
Smooth Behavioral Estimation For Ramp Merging Control In
Autonomous Driving

Chiyu Dong1, John M. Dolan2, and Bakhtiar Litkouhi3

Abstract— Cooperative driving behavior is essential for driv-
ing in traffic, especially for ramp merging, lane changing or
navigating intersections. Autonomous vehicles should also man-
age these situations by behaving cooperatively and naturally. In
this paper, we enhance our previous learning-based method to
efficiently estimate other vehicles’ intentions and interact with
them in ramp merging scenarios, without over-the-air commu-
nication between vehicles. The proposed approach inherits our
previous Probabilistic grahpical Model (PGM) and distance-
keeping framework. Real driving trajectories are used to learn
transition models in the PGM. Thus, besides the structure of the
PGM, our method does not require human-designed reward or
cost functions. The PGM-based intention estimation is followed
by an off-the-shelf distance-keeping model to generate proper
acceleration/deceleration controls. The PGM plays a plug-in
role in our self-driving framework. The new model eliminates
two assumptions in the previous model: 1) a fixed merging
point for all merging agents, which is hard to determine before
the merging vehicles make the merge; 2) Perfect velocity mea-
surement, which requires sophisticated perception systems. We
validate the performance of our method both on real merging
data and using a designed merging strategy in simulation,
and show significant improvements compared with previous
methods. Parameter design is also discussed by experiments.
The new method is computationally efficient, and exhibits better
robustness against sensing uncertainty.

I. INTRODUCTION

Autonomous driving is drawing tremendous attention
among automakers and end-users, and some of the technolo-
gies, such as Adaptive Cruise Control (ACC), Lane Keeping/
Lane Departure Warning, Collision Detection, and Emer-
gency Brake, have been integrated into normal passenger
vehicles. The most advanced products can assume control in
specific simple scenarios. For example, GM’s Super Cruise
production vehicle offers Full Speed Range ACC (Stop &
Go ACC) and hands-free driving at freeway speeds on a
single lane freeway. Audi’s “STOP and GO” adaptive cruise
control (ACC) enables the car to follow other cars even in
dense traffic at low speed. Mercedes-Benz’s lane departure
prevention system and Tesla’s “Autopilot” combine ACC
with auto-steering to achieve a certain level of autonomous
driving.

While such features can allow cars to drive hands-free
under certain conditions, they do not guarantee proper in-
teraction with other cars in all conditions. Further, for the
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foreseeable future, autonomous cars need to interact with
significant number of human-driven cars. In the presence
of Vehicle-to-Vehicle (V2V) communication, some V2V
systems may recommend behaviors to human drivers to co-
operate with others; however, whether the driver can properly
follow the indication given by the system remains uncertain.
It is therefore important for autonomous cars to comprehend
and exhibit social behaviors to suitably interact with human-
driven cars or other autonomous cars. The autonomous car
should handle various cooperative situations, such as lane
changing, intersections and entrance ramps. The biggest
challenge of social behavior systems is to estimate human
drivers’ intentions. Human-driven cars introduce great uncer-
tainty in autonomous-human driving interactions. A typical
social interaction in driving is ramp merging. Normally, a
human driver will implicitly “negotiate” with one or more
drivers on a ramp or main road, estimate their intentions, and
then makes decisions to successfully cooperate with them
to pass the ramp merging point. Autonomous cars should
make a decision to yield or not yield to the merging car,
based on some relevant information. In this paper, we focus
on ramp merge control, as shown in Fig. 1. The green car
denotes the host vehicle (autonomous car) on the main road
and the red car denotes a merging car (the human-driven
car) on the ramp. Unlike our previous method, the current
approach also considers an auxiliary lane which follows
the on-ramp, instead of using a fixed merging point for
all merging cars. Further, we do not assume an accurate
measurement of speeds. Instead, a series of locations of the
merging targets are tracked and further smoothed in order to
obtain an optimal estimate of the dynamics of the merging
car. The goal of our method is to estimate whether or not the
merging car intends to yield to the host car, and then safely
react to it.

II. RELATED WORK

There are several references that address the merging
problem. Urmson et al. [1] and Marinescu et al. [2] used the
same idea of a slot-based approach for cooperative merging
control. They first check merging availability for each slot in
the target-lane (a slot is the free area between two cars), then
they check feasibility of actions to find the best feasible slot
for acceptable merging acceleration. Their decision is based
on current states and no historical data are considered, which
can lead to failures in some cases. Lu and Hedrick [3] formu-
lated the merging planning as a platoon control problem. But
the algorithm still requires a “coordination layer” to select
a pair of main-road cars to interact, i.e., need a decision
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Fig. 1: Merge scenario with an auxiliary lane. The host car (green)
is an autonomous vehicle, running on the main road; the merge
car (red) is a human-driven car, running on the ramp. The merging
ramp has an auxiliary lane which merges into the main road at the
end of the ramp. The merging car has to perform the merge and
lane changing before reaching the end of the ramp. The host car
should behave socially to ensure safety and efficiency.

for yielding or not yielding a host vehicle. J. Wei et al.
[4] proposed an intention-integrated framework to enable an
autonomous car to perform cooperative social behavior. Ac-
celerations of cars merging from a ramp are considered. The
estimation again only considers the merging vehicle’s current
state, ignoring its historical state. The lack of historical data
leads to instability in estimated intention, which results in
oscillation or delayed reaction to the autonomous vehicle.
To react to surrounding vehicles and reduce computational
time, Wei et al. [5] proposed a QMDP single-lane behavior
framework which takes uncertainties into account. They also
applied a cost function to evaluate and select the proper
strategy. Schlechtriemen et al. [6] proposed a learning-based
approach to estimate the lane-changing intention. They cal-
culate lane-changing probabilities by vehicles’ current lateral
speeds using Random-Decision-Forest and Gaussian Mixture
Regression. Dong et al. [7] predicted the start/end points of a
lane-change behavior of a target vehicle given its surrounding
vehicles’ trajectories, by using a non-parametric learning
model. Lenz et al. [8] generate cooperative planning for
autonomous highway driving using Monte-Carlo Tree Search
(MCTS), which relies on a manually designed cooperative
cost function. Their method can handle multiple vehicle
interactions in a merging scenario in the simulator. However,
all vehicles in the simulator behave upon the designed cost
function and model. Lenz did not validate the method on
massive real world data. Liu et al. [9] generate a cooperative
longitudinal speed profile along with a pre-planned path. A
set of quadratic programs are used to approximate the non-
convex temporal optimization, which are solved by the slack
convex feasible set (SCFS) algorithms. Nilsson et al. [10]
formulated cooperative planning as an optimization problem
under a Model Predictive Control (MPC) framework. The
weighted effects of acceleration and braking are optimized
subject to the trajectory’s shape and feasibility. The author
provides a straightforward way to transform the problem into
a well-defined optimization problem that can be solved by
applying a specific solver. However, the manual tuning of
weights is difficult. Also, the equation to be optimized and
objective functions are designed and hand-tuned, without the
use of data. These works provide a feasible way to formulate
and perform planning in dynamic environments, but both

methods rely on an oracle path planner to pre-generate
a cooperative path. Neither approach explicitly solves the
prediction problem, i.e., estimating other vehicles’ behaviors.

Zhan et al. [11] propose an integrated decision-making
and planning framework under uncertainty, to achieve a
driving strategy which is defensive to real threats, but
not conservative to threats of low probability interaction
is not considered. Galceran et al. [12] utilized past data
and extended the reaction ability of autonomous cars from
a single lane to multiple lanes, including merging. They
modeled the multipolicy decision-making into a partially
observable Markov decision process (POMDP). To speed up
the evaluation, a limited number of actions (policies) are
used, such as “change-lane-left/change-lane-right” and “lane-
normal”. To avoid discrete states, Bai et al. [13] proposed a
continuous-state POMDP using a belief tree and the model
was applied to navigating intersections. However its actions
are discrete and represented by a generalized policy graph
(GPG). Seiler et al. [14] proposed an online and approximate
solver for a continuous action POMDP, but only tested in toy
problems.

In this paper, we instead use a probabilistic graphical
model (PGM) to describe dependency among observed data
and estimate other cars’ intentions. The task of the PGM is
to generate an intention estimate with maximum probability,
given observed information. The PGM clearly organizes
relationships among short-term historical data and intention
estimation. Using the properties of the dependencies of nodes
in the graphical model, the joint distribution among the
data can be separated into several conditionally independent
distributions, which eases analysis and computation. Besides
the structure of the PGM, our method does not require other
human-designed parameters or cost functions. We rely on
real driving data to parametrize this model. In addition, the
model does not assume a perfect perception system; instead,
it takes direct measurement of positions, and uses filtering
and smoothing methods to obtain an optimal estimate of
latent state, i.e., locations and speeds. Although in this paper,
we focus on ramp merging, the intention estimation can also
be extended to various cooperation situations, such as lane
changing and stop sign traversal.

III. PGM-BASED INTENTION ESTIMATION

A. Structure of PGM

In our previous methods [15], [16], speed information
plays an important role for intention estimation. However,
there are few sensors that can directly output accurate speed
measurements. For instance, Radars can measure an object’s
range rate, which is only considered valid if the object is
running right in front of or behind the sensor. Otherwise, the
range rate is the projected speed along the direction between
the sensors and the object. To avoid the limitations of
existing speed sensor and make the system more feasible for
commercial application, instead of directly sensing speeds,
we keep an array of location observations, and smooth out
speeds as well as locations (having actual speeds can further
enhance estimation). In the graphical model (Fig. 2), only
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Fig. 2: The graphical model of ramp merging considering position
observations and intentions. O nodes are positions for the merging
car relative to the end of the auxiliary lane, and are the direct
output of sensors; X is the latent state estimated by smoothing and
it consists of S, V nodes for positions and speeds; The I node is
the intention. The number of required observations and states is
determined based on experiment.

location nodes Oi are observable. The observation is the
relative location of the target with respect to the end of the
merging ramp; I is the intention node; latent nodes Xi are
the state of the merging car, which is expected to have an
optimal estimation. It consists of nodes S, V : Si are the true
locations; Vi nodes are speeds after smoothing. Compared
with the model in [15], [16], the proposed model does not
include Time-to-Arrival nodes, since their information can
be derived from location and speed nodes.

B. Estimating intentions from observations

Based on the observations, the model is expected to output
probability of intentions, i.e.,:

P (I|O,X) (1)

where I is the intention and O,X are arrays of observations
{Oi}, state {Xi} which contains the estimated distances
to the merging point {Si}, and estimated speeds {Vi}.
According to the structure of the graphical model, I and O
are conditionally independent given X. Therefore, (1) yields
the same probability which is stated in [15]:

P (I|X) (2)

From the graphical model, the state Xi has the Markov Prop-
erty given intention. Thus (2) can be further simplified by
assuming X to be multi-variable and uniformly distributed:

P (I|X) ∝ P (X|I)P (I)

P (X|I) = P (X1, X2, ..., Xn|I)

= P (X1|I)P (X2|X1, I)...P (Xn|Xn−1, I)

(3)

Since the initial state X1 can vary regardless of the intention,
here we assume X1, I are independent, thus P (X1|I) =
P (X1). Since there is no preference for X1, it can be

assumed to have a uniform distribution, namely P (X1) = α.
To prevent underflow, log-likelihood is used:

logP (X|I) = α

n∑
i=2

logP (Xi|Xi−1, I) (4)

The estimated intention is:

I∗ = arg max
I

logP (I|X) (5)

There are only two intentions to be considered: yield and not
yield, i.e., P (X|I = Y ) and P (X|I = N). The probability
distribution P will be learned directly from training data,
which will be introduced in Section IV. The problem remains
finding the best estimate of X.

C. Smoothing from the observations

Instead of measuring the speeds, the model relies on lo-
cation measurements, and then derives speeds using filtering
and smoothing. As typically the locations cannot be perfectly
measured from sensors, it is necessary to estimate their true
values. Since the model collects a certain number of location
observations, all of these data can be utilized to smooth the
estimation of true values, i.e., estimating Xi = (Si, Vi), 1 ≤
i ≤ n using a series of observations Oi.

P (Xi|O1:n) (6)

According to [17], [18] the predicted distribution of time step
i+1 by adapting Bayesian optimal smoothing is:

P (Xi+1|O1:i) =
∑
Xi

P (Xi+1|Xi)P (Xi|O1:i) (7)

And the smoothing estimation of the state at any time step
i < n is:

P (Xi|O1:n) = P (Xi|O1:i)
∑
Xi

P (Xi+1|Xi)P (Xi+1|O1:n)

P (Xi+1|O1:i)

(8)
With a proper edge condition, i.e., P (Xn|O1:n) which will
be discussed in the following paragraphs, every past state
can be solved by iteratively evaluating (8).

Here, we assume the distribution of the state at any time
step given that the full observation is a Normal Distribution,
i.e.,

Xi|O1:n ∼ N(Xi|M,P) (9)

Then the Bayesian smoothing equations in (7) and (8)
become a Rauch-Tung-Striebel smoother (RTS smoother,
which is also called the Kalman smoother). The speed part
of the maximum a posteriori of the state will be taken as the
condition of the intention I’s estimate. The RTS smoother
consists of two steps:

1) The Forward Prediction: The Forward Prediction step
using a Kalman Filter to update the mean Mi and the
covariance Pi of the distribution, as well as the Kalman Gain
Gi:

M−
i+1 = AMi,

P−
i+1 = APi+1A

T +Q,

Gi = PiA
T [P−

i+1]−1

(10)
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Fig. 3: On-ramp from Ventura Boulevard to US-101 freeway with
an auxiliary lane (the lane with gray arrows in the figure). Merging
vehicles can merge onto the main road between Pstart and Pend in
the auxiliary lane. Pend is used for the reference point with which
the relative distances can be calculated.

where A is the motion model of the Kalman Filter, which
will be specified in the following section. Q is the covariance
for the process noise,

A =

[
1 ∆t
0 1

]
, Q =

q∆t
3

3

q∆t2

2
q∆t2

2
q∆t


2) The Backward Recursion:

M̂i = Mk +Gk[M̂i+1 −M−
i+1],

P̂i = Pi +Gk[P̂i+1 − P−
i+1]GT

k

(11)

where the ·̂ indicates the smoothed variables. The backward
equations start from the last step, where M̂n = Mn, P̂n =
Pn. Note that the result M̂ contains all optimal states, which
is an array of location and speed tuples, X = (S, V ).

D. Intention Estimation Procedure

The Smoothing procedure (Equation. 8, 11) will be called
before every evaluation step (Equation. 5), with a new
observation received and the earliest observation dropped.
If I∗ = Not Yield, which indicates that the merging vehicle
tends to speed up and reach the merging point before the host
vehicle. Then the host vehicle activated a distance-keeping
model to keep a desired safe longitudinal distance to the
merging car that runs on the ramp. On the other hand, if
I∗ = Yield, the host car will ignore the merging car and
accelerate to the speed limit. Details refer to Alg. 1 in [15].

IV. TRAINING FROM DATA

In [4], prediction of the merging car’s behavior was based
on hand-coded cost functions and assumptions about the
probability distribution of acceleration. We instead use the
US-101 freeway real-world dataset NGSIM [19] to extract
a model of cooperative behavior between host and merging
vehicles. The dataset was obtained from overhead cameras
near the US-101 Ventura Boulevard entrance ramp in the Los
Angeles area, as shown in Fig. 3. Another similar dataset was
obtained by the same procedure on Eastbound of I-80 around
San Francisco Bay Area in Emeryville, CA.

Cars in this region were recorded and tracked during
morning rush hours (7:50 am to 8:35 am). The road segment
consists of 5 lanes and one entrance ramp at the beginning.

Vehicles in the bottom lane are considered host vehicles, and
counterparts on the entrance ramp are considered merging
vehicles. We preprocessed the data to filter out unrelated
cars that run in inner lanes without interacting with merging
vehicles, and used only those from the right-most lane and
the entrance ramp. Host vehicles are paired with merging
vehicles that are close to and temporally overlapped with
the host. There were 354 host-merge vehicle pairs in the
dataset. We use 1/3 of the total dataset for training, and the
remaining 2/3 for real-data testing. The goal of training is
to estimate the conditional probability of intentions given
historical state information, i.e., P (I|X1:n). The two classes
of data are used to train two different models, i.e., speed
transition probability distributions. We do not assume those
transition probabilities to be necessarily Gaussian or of other
parametric forms, unlike iPCB [4] which assumes a Gaussian
distribution to characterize the probabilities of all speed
changes. Note that there is no conflict between the transition
probabilities here and the Gaussian distribution assumption
in the RTS smoother (7). The transition models serve as
a probabilistic “control” model, whereas the noise in the
RTS prediction model is the uncertainty of the next state
given a control. SmoothPGM does not fully trust the speed
observation, which is different from the vanilla version of
PGM in [15]. Instead it also considers the location changes
and obtains the speed information by an optimal estimation.

V. EXPERIMENTAL RESULT

We conducted two sets of experiments in simulation: 1)
reacting to merging vehicles with real-data trajectories which
are extracted from datasets; and 2) reacting to merging
vehicles which use a manually designed motion strategy. We
perform the second set of tests to evaluate the generality of
our method with respect to differing merging car strategies
and a broader range of initial conditions (speeds and relative
location). It should be emphasized that even though we
programmed the strategy of the merging car in the second
experiment, the host car does not know the strategy or true
intention of the merging car. All the host car can do is
observe the state of the merging car and estimate its intention
by using our model. We compare our new algorithm with the
following methods:

1. ACC merging, a non-cooperative method that distance-
keeps to the merging car if it is closer to the merging
point;

2. Slot checking, which is adopted from the Urban Chal-
lenge [1].

3. iPCB, which is proposed in [4].
4. PGM-G, which uses the proposed PGM structure, but

assumes a Gaussian Distribution for the speed transition
probability, like iPCB [4].

5. PGM, which is proposed in [15].
6. smoothPGM, which is proposed in this paper.

We use three criteria (as shown in Table II) to verify the
performance of these algorithms: 1) failure rate based on
number of collision scenarios; 2) average minimum distance
with the host and the merging car when the host passes the
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TABLE I: Features of the US-101 and I-80 datasets

Dataset Ramp Length SMS [20] Num. of Pairs.
m m/s (mph)

US-101 640 12.4 (27.7) 354
I-80 503 14.2 (31.3) 452

TABLE II: Statistical results for different methods

US-101 I-80 Designed Designed Cycle
Method Data Data Test I Test II rate

% D(m) % D(m) % % ms

ACC 17.6 22.2 16.5 7.0 13.3 6.8 0.05
Slot 14.8 22.8 10.4 10.3 2.4 4.2 N/A

iPCB 19.3 23.7 15.8 13.7 0.9 1.2 0.20
PGM-G 20.1 24.3 11.3 14.6 0.9 1.8 0.51

PGM 8.7 25.8 7.6 16.4 0.4 0.2 0.08
smoothPGM 3.6 25.5 5.3 17.4 0.3 0.2 0.08

merging point; 3) average computation time (for successful
cases only). The first two criteria deal with safety; the third
with efficiency. Vehicles on the main road and ramp have the
same task: they should cooperate to merge together safely
and efficiently. In our work, we initially put the autonomous
vehicle on the main road, and expect proper cooperative
driving w.r.t. the merging-in vehicles from the on-ramp.

A. Experiments with real data

To validate the learned model on real data, we use the
remaining 2/3 of the US-101 dataset and the full I-80
dataset [19] for testing. Obviously, no collisions occur in
the real data. The main idea for this test is to compare
the performance of the new method with that of previous
methods. None of these autonomous methods are as capable
as a human driver, but we expect to improve upon them.
The setup and traffic conditions are shown in Table I. Ramp
Length here is the length of the on-ramp plus the auxiliary
lane (distance from Pstart to Pend in Fig. 3). Since the
data were collected during morning rush hour, the average
speeds are fairly low. Here we use Space-Mean-Speed
(SMS) [20], the total distance traveled by vehicles over the
total traveling time of these vehicles, to represent average
speed. There is traffic congestion, so those are not typical
highway speeds and there is traffic congestion. We do not
consider the interaction between adjacent vehicles in the
host lane but only cooperation between cars in the host and
merging lanes. We only extract merge/host vehicle pairs,
and treat them individually to train our model. There are 354
pairs of merging-host pairs in US-101, and 452 pairs in I-80.

The host car uses each of the methods in the “Method
Column” for intention estimation and LQR for lower-level
control, and we apply real trajectories to the merging cars.
In a given test, the merge car replays a real trajectory from
the dataset, and the host vehicle’s start position and speed
are also taken from the dataset. We then run our proposed
PGM method to estimate intention of the merging car and
apply the LQR control model. The failure rates are shown
in Table II in the “US-101 Data” and the “I-80 Data”

columns. smoothPGM has the lowest failure rate, and does
well on I-80 even though it was trained on US-101. In
tests of different datasets, the D(m) columns show average
distances between the host vehicle and the closest merging
car when the host passes the merging point. smoothPGM
has the highest average distance (it has similar D(m) with
PGM), which is an indication of its greater safety. There
are two reasons that make smoothPGM outperform our
previous approach (PGM), which are highly related to the
design of the proposed model: 1. smoothPGM does not rely
on a fixed merging point. Since the merging point of PGM
is fixed and it ignores the effect of the auxiliary lane, there
are merging cars which run beyond the assumed merging
point, resulting in a negative or undesired measurement
(distance-to-merge); 2. The proposed method smooths out
the speeds from location measurements instead of directly
trusting noisy speed measurements.

B. Experiments with manually designed merging strategy

To test the generality of our algorithm against a different
merging behavior, we applied a manually designed merging
strategy. The intention estimation and control part of the host
vehicle remained unchanged. We implemented an aggressive
strategy for the merging vehicle:

• If no car ahead, accelerate to speed limit.
• If the host car is driving ahead, distance-keep to it.

In the following two tests, after setting up initial states in
different ways, the merging car applied our designed strategy,
and the host car used the 5 different models including PGM
to react.

1) Designed Test I: The initial states of the merge and
host vehicle were taken from the datasets. This test shows
the performance of our method under a different merg-
ing strategy. Column “Designed Test I” shows the result.
smoothPGM also has the lowest failure rate here. iPCB and
PGM-G have the same failure rate, because iPCB relies
heavily on accurate merging-car acceleration, which can be
easily calculated according to the designed merging strategy.
The PGM-G does not perform as well as the PGM and
smoothPGM, since it also uses the Gaussian assumption
which is used in iPCB. iPCB and PGM-G tend to have
similar estimations. As expected, except for ACC, where the
failure rate dramatically dropped compared with the real data
tests because the strategies are implemented in the simulator
and there is no noise. The ACC merging is not a cooperative
method, so its failure rate does not decrease as much as that
of the other, cooperative methods.

2) Designed Test II: Based on the dataset and the road
geometry shown in Fig. 3, the origins of the main/ramp roads
are set to be 90 meters away from the merging point. The
merging car starts at the origin, and the host car’s position
varies from +5 to -5m at 1m intervals; giving 11 cases
of initial distances between two cars. Each car with initial
speed varies from 1 ∼ 25m/s at 1m/s intervals, so there
are 625 combinations of initial speeds. In total, there are
6875 different cases (note that this number cases is almost
9 times of the total cases in US-101 and I-80). This test
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Fig. 4: Collision rates vs. different numbers of speed nodes with
(red line) and without smoothing (blue line).

shows the generality and performance of our method over a
broader range of initial states. Column “Designed Test II”
shows the result. The smoothPGM and PGM still have the
lowest failure rates. For the same reasons as for “Designed
Test I”, previous approaches have similar failure rates as
the proposed method. These experiments indicate that our
proposed smoothPGM method has some degree of generality,
thus it can handle different types of behaviors and a broader
range of initial states (speeds and positions). However, there
are still some collision cases that cannot be handled by the
proposed algorithm. The algorithm is thus not as safe as a
human driver, and requires further improvement to obtain
zero collision rate.

C. Collision Rates vs. Number of Speed Nodes

To determine the proper number of state nodes, and inspect
the smoother’s effect on the estimation result, the proposed
method was applied to the dataset with varying number of
speed nodes and compared with a version which does not
have the smoothing step. In Fig. 4, the blue line is the
result for non-smoothing PGM, and the red one is for the
proposed method. Since more past information can help the
estimation, both lines go down as we increase the number
of state nodes to around 20, and then go up since redundant
nodes affect the sensitivity to the present dynamic changes.
For the same reason, the two lines converge to one collision
rate. Furthermore, the red line is below the blue line and
its minimum is lower than that of the blue one. This plot
indicates that by using the new approach, one can achieve
the same level of collision rate by using fewer state nodes
than the previous method, and also obtain a lower collision
rate with no more than 20 state nodes.

VI. CONCLUSIONS

Both real data and designed-strategy test results show
that the proposed method has the lowest failure rate and it
improves intention estimation in merging control, compared
with previous algorithms. Additionally, it lowers the demands
on the perception system by solely using location information
with smoothing. In the future, we will learn the dependency
among intentions and physical measurement from data and

experiments. We will also extend our method to estimate
long-term motion of merging vehicles, in the scenarios that
have more than one merging car, and take advantage of a
broader set of training data.
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