
Continuous Behavioral Prediction in Lane-Change for Autonomous
Driving Cars in Dynamic Environments

Chiyu Dong1 and John M. Dolan2

Abstract— It is essential for autonomous driving cars to
understand and predict other surrounding cars’ behaviors,
especially in urban environments, due to the high traffic
volumes and complex interactions. Modeling the interaction
among cars and their behaviors is challenging. The behavior
estimation of a surrounding car serves as prior knowledge
which helps the trajectory planner generate a path to perform
properly with the other vehicles. It closes the gap between the
high-level decision making and path planning. A new data-
driven method is proposed to extend our previous behavior
estimation. The new method predicts the continuous lane-
change trajectory of a target car by modeling the interaction
of all its surrounding vehicles’ trajectories, without over-the-
air communication between vehicles. The advantages of this
approach are: 1. Learning the interactive model from real data;
2. Giving long-horizon estimation of the continuous trajectory
of a target vehicle. The method is trained and evaluated on a
public dataset. The experimental results show that the proposed
method successfully predicts trajectories considering mutual
interactions among cars, with low error based on the ground-
truth.

I. INTRODUCTION
As the autonomous driving industry continues to grow,

more cars equipped with ADAS are running on public roads.
Major car makers have already released ADAS features for
their commercial vehicles. Those cars can perform Level 3
autonomy according to NHTSA’s “Levels of automation” [1].
Google and Uber have been testing their autonomous cars
in urban neighborhoods of cities such as Mountain View,
Pittsburgh and Phoenix. However, complex scenarios such as
intersections, ramp-merging and lane changes, which involve
cooperation, intention understanding and social behaviors
among traffic participants, still present challenges.

In addition to robust perception and control in the au-
tonomous car, these scenarios require the car to interact
suitably and socially appropriately with surrounding vehicles.
There are two aspects of social behavior: 1) Correctly under-
standing human drivers’ behaviors or intentions; 2) Reacting
properly, similarly to humans.

Fig. 1 depicts a lane-change scenario, where the lane-
changing trajectory of the target vehicle (Veh-s) highly
relies on the surrounding vehicles’ behaviors and recent
movements. Therefore, in order to accurately predict the
lane-change trajectory of one target vehicle, all surrounding
trajectories should be taken into account. Once knowing
other vehicles’ intentions or estimated trajectories, current

1Chiyu Dong is with the Department of Electrical and Computer
Engineering Carnegie Mellon University, Pittsburgh, PA 15213 USA.
chiyud@andrew.cmu.edu

2John M. Dolan is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213 USA. jmd@cs.cmu.edu

Fig. 1: A left lane change scenario. The red car (Veh-s) is the
target car, which may perform a left-lane change into the target
lane. Veh-st is an autonomous driving car, which needs to predict
the lane-change trajectory of Veh-s in order to achieve cooperative
behavior. The prediction considers the target car’s leading car (Veh-
f) and the following car (Veh-r); as well as the vehicles in the target
lane: the immediate left car (Veh-st), its leading car (Veh-ft) and its
following car (Veh-rt). The red dashed line indicates the predicted
path for the target car (Veh-s).

trajectory planners can generate proper reactions and paths
to cooperative with surrounding cars. For example, in Fig.1,
Veh-st is the autonomous driving vehicle, and Veh-s is a
surrounding vehicle with its left-turn signal on, indicating the
intent to perform a left lane change. The host vehicle (Veh-
st) should estimate when and how the target car (Veh-s) will
make the lane change, and then plan a proper trajectory to
react. If there is a predictive engine which gives surrounding
vehicles’ future movement (the red dashed lines), trajectory
planners can generate the corresponding path to perform
safely. The difficulties of the trajectory estimation are: 1)
modeling the mutual interactions among surrounding cars;
and 2) predicting the continuous trajectories based on the
interactions.

Our previous method [2] considers the interaction of
surrounding vehicles as a non-parametric regression and just
outputs discrete lane-changing start/end points. Based on the
previous method, the current paper extends the model to take
continuous trajectories as input and then output a continuous
trajectory as the prediction. The predicted trajectory of a
target car is the result of the mutual interaction among its
surrounding vehicles. The analysis of the interaction and the
future movement is based on a short period of observations
of all surrounding cars’ movements. The method works as a
regression that projects the current observations to produce
the estimations. No assumption is made about how these
cars interact with each other. The interactions among cars
are captured inside the regression, which is learned from
training data.

II. RELATED WORK

In the last decade, researchers have proposed numerous co-
operative planning algorithms for autonomous driving. Those

algorithms can be categorized into three major categories of
methods to address the social cooperation problem among
cars:

A Rule/Control-based methods, represented by earlier
slot-based lane-change decision making. In addition,
control-based algorithms are also considered.

B Optimization-based approaches, which optimize spe-
cific cost functions to guarantee proper behaviors.

C Probabilistic approaches, most of which use the
Markov Decision Process (MDP) and its extensions.

A. Rule-based methods

The rule-based methods are the most understandable and
straightforward approaches. They have been applied on test
vehicles since the 2007 DARPA Urban Challenge. For
example, a slot-based approach was implemented for the
CMU Boss vehicle merge behavior planner [3] . In the
planner, kinematic information is used to check merge-in
feasibility of each slot. Then the target slot is selected
from the set of feasible slots according to the context of
the maneuver, and predictions of others. The slot-based
approach is straightforward to implement and robust in
obvious or simple scenarios. However, the lack of prior
knowledge of surrounding vehicles’ intentions makes it hard
to estimate or predict their movements and corresponding
behaviors. Naranjo et al. [4] use fuzzy logic to make lane-
change decisions. The method is also straightforward and
simple to implement. However, it also does not consider
prior knowledge, reaction of other cars, or prediction. Lu
and Hedrick [5] formulated the cooperative behavior as a
platoon control problem. But the algorithm still requires a
“coordination layer” to select a pair of main-road cars to
interact.

B. Optimization-based methods

Liu et al. [6] and Nilsson et al. [7] applied Model
Predictive Control(MPC) to solve the cooperative planning
problem. In order to improve computational efficiency, the
MPC is converted to a convex optimization over its manifold.
The method is theoretically sound for performing coopera-
tive trajectory planning for robots. However, it still needs
a predictive engine to provide an initial estimate of the
other agents’ possible future trajectories and the associated
uncertainty. The Intelligent Driver Model (IDM) [8] based al-
gorithms optimized the ego-vehicle’s reactions in interaction-
required scenarios such as freeway entrances and turns in
intersections. The algorithms assumed that all other vehicles
applied the identical behavioral model (IDM). Given a pro-
posed intention for the ego-vehicle, the optimization algo-
rithms converge to a proper cooperative trajectory regarding
the reactions from the IDM-driven agents. This approach has
several problems. Firstly, the assumption of IDM does not
necessarily fit all vehicles, especially in interactive scenarios.
Secondly, the IDM relies on several parameters which require
hand-tuning. Thirdly, IDM is one of the most robust distance-
keeping models, but interactive scenarios involve various

interactions other than car-following, such as yield or not-
yield reactions.

C. Probabilistic methods

Probabilistic methods form the largest percentage of solu-
tions to lane changing or cooperative driving. Montemerlo
et al. [9] integrated lane-changing behavior into Stanford
Junior’s global path planner, which is an instance of dynamic
programming (DP). In fact, the problem is formulated as
optimizing a variant Bellman equation, which implicitly
follows the MDP framework and value iteration. Each action
is assigned a penalty cost. The lane changing behavior
is a penalty term in the cumulative cost function which
is optimized by the DP. However, the algorithm does not
consider other traffic participants. Galceran et al. [10] make
decisions depending on the probability of past trajectories of
all traffic participants. Both of them report discrete actions
such as left-lane-change, right-lane-change etc., which can
be used as an upper-level module in our method. Dong et
al. [11] detect whether the other car will merge in by using
PGM. However, this method only provides binary output of
whether a car is likely to yield or not yield.

Ulbrich et al. [12] and Wei et al. [13] proposed an
online Partial Obervable Markov Decision Process (POMDP)
for lane-change using real-time belief space search [14].
However, to achieve real-time performance and use a sim-
ple POMDP framework, they discretized state and action
spaces. To avoid discrete states, Bai et al. [15] proposed a
continuous-state POMDP using a belief tree, and the model
was applied to navigating intersections. However its actions
are discrete and represented by a generalized policy graph
(GPG). Seir et al. [16] proposed an online and approximate
solver for a continuous-action POMDP, but only tested on toy
problems. The POMDP solutions above still need manually
designed probabilistic transition models and reward func-
tions. Kuefler et al. [17] used Generative Adversarial Net-
works to mainly imitate and estimate single-lane behaviors.
Qiao et al. [18] used reinforcement learning to model the
interaction behaviors among vehicles and decision making
for autonomous driving cars in intersections. Sadigh et al.
[19] establish the transition models by (inverse) reinforce-
ment learning, but their solutions are limited to the specific
scenario. Chen et al. [20] solve the sequential prediction of
the trajectory by using Long Short-Term Memory (LSTM).

Our method serves as a predictive engine which provides
trajectory estimations. The estimated trajectory then helps the
motion planner to make a desired path in dynamic environ-
ments. The trajectory estimation is based on an interactive
model that captures mutual influences among all surrounding
cars. The model is optimized from real training data.

III. METHOD

A. Model the trajectory prediction as a function

In our proposed method, the interactive trajectory predictor
is formulated as a function of the related surrounding cars.
In Fig. 1, the trajectories of all related surrounding cars and
the target car are taken as the input. Considering Veh-s is

the target car, whose trajectory needs to be estimated, the
related surrounding cars of the target car include the leading
car (Veh-f) and the following car (Veh-r) in the current lane,
and the immediate neighboring car (Veh-st) in the target
lane and its leading (Veh-ft) and following cars (Veh-rt). The
method outputs the predicted lane-change trajectory, which
is represented by a continuous expression of the trajectory.
Intuitively, the predictor acts as a mapping from past tra-
jectory to the future trajectory. More precisely, F: X → B
maps a collection of surrounding trajectories (X ∈ X) to a
future trajectory (b ∈ B). (X and B are respectively the input
and output trajectory spaces, and X, b are corresponding
elements in the two spaces. Details will be discussed in the
next paragraph.) However, the model of the regression is
hard to define; moreover, the input and output are of high
dimension or even continuous. Mathematical tools in the
Reproducing Kernel Hilbert Space (RKHS) provide feasible
and theoretically sound ways to construct the regression
without explicitly designing the model. The regression is
considered as a mapping in RKHS and the following sections
introduce a way of constructing the regression from data.

B. Construct the trajectory predictor model in RKHS.

Marinho et al. [21] introduced the reproducing Kernel
Hilbert Space (RKHS) representation for trajectory planning.
In this work, Gaussian Radial Basis Functions (RBF) are
used to represent a trajectory, followed by a functional
gradient to optimize a cost function to traverse through static
obstacles or manipulate a high-dimensional arm. The idea
has the potential to solve prediction and planning problems in
dynamic and cooperative scenarios. We follow the framework
to extend our previous work from estimating discrete values
to the prediction of the continuous trajectory. Instead of
using functional gradient to find the optimal solution, our
method is based on RKHS non-parametric regression and
a prior dataset. The result is a continuous representation of
the predicted trajectory. In addition, our method has a closed-
form solution, without using gradient descent.

A function f in a Reproducing Kernel Hilbert Space H
can be represented by a linear combination of the kernel:
f(·) =

∑
αiKxi

(·), and this kernel has the reproducing
property: f(x) =< f,Kx >, which is essential to RKHS.
The kernel makes it possible to evaluate the function without
an explicit definition of the function in the high-dimensional
functional space [22]. Recalling the discussion in Section III-
A, a trajectory predictor is then a function F : X → B, which
maps a vector of trajectories (X ∈ X) to a future trajectory
(b ∈ B). X is a coordinate space which contains vectors of
N surrounding vehicles’ past trajectories X

def
= {xi}N1 , xi ∈

IRT. T is the length of the relevant historical poses. The input
contributes to all elements in the output vector. Using Γ =
{X}Ni as the training set and Xi as a training sample, then
F(Γ) = {[f1(X1), ..., fD(X1)], ..., [f1(XN), ..., fD(XN)]}.
The output range B ⊆ IRD contains the representation of the
predicted trajectory. The dimension of the range (the output
domain) is D > 1, and this function is a vector-valued
function. The kernel which is mentioned in the paragraph

above is no longer a scalar-valued function but a matrix-
valued one, i.e., X × X → IRD×D,

K(X,U) =


k(X,U)1,1 · · · k(X,U)1,D
k(X,U)2,1 · · · k(X,U)2,D

... · · ·
...

k(X,U)D,1 · · · k(X,U)D,D

 (1)

The Representer Theorem [23], [24] preserves the repro-
ducing property for the matrix-valued kernel,

F (X) =

N∑
i=1

K(Xi, X) ·αj , αj ∈ IRD (2)

The · operator is the normal inner product in Euclidean
Space, and α is a ND-dimensional coefficient. Note that
because the prediction function F is constructed into the
RKHS, F is continuous and can be represented by a linear
combination of a set of basis functions. The functions are
unknown to us, and the exact form of the behavior gener-
ator function is also less interesting; instead, its evaluation
given input trajectories is more important. Since we do not
explicitly know the form of the function and in order to ap-
proximate the evaluation, we use non-parametric regression
from the data in the RKHS, which is defined by the kernel
above.

C. Non-parametric regression for trajectory prediction in
RKHS

In order to construct the function for realistic prediction,
it should be estimated from data and properly evaluated for
given input. Note that we do not explicitly define the form of
the function; instead, we use a linear combination of kernels,
as mentioned in Equation 2. Once the kernel is determined,
the only parameter to be optimized is the coefficient α.
Therefore, the approximation becomes minimizing the regu-
larized empirical error:

f̂ = argmin
f∈H

N∑
i=1

(bi − f(Xi))
2 + λJ(f) (3)

where (Xi, bi) is training input and desired output, and J(f)
is the penalty term to prevent over-fitting. The regularization
factor λ leverages the smoothness and accuracy of the
regression function. Here ||f ||H is used as the penalty term
(or the regulation term). According to [23], [24], there is a
closed-form solution to estimate the coefficients:

α = (K(X,X) + λNI)−1b (4)

Substituting the evaluation from Equation 4 into Equation
2 yields the prediction function f̂ . With a new input X ′

observed, the prediction b̂ becomes

b̂ = K∗(K + λI)−1b (5)

where b
def
= {bi}N1 is the collection of the training trajectory

samples. K∗ is the new kernel result given incoming input.
The (K+λI)−1b part can be pre-calculated offline given the
training samples. Only the K∗ will be re-evaluated with new
observations, and matrix multiplication is performed with the
pre-calculated (K + λI)−1b.

Fig. 2: A Trajectory of a lane-change target car in the dataset. The
green starred point is the cross-lane point of the trajectory, and
considered as the zero moment. The trajectory segments which are
10 seconds before and after the zero moment will be recorded as
the full lane-change trajectory of the target car.

D. Represent trajectories

B-splines are widely used in computer graphics to rep-
resent continuous curves or planes. In the RKHS context,
the B-spline representation can also be considered as a
finite kernel [25]. Unlike other infinite kernels, the feature
map of the B-spline kernel is easier to obtain, i.e., the
parameters of a B-spline, including its knots and coefficients.
In addition, a B-spline representation also preserves C2
(curvature) continuity regardless of the interpolation of noisy
raw trajectory data points. The B-spline results in a smooth
and controllable trajectory. The smoothness and feasibility
of a trajectory is essential for the autonomous driving car.
Therefore, the elements of the gram matrix in Equation (1)
can then be calculated from the inner product of the feature
map in the RKHS,

k(X,U)i,j =< φ(X), ψ(U) >H (6)

where φ(·) ψ(·) are the feature map of the B-spline repre-
sentation.

IV. EXPERIMENTAL RESULTS

Real trajectory data from NGSIM[26] (US-101 and I-80
subsets) are used for training and testing in the experiments.
Lane-change scenarios are extracted from the real data, and
organized into groups. As shown in Fig. 1, each group
contains one host car (Veh-s) and five surrounding cars,
i.e., Veh-f, Veh-r, Veh-rt, Veh-ft, Veh-st. As shown in Fig.
2, the trajectory of each car in the group is recorded from
10 seconds before to 10 seconds after the host car (Veh-s)
crossing the lane-marking.

TABLE I shows the total number of trajectories for each
car type in the lane-change scenarios in the dataset. Segments
of trajectories from all participants before the host car starts
turning towards the target lane are transformed to B-spline
form β. Two seconds of historical trajectories are used for
input. The prediction is the future trajectory in the next 2s
after obtaining the historical observations.

TABLE I: Number of the trajectories in the dataset for each vehicle.

Vehicle s f r rt ft st

No. 870 705 764 214 233 43

Fig. 3: Examples of the prediction procedure. The black trajectory
is for the target vehicle; other colors indicate surrounding vehicles’
trajectories. It shows an exmaple of right lane change. The X-axis
is the longitudinal direction; the Y-axis is the lateral direction; the
Z-axis is the time horizon. Dashed straight lines in the X-Y plane
are lane dividers. The dashed curved line with orange dots in the
X-Y plane are the 2-D projected paths for the target vehicles.

The timestep is 0.1s, and in total the horizon of the
predicted trajectories is 2s.

Fig. 3 shows an example to illustrate the prediction pro-
cedure, as well as the input/output information. The method
will predict a future trajectory of a target vehicle which is
surrounded by at most 5 nearby vehicles. The target vehicle’s
trajectory is represented by the black line in each sub-figure,
and the surrounding cars’ are labeled by other colors. The
highlighted segments (thicker parts along each trajectory)
are used for the input of the method, which is the past 2
seconds of observations of all historical trajectories. To better
illustrate the motion of the target vehicle, 2D paths (without
temporal information) are also show as the dashed curves
in the X-Y planes in Fig. 3. The segments between two
orange dots are the 2D projection of the expected outputs.
The expected outputs are the predicted trajectories of the
target vehicles in the next 2 seconds. Instead of directly using
the noisy raw data, trajectories are smoothed piecewise and
fitted into B-splines.

A. Statistical Results

For a clear discussion and illustration, the results are
separately visualized in longitudinal-time (Y-t) and lateral-
time (X-t) domains. This separation helps the analysis of the
spatial-temporal features of the predicted trajectories. Fig.
4 visualizes the tendency of the mean errors and standard
deviations along the future time horizon. The X-axis starts
from 2 seconds since the trajectory of 0 to 2 second is the
input, so that the prediction starts at the 2-second mark.
TABLEs II and III show the exact errors and standard
deviations at selected time steps. Fig. 4a shows the mean
errors and standard deviations of the predicted trajectory

TABLE II: Mean error (m) at given timestep for a predicted
trajectory of a target car comparing with the groundtruth.

2.3 s 2.6 s 2.9 s 3.2s 3.5s

TA, longitudinal 0.409 0.998 1.595 2.204 2.089
RKHS, longitudinal 1.425 3.551 5.672 7.951 9.925
RKHS, lateral 0.052 0.103 0.147 0.196 0.251

TABLE III: Standard deviation (m) at given timestep for a predicted
trajectory of a target car comparing with the groundtruth.

2.3 s 2.6 s 2.9 s 3.2s 3.5s

TA, logitudinal 0.504 3.207 8.850 18.11 30.92
RKHS, longitudinal 0.871 2.141 3.381 4.597 5.794
RKHS, lateral 0.051 0.101 0.145 0.195 0.250

comparing with the ground-truth and one baseline algorithm:
Timed Automata(TA) [27]. TA is a learning-based algorithm
to understand interactions between vehicles and then output
a short-horizon prediction of future movement of a target
vehicle. The TA model here is also trained from the same
dataset. The red line with circles is the mean error curve
from the proposed method; the red area depicts its standard
deviation of the prediction along the time horizon. The green
line with stars is the mean error curve, which is generated
by the TA algorithm; the green area depicts the standard
deviation. Both TA and the proposed method have increasing
mean errors. But the mean error of TA is closer to zero. As
shown in the first and the second row of TABLE II, the mean
error of TA is almost 1 meter and 7.9 meters less than that
of the proposed method at 0.3s and 1.5s, respectively. One
possible reason that the proposed method has relatively large
non-zero mean error is that the coefficients of the b-spline
are treated equally. But the small error of the coefficient for
the cubic term of the spline can heavily affect the shape,
therefore results in a larger drift. However, the standard
deviation of TA grows dramatically as the time horizon
increase, which highly affects the stability and robustness
of the prediction. As shown at the first and second row of
TABLE III, the standard deviation of TA is about 1 meter
and 25 meters larger than that of the proposed method at
0.6s and 1.5s, respectively. TA does not consider the long-
horizon interaction, so it results in larger deviation than that
of the proposed method.

Fig. 4b shows the mean error and standard deviation of
the proposed method in the lateral direction comparing with
the ground-truth trajectory when the target car makes the
lane change. The solid blue line with triangles is the curve
for mean errors along the time dimension, and the blue area
shows the standard deviation. The TA algorithm does not
explicitly consider the lateral direction. Thus the trajectory
prediction in the lateral direction is only compared with the
ground-truth in the dataset. The mean error and standard
deviation grow as the time horizon increases. According to
the third row in TABLEs II and III, the mean error and the
standard deviation at the 1.5-second mark of the prediction
are 0.251 and 0.250 meter, respectively.

B. Individual Examples

Fig. 5 shows an individual example scenario for the
trajectory prediction in the lateral direction. The red line with
circles is the prediction result. The green line with triangles
is the ground-truth trajectory from real data. The blue line
with stars is the error between the estimation and the ground-
truth trajectories at each timestamp. Since the algorithm
takes the first 2 seconds to collect historical observations,
i.e., keeps track of all surrounding vehicles’ trajectories, the
prediction of the target car’s trajectory starts from the the 2-
second mark. The predicted trajectory and the ground-truth
are close before 3s, and then they begin diverging. The error
does not exceed 0.05m until the 3.5s timestamp. The largest
error appears at the last timestamp, with the value of 0.23m.
The result is consistent with the statistical results which are
shown in Fig. 4b and TABLE II.

V. CONCLUSIONS

In this paper, we enhanced our previous non-parametric
data-driven method to model interactions among vehicles and
estimate their future trajectories, especially in a lane-change
scenario. At most five surrounding vehicles are considered
having mutual interactions with the target car in the scenario.
Surrounding vehicles’ past trajectories are considered in the
prediction model. The predicted trajectory is continuous. The
experimental results show that the proposed method provides
continuous trajectory estimates with lower error than other
methods, in terms of mean error and standard deviation at
given future timestamps. The lack of training data for specific
cases results in failure cases. In the future, more dynamic
environments (inconsistent numbers of surrounding vehicles,
in different scenarios) and trajectory representations will be
studied to perform accurate behavioral understanding and
trajectory prediction.

REFERENCES

[1] N. H. T. S. Administration et al., “Preliminary statement of policy
concerning automated vehicles,” Washington, DC, pp. 1–14, 2013.

[2] C. Dong, Y. Zhang, and J. M. Dolan, “Lane-change social behavior
generator for autonomous driving car by non-parametric regression
in reproducing kernel hilbert space,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 4489–
4494.

[3] C. R. Baker and J. M. Dolan, “Traffic interaction in the urban
challenge: Putting boss on its best behavior,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE, 2008, pp. 1752–1758.

[4] J. E. Naranjo, C. Gonzalez, R. Garcia, and T. De Pedro, “Lane-change
fuzzy control in autonomous vehicles for the overtaking maneuver,”
IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 3,
pp. 438–450, 2008.

[5] X.-Y. Lu and K. Hedrick, “Longitudinal control algorithm for auto-
mated vehicle merging,” in Decision and Control, 2000. Proceedings
of the 39th IEEE Conference on, vol. 1. IEEE, 2000, pp. 450–455.

[6] C. Liu, C.-Y. Lin, Y. Wang, and M. Tomizuka, “Convex feasible set
algorithm for constrained trajectory smoothing,” in American Control
Conference (ACC), 2017. IEEE, 2017, pp. 4177–4182.

[7] J. Nilsson, M. Brannstrom, E. Coelingh, and J. Fredriksson, “Lane
Change Maneuvers for Automated Vehicles,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–10, 2016.

[8] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

(a) Errors and standard deviations in the longitudinal direction. (b) Errors and standard deviations in the lateral direction.

Fig. 4: Statistical results of the mean errors and standard deviations for the proposed method and Timed Automata comparing with
ground-truth, at each future timestamp (from 2.0 to 4.0 second).

Fig. 5: An individual example for the trajectory estimation in the
lateral direction. The X-axis is the timestamp. The left y-axis is
the lateral position (corresponding to the red and green lines). The
right orange y-axis is for the error (corresponding to the blue line).

[9] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The stanford entry in the urban challenge,” Journal of field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[10] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction: Theory and experiment,” Autonomous Robots,
2017, in Press.

[11] C. Dong, J. M. Dolan, and B. Litkouhi, “Intention estimation for ramp
merging control in autonomous driving,” in 2017 IEEE 28th Intelligent
Vehicles Symposium (IV’17), Jun. 2017, pp. 1584 – 1589.

[12] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision
making for lane changes in fully automated driving,” in 16th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC
2013). IEEE, oct 2013, pp. 2063–2067.

[13] J. Wei, J. M. Dolan, J. M. Snider, and B. Litkouhi, “A point-based mdp
for robust single-lane autonomous driving behavior under uncertain-
ties,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 2586–2592.

[14] S. Paquet, L. Tobin, and B. Chaib-draa, “Real-time decision making

for large pomdps,” in Conference of the Canadian Society for Com-
putational Studies of Intelligence. Springer, 2005, pp. 450–455.

[15] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in
the continuous space: A POMDP approach,” The International Journal
of Robotics Research, vol. 33, no. 9, pp. 1288–1302, 2014.

[16] K. M. Seiler, H. Kurniawati, and S. P. N. Singh, “An online and
approximate solver for pomdps with continuous action space,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 2290–2297.

[17] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in Intelligent
Vehicles Symposium (IV), 2017 IEEE. IEEE, 2017, pp. 204–211.

[18] Z. Qiao, K. Muelling, J. M. Dolan, P. Palanisamy, and P. Mudalige,
“Automatically generated curriculum based reinforcement learning for
autonomous vehicles in urban environment,” in Intelligent Vehicles
Symposium (IV), 2018 IEEE. IEEE, 2018, pp. 1233–1238.

[19] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 66–73.

[20] Y. Chen, “Learning-based lane following and changing behaviors for
autonomous vehicle,” Master’s thesis, Carnegie Mellon University,
Pittsburgh, PA, May 2018.

[21] Z. Marinho, A. Dragan, A. Byravan, B. Boots, S. Srinivasa, and
G. Gordon, “Functional Gradient Motion Planning in Reproducing
Kernel Hilbert Spaces,” pp. 1–17, Jan 2016.

[22] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[23] M. A. Alvarez, L. Rosasco, N. D. Lawrence et al., “Kernels for vector-
valued functions: A review,” Foundations and Trends R© in Machine
Learning, vol. 4, no. 3, pp. 195–266, 2012.

[24] C. A. Micchelli and M. Pontil, “On learning vector-valued functions,”
Neural computation, vol. 17, no. 1, pp. 177–204, 2005.

[25] L. Song, J. Huang, A. Smola, and K. Fukumizu, “Hilbert space
embeddings of conditional distributions with applications to dynamical
systems,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 961–968.

[26] NGSIM, “U.S. Department of Transportation, NGSIM - Next genera-
tion simulation,” http://www.ngsim.fhwa.dot.gov, 2007.

[27] Y. Zhang, Q. Lin, J. Wang, and S. Verwer, “Car-following behavior
model learning using timed automata,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 2353 – 2358, 2017, 20th IFAC World Congress.

