from an aerial perspective. Yet
surveillance with drones is just one use case on one platform. Vehicles can utilize change de-
tection to aggregate high-level and high-detail map updates for faster accident responses, and
smarter and safer route-planning. Wheeled robots can utilize change detection in tunnels, pipes,
and other hard to reach places for humans for inspection purposes. Aquatic robots can utilize
change detection to inspect the hulls of ships, a costly yet important endeavor. Medical imaging
can utilize change detection to detect anomalies and identify health problems for individuals.
Even stationary surveillance systems that may utilize low-level background subtraction would
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Figure 4.1: Example Images from VL-CMU-CD [1]], along with ground truth classes and corre-
sponding colors.

see improvements with the added semantic detection capability and more robust information
provided by change detection.

Visual change detection is a difficult problem due to the fact that between any two images
being compared, there will not only be photometric differences due to changes in illumination,
contrast, sensor noise, resolution, and image alignment, but also differences due to pose dif-
ferences of deformable objects or occlusion. Moreover, the definition of change varies across
applications. There are many scenarios where change detection would be highly beneficial, how-
ever the definition of what constitutes change varies on a case to case basis. There will invariably
be differences between images that we wish to detect in certain scenarios, and wish to neglect
in others. This is commonly referred to as changes of interest vs. nuisance changes [1} 83].
This highlights a key observation- for change detection we need a flexible solution. CNNs are
uniquely poised to address this problem due to the fact that they can be trained in a supervised
fashion to detect change. This means that in each case, the user can define exactly what they
wish to be detected. CNNs are therefore an excellent solution for such a problem.
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4.2. Problem Statement

Although humans are very good at detecting changes across seasons and long periods of
time, it is not feasible for majority of applications to have a human in the loop. Image streams
present an interesting challenge where there is a large amount of data at high bandwidth, and
yet human attention is a precious and limited resource. Automating visual tasks has exploded
within the vision community, yet change detection has somewhat lacked in popularity within the
community despite growing potential for such an system.

4.2 Problem Statement

We restrict our domain to street-view change detection in order to aid in the crowd-sourcing of
accurate, and live map updates. We propose the following scenario: a vehicle drives down a
route, and uploads images and GPS information for offline processing. A second vehicle drives
down the same route at a later point in time. Utilizing the data collected and any processing done
offline from the first vehicle, we wish to detect at a pixel level what has changed along the route.
We use various sequences from the VL-CMU dataset to test our system.

4.3 System Pipeline

In order to solve this problem, we require a way to match an image of the current trajectory to
the closest visually matching image of the previous trajectory. An overview of our proposed
system is shown in Figure We select the best matching image in a two-step process. We
use GPS coordinates as a coarse selection for matches, and then use feature matching as a fine
selection to find the best match. When down-selecting images using GPS coordinates, we query
a database of the latitude and longitude of previous images based on the GPS of the current
image and find the 15 closest images. Next we match SIFT [68] features on those 15 closest
images to find the best image match, and warp the image to the view-point of the current image
by finding the corresponding homography within a RANSAC loop. An alternate solution would
be to create a dense 3D reconstruction of the trajectory similar to [[1] and perform the 5-point
algorithm for more accurate view-point alignment. However, we found that our method works
well for two reasons. The first is that the GPS coordinates are fairly precise across various runs
in the VL-CMU dataset. The second is that the view-point changes were small enough that
we could use the planar world assumption and avoid additional computational complexity from
more computationally demanding alternatives such as estimating the Essential or Fundamental
matrices. Now that we have two approximately aligned images at two different time instances
we can feed the pair into our change detection CNN, which is described in more detail in the
following section. The output of our network is a semantically labeled mask corresponding to
the pixel-level change in the image pair.

4.4 Network Architecture

The full network, detailed in Figure consists of a common encoder which encodes both
images, followed by two decoders. The output of the two decoded images are concatenated
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Figure 4.2: Change Detection full system pipeline.

channel-wise, and sent through three final convolutional layers before a softmax output. We use
ReL.U for all activation functions aside from the final softmax. The final output of our system
is a tensor corresponding to i x w X # classes. Motivated by a U-Net style architecture
which has been shown to work well on segmentation tasks, we create a U-Net encoder-decoder
with skip connections. We capitalize on transfer learning by using VGG-16 pre-trained weights
on ImageNet to initialize the first 16 layers of our encoder. We add 3 convolutional layers after
the VGG-16 layers to the encoder. The decoder is symmetric to VGG-16 with the caveat that
we re-use the same block structure, always using one transposed convolution followed by three
convolutions. We independently came to a similar architecture to SegNet [5]], with several im-
portant functional differences. We perform skip connections prior to the max pooling output to
preserve information of finer details, and add convolutions between the encoder-decoder to avoid
a sudden jump from max-pooling to an upsampling layer which seems unintuitive and wasteful.

4.4.1 Training

We train on the VL-CMU-CD dataset which contrains 933 image pairs, 7'1 and 7'2, in the training
set. We use the Adam optimizer [53] with a learning rate of 1e~*. For data augmentation, we use
affine transformations, along with image switching for 7'1 and 72 images. We also occasionally
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Figure 4.3: Architecture for Change Detection. Note that the encoder weights are tied, however
the decoder weights are learned separately.

use the same image for both 7'1 and 7'2 images, in which case we use No Change for the ground
truth.

As provided, there are 11 classes in the dataset. However from inspection of the dataset, there
are two conflicting classes- Miscellaneous and Other Objects. There are only a couple of images
of Miscellaneous in the training set, and zero occurrences in the test set. Furthermore, the objects
labeled Miscellaneous in the training set clearly belong to the Rubbish class label. We therefore
make this change, thus our output corresponds to 10 classes, as shown in Figure

4.5 Experiments

We benchmark our system against prior work on the VL-CMU-CD dataset. We compare com-
mon classification metrics such as Precision and Recall. We convert our multi-class predictions
to binary output in order to plot the ROC curve and Precision-Recall curve for direct comparison
to prior works. Our results are shown in Table 4.1{and in Table We define binary pixel accu-
racy as the fraction of pixels correctly classified for the entire image. Since the class No Change
dominates the dataset, we recognize that this is a poor metric to understand network performance
by itself, which is why we include the binary Precision-Recall curve and ROC curve which are
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Table 4.1: Quantitative Comparison for our method compared to others for binary change detec-
tion on the VL-CMU-CD dataset.

FPR=0.10 FPR=0.01
Method Pr Re F, Pr Re F,

D-SIFT [68] 0.20 031 0.24 0.25 0.04 0.07
DAISY [109] 0.15 0.22 0.18 0.11 0.02 0.03
DASC [52] 0.20 0.30 0.23 0.29 0.05 0.08
CNN[90] 031 0.57 040 048 0.12 0.18
CD-Net [1] 0.40 0.85 0.55 0.79 046 0.58
ours 0.38 0.87 0.53 0.82 0.63 0.71

Table 4.2: Quantitative Evaluation when taking argmax of softmax output.

Method Binary Acc. Multi-class Acc. Binary Pr  Binary Re Binary F,
ours 96.23 66.92 59.16 80.60 68.22

displayed in Figure 4.4 and Figure [.5] respectively. We define multi-class pixel accuracy as the
fraction of pixels correctly classified over the pixels correctly identified as change.

4.6 Discussion

As can be seen, our system performs quite well on the task of binary change detection. We
compare to prior methods, including D-SIFT [68], DAISY [[109], and DASC [52] which utilize
dense descriptors to predict change, as well as the CNN used in [90] and CD-Net [1]. We
observe that the methods utilizing CNNs perform significantly better than their dense descriptor
counterparts. Furthermore, our network performs significantly better compared to prior methods,
especially at lower false positive rates. Note that the VL-CMU-CD dataset is imbalanced, with
majority of the pixels labeled as No Change. For this reason, the Precision-Recall curve is best
for comparing existing methods.

Moreover, our network does quite well on the task of semantic change detection as shown in
Figure[d.7]and Figure[d.8] Our system does very well detecting classes such as bins, construction,
vehicles, rubbish, signs, and even other objects. Classes in which it tends to miss are traffic cones,
person/cycle, and scenes where the construction corresponds to fences. We additionally plot the
Precision-Recall curves for each class in Figure using a one vs. rest approach. We examine
the test image output, and discuss limitations of our network along with limitations of the dataset
below.

4.6.1 Failure Modes

Our network has two main failure modes: 1) failing to detect change, and 2) mis-classifying the
change. Examples of the former are due to severe photometric changes such as from dark regions
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Figure 4.4: Precision-Recall Curve for Binary Change Detection.

1 RQC
09 .
08
0.7
06
E 05 Ours
"0 4 CDNet
' CNN (Sakurada & Okatani)
03 Dense SIFT
02 DAISY
DASC
01 Depth

0 01 02 03 04 ng? 06 0.7 08 09 1
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Figure 4.6: Precision-Recall Curve for Semantic Change Detection. Each class curve is gener-
ated using a one vs. all approach.

formed by heavy shadows, or from changes with large amounts of transparency with thin features
such as see-through fences or bikes. Examples of the latter are due to similar features between
like classes, such as rubbish and bins. Several examples are illustrated by Figure Upon
inspection of several failures of our system, we notice that the VL-CMU-CD dataset has more
than a few examples of coarse or incorrect ground truth annotations. Some of the limitations of
our network can be attributed to the discrepancies found in the dataset. We highlight some of the
issues with the dataset below.

4.6.2 VL-CMU-CD Dataset Limitations

In addition to the change from 11 classes to 10 mentioned in the training section above, we
note that while the ground truth images are accurately labeled for binary change, the classes
are somewhat coarse for many images, such as those shown in Figure 4.10] There are several
examples of both coarsely annotated ground truth and even incorrectly annotated ground truth. In
some of these examples, even when the ground truth is incorrectly labeled or coarse, our network
is often able to correctly localize and predict the actual change and class respectively. Another
issue that arises in this dataset is whether or not the class appeared, or disappeared. In the bottom
example of Figure we see that rubbish is replaced by a vehicle. Both are classes that we
care about, yet according to the ground truth label, the rubbish class is assigned. This is one
drawback of the dataset as it currently exists. Note that in the context of LiveMap, if we were
to use this method to determine whether or not a hazard is still present, we would not face this
issue. The answer would be simple, since we know it existed in the reference image.

36



4.6. Discussion

Inference

Figure 4.7: Qualitative Performance for Multi-class Change Detection. Images are generated
with a False Positive Rate of 0.10. From top to bottom we have: a road barrier (Barrier),
garbage/recycling bins, a traffic sign, a vehicle,;%nd a road warning sign.
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T1 Image T2 Image GT Inference

Figure 4.8: Qualitative Performance for Multi-class Change Detection. Images are generated
with a False Positive Rate of 0.10. From top to bottom we have: an advertising sign, garbage
bins, road closure signs, a fence removed (othe?r’ 80bjects) and a vehicle, and rubbish.
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Figure 4.9: Failure modes for our Semantic Change Detection. Images are generated with a False
Positive Rate of 0.10. In the top image, we mis-classify portions of the image. Note the coarse
ground truth annotation. In the following example, our network correctly localizes the change,
but classifies it as bins. However, on closer inspection some of the rubbish are indeed bins. In the
third example, we fail to detect majority of the bicycle (there is a very small number of bicycle
pixels that are correctly identified but it is difficult to see). Lastly, the sign is missed in the last
example altogether due to severe photometric differences created by shadows. There is also a
false positive change predicted on the left in this example.

39



Chapter 4. Visual Change Detection
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Figure 4.10: Ground truth error examples for VL-CMU-CD dataset. Left two images are the
reference and test images. The third image is the change mask, and the last column is our
inference at FPR of 0.10. In the top example, the people are labeled with the vehicle class. In
the middle example, the rubbish is replaced by a vehicle. In this scenario the ground truth is
ambiguous. The ground truth could also be labeled with a vehicle mask and class. In the bottom
example, a cone is labeled as a vehicle. Note that our system correctly identifies the cone.
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Chapter 5

Visual Odometry

In the previous chapters, we focused on deriving semantic meaning from images for live map
updates. Another area of improvement to the formulation of LiveMap is to use visual odometry
to improve vehicle localization as well as map update localization. In the previous chapters we
solely utilized GPS coordinates for the localization of the vehicle. In this chapter, we focus on
achieving accurate localization through the development of a novel visual odometry algorithm.

5.1 Motivation

Visual odometry (VO), or the task of tracking camera pose from a stream of images, has received
increased attention due to its widespread applications in autonomous vehicles, robotics, and
augmented reality. Camera tracking in unknown environments is a very difficult and challenging
problem in computer vision. Autonomous vehicles currently rely on very expensive sensors to
accurately track position.

While VO has become a more popular area of research, there are still several challenges
present. Such challenges are operating in low-texture environments, achieving higher frame rate
processing capabilities for increased positional control, and reducing the drift of the trajectory
estimate. Any new algorithm must also deal with inherent challenges of tracking camera pose, in
particular they must be able to handle the high bandwidth image streams, which requires efficient
solutions to extract useful information from such large amounts of data.

5.1.1 Contributions

In this chapter we propose a sparse visual odometry algorithm that efficiently utilizes edges to
track the camera motion with state-of-the-art accuracy quantified by low relative pose drift. More
formally, we outline our main contributions:
® An edge-direct visual odometry algorithm that outperforms state-of-the-art methods in
public datasets.

e We provide experimental evidence that edges are the essential pixels in direct methods
through an ablation study.

e We compare our edge method relative to a direct dense method.
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Figure 5.1: In contrast to previous direct methods that attempt to minimize the photometric error
(bottom left) between reference frame (top left) and input image (top right), we minimize the
photometric error of only the edges (bottom right).

e We present key differences on reducing photometric error on edges as opposed to full
image intensities.

* We optimize our algorithm with respect to several different types of edges.

5.1.2 Visual Odometry vs. SLAM

Simultaneous localization and mapping (SLAM) algorithms have taken visual odometry algo-
rithms a step further by jointly mapping the environment, and performing optimization over the
joint poses and map. Additionally, SLAM algorithms implement loop closure, which enables
systems to identify locations which it has visited before and optimize the trajectory by matching
feature points against the prior image in memory.

With the success of Bundle Adjustment and loop closure in producing near drift-free results,
much of the attention has shifted from the performance of visual odometry algorithms to overall
system performance. In reality the two are tightly coupled, and it is very important that visual
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Figure 5.2: Examples of various edge extractions. Top left: Original. Top right: Canny edges.
Bottom left: LoG edges. Bottom right: Sobel edges.

odometry provides low-drift pose for two reasons. Firstly, Bundle Adjustment requires a good
initialization in order for it to converge to a drift-free solution. Secondly, it is computationally
expensive and slow compared to the high frame-rate at which visual odometry operates. For these
reasons we focus solely on VO performance in this work, and we show competitive performance
even against such SLAM systems.

5.2 Edge-Direct Visual Odometry

5.2.1 Overview

In this section we formulate the edge direct visual odometry algorithm. The key concept behind
direct visual odometry is to align images with respect to pose parameters using gradients. This
is an extension of the Lucas-Kanade algorithm [6} 69].

At each timestamp we have a reference RGB image and a depth image. When we obtain a
new frame, we assume we only receive an RGB image. This enables our method to be extended

43



Chapter 5. Visual Odometry

Figure 5.3: Edge pyramid for Canny edges. From left to right: Image 1: 640x480, Image 2:
320x%240, Image 3: 160x120, Image 4: 80x60. Any pyramid greater than three edge images
deep starts to suffer from heavy amounts of aliasing, which led us to cut off our edge pyramid at
the third level.

to monocular VO by keeping a depth map and updating at each new time step. Note also that we
convert the RGB image into a grayscale image.

The key step of our algorithm is that we then extract edges from the new image, and use them
as a mask on the reference image we are localizing with respect to. We then align the images by
iteratively minimizing the photometric error over these edge pixels. The objective is to minimize
the nonlinear photometric error

ri(&) = Lo(7 (i, d;, §)) — Th (x4), (5.1)

where 7 is the warp function that maps image intensities in the second image to image in-
tensities in the first image through a rigid body transform. The warping function 7(x;,d;, ) is
dependent on the pixel positions x;, the depth d; of the corresponding 3D point, and the camera
pose £. Note that now the pixels we are using are only edge pixels, ie.

r; € E(ILy), (5.2)

where £(Z,) are the edges of the new image.

5.2.2 Camera Model

In order to minimize the photometric error we need to be able to associate image pixels with
3D points in space. Using the standard pinhole camera model, which maps 3D points to image
pixels, we have

T
T(P)= (Bt B tey) ©:3)

where f, and f, are the focal lengths and ¢, and ¢, are the image coordinates of the principal
point. If we know the depth then we can find the inverse mapping that takes image coordinates
and backprojects them to a 3D point P in homogenous coordinates

Yy

T
P=n(a,2)= (522, 527 Z1) . (5.4
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Figure 5.4: In the top row are the original images being localized with respect to the first image.
a) All original residuals b) All residuals after only minimizing edge residuals. This shows that
minimizing the residuals for just the edge pixels jointly minimizes the residuals for all pixels.
After 3 images, the minimization starts to become more inaccurate. This is also a function of
camera velocity and rotational velocity.

5.2.3 Camera Motion

We are interested in determining the motion of the camera from a sequence of frames, which
we model as a rigid body transformation. The camera motion will therefore be in the Special
Euclidean Group SE(3). The rigid body transform is given by 7" € SFE(3)

Rt
T = [O 1}, (5.5)

where R is a 3 X 3 rotation matrix and ¢ is a 3 X 1 translation vector. Since we are performing
Gauss-Newton optimization, we need to parameterize camera pose as a 6-vector through the ex-
ponential map T = exps(3)(§) so that we can optimize over the SO(3) manifold for rotations. At
each iteration we can compose the relative pose update A¢ with the previous iteration estimate.

gt = Agm e, (5.6)

where A BT = expges)(AE)T. We also use a constant motion assumption, where the pose
initialization is taken to be the relative pose motion from the previous update, as opposed to
initializing with the identity pose. The pose initialization for frame F; with respect to frame Fj,
thus can be expressed as

fki,im't = gk,ifl H 5122,@'71- (57)

. Experimentally we have found that this greatly improves performance by providing the system
with an accurate initialization such that it can converge to a low-error solution.
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5.2.4 Robust Gauss-Newton on Edge Maps

Similar to other direct methods, we employ a coarse-to-fine approach to Gauss-Newton mini-
mization to avoid false convergence. The selection of the image pyramid scheme has a large
effect on the system performance, and must be chosen carefully. Some systems such as [26]]
report using up to six levels, while [S0] report using four levels. Simply extending these large
pyramid sizes to edge maps causes the system to fail to converge to the correct solution. This is
due to the effects of aliasing. A much smaller pyramid size is required.

We found that three levels worked well for the original 640 x 480 resolution. Using additional
levels caused the system to fail due to edge aliasing effects which is illustrated in Figure
which shows the same edge image at different levels of the pyramid. After level three, it becomes
unrecognizable. For this reason, we recommend using images no smaller than 160 x 120 in
resolution.

A common approach in direct methods is to incorporate a weighting function that increases
robustness to outliers when solving the error function. We use an iteratively re-weighted residual
error function that we minimize with Gauss-Newton. We found that iteratively re-weighting
using Huber weights worked quite well for our application, following the work of [26]. The
Huber weights are defined as

(r:) {1’ sk (5.8)
W \Tr;) = k . .
Tral? T’i>]€

The error function now becomes
B(§) = wil&)ri(¢). (5.9)
Our goal is to find the relative camera pose that minimizes this function

argmgnE(g) = argmﬁin;wi({)r?(@. (5.10)

In order to minimize this nonlinear error function with Gauss-Newton, we must linearize the
equation. We can then solve this as a first-order approximation by iteratively solving the equation

AE™ = —(JTW ) LW (™), (5.11)

where W is a diagonal matrix with the weights, and the Jacobian J is defined as
J=VIh———, (5.12)

and VI, is the image gradient of the new image. We can then iteratively update the relative pose

with Equation
Note that we use the inverse-composition [6] formulation such that we do not have to recom-

pute the Jacobian matrix every iteration. This is what makes this algorithm extremely efficient,
as shown in [6].
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5.2.5 Optimizing over Edge Points

We present the theory of selecting and incorporating edge points in the formulation, and provide
some insight on why it is so effective in implementation. For edge selection process, note that
we have two images, a reference and a new image, and therefore two sets of edges. We wish
to avoid the problems that arise from using both sets, namely there will be a different number
of edge pixels, and dealing with this through matching algorithms is inefficient and error-prone.
We use a more elegant solution, which is to use the edges of the new image as a mask on the first
image.

This initialization causes the mask to select pixels in the reference image that are slightly
off from the reference image edges, assuming the camera has moved. At each iteration, we
follow a gradient from this position towards a point that reduces photometric error. By definition,
edges are regions of large photometric variation on either side. Intuitively we argue that the
optimization should therefore converge and settle at the correct edge. To summarize, we initialize
the edge mask to an offset position from the reference image’s edges, and iteratively force these
edge pixels to overlap with the reference edges. In doing this we achieve a highly accurate
relative pose.

5.2.6 Keyframe Selection

Another implementation detail has to do with keyframes. Frame-to-frame alignment is inherently
noisy and prone to accumulate drift. To mitigate this, VO algorithms often select a key-frame
which is used as the reference image for multiple new frames. The error accumulation is de-
creased by comparing against fewer reference frames, which directly results in a smaller error
stackup.

There have been several strategies for selecting keyframes. The selection of keyframes is
dependent on the type of VO algorithm being used. Feature-based methods such as [73]] usually
impose the restriction that a significant number of frames to pass, on the order of tens of frames.

In [51] the authors summarize several common approaches that direct methods use for cre-
ating a new keyframe: every n frames, after a certain relative pose threshold has been met, the
variance of the error function exceeds a threshold, or the differential entropy of the covariance
matrix reaches a threshold. However, each metric is not without its problems.

Furthermore, the performance of the tracking degrades the further apart the baselines. Fig-
ure demonstrates this phenomena, in which the residuals from five consecutive frames with
respect to the first frame are shown. We observe that in general after 4 frames, the residuals
become harder to minimize for most sequences. Note that this is a function of camera motion.
We make the assumption that this camera tracking will be used for moderate motion and select
an every n frames approach.

5.3 [Experiments

We evaluate our system using the TUM RGB-D benchmark [104] , which is provided by the
Technical University of Munich. The benchmark has been widely used by various SLAM and
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Relative Pose Error (RPE) [m/s]

ours ours ours ours ours REVO[93] REVO[93] DSLAM|[51] ORB2[72] SLAMI[25] D-EA[59]
Seq. Cannygp Cannypr LoGpp Sobelpp  SEpp SErp SExr ICP+Gray Feat. Feat. Canny

frl/xyz  0.02228  0.02768 0.02821 0.02712 0.03289  0.03202 0.01957 0.02661 0.01470 0.04193 0.04942
frl/rpy - 0.03126  0.02714 0.03694 0.03041  0.03553 0.04037 0.04865 0.03221 0.07028 0.16150
frl/desk  0.02664  0.03022 0.03022 0.03598 0.03056  0.07800 0.22196 0.04429 0.06178 0.05346 0.10654
fr1/desk2 - 0.04387  0.04953 0.05566 0.04490  0.07056 0.06703 0.05722 0.06535 0.06955 0.20117
frl/room - 0.04830 0.06239 0.05240 0.05006  0.04816 0.04272 0.06427 0.07081 0.06666 0.21649
fr1/plant - 0.02736  0.02752 0.04171 0.05006  0.03063 0.02381 0.04362 0.04218 0.03789 0.34099
fr2/desk  0.01237  0.01375 0.01375 0.01800 0.03021  0.01426 0.02453 0.03248 0.03067 0.01400 0.09968

Absolute Trajectory Error (ATE) [m]
frl/xyz  0.04567 0.04478 0.04461 0.05260 0.04115 0.09011 0.05375 0.05760 0.00882 0.01347 0.13006

frl/rpy - 0.05561  0.03982 0.04795 0.04983  0.08933 0.07684 0.16341 0.08090 0.02874 0.14822
frl/desk  0.03133  0.05387 0.05358 0.05977 0.04802  0.18648 0.54789 0.18251 0.09091 0.02583 0.16376
fr1/desk2 - 0.06798 0.08384 0.08189 0.06271  0.16866 0.18163 0.18861 0.10090 0.04256 0.44886
frl/room - 0.27382 0.34505 0.31586 0.34167  0.30594 0.28897 0.21559 0.20282 0.10117 0.60361
fr1/plant - 0.07559 0.06708 0.09975 0.06560  0.07300 0.05623 0.12216 0.07234 0.06388 0.56927

fr2/desk  0.12540  0.16664 0.18830 0.19074 0.27464  0.32902 0.09590 0.46796 0.38657 0.09505 0.94546

Table 5.1: Comparison of the performance of our system using three different types of edges.
Blue denotes best performing frame-to-frame VO, excluding SLAM or keyframe systems. Bold
denotes best performing system overall. A dashed line indicates that using keyframes did not
improve performance.

VO algorithms to benchmark their accuracy and performance over various test sequences. Each
sequence contains RGB images, depth images, accelerometer data, as well as groundtruth. The
camera intrinsics are also provided. Groundtruth was obtained by an external motion capture
system through triangulation, and the data was synchronized.

There are several challenging datasets within this benchmark. Each sequence ranges in du-
ration, trajectory, and translational and rotational velocities. We follow the work of [93]] which
uses seven sequences to benchmark their system performance so to achieve a direct comparison
with other methods.

5.3.1 Evaluation Metrics

We use the Relative Pose Error (RPE) and Absolute Trajectory Error (ATE) to evaluate our
system. The Relative Pose Error is proposed for evaluation of drift for VO algorithms in [[104]].
It measures the accuracy of the camera pose over a fixed time interval At

RPE; = (Q7 ' Quyad) (P Pryar), (5.13)

where Q1 ...Q, € SFE(3) are the camera poses associated with the groundtruth trajectory
and P, ... P, € SE(3) are the camera poses associated with the estimated camera trajectory.
Similarly the Absolute Trjectory Error is defined as

ATE, = Q;'SP, (5.14)

where poses () and P are aligned by the rigid body transformation .S obtained through a least-
squares solution.
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Figure 5.5: XY cross-section of our estimated trajectory compared with ground truth. The error
is shown in green. The start position is shown as a black dot, while the final positions are shown
as colored dots corresponding to the trajectory. Areas without green indicate missing groundtruth
data from sequence.

A common practice has been to use the RMSE value of both the RPE and ATE, as RMSE
values are a more robust metric that gives more weight to outliers as compared with the mean
or median values. Thus the RMSE is a much more stringent performance metric to benchmark
system drift.

Following the example set by [28, [50, [107]], we provide the RMSE camera pose drift over
several sequences of the dataset. As first pointed out in [50], choosing too small of a At creates
erroneous error estimates as the ground truth motion capture system has finite error as well. Too
large of a value leads to penalizing rotations more so at the beginning than rotations towards the
end [104]. Therefore, a reasonably sized At needs to be chosen. We use a At of 1s to achieve
direct comparison with other methods.
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5.3.2 Results on the TUM RGB-D Benchmark

We compare the performance of our algorithm using four different edge extraction algorithms,
namely Canny, LoG, Sobel, and Structured Edges. We compare to other methods using frame-to-
frame tracking for all variants. We selected Canny to perform keyframe tracking due to its con-
sistent accuracy. Although all of the edge types performed well on the sequences, Canny edges
performed the best overall on average. Note that we used automatic thresholding as opposed to
REVO [93] which used fixed threshold values, which introduces a dependency on photometric
consistency. Since we utilize automatic thresholding, our system is more robust to photometric
variations across frames. See Figure[5.2]for examples of edge extractions.

From our experiments we observed that edge-direct VO is highly accurate in frame-to-frame
tracking, despite the inherent accumulation of drift in such a scheme that does not utilize keyframes.
In terms of RPE, our frame-to-frame variants perform better than or in worst case as well as
REVO, an edge-based method which uses the distance transform on edges. Our method also
outperforms ORB-SLAM2 run in VO mode for all sequences, except on frl/xyz. This is a
result of ORB-SLAM?2 keeping a local map, and in this particular sequence the camera keeps
the majority of the initial scene in view at all times. We confirmed this hypothesis by turning
off the local mapping, at which case we outperform it on this sequence as well. Our results
are shown in Table In terms of ATE, we again perform well across all non-SLAM algo-
rithms. Even though we do not use any Bundle Adjustment or global optimization as employed
by RGBD-SLAM [51]], we perform competitively over all sequences with such systems.

We provide plots of the edge-direct estimated trajectories over time compared to groundtruth
in Figure Our estimated trajectory closely follows that of the groundtruth. In Figure [5.5|we
show the edge-direct estimated trajectory along the XY plane, along with the error between our
estimate and groundtruth.

5.3.3 Ablation Study

In order to experimentally demonstrate the effect of using edge pixels we perform an ablation
study. This two-fold ablation study demonstrates the relative efficacy between optimizing over
edge pixels compared with optimizing over the same number of randomly chosen pixels, and
additionally demonstrates the stability of using edge pixels. We randomly select a fraction of the
edge pixels to use, and compare it to our system randomly selecting the same number of pixels
from the entire image. We average over 5 runs to account for variability. All parameters are
identical for both methods. Additionally, for these tests we utilize keyframes as well as dropping
the constant motion assumption. This forces the system to rely on the optimization more heavily,
and provides a better measurement of the quality of convergence. We additionally record the
latency of our system per frame. Operating on edge pixels is more accurate, while additionally
enabling ~50 fps on average on an Intel 17 CPU. Note that at our optimization settings, a dense
method is far from real-time.

Since we use the Lucas-Kanade Inverse Compositional formulation we expected our algo-
rithm to be linear time complexity with the number of pixels used. We confirm this experimen-
tally as well. Refer to Figure |5.6|for both the ablation study and timing measurements. We save
approximately 90% computation on average by using edge pixels compared to using all pixels.
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Ablation and Stability Study on fr1/desk Avg. Latency
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Figure 5.6: Left: Ablation study. Right: Frame-to-frame latency using edges.

Note that for stability of edge pixels, the Kinect sensor used in the sequences filters out unstable
points in its depth map, and from qualitative inspection still leaves a large number of reliable
edge pixels. This is confirmed via the relative stability of selected edge pixels compared to all
pixels as well. This ablation study further supports our claim that edge pixels are essential for
robust and accurate camera tracking.

5.4 Discussion

Our edge-direct VO algorithm performs well across all sequences compared to other state-of-
the-art methods. The trajectory in Figure shows accurate camera tracking in a sequence that
is 99 seconds long, and travels over 18 m without the use of Bundle Adjustment or loop closure.
Note that our algorithm would perform even better if coupled with such global optimization
methods, as our VO would initialize the algorithms closer to the correct solution compared with
other algorithms. Such an increase in accuracy can enable SLAM systems to rely less heavily on
computationally expensive global optimizations, and perhaps run these threads less frequently.
Note that in this figure, the regions that are missing green regions are due to missing groundtruth
data in the sequence. The estimated trajectory over time in Figure[5.7|shows remarkably accurate
results as well.

It is important to note that even though we explicitly only minimize the photometric error
for edge pixels, Figure [5.4| shows that we simultaneously minimize the residuals for all pixels.
This is an important observation, as it supports the claim that minimizing the residuals of edge
pixels is the minimally sufficient objective. Moreover, the ablation study supports the claim that
minimizing the photometric residuals for just the edge pixels provides less pixels to iterate over
while enabling accurate tracking.
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Figure 5.7: Shown is our estimated trajectory for four sequences. Each sequence plots the tra-
jectory in solid colors corresponding to the axis. Groundtruth is shown as a red dotted line for
all axes. As can be seen our estimates closely match that of the ground truth. Note that for the
sequence fr2/desk, there is no ground truth during the interval at approximately 31-43 seconds,
which is why there appears to be a straight line in groundtruth trajectory.

It is interesting to note that utilizing keyframes did not help the system improve on many
of the sequences once we added the constant motion assumption. Prior to adding this camera
motion model, utilizing keyframes helped significantly.
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Conclusion

We have proposed a system architecture, LiveMap, that automates the detection and reporting
of road hazard information utilizing in-vehicle compute and recent advances in computer vision.
We have built and demonstrated a prototype system using both powerful and modest in-vehicle
computers coupled with edge computing services. Both variants are able to detect and report
potholes with no human involvement. Furthermore, we reduce the bandwidth consumed by such
a system by over twenty-fold compared to video streaming to the cloud for processing.

To help improve our system, we developed a change detection network that is able to accu-
rately determine semantic pixel level change between two images. We have tested our change
detection system extensively on the VL-CMU-CD dataset. We benchmark and compare its per-
formance to several other systems. We not only surpass prior systems, but also extend them by
enabling multi-class change detection.

In the last chapter we presented an edge-direct visual odometry algorithm that can enable
more accurate localization of the vehicle as well as map updates. Our algorithm determines an
accurate relative pose between two frames by minimizing the photometric error exclusively of
edge pixels. We demonstrate experimentally that minimizing the edge residuals jointly mini-
mizes the residuals over the entire image. This minimalist representation reduces computation
required by operating on all pixels, and also results in more accurate tracking. We benchmark
its performance on the TUM RGB-D dataset where it achieves state-of-the-art performance as
quantified by low relative pose drift and low absolute trajectory error.

6.1 Future Work

Several potential areas of future research and continuation exist for LiveMap. While we devel-
oped semantic change detection and visual odometry algorithms to improve the overall system,
we leave the integration of such features for future work. An additional functionality improve-
ment for LiveMap includes expanding the number of vehicles, such that additional features can
be explored and deployed on multiple live vehicles. Another avenue is to expand the classes of
hazards that LiveMap can detect. Data is often a limiting factor for the performance of vision al-
gorithms, and this is true with LiveMap. The hazard detection accuracy would see a performance
increase with increased training set sizes. Moreover, instead of using Faster R-CNN, future ver-
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sions of LiveMap may move towards instance segmentation, such as with Mask R-CNN. Another
functionality addition could be for emergency situations, such as finding stolen cars or even a lost
child. To perform such a task, vehicles could analyze both current and past data within a region
of interest when prompted by the Zone Cloudlet.

In regards to the change detection pipeline, the system could improve by moving towards
Panoptic Change Detection, which would be analogous to the newly created panoptic segmen-
tation task. In this new task (possibly first termed in this thesis), change would be determined at
instance level, and background would be on the semantic level. This would be useful in cases
where we care about the distinction between the boundaries of multiple overlapping objects,
which is common with vehicles, signs, etc.

One requirement for the visual odometry algorithm as outlined in Chapter[3]is that it requires
an accurate and dense depth map. There are such systems, however they are either achieved in
real-time via non-optimal local solutions or through computationally expensive global solutions,
which have time complexity O(n?) where n is the number of pixels. For large n, such algorithms
are prohibitively expensive. One research area would be to explore the possibility of a more
optimal solution.
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