
Thesis
Optimal control of compliant bipedal gaits and

their implementation on robot hardware
William C. Martin
CMU-RI-TR-19-25

May, 2019

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Hartmut Geyer, Chair
Chris Atkeson
Stelian Coros

Jan Peters, TU Darmstadt

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2019 William C. Martin

Abstract
Legged animals exhibit diverse locomotion patterns known as

gaits, which are capable of robustly traversing terrains of variable
grade, roughness, and compliance. Despite the success of legs in
nature,wheeled solutions still dominate the field of robotics. State-
of-the-art humanoid robots have not yet demonstrated locomo-
tion behaviors that are as robust or varied as their biological coun-
terparts. While humans use a wide range of dynamic motions to
ensure stable locomotion, most bipedal robots either reject exter-
nal disturbances without changing gait or fall. Modern model-
based control schemes often target individual gaits rather than re-
alizing multiple behaviors within a single framework. Recently,
researchers have proposed using the spring mass model as a com-
pliant locomotion paradigm to create unified controllers for walk-
ing and running on bipedal systems. Although initial studies have
revealed policies capable of transitioning through different gaits,
most of these control laws are designed empirically using heuris-
tics. Furthermore, these controllers have not yet been demon-
strated on physical hardware, and thus their utility for real-world
machines remains unclear.

This thesis investigates the optimal control of simplified bipedal
point-massmodels fordesigningunifiedwalking and running con-
trol policies. We examine the theoreticallymaximumperformance
these models can achieve and evaluate their utility for controlling
higher-order robot hardware. We hypothesize that it is not neces-
sary to hand design these policies using heuristics. Instead, exist-
ing numerical optimization tools can generate approximate glob-
ally optimal policies, which can be used to find parametric control
laws. We then attempt to transfer these low-dimensional plans
onto a physical bipedal robot using a model-based controller to
embed the underlying simplified model. We show that this con-
trol methodology leads to stable locomotion across several differ-
ent gaits on the ATRIAS biped robot.

Acknowledgments
I would like to thank my advisor Hartmut Geyer and colleague

Albert Wu for their help and support with this work. Their dedica-
tion to solving complex legged control problems has been a strong
motivation for me during this thesis. I would also like to thank
mycommittee members, ChrisAtkeson, Stelian Coros, and Jan Pe-
ters for their helpful comments and affable conversations. Special
thanks to Jonathan Hurst and his entire team at Oregon State for
designing an incredible legged system. Working with ATRIAS for
several years has given me a special appreciation for robot hard-
ware. I have also had the pleasure of working and interacting with
many friends and colleagues throughout graduate school; thank
you all. Finally, thank you Akshara, Martha, Mom, and Dad. I can-
not emphasize enough how impossible all of this would have been
without you.

Contents

1 Introduction 1
1.1 Barriers to progress . 1
1.2 Summary of Goals and Approach . 4

1.2.1 Computing an Optimal Control Law 5
1.2.2 Comparing Performance Metrics 6
1.2.3 Transferring to Real-world Bipedal Robot Hardware 9

1.3 Contributions . 10

2 Background 13
2.1 The Spring Mass Model . 13

2.1.1 Early Biomechanical Studies 14
2.1.2 Control of The Spring Mass Model for Running 15
2.1.3 Unification with Walking and Gait Transitions 19

2.2 Optimal Control for Legged Locomotion 20
2.2.1 Comparison of Approaches . 21
2.2.2 Applied to Bipedal Robot Hardware 25

2.3 Control Realization on Hardware . 27
2.3.1 Methods of Embedding Center of Mass Behaviors 27
2.3.2 The Lack of Controlled Gait Transitions for Bipedal Robots 28

3 Optimal Locomotion Policies for Point Mass Models 31
3.1 Choosing a Dynamics Model . 33
3.2 Choosing Problem Boundaries . 36

3.2.1 Virtual Leg Stiffness . 37
3.2.2 Virtual Leg Touchdown Angle 38
3.2.3 Virtual Leg Compression . 38
3.2.4 Horizontal and Vertical Center of Mass Velocity 39
3.2.5 Step Length . 40

3.3 Choosing an Optimization Framework 41
3.3.1 Candidate Optimization Methods 42
3.3.2 Semi-Lagrangian Dynamic Programming 44

3.4 Algorithm Implementation Details 49
3.4.1 Cost Functions . 49
3.4.2 Continuous-Time Algorithm 51

3.4.3 Discrete Gait Event Algorithm 52
3.4.4 Common Pitfalls and Acceleration Methods 54

3.5 Results on Point Mass Models . 57
3.5.1 Continuous-Time Optimal Control Solutions 57
3.5.2 Discrete Gait Event Optimal Control Solutions 58
3.5.3 Comparisons with baselines . 62

4 Parametric Insights into Optimal Locomotion Policies 65
4.1 Fitting Parametric Linear Models . 66

4.1.1 Choice of basis functions . 68
4.2 Linear value function models . 70

4.2.1 Results . 70
4.3 Discussion . 70

4.3.1 Minimum time . 77
4.3.2 Minimum leg force . 78
4.3.3 Minimum positive mechanical power 79

5 Deadbeat SpringMass Model Running on ATRIAS 81
5.1 Control Approach . 83

5.1.1 Implicit regulation of system energy 85
5.1.2 Explicit stabilization of trunk orientation 86
5.1.3 Overview of control flow . 88

5.2 Implementation . 89
5.2.1 Estimation of CoM and contact states 90
5.2.2 Stance control . 92
5.2.3 Flight control . 94
5.2.4 Online adaptation of return map 97

5.3 Hardware Experiments . 98
5.3.1 Undisturbed running . 98
5.3.2 Tracking SMM deadbeat velocity targets 100
5.3.3 Rejecting unexpected ground changes 102

5.4 Conclusion . 105

6 Dynamic Programming Policies on ATRIAS 109
6.1 Extending the Control Framework for Walking 109

6.1.1 Modeling Double Support . 110
6.1.2 Executing Optimal Motion Plans 111
6.1.3 Contact Detection . 114

6.2 Demonstrating Optimal Gaits on the ATRIAS Biped 114
6.2.1 Executing online generated plans on the hardware 116
6.2.2 Executing offline plans on the hardware 118

6.3 Discussion . 120

7 Conclusion 123
7.1 Overview . 123
7.2 Contributions . 124
7.3 Future Research Directions . 125

Bibliography 127

Chapter 1

Introduction

1.1 Barriers to progress

Legged animals are capable of executing an extremely diverse range of dy-

namic locomotion behaviors across a myriad of different environments. For

example, many bipedal birds, such as the Indian runner duck (Fig. 1.1), use

their legs to walk, run, jump, and swim over both land and sea. Despite the

flexibility of legs in nature, wheeled solutions are much more widespread

among motorized mobility platforms today, owing to their remarkable effi-

ciency across continuous flat surfaces and high reliability. Indeed, a human

consumes less energy per unit distance riding a bicycle than walking or run-

ning down a road. It is reasonable then to question the utility of mechani-

cal legged platforms and perhaps even wonder why wheeled animals aren't

prevalent. We can assuage these concerns by considering three aspects of

locomotion environments which can favor legs over wheels. First, the com-

pliance of a ground surface has a direct impact on the rolling resistance of a

wheel. Soft compliant surfaces are inefficient for rolling objects while hard

terrains, such as road pavement, are highly efficient. Second, the maximum

Chapter 1. Introduction 2

Figure 1.1: Indian Runner ducks display various motion behaviors while lo-
comoting, including walking, running, jumping, and swimming. They are
adept at moving through unstructured terrains often found on farms. Pho-
tograph available at [99] under a Creative Commons license [35].

vertical height which can be traversed by a rigid wheel is limited to half of its

radius. This makes it exceptionally difficult for small wheeled platforms to

climb stairs or street curbs. Third, theminimum turning radius of avehicle is

determined by the geometry of itswheel base. Typicalwheel layouts prevent

exceptionally tight turns that are often required in cluttered environments,

such as a dense forest or messy hallway. Legs offer a suitable mobility solu-

tion when these three terrain features prove limiting and a small platform

footprint is desirable. This is often the case in human environments which

cannot always be prearranged for robots and must be traversed with arbi-

trarily arranged obstacles.

Given the increased diversity of feasible terrains for legged platforms, it

may come as some surprise that legs are not commonly found on modern

commercial robots. Nature has managed to produce robust legged mobility

solutions, but human engineering is still catching up. Several factors make

building robotic legged platforms exceedingly difficult. Sophisticated iner-

Chapter 1. Introduction 3

tial sensors offer highly accurate measurements, but far fewer signals than

biological proprioception systems. State-of-the-art electromagnetic and hy-

draulic actuators have only recently begun to provide high enough power-

to-weight ratios for executing dynamic movements on human-size robots.

The control-side of the problem isn’t any easier; legs introduce significantly

higher complexity than wheels. Rather than just one rotating degree of free-

dom, the average articulated leg possesses several. Legged motions are fur-

ther complicated by the repeated foot-ground impacts necessary to produce

forward motion. One of the most complex features, however, is the capa-

bility of legged systems to exhibit distinct dynamic motions using a single

physical system. The gait of a legged system can be altered by changing

the cyclical pattern of certain system variables, often the sequence of limb

phases or the relationship between potential and kinetic energy. This intro-

duces a large number of different behaviors which can be switched between

as desired. Several hypotheses have been studied in order to explain why bi-

ological systems choose to transition between gaits. Commonly investigated

factors include optimization of energy usage [4, 21, 54, 71, 94], decreases in

muscle exertion [56, 91], storage of mechanical energy [33, 65], and injury

prevention [18, 46]. However, it is most likely that no single aspect alone trig-

gers gait transitions but rather a combination of several determinants [105].

The ability to perform different gaits is an essential component of using legs

to locomote across a wide range of speeds and environments.

The success of highly varied gaits on biological systems has not carried

over into theworld of bipedal robots. State-of-the-art humanoid robots have

been unable to match the same levels of gait robustness and diversity as

demonstrated by humans and animals. While humans are capable of var-

ious highly dynamic recovery maneuvers, most legged robots must either

Chapter 1. Introduction 4

immediately reject an external disturbance or fall. Furthermore, modern

model-based control schemes typically target individual walking or running

patterns, which makes switching between them difficult and often reliant on

heuristics. In order to match the performance of biological systems, bipedal

robots must be capable of naturally targeting numerous arbitrary motions

within a single controller. The spring mass model (SMM), commonly re-

ferred to as the spring loaded inverted pendulum (SLIP), offers a potential

framework for studying both walking and running using a single simplified

model. This compliant locomotion paradigm has been used abundantly

over the last 30years to design robust running andwalking controllers. Stud-

ies have revealed that the SMM can exhibit an exceedingly wide range of

gaits akin to biological systems. Thus, researchers have recently proposed

unified controllers for the SMM that can generate walking, running, and gait

transition behaviors.

Gait transition policies that have been proposed for the SMM rely on

heuristics and empirical design to simplify the problem. As a result, it is un-

clear to what extent these current controllers maximize robustness or meet

other optimality criteria. Additionally, these gait transition policies have not

progressed beyond simulation and have not yet been evaluated on physical

hardware. The utility of the SMM for transitioning between gaits on real-

world machines is currently uncertain.

1.2 Summary of Goals and Approach

The goals for this thesis fit broadly into two categories: examine the theo-

retical limitations of the bipedal spring mass model and evaluate the prac-

tical utility of this model for controlling multiple gaits on a physical bipedal

Chapter 1. Introduction 5

robot. At a high level, we aim to understand the maximum locomotion ro-

bustness attainable by the bipedal spring mass model and how well this can

be transferred to a real-world robot. This boils down to answering the fol-

lowing questions.

1. What is the continuous-time optimal control for a bipedal point-mass

model when the system has few constraints?

2. How does the performance of this continuous-time control compare to

existing heuristic parametric policies?

3. Do these optimal simplified model controllers transfer usefully to real-

world bipedal robot hardware?

By answering these questions we expect to improve the current understand-

ing of gait transitions within the bipedal spring mass model framework and

the extent of their practical utility.

1.2.1 Computing an Optimal Control Law

Approaches to solving a continuous-time optimal control typically fall into

two categories: Bellman’s equation of optimality or Pontryagin’s maximum

principle. At amathematical level, Bellman-style approaches involve solving

a nonlinear first-order hyperbolic partial differential equation referred to as

the Hamilton-Jacobi-Bellman (HJB) equation. Pontryagin-style approaches,

on the other hand, aim to find a specific characteristic curve of the related

HJB equation. Although both routes pose the same optimization problem,

this work focuses on the Bellman approach to compute control laws rather

than time-based trajectories. Ultimately, this means our goal is to solve a

rather difficult partial differential equation.

In a perfect world our aim would be to find an analytic solution corre-

Chapter 1. Introduction 6

sponding to the globally optimal control for our specified problem. The

desire for continuous-time analytical representations often suggests using

Pontryagin’s principle, which can solve “academic-strength” optimal con-

trol problems [96]. However, nearly all problems of meaningful complex-

ity omit an analytical solution, often due to non-integrable dynamics. Bar-

ringnewbreakthroughs inmathematics, we are resigned to accept numerical

techniques for approximating the solution. While in a strictly mathematical

context these techniques result in a suboptimal control, we can adjust the de-

gree of approximation and error bounds on the solution. Unfortunately, this

limits the complexity of problems which we can satisfactorily solve without

introducing large approximation errors. As we increase the dimensionality

of a system’s state and action space,wemust use sparser function approxima-

tors in order to keep the problem computationally tractable. This is because

the size of these spaces, and therefore required computation time, grows

exponentially with problem dimensionality (Fig. 1.2). In this work, we aim

to solve a low-dimensional bounded approximation of the globally optimal

control using a semi-Lagrangian dynamic programming approach with vast

amounts of data.

1.2.2 Comparing Performance Metrics

Our analysis of controller performance aims to evaluate both the limits of

the underlying simplified model and howwell it will operate on a robot plat-

form. Ideally we wish to measure robustness of the bipedal spring mass

model at both theoretical and practical levels. We aim to use metrics that

are easily quantified and readily applicable to any control policy.

The control policies in this work are presented as global feedback con-

Chapter 1. Introduction 7

Problem Dimensionality

C
o
m

p
u
ta

ti
o
n

T
im

e

Figure 1.2: In general, the computation time required to solve an optimal
control using numerical methods increases exponentially with the model
dimensionality. This is due to the increased size of state space which must
now be considered. This issue can be mitigated by increasing the coarseness
of function approximation, but at the cost of increased solution error.

trollers, which map any given state of the system to a control action. For

this reason, the first measure of theoretical robustness we will use is the size

of the set of states which can be stabilized to a unique target state. This is

often referred to as the backward reachable set, as it includes all states which

can reach a target state using admissible controls, or the basin of attraction

when considering a dynamical system. This metric is easy to measure for ar-

bitrary policies and is a natural outcome of solving minimum-time “target

problems”. If the backward reachable set happens to include all of state-

space, then the control can theoretically reject any state disturbance. How-

ever, practically speaking these sets and control laws must be solved over

a bounded area of state space. In the context of gait transitions, a natural

extension of this measurement is the overlap between basins of attraction

for two different gait controllers. For example, we can quantify how much

of state-space is capable of spontaneously transitioning from a walking to

a running controller (Fig. 1.3). The larger the intersection between stabiliz-

able walking states and stabilizable running states, the more robust we can

Chapter 1. Introduction 8

Figure 1.3: The overlap between multiple reachable sets, or basins of attrac-
tion, represents a useful robustness measure for gait transition policies. Here
is a hypothetical example in state space illustrating a pair of reachable sets
for walking, R§, and running, R§\. Each policy has a distinct target state, T§ or
T§\. The larger the overlapping region, the most robust we can consider the
gait transition policy.

consider the policy.

Evaluating the practical performance of a theoretical robot controller re-

quires us to consider disturbances that are important to robotics in general.

These break down into three primary categories: sensory input, internal

models, and control loop delay. Sensor measurement noise is a common

occurrence on any real system and has a direct impact on the state estima-

tion necessary for feedback control. For a simulated state-space model, this

disturbance can be represented as errors in the input state used for control.

Internal model uncertainty has a significant effect on model-based robot

control because it is often required for both state-estimation and control-

ling system dynamics predictably. This can be easily recreated on a sim-

ulated system by altering a model’s inertial parameters. The final area of

Chapter 1. Introduction 9

control loop delay is endemic to digital control systems which run on nearly

all modern robots. A combination of loop frequency, digital delay, and plant

dynamics have a direct impact on the available actuation bandwidth. With-

out this disturbance, a model’s control inputs can be changed arbitrarily fast.

This can be simulated by either introducing intentional time-delays into the

control loop or passing the control through a low-pass filter. Each of these

three disturbances is important for understanding the practical utility of a

theoretical controller for a physical robot.

1.2.3 Transferring to Real-world Bipedal Robot Hardware

The final objective of this thesis is to transfer the computed theoretical opti-

mal controls onto a physical bipedal robot. The hardware platform used for

this implementation will be CMU’s ATRIAS (Fig. 1.4), a human-size bipedal

robot developed by the Dynamic Robotics Laboratory at Oregon State Uni-

versity [58]. In order to translate simplified model behavior onto the ma-

chine, we use a model-based control mapping approach that embeds the

low-dimensional model on a higher order system. This approach was origi-

nally developed for spring mass model running on ATRIAS [129], but is ex-

panded here to include gaits with double support phases as well. Although

we keep the approach general enough to be used on other biped robots with

light legs, several specific decisions will be motivated by the ATRIAS hard-

ware. To this end, this thesis contains a mixture of ideal control design de-

cisions along with practical considerations for real systems.

Chapter 1. Introduction 10

Figure 1.4: We use theATRIAS biped as a target hardware platform for evalu-
ating our control algorithms. This robot roughlyapproximates the dynamics
of a simplified model due to its light legs and concentrated mass.

1.3 Contributions

The goal of this thesis is twofold. First, we aim to find a theoretically optimal

gait transition policy for the bipedal spring mass model using mathemati-

cal optimization. Second, we aim to evaluate how this policy translates to

real-world legged systems. This process will address the following scientific

question. What are the limits of theoretical robustness and practical utility

of the bipedal spring mass model for walking and running? To answer this

inquiry, we consider the following two hypotheses.

Chapter 1. Introduction 11

Part 1: Optimal Control of SimplifiedModels

Hypothesis: It is not necessary to hand design low-dimensional locomotion

controllers using heuristics. Existing numerical optimization tools can gen-

erate approximate globally optimal policies, which can be used to find para-

metric control laws.

Major Components:

1. Optimal control of a bipedal point-mass model with continuous time,

state, and action using dynamic programming methods to numerically

generate approximate globally optimal policies.

2. Design of a low-dimensional Poincare controller able to freely switch

betweenflight, single support, anddouble support phases forbothwalk-

ing and running gaits without explicit user input.

3. Aperformance comparison of different controllers generated using dy-

namic programming, including both discretely and continuously ap-

plied control.

Part 2: Implementation on Robot Hardware

Hypothesis: Optimal control laws for the bipedal spring mass model can be

transferred to robot hardware using a model-based controller to embed the

underlying simplified model. This will lead to stable walking, running, and

gait transitions between for the ATRIAS biped robot.

Major Components:

1. Implementation and experimental evaluation of springmassmodel dead-

beat running on the ATRIAS biped using a model-based controller.

2. Extension of the model-based controller to follow general center-of-

Chapter 1. Introduction 12

mass plans for multiple gaits including walking, running, and transi-

tions between.

3. Implementation and experimental evaluation of springmassmodelwalk-

ing and running gaits on the ATRIAS using optimal control laws from

dynamic programming.

Chapter 2

Background

2.1 The SpringMass Model

Over the last 30 years the spring mass model has evolved from a simple pre-

dictor of human running mechanics to a unified control framework for a

variety of bipedal gaits. Although there exist numerous feasible parameter-

izations for walking and running, the spring mass model is important be-

cause it offers a single low-dimensional descriptor of essential degrees-of-

freedom for legged locomotion. Furthermore, control policies have been

identified within this framework that are both superstable and capable of

blindly traversing frequent and large ground height changes. These fea-

tures have two important implications. First, the spring mass model is sim-

ple enough that it can serve as a locomotion template for high degree-of-

freedom robot morphologies without limiting extensibility for other high-

level goals. Second, the framework lends itself well to mathematical opti-

mization approaches that scale poorly with the size of state or action space.

In this section, we will discuss the history of research on the spring mass

model in order to describe the current state-of-the-art and highlight future

Chapter 2. Background 14

research that remains to be done.

2.1.1 Early Biomechanical Studies

Compliant elements have a long history of providing simple models for

complex mechanical phenomena, such as atomic forces and fluid mechan-

ics. Experimental evidence that the center of mass motion during human

running could also be described using elastic mechanisms began to emerge

in the 1960s and 1970s. Cavagna and colleagues measured the mechanical

work performed during humanwalking and running formore than a decade

using force plates and cameras [28, 30, 32]. These studies observed that the

variations in potential and kinetic energyof the center of masswere substan-

tially in phase during running, similar to those of a bouncing rubber ball.

This conclusion led to further hypotheses about the mechanisms of elastic

energy storage in the human body [31]. Concurrently, these results were ex-

tended to include bipedal and quadrupedal animals [33], cementing elastic

energy storage as a fundamental concept for legged running mechanics.

Early attempts to produce a mathematical model of biomechanical run-

ning focusedonusing spring laws to representvertical ground reaction forces

during stance. Alexander and colleagues began this work in the 1970s by

modeling the running motions of kangaroos [2] and humans [1, 5] with com-

plex cosine equations which could correspond to springs. Around the same

time, McMahon and Greene presented a spring-damper model to describe

vertical leg behavior during running [78]. McMahon simplified this model

several years later byusing a single spring mass system to represent the verti-

cal center of mass motions during mammalian running [76, 79]. This “mass-

spring” model was shown to be a good predictor of vertical dynamics during

Chapter 2. Background 15

both bipedal and quadrupedal gaits. However, none of these early spring-

based models attempted to describe horizontal running dynamics.

It wasn’t until the late 1980s that spring mass models were presented as

predictors of both horizontal and vertical locomotion dynamics. Although

not widely known at the time, van Gurp and colleagues were the first to pub-

lish such a spring mass model for describing the hindlimb motion of a walk-

ing horse [124]. This was shortly followed by two independent studies that

presented themodern dayplanar springmassmodel as a predictorof human

running dynamics. Blickhan [19] investigated which model parameters led

to biologically plausible running gaits. McMahon and Cheng [77] focused on

how spring stiffness varied with different gait features. These two works in-

troduced the two-dimensional spring mass model for running and inspired

a decade of biomechanical studies confirming its predictive utility across a

wide spectrum of animals [3, 20, 36, 44, 45, 47, 49].

2.1.2 Control of The SpringMass Model for Running

Before discussing running controls that have been developed for the spring

mass model, we will more formally introduce the model. The planar spring

mass model for running (Figure 2.1a) consists of a point mass m attached to a

massless spring leg with stiffness k and rest length l0. During the flight phase,

the point mass follows a purely ballistic trajectory. The flight dynamics gov-

erning the center of mass motion are

mẍ = 0,

mz̈ = −mg,
(2.1)

Chapter 2. Background 16

m

k, l0

(a) The spring mass model for run-
ning.

m

k, l0

(b) The spring mass model for walk-
ing.

where (x, z) describes the Cartesian coordinates of the point mass and g is

the acceleration due to gravity. The system instantaneously transitions into

stance when the foot point touches the ground; the model does not consider

any slipping of the foot. Once in stance, the system behaves as an inverted

pendulum with an embedded spring. This results in the more complex cen-

ter of mass stance dynamics

mẍ = k
[
l0 (x2 + z2)−1/2 − 1

]
x,

mz̈ = k
[
l0 (x2 + z2)−1/2 − 1

]
z − mg.

(2.2)

The model exits stance and returns to flight after rebound once the leg has

fully extended back to its rest length.

Although the use of the spring mass model as a predictor of locomotion

dynamics has its roots in biomechanics, the model has found widespread

use in robotics as a template for designing and controlling running robots.

Raibert was the first to recognize that springy mechanisms could be used

to construct legged robots capable of running and hopping [93]. Through-

out the 1980s, his lab produced a number of successful monopedal, bipedal,

and even quadrupedal robots using pneumatic spring legs. Raibert’s lab also

studied these machines in simulation using both complex spring-embedded

Chapter 2. Background 17

rigid body models and the simple planar spring mass model [92]. Despite

these simulation studies, all of Raibert’s robots utilized an intuitive con-

trol policy based on legged locomotion insights. This control scheme fo-

cused on regulating three essential running gait quantities: body orienta-

tion, apex height, and forward velocity. Body orientation was handled with

a proportional-derivative controller to servo the torso in stance. Apex height

was regulated by applying a fixed impulse along the leg during stance. And

forward velocity was handled using a heuristic foot placement law for the

horizontal foot position

xfoot = xneutral + kẋ(ẋ − ẋ∗), (2.3)

where kẋ was an empirically tuned gain, ẋ was the robot’s forward velocity,

and xneutral was the neutral foot point that would generate zero net forward

acceleration. This last quantity was estimated as half of the previous stance

time multiplied by the forward speed, which approximately equals the hor-

izontal midpoint during a symmetric running stance.

The success of Raibert’s legged machines was shortly followed by a num-

ber of studies throughout the 1990s that formally investigated the control

and stability of spring mass model running. This began with McGeer, who

analyzed a three-link rigid body biped model with spring legs and spring

joints. He found which mechanical parameters led to passive periodic run-

ning andwhich mechanical parameters could be actively stabilized using hip

torque and leg thrust [74]. This analysis involved adjusting model parame-

ters p while numerically calculating the takeoff-to-takeoff return map R(s,p)

of the system using a five-dimensional state vector s. This technique of an-

alyzing a system’s return map is often referred to as Poincaré analysis and is

Chapter 2. Background 18

a common method of studying the stability of periodic spring mass model

gaits. By defining a Poincaré section as a single event in the gait cycle, the

corresponding return map explains how the dynamical system evolves from

cycle to cycle. Fixed points on the return map confirm the presence of sta-

ble periodic behavior, while points on the return map whose Jacobian eigen-

value lieswithin the unit circle confirm local asymptotic stability. Ultimately,

the shape of a return map is determined by both static model parameters p

and changing control inputs u. M’Closkey and Burdick used this technique

to evaluate the stability of Raibert’s planar hopper bymodeling a springmass

system with a nonlinear air spring along with Raibert’s apex height regula-

tion and foot placement algorithm [75]. Schwind and Koditschek expanded

on this analysis by investigating the system with only the foot placement al-

gorithm [103]. They chose the moment of apex during flight as the Poincaré

section, which can be fully described with just two state variables: vertical

height and forward speed. This study identified a method of increasing the

controller’s basin of attraction using a modified leg placement algorithm.

Numerous control policies for the spring mass model have been investi-

gated using Poincaré analysis but those which can be formulated using opti-

mal control are of particular interest. When a target Poincaré section state s∗

is specified given a current section state s, the controller can be formulated

as an optimization problem

u = argmin
u

∥∥∥s∗ −R(s,p,u)
∥∥∥ , (2.4)

which attempts to find the control input u that minimize the distance be-

tween the target and current state after one cycle. In the case of the running

springmass modelwith foot placement as input, control strategies have been

Chapter 2. Background 19

identified which bring this distance to zero after one step. This is often re-

ferred to as deadbeat control and has been used to create optimal running

controllers for the spring mass model [101]. Generalizations of this control

have led to swing leg retraction policies which remain deadbeat even in the

presence of unobserved ground height changes [110, 111]. These controllers

have also been extended beyond the sagittal plane to control running and

turning for the 3-D spring mass model [25, 26, 130].

2.1.3 Unification withWalking and Gait Transitions

The spring mass model can also be utilized to describe walking by including

a second massless spring leg (Figure 2.1b). While the flight and single stance

phase dynamics remain identical to those of the running spring mass model,

an additional set of dynamics equations is needed to represent the double

stance phase mẍ

mz̈

 =


x−x f1
l1

x−x f2
l2

z
l1

z
l2


k(l0 − l1)

k(l0 − l2)

 −
 0

mg

, (2.5)

where li represents the lengths of the two spring legs and x fi represents the

horizontal position of the two foot points. This extension allows the spring

mass model to exhibit both running and walking gaits within a single simple

mechanical system.

Despite early demonstrations of walking on Raibert’s bipedal spring mass

robots [55], spring mass model walking was not formally investigated until

the mid 2000s. Motivated by the inability of stiff leg models to truly predict

walking dynamics [50], Geyer and colleagues examined howa bipedal spring

mass model could be used instead [53]. They found that this compliant leg

system could demonstrate a wide range of gaits including both walking and

Chapter 2. Background 20

running. A later experimental study found that this model is capable of ac-

curately describing human walking at moderate speeds, but deviates at slow

and fast speeds [70].

Recently, the ability of the spring mass model to generate both walking

and running behaviors has sparked interest in how it can also be used to

study transitions between these gaits. Salazar and Carbajal were first to in-

vestigate if these transitions existed at a fixed energy level using only foot

placement controls [100]. They demonstrated that gait transitions could in-

deed be achieved over the course of several steps, but did not explore how

best to design a gait transition controller. This study also revealed that some

of these transitions policies required the system to enter grounded running,

a gait observed in humans and animals [79, 97]. Shahbazi and colleagues

further examined how gait transitions could be achieved when the bipedal

spring mass model was also allowed to change stiffness at certain events in

the gait cycle [112, 113]. They utilized optimal control across multiple return

maps to select spring stiffnesses and foot positions that quickly achieved de-

sired gait transitions. However, several biologically inspired constraints and

mathematical approximations were employed to simplify the optimization

problem.

2.2 Optimal Control for Legged Locomotion

The extensive use of Poincaré return maps to develop optimal control poli-

cies for the spring mass model can be attributed to both their ease of use

and repeatedly successful application. However, the power of Poincaré tech-

niques is limited by two factors. First, unless a closed form solution to the

return map is known, an exhaustive state and action space search is required.

Chapter 2. Background 21

As a result, the method extends poorly to systems with high dimensional

states or several control inputs. Second, although choosing a Poincaré sec-

tion collapses one of the state dimensions, it ultimately limits the control

policies that can be generated. For example, when midstance is chosen as

the point of analysis, the resulting control will never consider actions at dif-

ferent times in the gait cycle. This is acceptable in some cases, such as run-

ning, where deadbeat solutions exist for many states, but it can also limit the

controller performance when no single step solutions exist.

Ideally, we wish to solve spring mass model control as an optimal control

problem using tools that consider all of state space and scale well with prob-

lem dimensionality. Reinforcement learning is one tool that addresses how

a goal-directed agent can interact with its environment to optimize a nu-

merical reward. In general these methods involve computing a policy based

on a continual reward signal in order to maximize the reward in the long

run, represented as a value function. These techniques have been success-

ful within the computer graphics community, even with high dimensional

state and action spaces [86, 87]. In this section we will address how reinforce-

ment learning can be utilized to develop optimal controls for the springmass

model.

2.2.1 Comparison of Approaches

Although reinforcement learning has become popular in recent years, sev-

eral other approaches can also be used for attempting to find optimal control

policies. Due to the long historyof reinforcement learningwithin the field of

artificial intelligence, the classification of many optimal control methods is

not well defined. Thus, awide range of optimal control methods can be con-

Chapter 2. Background 22

sidered as part of reinforcement learning. The common root among these

methods is the introduction of the Bellman optimality equation in the 1950s

by Richard Bellman. Algorithms suitable for solving control problems using

this equation became known as dynamic programming algorithms [14]. Dy-

namic programming iswidelyused for solving general optimal control prob-

lems, but it suffers from what Bellman called the “curse of dimensionality”

because its computational complexity grows exponentiallywith the number

of state dimensions. Nevertheless, dynamic programming has been utilized

extensively along with many techniques to avoid this dimensionality issue.

Dynamic programming and reinforcement learning solve the same type of

problems, which makes it difficult to consider them as separate classes.

Dynamic Programming

Before considering how dynamic programming could be used to solve uni-

fied spring mass model control, we will first address the feasibility of a brute

force search. The bipedal spring mass model (Figure 2.1b) can be fully de-

fined at anypoint in the gait cycle using a sixdimensional statevector (x, z, ẋ, ż, x f1 , x f2)

where x f1 , x f2 describe the horizontal foot positions relative to the center of

mass. One additional variable is needed to store the gait phase (flight, single

stance, or double stance). There are many action parameterizations that can

be used, but one example that hasworkedwell for gait transitions is the three

dimensional vector defining the two spring stiffnesses and the next leg place-

ment angle. If each of these state and action vector quantities are coarsely

discretized into 10 bins, the system will have n = 106 states and k = 103 con-

trol actions. This corresponds to a total of kn = 103000000 possible policies that

would need to be evaluated.

Fortunately, dynamic programming allows us to solve this problem expo-

Chapter 2. Background 23

nentially faster than an exhaustive search. Popular methods such as policy

iteration or value iteration can iteratively find approximate optimal solu-

tions in polynomial time [117]. For instance, the computational complexity

of value iteration is O(n2k) per iteration. Despite this remarkable decrease in

complexity, conventional dynamic programming methods are still not fea-

sible in many cases due to the need to iterate over every state. One popular

extension is to use asynchronous methods which visit the states in any order.

This can be noticeably more efficient when the optimal solution remains in

a small subset of the state space.

Q-learning approaches

Tabular reinforcement learning methods, such as conventional SARSA or

Q-learning, can also be used to solve this problem efficiently using tempo-

ral difference learning. These algorithms, similar to dynamic programming,

iteratively improve their solutions by using previous estimates to generate

new solutions, a feature known as bootstrapping. These techniques do not

require a model and can be implemented online in an incremental fash-

ion. These tabular algorithms are provably convergent but are mathemati-

cally optimal only for truly discrete systems [117, 126]. When discretizing a

continuous-time system, these methods produce an approximation of the

true optimal solution.

One pertinent disadvantage of the methods discussed so far is that they

do not extendwell to continuous state and action spaces. Dynamic program-

ming can be improved in this case by randomly sampling actions over a con-

tinuous space [7]. Alternatively, approximate dynamic programming meth-

ods, such as fitted value iteration, offer compact memory-efficient represen-

tations of the value function or policy using function approximators [22].

Chapter 2. Background 24

Function approximators allow value functions to generalize single updates

across multiple states, but can introduce a bias and even prevent guarantees

of convergence. Nevertheless, function approximators have been widely

used to address continuous systems and have demonstrated exceptional per-

formance in practice.

Value function approximation is often accomplished using stochastic gra-

dient descent methods to minimize the mean squared value error (MSVE).

When a simple linear function approximator is used this can lead to a single

optimum. A typical linear function approximator is V̂(θ, s) = θTφ(s), where

θ represents the weight vector and φ(s) is a feature vector for state s. The

simple stochastic gradient descent update rule can be written as

θi+1 = θi + α(Ui − V̂(θi, si))∇V̂(θi, si), (2.6)

where α is the learning rate and U is the new function estimate. If U is an

unbiased estimate of the true value function and the function appoxima-

tor is linear, then this algorithm is guaranteed to converge to the discrete

problem’s global optimum [17]. Unfortunately, bootstrapping methods are

biased because they depend on the current weight vector θ. When temporal

difference methods are used with a linear function approximator, the gra-

dient descent algorithm instead converges to the TD fixed point, which is

within a bound of the optimum [117].

Policy gradients

Policy-gradient algorithms also leverage gradient descent in order to update

a functional approximation of the policy based on the gradient of a per-

formance metric [88, 118, 128]. One strong benefit of these methods is that

Chapter 2. Background 25

they allow continuous policies and action spaces to be utilized. Actor-critic

algorithms arise when policy-gradients are combined with explicit approx-

imations of the performance metric. The policy is referred to as the actor,

while the performance metric is the critic. This has the benefit of potentially

reducing variance of the gradient estimate compared to full Monte Carlo

samples.

One last reinforcement learning algorithm that is worth mentioning in

the context of legged locomotion is the continuous actor-critic learning au-

tomaton (CACLA) [125]. This algorithm has been particularly successful in

demonstrating dynamic legged locomotion behaviors in simulation [86, 87].

CACLA operates similar to policy-gradient actor-critic methods, but rather

than updating the actor in policy space it updates the actor in action space.

In addition, actor updates are only performed when the sampled action im-

proves the performance metric. This prevents the actor from moving to-

wards unsampled actions.

2.2.2 Applied to Bipedal Robot Hardware

Reinforcement learning has been applied to both simulated and real-world

systems for solving a variety complex dynamic tasks. Learning to walk on

bipedal robot hardware has been demonstrated numerous times using con-

ventional reinforcement learning techniques. Although the approach taken

in this thesis focuses on offline computation of control policies, many suc-

cessfulwalking controllers have been learnedonline by leveraging themodel-

free ability of reinforcement learning algorithms.

Benbrahim was one of the earliest to demonstrate using modern rein-

forcement learning methods to walk on a physical biped [16]. His doctoral

Chapter 2. Background 26

dissertation involved implementing an actor-critic framework using neural

networks on a small biped during the mid-1990s. He reduced the dimen-

sionality of the problem using central pattern generators (CPGs). Although

the robot he worked on utilized weak electric actuators and was attached to a

walker, it demonstrated a slowwalking gait after three hours of online learn-

ing.

CPGs have been used several times with reinforcement learning meth-

ods on biped hardware [39, 81, 84]. Researchers have utilized this approach

to demonstrate slow stable walking gaits on small humanoids after signifi-

cant numbers of trials. Tedrake and colleagues demonstrated walking from

actor-critic reinforcement learning on biped hardware without the use of

CPGs, but on a small passive dynamic walker outfitted with just two degrees

of actuation [122]. Morimoto andAtkeson demonstrated planarwalking on a

small five-link biped using reinforcement learning to approximate Poincaré

maps and value functions [82]. This system was capable of stable walking

within 100 trials.

A notable recent example of gait optimization on robot hardware is the

workbyCalandra and colleagues usingBayesian optimization [23, 24]. Bayesian

optimization is an alternative black-box optimizer that is particularly effi-

cient when policy evaluations are expensive, such as with robot hardware

trials. Thiswork is pertinent to this thesis because it addresses automatic gait

optimization on a small planar biped with spring legs. Bayesian optimiza-

tion may potentially learn more efficiently than reinforcement learning on

hardware, but the successful performance in this work shows promise for

gait optimization on springy robots.

Chapter 2. Background 27

2.3 Control Realization on Hardware

The reality of developing control policies for a virtual model is that it does

not directly transfer to hardware. Physical legged robots typically have more

degrees of freedom and more dynamics, which can require additional mod-

els and layers of control. This section will address how control policies have

been realized on humanoid robots in the context of simplified models and

gait transitions.

2.3.1 Methods of Embedding Center of Mass Behaviors

Heuristic strategies are some of the least complexyet best performing meth-

ods for translating a general center of mass behavior to robot hardware.

Raibert’s running machines [93] regulate their hopping height, and thus en-

ergy, using a fixed leg thrust force during stance coupled with a feedback

controller to stabilize body pitch. Similarly, Siavash and colleagues pre-

sented a bipedal walking controller on ATRIAS using a spring law with vari-

able rest length for energy regulation and a separate orientation feedback

controller [95]. The simple biped control (SIMBICON) framework [132] is

another heuristic strategy for walking and running that has been used to

demonstrate a variety of gaits on simulated systems. This framework com-

bines decoupled controllers for foot placement, torso regulation, and joint-

level position feedback.

Despite the success of heuristic controllers, they do not explicitly com-

pute the motion of the center of mass. Operational space control, also re-

ferred to as task space control, uses a full-order model of the system dynam-

ics to find the control inputs which best achieve desired accelerations [63].

This approach allows center of mass motion goals to be defined explicitly us-

Chapter 2. Background 28

ing accelerationswithout having to define individual joint trajectories. Quadratic

programming (QP) is a popular and effective way to formulate task space

control for high degree-of-freedom humanoid robots. This approach uses

numerical optimization to compute joint torques given a set of chosen tasks

prioritized for legged locomotion. Feng and colleagues used this approach

to track specific center of mass motions and centroidal momentum on an

ATLAS robot [48]. Several other groups have also used QP task space con-

trol on ATLAS robots to track quantities such as the instantaneous capture

point [64] and desired body coordinate frames [67]. This class of full body

controllers has even been utilized for tracking spring mass model foot place-

ment targets on simulated 3D humanoid robots [127].

The optimization involved in full body QP task space control typically

has high computational costs, and thus is only applied on the current time

step. The disadvantage of this approach is that it neglects future dynam-

ics of the system that could be leveraged. One technique for avoiding this

problem is to use a less complex, intermediate modelwith essential degrees-

of-freedom that can be efficiently simulated. For instance, Kuindersma and

colleagues precede their full body task space control with a time-varying lin-

ear quadratic regulator (LQR) to stabilize a simplified model [67]. Centroidal

dynamics models [69, 85] are an attractive choice of simplified model for

capturing the rotational dynamics of humanoid robots. This approach can

provide greater control over the angular momentum of legged systems.

2.3.2 TheLackofControlledGaitTransitions forBipedalRobots

Relatively few bipedal robots have demonstrated controlled gait transitions

between walking and running. Hodgins presented the earliest example of

Chapter 2. Background 29

controlled gait transitions on a planar two-legged machine [55]. This work

adopted an event-based heuristic strategy for switching betweenwalking and

running gaits. During the middle of the single stance phase, the leg was

either lengthened or shortened to transform between vertical walking and

running motions. Running was controlled using the classic Raibert hopping

approach, while walking used constant length legs and constant foot place-

ment without velocity feedback.

Honda’s humanoid ASIMO robot platform has demonstrated 3D walk-

ing, running, and transitions between using a model-based approach [119,

120]. Takenaka and colleagues designed ASIMO’s walking and running gaits

as cyclic trajectories for the zero moment point, feet, and upper body us-

ing simplified dynamics models. This approach relies on matching specific

boundary conditions between cycles to change gait patterns. Scientists have

also demonstrated model-based gait transitions on the MABEL [116] and

RABBIT [83] planar bipeds using hybrid zero dynamic frameworks. Walk-

to-run transitions are accomplished by blending the virtual constraint at the

end of thewalking gaitwith thevirtual constraint at the beginning of the run-

ning gait. Run-to-walk transitions rely on discretely switching to the walking

controller modified with a virtual compliant element. These strategies result

in gait transitions within one or two steps.

Gait transitions have also been shown in 3D using theATRIAS biped plat-

form [57]. Researchers at Oregon State University developed a heuristic con-

trol strategy that can transition from walking to running when the desired

forward velocity is increased beyond 2.0 m/s. This controller provides a

smooth, continuous transition between walking and running gaits, but does

not explicitly choose whether it walks or runs.

Despite this handful of gait transition examples, there are a considerable

Chapter 2. Background 30

number of humanoid robots that only target single gaits. Since gait transi-

tions have been successfully demonstrated on bipeds, it is reasonable to ask

why gait transitions controllers are not more common. The simplest expla-

nation is that many biped platforms do not yet have the necessary power

density to run. For example, the ATLAS robot that was used during the 2015

DARPARobotics Challenge weighs 150 kg. In order to generate running mo-

tions similar to a human, it needs to create peak vertical ground reaction

forces approximately three times its bodyweight. Thiswould require greater

than 4400 N of force to be generated within fractions of a second. The latest

version of this robot from Boston Dynamics is significantly lighter, weighing

just 75 kg, due to 3D printing techniques [38]. This robot has demonstrated

running and jumping with long flight phases. Bipedal robots and humans

alike must create very large ground reaction forces in order to run.

Chapter 3

Optimal Locomotion Policies for

Point Mass Models

Scientific advances in legged robot locomotion have led to an increased need

for understanding how legged systems transition between different gait pat-

terns. Although a significant amount of work has analyzed the capability of

local controllers near individual gaits [61, 89, 90, 93], less work has studied

the capability of global controllers spanning all gaits. Transient behavior that

occurs while transitioning between steady state gaits can lead to instability

and ultimately limits which transitions are feasible for real legged systems.

It is therefore important to ask two scientific questions about gait transitions.

First, what are the theoretical limits of transition control? This question in-

vestigates which gaits can be attained and which disturbances can be toler-

ated without failure. Second, what are the fundamental rules that govern

the control? This question identifies how features of the system state trans-

late into the control policy. Advancements in parallel computing allow us to

approach both of these questions using techniques from numerical analysis

and optimal control.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 32

Legged systems are capable of a diverse range of dynamic movement pat-

terns during locomotion. Today’s bipedal robots have demonstrated many

of these gaits and transitions between them using internal models of varying

complexity [55, 57, 83, 116, 119, 121]. Despite the ability of these locomotion

controllers to transition between walking and running, few studies have in-

vestigated the robustness of these transitions to disturbances. Furthermore,

it is not yet clear globallywhich robot states can reach these target gaits. Un-

derstanding both of these limitations will improve the reliability of bipedal

robot locomotion across multiple gaits by increasing the certainty of transi-

tions.

Evaluating the global set of reachable gaits for a legged system poses com-

plexity issues for high-dimensional robot hardware. A common approach

to make global analysis computationally feasible is to use low-dimensional

representative models of the system [34]. Bipedal robots are often described

using multiple simplified dynamics models, such as the linear inverted pen-

dulum (LIPM) for walking [60] and the spring mass model (SMM) for run-

ning [19]. Attempting to transition between different models can lead to a

sharp discontinuity in the dynamics. This limits the range of dynamic mo-

tions and increases the complexity of designing robust control policies. The

SMM, however, is also capable of describing walking [53] and gradual gait

transitions using foot placement [73]. Recently, Shahbazi and colleagues

have presented a unified SMM controller capable of rapid transitions be-

tween walking and running [112, 113]. By altering leg stiffness at specific

points during the gait cycle as well as foot placement, the system is capa-

ble of transitioning between gaits with different energy levels.

There are two primary limitations to existing SMM gait transition poli-

cies. The first is that they rely on a number of heuristic decisions made dur-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 33

ing the design process which constrain the set of control sequences that can

be made. These decisions includewhen to apply actions during the gait cycle

and what intermediate targets should be reached before the final goal. This

reduces the policy search space, so biomechanical observations are often

used to motivate design choices. The second limitation of SMM gait tran-

sition policies is due to the chosen control parameterization. Infrequently

varying the linear spring stiffness represents only a small subset of leg force

profiles that are potentially useful during gait transitions. Without compar-

ing to more general leg force policies, it is difficult to know how the chosen

parameterization affects robustness and state space coverage. In contrast,

our goal is to evaluate SMM gait transition policies that make no simplify-

ing control assumptions and thus correspond to the largest possible basin of

attraction for a bipedal point mass system.

In this work we globally analyze controllers for optimally transitioning

between walking and running on a simple bipedal point-mass system with

compliant legs. We focus on the SMM but generalize the control to allow

for continuously variable leg stiffnesses while maintaining a low problem di-

mensionality. We numerically generate approximate globally optimal poli-

cies that can achieve transitions in order to analyze their basin of attraction

and robustness to disturbances. We compare these policies with realistic pa-

rameterized control laws that can be more conveniently implemented on

robot hardware.

3.1 Choosing a Dynamics Model

Biomechanical studies have shown that bipedal walking and running are

both characterized by periodic vertical excursions of the CoM [33]. Simpli-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 34

fied models capable of both gaits must encode these oscillations into their

dynamics; leg compliance offers a compact representation. The bipedal

SMM uses compliance to reproduce a wide range of basic human locomo-

tion mechanics [53] with a low-dimensional state representation. The sys-

tem is modeled as a point mass with massless spring legs, which act inde-

pendently on the CoM during the stance phase. Conventionally, this system

is conservative and maintains a constant mechanical energy by only alter-

ing its foot placement at each footstep. This restricts the system to states

at a fixed energy level and therefore limits the range of achievable motions.

Researchers have investigated allowing the system energy tovarybymodify-

ing its spring forceswith variable stiffness and damping [104, 112]. The larger

control dimensionality can greatly increase the size of the policy space, and

potentially the policy performance, at the expense of increased problem

complexity. Rather than use heuristics to reduce complexity, our goal in

this work is to examine a large, unconstrained policy space that can produce

a wide range of gait transitions. Therefore, we focus on policies with contin-

uously variable spring stiffnesses that can produce arbitrary force profiles.

We parameterize the bipedal SMM with a mass m and two massless legs

of rest length l0. The coordinates of the point mass are denoted as (x, z) to

describe its horizontal and vertical position. We analyze the system during

flight using a 3 dimensional state vector, (z, ẋ, ż); during the single and double

support phases, this state is increased to 4 or 5 dimensions by the horizontal

foot positions, ∆x1 and ∆x2 (Fig. 3.1). The dynamics of this model are

ẍ

z̈

 = 1

m


∆x1

l1
∆x2

l2

z
l1

z
l2


F1

F2

 −
0g

 , (3.1)

Chapter 3. Optimal Locomotion Policies for Point Mass Models 35

Figure 3.1: A point-mass biped model with spring legs encapsulates three
distinct gait phases: flight, single support, and double support. These phases
have state vector dimensionalities of 3, 4, and 5 respectively. Although the
points of applied ground force change discontinuously after a phase transi-
tion, the center of mass state trajectory remains continuous due to the mass-
less limbs and feet. If the leg force profiles are constrained to begin and end
at zero, such as with ideal linear springs, the system acceleration will also be
continuous during phase transitions.

where g = 9.81m · s−2 is the gravitational acceleration, li = (∆x2i + z2)1/2 are the

leg lengths and Fi = ki(l0 − li) are the spring leg forces of stiffness ki during

stance and zero otherwise. Our analysis considers leg policies that control

landing angle during swing and continuouslyvary leg stiffness during stance.

The system is allowed to transition between its three distinct gait phases

(flight, single support, and double support) based on specific zero crossing

events corresponding to touchdown and takeoff. The takeoff events are trig-

gered by the value of ∆x2i +z2− l20 while the touchdown events are triggered by

the value of l0 sin(α) − z, where α is a chosen leg landing angle. The tolerance

of these zero crossing events is chosen to be 10−6s.

To summarize the above section, for a spring mass model, from a wide

range of possible actions, such as virtual stiffness, leg angle, damping, rest

length, we choose the following:

1. Virtual leg stiffness: Inspired from biological systems, virtual leg stiff-

ness can be used to regulate the energy of the system in a continuous

Chapter 3. Optimal Locomotion Policies for Point Mass Models 36

fashion.

2. Leg angle : The landing leg angle of attack at the end of swing.

3. Damping : In some experiments, we also include a linear or non-linear

damping term that also helps regulate the energy of the system.

For the state representation,we choose the followingparametrization, de-

pending on the phase of the system:

1. Flight phase: Height, forward velocity and vertical velocity (z, ẋ, ż)

2. Single support phase: Height, forward velocity, vertical velocity and

horizontal foot position with respect to the center of mass (z, ẋ, ż,∆x1)

3. Double support phase: Height, forward velocity, vertical velocity and

horizontal foot positionswith respect to the centerofmass (z, ẋ, ż,∆x1,∆x2)

3.2 Choosing Problem Boundaries

The dynamics of the bipedal SMM (equation 3.1) form a set of nonlinear

equations which constrain the search for optimal policies. This problem re-

quires a non-convex optimization over a continuous state and action space.

It is therefore necessary to bound the search domain with finite limits. If the

bounds are too large, the problem maybecome computationally intractable;

if the bounds are too small, the problem may ignore important solutions.

Thus, it is crucial to choose these bounds carefully to encapsulate all mo-

tions of the system that are pertinent to bipedal locomotion. Here we exam-

ine how state and action bounds were chosen in this work using justifications

from biology. Although the use of biological insights to direct our search is

somewhat antithetical to a heuristic-free approach, we use these guidelines

to select generous ranges covering most human walking and running gaits.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 37

3.2.1 Virtual Leg Stiffness

A key parameter of the spring mass model is the stiffness, k, of the virtual

spring leg connecting the foot point to the center of mass. It is reported

in theoretical simulation studies of the model and biomechanical experi-

ments attempting to fit to the model. However, there are three minor pitfalls

with using this data. First, the majority of these works only examine running

gaits and do not consider a walking SMM. Second, the range of reported val-

ues varies significantly between different studies; it is therefore important to

compare dimensionless stiffnesses scaled by mg/l0. Third, stiffness is com-

monly presented as either a vertically-aligned spring, leg-aligned spring, or

foot-to-CoM-aligned spring, so some care must be taken to understand how

these values relate to the SMM.

Blickhan simulated SMM stiffnesses as high as 180 mg/l0 but estimated

human running stiffnesses to be between 14 and 43 mg/l0 when running at

horizontal speeds of 3 to 9 m · s−1 [19]. McMahon and Cheng examined the-

oretical leg stiffnesses up to 120 mg/l0 for extreme velocities, but estimated a

much lower stiffness of 15.5 mg/l0 for typical human running [77]. Farley and

Gonzalez performed human running experiments at 2.5 m · s−1 while varying

stride frequency and found leg stiffnesses ranging from approximately 10 to

20 mg/l0 [45]. Arampatzis et al. performed detailed human running mea-

surements to find slightly higher stiffnesses ranging from approximately 30

to 45 mg/l0 for horizontal speeds between 2.5 and 6.5 m · s−1 [6]. Finally, al-

though few studies report walking stiffnesses, Lipfert et al. fit bipedal SMM

models to walking data and found stiffnesses of 48 to 34 mg/l0 at speeds of

1.0 to 2.6 m · s−1 [70]. Combining all of these results shows that most typical

human gaits involve virtual leg stiffnesses between 10 and 50 mg/l0.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 38

3.2.2 Virtual Leg TouchdownAngle

The touchdownangle, α, that thevirtual legmakeswith the horizontal ground,

sometimes referred to as the angle of attack, has a large impact on the time-

evolution of SMM dynamics. When examining biomechanical locomotion

data, this quantity should not be confused with the foot-to-hip angle, which

is often slightly more oblique given an upright torso. Naively, we can bound

this quantity between 0 degrees (i.e. foot directly in front of CoM) and 180

degrees (i.e. foot directly behind the CoM). A brief survey of papers which

simulate the SMM for running [77, 110] and for walking [53, 98] show that

nearly all forward locomotion solutions use touchdown angles greater than

40 degrees. If we further constrain the range using biomechanical running

and walking data from [70], we see that nearly all reported touchdown an-

gles are greater than 70 degrees. Choosing the upper bound to be the lower

bound reflected about the vertical, allows for symmetric motions backwards

and forwards. If we decrease the upper bound to be closer to 90 degrees, we

eliminate the solutions which step backwards or accelerate quickly.

3.2.3 Virtual Leg Compression

The state of the SMM can be conveniently represented in either Cartesian

coordinates, using horizontal and vertical foot positions, or polar coordi-

nates, using leg lengths and leg angles. Although both forms are valid, ensur-

ing that kinematic constraints are obeyed during stance is more straightfor-

ward when directly storing leg lengths. This avoids having to eliminate foot

positions which may exceed the model’s rest length, l0, when building dis-

cretized state space grids. This quantity can be bound by specifying a maxi-

mum leg compression. Lee and Farley presented center of mass trajectories

Chapter 3. Optimal Locomotion Policies for Point Mass Models 39

for human walking and running, which indicated vertical displacements of

approximately 8 cm during running and 3 cm during walking [68]. Gard et

al. also recorded center of mass trajectories during walking and found verti-

cal excursions of approximately 2 to 5 cm. [51]. These vertical measurements

provide a reasonable upper bound for the expected leg compression during

typical bipedal gaits.

3.2.4 Horizontal and Vertical Center of Mass Velocity

The translational velocity, [ẋ, ż], of the center of mass is an important quantity

for classifying gaits because it defines a point-mass system’s kinetic energy.

Although the presence of flight or double support phases can be used to label

gaits as running or walking, this definition incorrectly labels grounded run-

ning, sometimes called Groucho running [79], which has the same limb duty

factor characteristics as walking [97]. A dynamical distinction can be used to

resolve this by examining the fluctuations of potential and kinetic energy of

a biped’s center of mass (figure 3.2). Running occurs when both energies are

in phase with each other, such as with a bouncing rubber ball [30]. Walking

occurs when both energies are out of phase with each other, such as with a

rolling egg [29]. This definition even holds up during multi-step gait transi-

tions, where the relative energy phases suddenly switch [107].

Bounding the SMM translational velocities to search over is a simple mat-

ter of deciding how fast gaits should move and howhigh the system center of

mass should rise. A reasonable starting point for expected horizontal veloc-

ity is the preferred human walking speed of approximately 1.2 m · s−1 [28]

and the preferred human run-to-walk transition speed of approximately

2.0 m · s−1 [105]. Running up to 3.0 m · s−1 is often considered a slow jog-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 40

Figure 3.2: The dynamical classification of running andwalking gaits is based
on fluctuations in the kinetic (KE) and potential (PE) energies of a system’s
center of mass. Abipedal system is runningwhen these energies are in phase
and walking when these energies are out of phase. In this work we identify
a characteristic state at the start of single support belonging to each specific
gait. Target states which are rising at the onset of single support are consid-
ered to be walking, while target states which are falling at the onset of single
support are considered to be running.

ging pace and running at 6.0 m · s−1 is a fast running pace [62]. The limits of

vertical velocity can be based on the expected apex distance using standard

ballistic equations. A point-mass with upward velocity in the absence of ex-

ternal forces will rise a distance of ż2/2g before apex. If we combine this with

center of mass trajectory data [27, 68], we see that most vertical velocities do

not exceed 1.2 m · s−1.

3.2.5 Step Length

The final parameterwe must consider is how far apart the model’s feet can be

placed during the double support phase. The feet locations can alternatively

be stored as separate variables, however that option will introduce duplicate

and infeasible states of the system. Encoding the state with step length en-

sures distinct foot holds and consistent ordering of the state variables. The

double support SMM state can then be fully determined by combining step

length with each leg length to form a triangle. Note that the bounds must be

Chapter 3. Optimal Locomotion Policies for Point Mass Models 41

Symbol Typical Human Search Bounds Units

Leg Stiffness k 10 to 50 10 to 90 mg/l0
Touchdown Angle α 70 to 110 40 to 140 deg
Leg Compression ∆l 2 to 8 0 to 20 cm
Horizontal Velocity ẋ 1.2 to 6.0 -1.0 to 4.0 m/s
Vertical Velocity ż -1.2 to 1.2 -2.0 to 2.0 m/s
Step Length d 0.4 to 1.1 0.25 to 1.30 m

carefully set to obey the triangle inequality so that no two sides are less than

or equal to a third side.

There are several biomechanical studies involving human step length.

Sekiya et al. conducted experiments to measure the variability of step length

during humanwalking and found lengths ranging from approximately0.4 to

1.0 m [108]. Donelan et al. measured mechanical work during human walk-

ing while testing step lengths from 0.4 to 1.1 m [37]. Segers et al. recorded

step lengths during walk-to-run and run-to-walk transitions and measured

lengths of approximately 1.1 m [106]. We can combine these results to ob-

serve that typical human double support phases do not exceed step lengths

of 1.1 m.

3.3 Choosing an Optimization Framework

The optimal controls studied in this work fall into a class of optimization

problems involving continuous-time control trajectories applied to nonlin-

ear systems throughout continuous state space. More generally, this repre-

sents a non-convex optimization over a continuous domain with nonlinear

constraints. Our search for these controls is further complicated by the de-

sire to compute globally optimal solutions rather than more easily obtain-

able locally optimal solutions. Global optimums represent the best possible

Chapter 3. Optimal Locomotion Policies for Point Mass Models 42

control strategies that can be used by our specific model to achieve specific

long term goals defined by a cost function. Unsurprisingly, there are rela-

tively few guarantees surrounding the search for this type of solution. This

has not discouraged the field of dynamic optimization,which has produced a

plethora of numerical methods aiming to compute optimal controls of vary-

ing accuracy. While many approaches can guarantee convergence to a local

optimum, far fewer can guarantee a globally optimal solution. And even

then, only by making certain assumptions within a bounded search space.

3.3.1 Candidate OptimizationMethods

An ideal solution to our optimization problem would be an analytical, glob-

ally optimal control generated by solving requisite partial differential equa-

tions. Indeed, if the underlying Hamilton-Jacobi-Bellman equation were

simple enough, we could attempt an analytical solution using Pontryagin’s

principle. Sadly, modern mathematical approaches have not yet yielded an-

alytic integrations of our model’s nonlinear dynamics and constraints. Until

this occurs, we are resigned to numerical methods which can approximately

compute these control laws.

Trajectory optimization

Trajectoryoptimization is a common approach to generating locallyoptimal

numerical solutions for nonlinear systems. If the optimization is initialized

very close to the global optimum, this class of iterative methods can even

produce globally optimal trajectories. However, this feature is not partic-

ularly useful as the global solution it not typically known beforehand. The

resulting solutions are also in the form of a time-based state or control trajec-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 43

tory rather than a functional mapping from arbitrary states to actions. This

restriction coupled with locally optimal results makes trajectory optimiza-

tion an unideal candidate in the search for globally optimal controls.

Reinforcement Learning

Reinforcement learning (RL) is a powerful optimization approach commonly

used for high-dimensional control problems. It can achieve fast conver-

gence and good results for complex problems, without an available model,

with the help of function approximators such as neural networks and Gaus-

sian processes. However, except in special cases, the solution obtained with

RL with function approximation a local optimum. Moreover, the optimiza-

tion is not guaranteed to converge, or might converge arbitrarily far away

from the global optimum.

Dynamic Programming

Since we have a model of our system, we consider other approaches that

might require more samples, but can maintain global convergence guaran-

tees. One such method is Fast marching methods, also known as single pass

or ordered upwind methods. These methods model the value function of

the optimal policy by dynamic programming, requiring a model and very

large amount of data. With a bounded state space and discretized control

and state space, these approaches can guarantee convergence to the global

solution of the approximate (discretized) problem. The found solution can

be made arbitrarily close to the global optimum bymaking the discretization

grid finer.

A special case of problems, represented by the Eikonal partial differen-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 44

tial equations, can be solved very efficiently with a single pass through the

state space. These problems can be solved with fast marching methods or

ordered upwind methods by leveraging the property that the solutions to

the PDE lie along some characteristic curves. However, for general systems

these characteristic curves are not known, and hence cannot benefit from

these approaches. Convergence speed of dynamic programming can still

be improved for certain problems for which the characteristic solution is

bounded within a certain distance of the state. However, in the most general

case, one has to revert to classical dynamic programming, which can take

several passes through the state space to converge to the optimal value func-

tion. While this might be very slow, it is still guaranteed to reach the globally

optimal solution for very general problem.

3.3.2 Semi-Lagrangian Dynamic Programming

Although numerical optimal control schemes which rely on discretization

ultimately compute suboptimal solutions for continuous systems, a human

designer can balance solution accuracy with computational load. The de-

ciding factor is the problem dimensionality defined by its state and action

spaces. As dimensionality increases, computational requirements explode

exponentially due to the “curse of dimensionality” [13]. Many optimiza-

tion methods compensate for this in high dimensions by introducing sparse

function approximators at the cost of introducing local optimums. If prob-

lem dimensionality is low enough, as is the case with the model used here,

linearly interpolated grids can be used to ensure an approximate global op-

timum. This solution is suboptimal in a strict mathematical sense, but lies

within a bound of the true optimal control [17, 43].

Chapter 3. Optimal Locomotion Policies for Point Mass Models 45

Our search for the theoretical limits of bipedal gait transitions requires

finding which states are able to reach different target states that correspond

to distinct gaits (figure 3.2); this region of state space is the basin of attraction

for a specific policy (figure 3.3). Previouswork on the SMM has analyzed dis-

crete control inputs to find one-step [101, 130] and multi-step [25, 34] dead-

beat policies capable of reaching a target state in the fewest footsteps. This

calculation of globally optimal deadbeat policies reveals the basin of attrac-

tion for a target set T. This basin of states can bewritten formally as the n-step

discrete (backwards) reachable set,

Rd = {s ∈ S : N(s) ≤ nmax}, (3.2)

where S is the set of all states, N(s) is a function that returns the minimum

number of foot steps to reach T from s, and nmax is the maximum number

of considered steps. In comparison, our analysis finds the reachable set for

target states using continuous-time control input. This straightforward ex-

tension requires a continuous-time (backwards) reachable set,

Rc = {s ∈ S : T (s) < +∞}, (3.3)

where now T (s) defines the minimum time to reach T from s and the horizon

is extended to include all states reachable in finite time. Thus, we have a

well-defined optimal control problem to solve; calculate T (s), the long term

cost, over all of state space to determine the reachable set and the associated

optimal control law.

In order to solve for T (s), we must define a function that maps from state-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 46

Figure 3.3: The optimal control targeting a specific state or set of states, T,
reveals which states, R, in a space, S, are able to reach the target. This is often
referred to as the backwards reachable set or basin of attraction for a policy.

policy pairs to their first target arrival time,

t(s,π) =


min

t
f (s,π, t) ∈ T if ∃t ≥ 0 : f (s,π, t) ∈ T,

+∞ otherwise,

where f (s,π, t) returns the state of the system at time t starting from state s

and following policy π. The value function can then be defined as

T (s) = inf
π∈Π

t(s,π), (3.4)

where the set Π represents all admissible policies. In order to ensure that

T (s) is continuous around the target we must also assume small-time local

Chapter 3. Optimal Locomotion Policies for Point Mass Models 47

controllability around T with the condition

inf
π∈Π

ḟ (s,π, t) · n(s) < 0 ∀s ∈ ∂T, (3.5)

where n(s) is the exterior normal to ∂T at s. This ensures the value function

is Lipschitz continuous, however the scheme used here will still produce a

reasonable approximation even if this condition is not satisfied [42].

Determining the value function is necessary to calculate the reachable set

(equation 3.3), but this requires solving a non-convex, constrained optimiza-

tion problem globally. Fortunately, the low-dimensionality of the problem

makes it feasible to apply the Dynamic Programming Principle (DPP) [15] to

find a direct numerical solution. The DPP for the minimum time problem

provides a recurrence relation for the value function and can be derived [10]

to be

T (s) = inf
π∈Π

{
t + T (f (s,π, t))

}
.

This relation leads directly to a nonlinear, first orderpartial differential equa-

tion, known as the Hamilton-Jacobi-Bellman equation, whose solution is the

value function of interest. We can use this equation to define the boundary

value problem 

sup
π∈Π

−∇T (s) · ḟ (s,π, t) = 1, s ∈ R \ T,

T (s) = 0, s ∈ T,

lim
s→s0

T (s) = +∞, ∀s0 ∈ ∂R.

This problem can be transformed into a bounded domain without depen-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 48

dence on the reachable set using the Kruzkov change of variables [66],


v(s) = 1 − e−T(s) if T (s) < +∞,

v(s) = 1 if T (s) = +∞,

(3.6)

in order to finally arrive at the boundary value problem


v(s) + sup

π∈Π

−∇v(s) · ḟ (s,π, t) = 1, s ∈ S \ T,

v(s) = 0, s ∈ ∂T.

In order to solve this problem using semi-Lagrangian numerical approxima-

tion, we apply time and space discretization along with the Kruzkov trans-

form as described in [43]. This results in the iterative scheme


vi+1

j = e−∆t min
π∈Π

I(V i, f (s,π,∆t)) + 1 − e−∆t, s j ∈ S \ T,

vi+1
j = 0, s j ∈ ∂T,

(3.7)

where vi+1
j now represents the value on iteration i + 1 for discretized state s j

and I (V i, f (s,π,∆t)) represents an interpolation function which relies on the

discrete value table V and the discretization time step ∆t. In practice, linear

interpolation is often used in combination with a discrete integrator, such

as Euler or Runge-Kutta 4 [41]. Finally, we must restrict the problem to a

bounded set and introduce a corresponding boundary condition

vi+1
j = 1 if f (s,π,∆t) < Sbounded, (3.8)

where Sbounded is often defined as a hypercube. This effectively assigns infinite

arrival time to policies which exit the bounded domain.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 49

Guaranteed convergence of this numerical approximation scheme to the

underlying value function has been shown by Barles and Souganidis [11, 12,

115]. The minimum time scheme used herewas introduced byBardi and Fal-

cone along with error and convergence rate estimates [8, 9, 43]. The explicit

error estimates can be obtained as

verror ≤ C
√
∆t

1 + (
∆s

∆t

)2 , (3.9)

where C is a positive constant and ∆s is the spacing between discrete states.

3.4 Algorithm Implementation Details

While semi-lagrangian dynamic programming is a very general approach

for obtaining globally optimal value functions, there are several problem-

specific details that need to be taken care of. For example, the cost used

for generating the value function can have a huge impact on the behavior

of the optimal policy. We highlight some of the details we observed in the

following sections.

3.4.1 Cost Functions

We experimentedwith different costs thatwere used for generating the value

function in the continuous time and discrete-event setting.

Continuous time setting

In the continuous time setting, we experimented with three different instan-

taneous costs - minimum time, minimum force and minimum positive me-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 50

chanical power (Eq. 3.10 - 3.12).

costtime = 1 − exp(−µt · t) (3.10)

cost f orce = (µF(F1 + F2))
2 + (µẋ(ẋdesired − ẋ))2 (3.11)

costpower = (µpower(max(F1l̇1, 0) +max(F2l̇2, 0)))2 + (µẋ(ẋdesired − ẋ))2 (3.12)

Here µt, µF, µẋ and µpower are the scaling coefficients for each cost. The mini-

mum time cost penalizes the time of the trajectory spent away from the goal.

This cost can lead to very aggressive maneuvers, and might not be practical

for implementing the generated polices on a real robot.

The minimum force cost penalizes the forces F1 and F2 in each leg, while

trying to achieve the target velocity ẋdesired. This leads to less aggressive gaits

than the minimum time policy.

Minimum positive mechanical power cost was designed to mimic bio-

logical systems, penalizing the total positive work done during the motion,

calculated as the product of the leg velocity l̇ and leg force. This cost leads to

smooth gaits that can be implemented on real systems.

In the case of discrete events, the cost design becomes per-event instead

of per time instant. This is then summed up over the discrete events in the

trajectory to get the long-term cost. In this case, the cost is more specific

to the discrete event being considered. We consider minimizing impulse,

average leg force and work (Eq. 3.13 - 3.15).

Chapter 3. Optimal Locomotion Policies for Point Mass Models 51

costimpulse = µimpulse · (F̄1t1 + F̄2t2)2 + µẋ · (ẋdesired − ẋ)2 (3.13)

costleg f orce = µimpulse · (F̄1 + F̄2)
2 + µẋ · (ẋdesired − ẋ)2 (3.14)

costwork =

∫
max(F1l̇1, 0)dt +

∫
max(F2l̇2, 0)dt

(mg · d)
(3.15)

The minimum impulse cost penalizes the total impulse per step by inte-

grating the average leg forces in each leg F̄1 and F̄2 over the stance durations

t1 and t2. It also penalizes distance from a target forward velocity ẋdesired. The

minimum leg force cost penalizes the total average leg force and the distance

from a desired forward speed. The minimum work done cost minimizes the

total positive work done in one step, normalized by the weight mg and for-

ward distance d covered in the step.

A common problem with discrete events based control is that the result-

ing control from dynamic programming attempts to switch contacts at a

high frequency. As a result, our cost in this case tries to maximize the con-

tact time of each leg, while trying to minimize a desired cost. For example,

instead of minimizing the impulse cost costimpulse, the cost is normalized by

the time spent in contact.

cost =
costimpulse

µttcontact
(3.16)

3.4.2 Continuous-TimeAlgorithm

We combine the choices made in previous sections to arrive at a complete

value-iteration algorithm for finding optimal legged gaits. The underlying

iterative scheme (equation 3.7) requires solving a substantial number of local

optimizations over admissible control actions. We perform these optimiza-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 52

tions by random sampling of actions, similar to [7], in order to reduce the

computational requirements of each iteration. This involves selecting a ran-

dom spring stiffness for each stance leg and selecting a random landing time

for each swing leg. If the selected action results in an improved long term

cost, the stored policy and value are updated.

During each iteration, these optimizations are carried out for all possible

states and phases, which are represented as discretized grids over a bounded

domain. The system dynamics (equation 3.1) are simulated for a short time

horizon using Runge-Kutta 4 for numerical integration. The long-term cost

is then evaluated using the backup operation in equation 3.7 alongwith mul-

tilinear interpolation of the currently stored values. This process is repeated

until the net change change in stored costs falls below a small threshold.

Pseudocode for this implementation is described in algorithm 1.

A simple proof-of-concept example is shown in figure 3.4. In this exam-

ple, an apex-to-apex height-based swing leg policy is reproduced using the

dynamic programming method described in algorithm 1. The ground truth

is generated using the technique described in [109] for deadbeat running at

5 m · s−1 on a typical spring mass model. The resulting average absolute er-

ror is 0.59 degrees with a standard deviation of 0.38 degrees. Error can be

decreased further by reducing the time and space discretization steps.

3.4.3 Discrete Gait Event Algorithm

Instead of a continuous time control, where the control variables can be

changed at each time instance, and alternative could be to only change con-

trols at discrete gait events. This is a less general form of the optimization de-

scribed above, but can lead to physically realizable solutions on real systems.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 53

Algorithm 1 Value Iteration for Bipedal Locomotion

1: for each s ∈ AllS tates do
2: cost_node(s)← 1.0
3: end for
4: cost_node(target)← 0.0
5:
6: repeat
7: for each s ∈ AllS tates do
8: a←RandomAction()
9: s′ ←Simulate(s,a,∆t)

10: c← 1 − exp(−∆t)(1−Cost(s′))
11: if c < cost_node(s) then
12: cost_node(s)← c
13: action_node(s)← a
14: end if
15: end for
16:
17: for each s ∈ S tatesWithS wingLeg do
18: t ←Random(0,∆t)
19: a←Action(s)
20: s′ ←SimulateThenPlaceFoot(s,a,t)
21: c← 1 − exp(−t)(1−Cost(s′))
22: if c < cost_node(s) then
23: cost_node(s)← c
24: end if
25: end for
26: until net change in cost nodes < epsilon

Chapter 3. Optimal Locomotion Policies for Point Mass Models 54

0.8 1 1.2 1.4 1.6 1.8 2 2.2

60

70

80

90

height (m)

al
p
h
a

(d
eg

)

ground truth

value iteration

Figure 3.4: Comparison of the value iteration approach to awell-known con-
trol law [109] produced using root finding. The policy maps current apex
height of the spring mass model to leg landing angles in order to produce
running at 5 m · s−1 with an apex height of 1 m. The model parameters used
are m = 80 kg, l0 = 1.0 m, and k = 20 kN ·m−1.

There can be different gait events that can be used to change the control vari-

ables, such as apex, touch down, minimum center of mass height in stance,

vertical leg orientation, and minimum or maximum leg compression. The

gait events should be chosen in a way that they can seamlessly allow the al-

gorithm to switch between gaits, without affecting the overall optimization

process. We choose the start of single support, flight apex, and single sup-

port apex as the gait events in our work. Start of single support can occur

at the end of flight, as well as end of double support. Flight apex occurs in

flight, and single support apex in single support.

3.4.4 Common Pitfalls and AccelerationMethods

In this section, we will describe some of the errors that one might make, and

pitfalls one might experience when doing dynamic programming on legged

Chapter 3. Optimal Locomotion Policies for Point Mass Models 55

systems. We also describe methods we used for accelerating our computa-

tions.

Avoiding Duplicate States

Since dynamic programming depends on visiting every state in every itera-

tion, a very large state space can be prohibitively time consuming to visit. As

a result, a large computational overhead can be avoided if one can carefully

remove any duplicate states that might occur in the state parametrization.

An example where such a situation occurs in legged locomotion is during

double stance. If using foot distances from the center of mass, or leg angles,

the same state can represent two different states encodings, or the state en-

coding can be non-unique. Both the situations are undesirable, and hence

the state encoding should be chosen to avoid them. In our work, we use

leading leg length and step length as the encoding for state, and introduced

bounds to keep it unique.

Interleaving Policy Iteration Loops

Since dynamic programming from scratch can take many iterations, occa-

sional policy evaluations based on the current best policy can sometimes

help achieve faster convergence. The frequencyof these evaluations is heuris-

tically decided based on the size of the state space. While this heuristic can

speed up computations, it does not take away any global convergence guar-

antees of the overall approach.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 56

Massive Parallelization using GPUs

Recently, Graphics Processing Units (GPUs) have become very popular in

reinforcement learning computations. GPUs allow to massively parallelize

computations which would take much longer to finish on CPUs on common

computers. Since dynamic programming is essentially a parallel computa-

tion over multiple states, with a very simple integration step, we can easily

use GPUs for this computation. This massively brings down the compute

time needed to find the optimal policies for our problem.

Since GPUs come with limited memory, we change the state, actions and

rewards to single floating precision to save space and increase speed.

Avoiding Ground Contact Chatter

Ideally, the control decision of entering and leaving contact should be au-

tomatically decided based on the relative value functions of the different

phases. For example, if the long-term cost of exiting double support and

entering single support is less than that of staying in double support, the

algorithm should automatically choose to exit double support. However,

practically due to a discretized state space and numerical inaccuracies, de-

tecting this change in the sign of the relative values of the different phases

can be hard and lead to a chatter in ground contact. Right after the system

enters single support from double support, it might choose to re-enter dou-

ble support, and so on.

Since, such chattermakes the control hard, and infeasible for real systems,

we incorporate some constraints into the optimization to reduce the chances

of them occurring. First, instead of looking for a zero-crossing in the relative

value, we check if the value after the transition is higher than the current

Chapter 3. Optimal Locomotion Policies for Point Mass Models 57

value by some threshold. Secondly, we also restrict the search for the next

phase transition to be after some minimum specified time, depending on

the system and phases concerned.

3.5 Results on Point Mass Models

3.5.1 Continuous-Time Optimal Control Solutions

The approximations of the continuous-timeoptimal controls computedhere

use a discrete time step of ∆t = 0.010 s and a zero-crossing tolerance of ttol =

10−6 s for detecting events, such as leg takeoff. The size of the generated

discrete lookup table was chosen to balance between solution accuracy and

available computational resources. As the table grows in size, memory re-

quirements increase along with the timings for algorithm convergence and

policy lookup. The specific bounds and discrete divisions used are shown in

table 3.1 and cover awide range of possible state vectors. In total, all (approx-

imately 10 million) state vectors can be stored in 200 MB of memory when

using single precision floating point storage. This allows the code to execute

on individual graphic processing units (GPUs), which offer powerful single-

instruction-multiple-data (SIMD) processing but often have limited RAM.

Although GPUs offer a performance advantage here, this is a problem spe-

cific observation and requires benchmarking against CPU implementations.

These policies required approximately 1011 samples before converging.

Illustrative example trajectories generated using gait transition policies

are shown in figure 3.5. Transitions occur very quickly within a few steps in

nearly all cases due to the minimum-time objective. Policy rollout requires

multilinear interpolation of the stored actions to determine the control at ar-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 58

Table 3.1: State space boundaries for general human-like walking and run-
ning gaits.

domain lower bound upper bound units divisions

α 40 140 ° 51
l 0.8 1.0 m 21
d 0.25 1.30 m 36
ẋ -1.0 4.0 m · s−1 26
ż -2.0 2.0 m · s−1 21
k 10 90 mg

l0
continuous

bitrary states within the bounded domain. Foot placement is determined by

searching for the time of value function crossing between swing and stance

phases. This requires numerical root finding, which can be computation-

ally intensive and sensitive to contact chattering when the grid spacing is

large. The basins of attraction at vertical leg orientation, α = 90 degrees, for

these policies are shown in figures 3.6 and 3.7. These basins are very large

and similar to what can be generated using existing discrete event methods.

However, the continuous-time solutions also feature defined controls for all

states which lie in between discrete events. This leads to much more com-

plex policies which can generate optimal actions for nearly any given state

of the system.

3.5.2 Discrete Gait Event Optimal Control Solutions

Although continuous-time solutions offer powerful control laws and a very

large policy space, they require significant computation in order to perform

policy rollouts. Even if enough computational resources are available, un-

restrained point-mass model trajectories are not necessarily feasible for ar-

bitrary hardware platforms. The biped robot, ATRIAS, used in this work is

capable of highly dynamic maneuvers due to its light legs and strong mo-

Chapter 3. Optimal Locomotion Policies for Point Mass Models 59

Figure 3.5: Example gait transitions betweenwalking and running generated
using continuous-time optimal control. The vertical dashed line indicates
when the target state is reached. Left: Run-to-walk transition. Right: Walk-
to-run transition.

tors, but has both kinematic and actuation bandwidth limits. This prevents

the system from following extreme center of mass motions and necessitates

constraining the space of optimal control solutions.

In this sectionwepresent a point-massmodel Poincaré-style control frame-

work that relies on discrete gait events and can be more readily transferred

to the ATRIAS hardware. Similar to many spring mass model controllers in

literature, we choose to parameterize the model’s leg forces and modulate

these parameter values only at specific discrete gait events. We leverage our

continuous-time results by using their leg force profiles to inform the dis-

crete control design. This constrains the problem to a much smaller policy

Chapter 3. Optimal Locomotion Policies for Point Mass Models 60

Figure 3.6: Comparison of minimum-time basins of attraction generated
using the discrete event scheme described in [113] (left) and the continuous-
time approach described here (right). Thevisualized state space corresponds
to vertical leg orientation, α = 90 degrees. Colors correspond to the time
required to reach a target running state with ẋ = 3.0 m · s−1, z = 0.95 m,
ż = −1.0 m · s−1. Although both policies have large basins of attraction, the
continuous-time policy is able to achieve a lower cost due to the increased
policy space.

Figure 3.7: Minimum-time basin of attraction generated using the
continuous-time approach. The visualized state space corresponds to ver-
tical leg orientation, α = 90 degrees. Colors correspond to the time required
to reach a target walking state with ẋ = 1.2 m · s−1, z = 0.92 m, ż = 0.4 m · s−1.

space but still produces motions plans close to the continuous-time solu-

tions.

Typical spring mass model controllers that use Poincaré maps, rely on

a periodic orbit of state that intersects a single surface corresponding to a

specific gait event, such as vertical apex during the flight phase or vertical

Chapter 3. Optimal Locomotion Policies for Point Mass Models 61

Table 3.2: State space boundaries for discrete “ATRIAS-safe” walking and
running gaits.

domain lower bound upper bound units

α 76 100 °
l 0.94 1.0 m
ẋ -0.2 3.2 m · s−1

ż -1.2 0.6 m · s−1

k 20 60 mg
l0

leg orientation during the single support phase. Controllers which target

both walking and running gaits sometimes include multiple event maps to

increase the diversity of target states. However, this requires a separate en-

tity, such as the user or second optimization, to decidewhich event surface to

target at each step. This manual selection is not ideal, because the initial opti-

mization process is unable to create solutions which move freely through all

generated maps. In contrast, our approach finds the optimal control across

all event surfaces, which are selected to enable trajectories which span flight,

single support, and double support phases.

Our design is based on three state space surfaces shown in figure 3.8 cor-

responding to the gait events of flight apex (FA), initial single support (SSI),

and single support apex (SSA). The model leg forces are computed using

a nonlinear spring-damper parameterization, F = k(l0 − l) + b(l0 − l)l̇, which

requires a spring stiffness k and damping coefficient b. We apply the same

dynamic programming method (algorithm 1) to find the optimal control

for this framework. We also significantly reduce the state space bounds (ta-

ble 3.2) to enforce the kinematic and actuation limits of the ATRIAS hard-

ware. The resulting control laws are capable of running and walking gaits

with similar performance compared to the continuous-time solutions.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 62

Figure 3.8: The discrete approach looks up a new control whenever the
model reaches one of three distinct gait events. The events are selected so
that the system can move freely between flight, single support, and double
phases. States at FAand SSAare only allowed to transition to SSI, while states
at SSI can choose to transition to either FA or SSA.

3.5.3 Comparisons with baselines

We compare our continuous time control approach described in the pre-

vious section to a discrete event scheme described in [113]. [113] use four

discrete gait events to switch control variables, instead of continuously vary-

ing them over the trajectory. These events are apex, vertical leg orienta-

tion, maximum virtual leg compression in double support and maximum

compression of single support leg. The chosen control variables are the leg

stiffness and landing angle. The results of this comparison are shown in Fig-

ure 3.6. The original implementation in [113] depends on a user-defined

sequence of gait transitions, which limits the applicability of this approach

to general gait transitions without human input. We solve the gait transi-

tion problem using a dynamic programming approach similar to the one

described in the last section, while staying true to the original parametriza-

tion of gait events and control variables.

As can be seen in Figure 3.6, while both policies have very large basins of

attraction into the desired running state of ẋ = 3.0m/s, z = 0.95m, ż = −1.0m/s,

Chapter 3. Optimal Locomotion Policies for Point Mass Models 63

the costs incurred while following the baseline are much higher than those

from a continuous approach. This highlights the advantage of using a con-

tinuously varying control mechanism, which allows for more flexible con-

trollers, and hence solutions that have a lower cost.

Chapter 3. Optimal Locomotion Policies for Point Mass Models 64

Chapter 4

Parametric Insights into Optimal

Locomotion Policies

Numerically calculatingoptimal controls usingdynamic programmingmeth-

ods generates large grids of control action values spanning state space. Al-

though the resulting policies can be directly implemented, it is difficult to

visualize their behavior due to high problem dimensionality. This makes

it particularly challenging to understand and hypothesize about the funda-

mental processes which govern them. Determining the primary compo-

nents of optimal policies is important for directing future investigations and

discovering which features of state have significant impact on the control.

We expect the policies investigated in this work to rely on essential features

of bipedal locomotion, because they are generated using a highly general

point-mass model with relatively few parameters. However, it is important

to note that the cost functions used here result in specific long-term policy

goals which may differ from those of biological systems. Nevertheless, in-

specting these policies is worthwhile as they are capable of generating stable

walking and running gaits for bipedal robots.

Chapter 4. Parametric Insights into Optimal Locomotion Policies 66

4.1 Fitting Parametric LinearModels

In an attempt to get an intuitive explanation for the optimal policies gener-

ated by dynamic programming, we attempted to fit parametric linear mod-

els to the corresponding value functions. These models let us hypothesize

about the underlying essential components that together determine the op-

timal control actions. While we do not expect to fit one general model to all

gaits, we expect correlations between specific state vector features and the

long-term costs described by the computed value functions. Ultimately, this

boils down into a numerical regression problemwhich attempts to fit a high-

dimensional hyperplane to a precomputed set of data points. While many

tools are appropriate for performing this calculation, herewe focus on linear

ordinary least-squares regression to minimize the sum of squared residuals

in the fit model.

Ordinary least squares is a widely used method for solving unknown pa-

rameters in a linear model. The expressiveness and accuracy of a linear

model generated thisway is dependent on providing relevant basis functions

that describe the data set. This is useful when domain knowledge is avail-

able, but a potential problem when useful basis functions cannot be found.

In these cases, more powerful function approximators, such as neural net-

works or Gaussian processes, may be required to compute accurate models.

We opt for the less complex linear least-squares approach here as a way to

evaluate the accuracy of models built with different features of system state.

Given a set of basis functions b = [b1, b2, ..., bn] evaluated at some state s, we

fit the computed value function data to a model of the form

v̂s = w1b1 + w2b2 + ...+ wnbb + εs, (4.1)

Chapter 4. Parametric Insights into Optimal Locomotion Policies 67

where w = [w1,w2, ...,wn] are linear weights of the model and εs is the error for

target data point v∗s. We minimize the sum of squared residuals,
∑

i(v̂i − v∗i)
2,

by solving the normal equations. This is often expressed in matrix form as

w = (BTB)−1BTv∗, where now B contains the set of chosen basis functions

evaluated at all data points and v∗ is a vector containing the corresponding

target values. While this relationship holds mathematically, numerical is-

sues can arise while performing the matrix inversion on a computer. In

many cases the normal equations can be very close to singular; this com-

monly happens when two different basis functions provide similar fits to the

data. Attempting to numerically invert a matrix that is close to singular often

provide erroneous results due to roundoff errors. We avoid these errors by

using singular value decomposition (SVD) of the basis function matrix. This

allows us to write the matrix decomposition

B = UWVT (4.2)

and solve the normal equations with

w = VW+UTv∗, (4.3)

where + indicates the psuedoinverse. This will produce a solution that is the

best least-squares fit even in the presence of a nearly singular matrix.

We choose to fit a different model to each phase-specific value function in

order to take advantage of the different state vectors for flight, single support,

and double support phases. Since the number of data points computed for

each phase differs significantly (flight: 54,366, single support: 1,141,686, dou-

ble support: 16,923,816), we limit the number of data points used in the re-

Chapter 4. Parametric Insights into Optimal Locomotion Policies 68

gression to 50,000 by randomly selecting points. Furthermore, we remove

outliers in the dataset using robust covariance estimation via the Orthog-

onalized Gnanadesikan-Kettenring (OGK) method. This prevents us from

using points with very high costs that are often outside the reachable set; on

average this corresponds to between 20 and 30 percent of a data set. After

applying these filters we attempt to find the models with the highest coeffi-

cient of determination,

R2 = 1 −

∑
i(v∗i − v̂i)

2∑
i(v∗i −mean(v∗))2

, (4.4)

for a fixed complexity defined as the total number of utilized basis function.

We approach this task by binary testing each possible combination of can-

didate basis functions. This requires searching through 2n − 1 combinations

for n nominated basis functions.

4.1.1 Choice of basis functions

The basis functions chosen forour experimentswere based on physical plau-

sibility. For example, system energy and direction of the velocity vector are

pertinent quantities when controlling a running gait. We used insights like

these to design basis functions describing point mass bipedal systems. These

fall in to two categories, thosewhich only involve the center of mass variables

and those which involve the foot point locations. Flight phase regression

uses center of mass functions, single support phase regression is augmented

with functions involving one foot position, and double support regression

includes a symmetric set of functions for the second foot position.

Chapter 4. Parametric Insights into Optimal Locomotion Policies 69

Table 4.1: The set of basis functions investigated for fitting linear models.

Description Symbol

Center of mass basis functions

Vertical Height z

Horizontal velocity ẋ

Vertical velocity ż

Vertical height squared z2

Horizontal velocity squared ẋ2

Vertical velocity squared ż2

Vertical height × horizontal velocity z · ẋ

Vertical height × vertical velocity z · ż

Horizontal velocity × vertical velocity ẋ · ż

Total velocity magnitude
√

ẋ2 + ż2

Velocity angle arctan(ż/ẋ)

Landing angle arcsin(z/l0)

Leg basis functions

Leg length l

Leg velocity l̇

Horizontal velocity × leg length ẋl

Vertical velocity × leg length żl

Vertical height × horizontal position of foot z · x f oot

Horizontal velocity × horizontal position of foot ẋ · x f oot

Vertical velocity × horizontal position of foot ż · x f oot

Leg angle arctan(z/x f oot)

Leg length × arccos(1 − z/l) l · arccos(1 − z/l)

Leg length squared l2

Chapter 4. Parametric Insights into Optimal Locomotion Policies 70

4.2 Linear value function models

Our investigation focuses on two nominal gait controllers targeting walking

at 1.2 m/s and running at 3.0 m/s. We examine three different cost functions

spanning minimum time, minimum force, and minimum positive mechan-

ical power.

4.2.1 Results

The following tables display themaximumcoefficients of determination that

were found using different numbers of basis functions. The basis functions

which generate these scores are marked with non-zero weights, while those

not included are marked as zero. In general, as the complexity of a model in-

creases (number of basis functions increases), the model becomes more and

more accurate at predicting the optimal policy, as illustrated by the R2 coef-

ficients. Tables 4.2, 4.4, 4.6 display results for running at 3.0 m/s while min-

imizing time, leg force, and positive mechanical power. Tables 4.3, 4.5, 4.7

display parallel results for walking at 1.2 m/s.

4.3 Discussion

We can analyze the importance of different basis functions to each policy

objective by examining which functions maximize the coefficient of deter-

mination, R2, when model complexity is low. As the number of model pa-

rameters is increased, R2 increases in general. However, there are diminish-

ing returns beyond a point, depending on the specific policy and gait phase.

Adding more basis functions stops improving the accuracy of the fit.

Chapter 4. Parametric Insights into Optimal Locomotion Policies 71

Table 4.2: Minimum time - Running at 3.0 m/s.
Basis function weight combinations with the highest coefficients of determi-
nation sorted by increasing model complexity.

Flight

R2 1 z ẋ ż z2 ẋ2 ż2 zẋ zż ẋż
√

ẋ2 + ż2 tan−1(ż/ẋ) sin−1(z/l0)

0.42 0.27 0 0 0 -0.13 0 0 0 0 0 0 0 0

0.65 0.39 -0.23 0 0 0 -3.2e-3 0 0 0 0 0 0 0

0.68 0.38 -0.23 0 0 0 -3.2e-3 0 0 6.5e-3 0 0 0 0

0.76 0.41 -0.25 0 -0.082 0 -3.3e-3 0 0 0.096 0 0 0 0

0.77 0.42 -0.26 0 -0.084 0 0 5.9e-3 0 0.099 0 -0.016 0 0

0.78 0.42 -0.26 0 -0.081 0 0 5.9e-3 0 0.099 -2.0e-3 -0.016 0 0

0.78 0.65 -0.8 0 -0.089 0.31 0 6.2e-3 0 0.11 -2.0e-3 -0.016 0 0

0.78 0.65 -0.8 0 -0.09 0.31 0 6.2e-3 0 0.11 -1.6e-3 -0.016 1.4e-3 0

0.79 0.6 -0.71 0.011 -0.086 0.27 0 6.1e-3 -0.013 0.1 -2.1e-3 -0.016 0 0

0.79 0.6 -0.71 0.011 -0.088 0.27 0 6.2e-3 -0.013 0.1 -1.7e-3 -0.016 1.4e-3 0

0.79 0.59 -0.7 0.012 -0.088 0.27 -5.6e-4 5.5e-3 -0.013 0.1 -1.7e-3 -0.013 1.5e-3 0

0.79 0.57 -0.64 0.012 -0.087 0.22 -5.7e-4 5.5e-3 -0.013 0.1 -1.7e-3 -0.013 1.5e-3 7.7e-3

Single Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.65 0.19 0 0 0 0 0 0 0 -0.015 0 0

0.67 0.15 0 0 0 0 0 0 -0.016 0.026 0 0

0.69 0.27 0 0 -0.016 0 0 0 0.026 -0.094 0 0

0.7 0.28 0 0 -0.016 0.025 0 0 -0.17 0.11 0 0

0.7 0.28 0 0 0 -0.016 0 0 0.011 0.028 -0.16 0.11

0.71 0.26 0 3.9e-3 -0.016 0.011 0 0.033 -0.16 0.11 0 0

0.72 0.21 0 3.9e-3 0 -0.016 0 0.053 0.012 0.067 -0.16 0.11

0.72 0.53 0 -0.72 3.8e-3 -0.016 0 0.054 0.013 0.068 -0.16 0.51

0.72 0.21 0.022 -0.016 -0.018 0.063 0 -0.022 0.012 0.071 -0.17 0.12

0.72 0.5 -0.64 0.022 -0.016 -0.018 0.064 -0.021 0.013 0.072 -0.17 0.47

Double Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.71 0.19 0 -0.016 0 0 0 0 0 0 0 0

0.72 0.31 0 -0.13 0 0 0 0 0 0 0 -0.015

0.73 0.38 -0.23 -0.015 0 0 0 0 0 0 -0.078 0

0.74 0.31 0 -0.12 0.015 0 -0.012 0 -0.029 0 0 0

0.74 0.34 0 -0.18 0.012 0 -8.1e-3 0 -0.025 0 0 -0.042

0.74 0.35 0 -0.18 0.014 0 -0.011 0 -0.027 -0.034 0 -0.052

0.75 0.33 0 0.1 -0.25 0 0.015 -0.011 -0.028 -0.058 0 -0.072

0.75 0.33 0 0.11 -0.26 0 0.02 -6.5e-3 -0.028 -9.9e-3 -0.069 -0.079

0.75 0.33 0.12 -0.27 0.022 0 -4.0e-3 -0.038 9.9e-3 -0.014 -0.073 -0.083

0.75 0.33 0.12 -0.27 0.022 -4.5e-3 -0.037 9.1e-3 2.9e-3 -0.016 -0.073 -0.083

Chapter 4. Parametric Insights into Optimal Locomotion Policies 72

Table 4.3: Minimum time - Walking at 1.2 m/s.
Basis function weight combinations with the highest coefficients of determi-
nation sorted by increasing model complexity.

Flight

R2 1 z ẋ ż z2 ẋ2 ż2 zẋ zż ẋż
√

ẋ2 + ż2 tan−1(ż/ẋ) sin−1(z/l0)

0.24 0.15 0 0 0 0 0 0 0 0.013 0 0 0 0

0.42 0.14 0 0 0 0 2.3e-3 0 0 0.013 0 0 0 0

0.5 0.21 -0.077 0 0 0 2.1e-3 0 0 0.012 0 0 0 0

0.54 0.21 -0.078 -8.7e-3 0 0 4.6e-3 0 0 0.012 0 0 0 0

0.57 0.27 -0.14 -0.039 0 0 4.7e-3 0 0.034 0.012 0 0 0 0

0.6 0.29 -0.16 -0.042 -0.041 0 4.7e-3 0 0.037 0.057 0 0 0 0

0.62 0.28 -0.16 -0.042 -0.046 0 4.8e-3 3.3e-3 0.036 0.063 0 0 0 0

0.63 0.55 -0.77 -0.046 -0.055 0.35 4.8e-3 3.5e-3 0.041 0.072 0 0 0 0

0.64 0.59 -0.84 -0.046 -0.057 0.39 7.4e-3 8.0e-3 0.044 0.074 0 -0.016 0 0

0.65 0.59 -0.83 -0.045 -0.057 0.38 7.3e-3 8.0e-3 0.043 0.074 0 -0.016 9.0e-4 0

0.65 0.6 -0.85 -0.046 -0.059 0.39 7.3e-3 8.0e-3 0.044 0.074 7.1e-4 -0.016 1.8e-3 0

0.65 0.55 -0.75 -0.046 -0.059 0.32 7.3e-3 8.0e-3 0.044 0.074 7.1e-4 -0.016 1.8e-3 0.013

Single Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.55 0.16 0 0 0 0 0 0 0 8.7e-3 0 0

0.57 0.13 0 0 0 0 0 8.7e-3 0 0.018 0 0

0.59 0.13 0 0 0 0 0 4.7e-3 8.7e-3 0.017 0 0

0.6 0.18 0 0 7.1e-3 0 0 4.6e-3 0.027 -0.05 0 0

0.61 0.18 0 0 0 0 0 7.1e-3 4.6e-3 9.1e-3 0.029 -0.051

0.61 0.18 8.2e-3 0 4.7e-3 0 0 -4.7e-3 8.8e-3 0.024 -0.048 0

0.62 0.2 -0.036 0 8.3e-3 0 0 4.7e-3 -5.0e-3 8.9e-3 0.024 -0.035

0.62 0.57 -0.86 0 8.2e-3 4.7e-3 0 -5.0e-3 9.0e-3 0.024 -0.036 0.46

0.62 0.56 -0.89 8.2e-3 4.7e-3 0.014 0 -5.0e-3 9.3e-3 0.033 -0.035 0.47

0.62 0.57 -0.89 7.6e-3 4.7e-3 6.5e-4 0.013 -4.3e-3 9.3e-3 0.033 -0.035 0.47

Double Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.59 0.33 0 -0.19 0 0 0 0 0 0 0 0

0.65 0.34 0 -0.2 0 0 0 0 0 0 7.1e-3 0

0.65 0.4 0 -0.24 0 0 9.5e-3 0 0 0 -0.082 0

0.66 0.4 -0.25 7.0e-3 0 0 8.6e-3 0 0 0 -0.06 0

0.66 0.4 -0.26 -7.3e-3 0 0 0.01 0 0.015 0 -0.044 0

0.67 0.43 -0.3 -9.3e-3 0 0 0.011 0 0.018 0 -0.047 -0.027

0.67 0.42 0.084 -0.37 9.1e-3 0 -0.029 0 0.04 0 -0.079 -0.056

0.67 0.43 0.085 -0.37 0 0.011 -0.03 0.042 -1.6e-3 0 -0.079 -0.059

0.67 0.43 0.084 -0.37 0 0.011 -0.03 0.042 -0.027 0.025 -0.08 -0.06

0.67 0.43 0.086 -0.37 5.2e-4 0.011 -0.031 0.043 -0.027 0.025 -0.081 -0.06

Chapter 4. Parametric Insights into Optimal Locomotion Policies 73

Table 4.4: Minimum leg force - Running at 3.0 m/s.
Basis function weight combinations with the highest coefficients of determi-
nation sorted by increasing model complexity.

Flight

R2 1 z ẋ ż z2 ẋ2 ż2 zẋ zż ẋż
√

ẋ2 + ż2 tan−1(ż/ẋ) sin−1(z/l0)

0.61 2.7e+3 0 0 0 0 0 0 -811.0 0 0 0 0 0

0.75 9.5e+3 -7.4e+3 -733.0 0 0 0 0 0 0 0 0 0 0

0.76 9.5e+3 -7.4e+3 -999.0 0 0 87.0 0 0 0 0 0 0 0

0.78 9.3e+3 -7.3e+3 -722.0 0 0 0 0 0 0 -78.0 0 188.0 0

0.79 9.4e+3 -7.3e+3 -988.0 0 0 84.0 0 0 0 -76.0 0 188.0 0

0.81 9.9e+3 -7.3e+3 -899.0 0 0 155.0 0 0 0 -73.0 -455.0 199.0 0

0.81 2.1e+4 -3.3e+4 -899.0 0 1.5e+4 155.0 0 0 0 -73.0 -466.0 188.0 0

0.82 2.3e+4 -3.6e+4 -1.6e+3 0 1.6e+4 155.0 0 744.0 0 -71.0 -466.0 177.0 0

0.82 2.3e+4 -3.6e+4 -1.6e+3 0 1.5e+4 166.0 0 733.0 111.0 -99.0 -477.0 122.0 0

0.82 2.5e+4 -4.0e+4 -1.6e+3 -633.0 1.8e+4 155.0 0 800.0 777.0 -92.0 -455.0 133.0 0

0.82 2.3e+4 -3.5e+4 -1.6e+3 -622.0 1.4e+4 155.0 0 800.0 766.0 -92.0 -455.0 133.0 488.0

0.82 2.3e+4 -3.5e+4 -1.6e+3 -611.0 1.4e+4 144.0 -22.0 800.0 744.0 -92.0 -399.0 133.0 499.0

Single Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.73 2.5e+3 0 0 0 0 0 0 0 -755.0 0 0

0.76 944.0 0 0 0 0 0 -799.0 0 1.1e+3 0 0

0.79 811.0 0 0 0 0 0 -799.0 0 433.0 0 1.2e+3

0.8 3.3e+3 0 0 0 0 0 -811.0 1.1e+3 -4.7e+3 0 4.7e+3

0.82 2.8e+3 0 -833.0 0 0 400.0 0 1.7e+3 -5.0e+3 0 4.9e+3

0.82 2.8e+3 0 -833.0 0 0 400.0 0 422.0 1.8e+3 -5.1e+3 4.8e+3

0.82 -533.0 -844.0 3.4e+3 0 0 400.0 0 499.0 4.0e+3 -5.2e+3 4.8e+3

0.82 -644.0 366.0 -833.0 -400.0 0 3.6e+3 0 500.0 4.2e+3 -5.4e+3 5.0e+3

0.82 7.9e+3 -1.9e+4 366.0 -833.0 -400.0 3.7e+3 0 500.0 4.2e+3 -5.4e+3 1.6e+4

0.82 8.2e+3 -2.0e+4 233.0 -833.0 -277.0 3.6e+3 155.0 500.0 4.2e+3 -5.4e+3 1.6e+4

Double Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.79 2.4e+3 -733.0 0 0 0 0 0 0 0 0 0

0.81 1.8e+3 -733.0 0 0 0 0 0 0 0 1.7e+3 0

0.82 -1.3e+3 3.5e+3 0 0 0 -733.0 0 0 0 -1.3e+3 0

0.82 1.5e+3 5.4e+3 -5.3e+3 0 0 0 0 0 0 -744.0 -2.4e+3

0.83 1.6e+3 7.6e+3 -7.4e+3 0 0 0 -744.0 0 0 -1.3e+3 -3.3e+3

0.83 1.6e+3 8.6e+3 -8.4e+3 0 0 -1.3e+3 599.0 0 0 -1.3e+3 -3.4e+3

0.83 1.6e+3 8.7e+3 -8.4e+3 58.0 0 -1.4e+3 655.0 0 0 -1.5e+3 -3.3e+3

0.84 1.4e+3 9.3e+3 -8.6e+3 0 255.0 -1.6e+3 744.0 0 -200.0 -2.0e+3 -3.3e+3

0.84 1.4e+3 9.2e+3 -8.5e+3 222.0 -1.6e+3 722.0 -477.0 0 300.0 -1.9e+3 -3.3e+3

0.84 1.5e+3 9.4e+3 -8.9e+3 288.0 89.0 -1.7e+3 899.0 -577.0 255.0 -2.0e+3 -3.5e+3

Chapter 4. Parametric Insights into Optimal Locomotion Policies 74

Table 4.5: Minimum leg force - Walking at 1.2 m/s.
Basis function weight combinations with the highest coefficients of determi-
nation sorted by increasing model complexity.

Flight

R2 1 z ẋ ż z2 ẋ2 ż2 zẋ zż ẋż
√

ẋ2 + ż2 tan−1(ż/ẋ) sin−1(z/l0)

0.23 455.0 0 0 0 0 36.0 0 0 0 0 0 0 0

0.53 544.0 0 -333.0 0 0 133.0 0 0 0 0 0 0 0

0.56 844.0 0 -333.0 0 0 133.0 0 0 0 0 0 0 -255.0

0.63 2.3e+3 -1.9e+3 -1.0e+3 0 0 144.0 0 733.0 0 0 0 0 0

0.63 2.3e+3 -1.9e+3 -1.0e+3 0 0 144.0 0 733.0 0 0 0 28.0 0

0.64 2.4e+3 -1.9e+3 -1.0e+3 0 0 155.0 0 744.0 0 0 -57.0 28.0 0

0.64 2.3e+3 -1.9e+3 -1.0e+3 -57.0 0 144.0 0 755.0 0 24.0 0 58.0 0

0.65 2.4e+3 -2.0e+3 -1.0e+3 -54.0 0 155.0 0 766.0 0 24.0 -56.0 56.0 0

0.65 2.4e+3 -2.0e+3 -1.0e+3 -200.0 0 155.0 0 766.0 166.0 24.0 -51.0 56.0 0

0.65 2.7e+3 -2.5e+3 -1.1e+3 -233.0 0 155.0 0 788.0 199.0 24.0 -50.0 56.0 199.0

0.65 2.7e+3 -2.6e+3 -1.0e+3 -244.0 0 155.0 13.0 788.0 200.0 25.0 -84.0 56.0 200.0

0.65 2.7e+3 -2.6e+3 -1.0e+3 -244.0 24.0 155.0 13.0 788.0 200.0 25.0 -85.0 56.0 200.0

Single Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.58 500.0 0 0 0 0 0 0 0 88.0 0 0

0.63 333.0 0 0 0 0 0 83.0 0 122.0 0 0

0.64 311.0 0 0 84.0 0 0 77.0 0 133.0 0 0

0.65 188.0 0 0 80.0 0 0 64.0 79.0 222.0 0 0

0.66 411.0 0 80.0 70.0 0 81.0 0 244.0 -199.0 0 0

0.67 433.0 0 65.0 80.0 0 -72.0 0 82.0 244.0 0 -211.0

0.67 133.0 0 67.0 78.0 0 -73.0 0 311.0 89.0 444.0 -222.0

0.67 122.0 98.0 79.0 -100.0 0 322.0 0 -36.0 89.0 455.0 -222.0

0.67 3.5e+3 -7.5e+3 66.0 79.0 0 -73.0 333.0 90.0 466.0 -222.0 4.2e+3

0.67 3.4e+3 -7.4e+3 94.0 79.0 -100.0 344.0 -32.0 90.0 466.0 -233.0 4.1e+3

Double Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.65 522.0 0 85.0 0 0 0 0 0 0 0 0

0.66 1.9e+3 0 -1.5e+3 0 0 85.0 0 0 0 0 0

0.66 1.9e+3 0 -1.6e+3 0 -30.0 99.0 0 0 0 0 0

0.67 2.0e+3 0 -1.6e+3 0 -78.0 61.0 0 0 0 0 155.0

0.68 2.5e+3 0 -2.3e+3 0 -122.0 100.0 0 0 199.0 0 -422.0

0.68 2.5e+3 -2.3e+3 233.0 0 -222.0 411.0 0 0 0 -244.0 -511.0

0.69 2.4e+3 -2.3e+3 -87.0 0 166.0 211.0 0 0 -333.0 244.0 -533.0

0.69 2.4e+3 811.0 -3.0e+3 0 233.0 -277.0 477.0 0 -244.0 -344.0 -777.0

0.69 2.4e+3 799.0 -3.0e+3 233.0 -277.0 466.0 -411.0 0 177.0 -344.0 -777.0

0.69 2.4e+3 788.0 -3.0e+3 -4.1 233.0 -266.0 466.0 -400.0 177.0 -333.0 -777.0

Chapter 4. Parametric Insights into Optimal Locomotion Policies 75

Table 4.6: Minimum positive mechanical power - Running at 3.0 m/s.
Basis function weight combinations with the highest coefficients of determi-
nation sorted by increasing model complexity.

Flight

R2 1 z ẋ ż z2 ẋ2 ż2 zẋ zż ẋż
√

ẋ2 + ż2 tan−1(ż/ẋ) sin−1(z/l0)

0.71 4.2e+4 0 0 0 0 0 0 -1.1e+4 0 0 0 0 0

0.86 1.3e+5 -9.8e+4 -9.6e+3 0 0 0 0 0 0 0 0 0 0

0.9 1.3e+5 -1.0e+5 -9.7e+3 -2.9e+3 0 0 0 0 0 0 0 0 0

0.92 1.4e+5 -1.1e+5 -9.7e+3 -3.3e+4 0 0 0 0 3.3e+4 0 0 0 0

0.94 1.5e+5 -1.1e+5 -7.2e+3 -3.2e+4 0 0 0 0 3.2e+4 0 -4.0e+3 0 0

0.94 1.7e+5 -1.7e+5 -7.3e+3 -3.4e+4 0 0 0 0 3.4e+4 0 -3.9e+3 0 2.2e+4

0.95 3.3e+5 -5.1e+5 -1.8e+4 -3.8e+4 2.1e+5 0 0 1.2e+4 3.8e+4 0 -4.0e+3 0 0

0.95 3.4e+5 -5.3e+5 -1.7e+4 -3.9e+4 2.3e+5 0 1.2e+3 1.2e+4 3.9e+4 0 -5.8e+3 0 0

0.95 3.5e+5 -5.5e+5 -1.7e+4 -3.9e+4 2.4e+5 933.0 2.3e+3 1.2e+4 3.9e+4 0 -1.0e+4 0 0

0.96 3.5e+5 -5.4e+5 -1.7e+4 -3.8e+4 2.4e+5 922.0 2.3e+3 1.2e+4 3.9e+4 -455.0 -1.0e+4 0 0

0.96 3.1e+5 -4.6e+5 -1.7e+4 -3.8e+4 1.8e+5 911.0 2.3e+3 1.2e+4 3.9e+4 -455.0 -1.0e+4 0 8.6e+3

0.96 3.1e+5 -4.6e+5 -1.7e+4 -3.9e+4 1.8e+5 911.0 2.3e+3 1.1e+4 3.9e+4 -366.0 -1.0e+4 300.0 8.6e+3

Single Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.85 5.3e+4 0 0 0 -1.0e+4 0 0 0 0 0 0

0.87 2.0e+5 0 0 0 -1.0e+4 0 0 0 0 -1.1e+5 0

0.89 2.0e+5 0 0 0 -1.0e+4 0 0 0 0 -2.3e+3 -1.1e+5

0.9 1.0e+6 0 -1.9e+6 0 0 0 -1.0e+4 0 0 -1.3e+5 1.0e+6

0.91 2.1e+5 0 2.9e+4 0 0 0 -1.0e+4 0 -3.1e+4 -2.9e+4 -1.2e+5

0.91 2.1e+5 0 3.0e+4 0 0 0 -1.0e+4 -3.3e+4 -3.1e+4 -1.4e+5 3.1e+4

0.92 1.0e+6 0 -1.8e+6 0 3.0e+4 0 -1.0e+4 -3.2e+4 -3.1e+4 -1.4e+5 1.0e+6

0.92 1.1e+6 0 -1.9e+6 3.0e+4 -1.0e+4 0 -3.2e+4 -8.4e+3 -2.9e+4 -1.4e+5 1.1e+6

0.92 1.1e+6 -1.9e+6 3.0e+4 -1.0e+4 -3.3e+4 0 -2.9e+4 3.8e+3 6.2e+3 -1.4e+5 1.1e+6

0.92 1.1e+6 -1.9e+6 3.0e+4 -1.0e+4 -3.3e+4 -1.1e+3 -2.9e+4 3.7e+3 5.5e+3 -1.4e+5 1.1e+6

Double Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.73 6.6e+4 -1.1e+4 0 0 0 0 0 0 0 0 0

0.82 3.0e+5 -2.5e+5 -1.0e+4 0 0 0 0 0 0 0 0

0.83 5.0e+5 -2.6e+5 -2.2e+5 0 0 0 -9.8e+3 0 0 0 0

0.84 5.0e+5 -3.2e+5 -1.8e+5 0 0 0 -9.8e+3 6.0e+4 0 0 0

0.84 4.7e+5 -2.3e+5 -2.1e+5 0 9.0e+3 0 -9.5e+3 -1.9e+4 0 0 0

0.84 4.7e+5 -2.1e+5 -2.4e+5 0 1.8e+4 -5.3e+4 3.5e+4 -1.8e+4 0 0 0

0.85 4.8e+5 -1.9e+5 -2.8e+5 0 1.4e+4 -4.9e+4 3.2e+4 -1.4e+4 0 0 -3.0e+4

0.85 4.9e+5 -1.8e+5 -3.0e+5 0 1.7e+4 7.9e+3 -6.0e+4 4.5e+4 -2.4e+4 0 -4.3e+4

0.85 4.9e+5 -1.8e+5 -3.0e+5 0 1.9e+4 8.8e+3 -6.2e+4 4.7e+4 -1.4e+4 -1.3e+4 -4.3e+4

0.85 4.9e+5 -1.7e+5 -3.0e+5 1.9e+4 9.3e+3 -6.3e+4 4.9e+4 -1.4e+4 -1.3e+4 -5.9e+3 -4.6e+4

Chapter 4. Parametric Insights into Optimal Locomotion Policies 76

Table 4.7: Minimum positive mechanical power - Walking at 1.2 m/s.
Basis function weight combinations with the highest coefficients of determi-
nation sorted by increasing model complexity.

Flight

R2 1 z ẋ ż z2 ẋ2 ż2 zẋ zż ẋż
√

ẋ2 + ż2 tan−1(ż/ẋ) sin−1(z/l0)

0.2 9.5e+3 0 0 0 -7.4e+3 0 0 0 0 0 0 0 0

0.28 1.0e+4 0 0 -611.0 -8.2e+3 0 0 0 0 0 0 0 0

0.38 1.0e+4 0 -1.7e+3 0 -7.7e+3 455.0 0 0 0 0 0 0 0

0.51 2.9e+4 -2.7e+4 -8.8e+3 0 0 522.0 0 7.6e+3 0 0 0 0 0

0.6 3.1e+4 -2.9e+4 -9.0e+3 -655.0 0 500.0 0 7.8e+3 0 0 0 0 0

0.68 3.6e+4 -3.4e+4 -9.8e+3 -8.1e+3 0 499.0 0 8.7e+3 8.2e+3 0 0 0 0

0.71 8.1e+4 -1.4e+5 -1.1e+4 -9.6e+3 5.7e+4 500.0 0 9.8e+3 9.8e+3 0 0 0 0

0.74 3.9e+4 -3.5e+4 -9.6e+3 -8.5e+3 0 966.0 888.0 9.1e+3 8.6e+3 0 -3.0e+3 0 0

0.77 9.4e+4 -1.6e+5 -1.1e+4 -1.0e+4 6.8e+4 1.0e+3 999.0 1.0e+4 1.1e+4 0 -3.2e+3 0 0

0.79 1.0e+5 -1.7e+5 -1.2e+4 -1.2e+4 7.4e+4 1.0e+3 1.0e+3 1.1e+4 1.2e+4 244.0 -3.2e+3 0 0

0.8 1.0e+5 -1.7e+5 -1.2e+4 -1.2e+4 7.5e+4 1.0e+3 1.0e+3 1.1e+4 1.2e+4 300.0 -3.2e+3 199.0 0

0.8 8.9e+4 -1.4e+5 -1.2e+4 -1.2e+4 5.5e+4 1.0e+3 1.0e+3 1.1e+4 1.2e+4 300.0 -3.2e+3 188.0 2.9e+3

Single Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.67 1.3e+5 0 0 0 0 0 0 0 0 -1.4e+5 0

0.75 9.9e+5 -2.0e+6 0 0 0 0 0 0 0 0 1.0e+6

0.77 1.0e+6 -2.0e+6 -3.4e+4 0 0 0 0 0 0 0 1.1e+6

0.81 1.0e+6 0 -2.0e+6 0 0 0 1.7e+3 0 0 -3.7e+4 1.1e+6

0.83 1.0e+6 0 -2.0e+6 1.6e+3 0 0 2.3e+3 0 0 -3.7e+4 1.1e+6

0.84 1.0e+6 0 -2.0e+6 1.5e+4 0 0 -1.5e+4 -1.5e+4 0 -4.1e+4 1.1e+6

0.84 1.0e+6 0 -2.0e+6 1.5e+4 0 -1.5e+4 -1.5e+4 2.1e+3 0 -4.2e+4 1.1e+6

0.85 1.0e+6 -2.0e+6 1.5e+4 -1.5e+4 0 0 -2.7e+3 -1.4e+4 2.2e+3 -4.2e+4 1.1e+6

0.85 1.0e+6 -2.0e+6 1.5e+4 -255.0 -1.5e+4 -2.9e+3 -1.4e+4 2.2e+3 0 -4.2e+4 1.1e+6

0.85 1.0e+6 -2.0e+6 1.5e+4 -222.0 -1.4e+4 -8.3e+3 -1.4e+4 2.1e+3 -3.8e+3 -4.2e+4 1.1e+6

Double Support

R2 1 l l̇ ẋl żl zx f oot ẋx f oot żx f oot tan−1(z/x f oot) l · cos−1(1 − z/l) l2

0.5 2.3e+5 -2.2e+5 0 0 0 0 0 0 0 0 0

0.75 4.3e+5 -2.4e+5 -2.0e+5 0 0 0 0 0 0 0 0

0.77 4.3e+5 -2.5e+5 -2.0e+5 0 0 1.2e+3 0 0 0 0 0

0.77 4.3e+5 -2.1e+5 -2.3e+5 0 0 -1.9e+4 0 2.0e+4 0 0 0

0.77 4.3e+5 -2.2e+5 -2.3e+5 0 1.8e+3 -2.2e+4 2.2e+4 0 0 0 0

0.78 4.3e+5 -2.1e+5 -2.3e+5 0 3.1e+3 -2.4e+4 2.3e+4 -1.5e+3 0 0 0

0.78 4.3e+5 -2.2e+5 -2.3e+5 0 6.3e+3 4.9e+3 -3.2e+4 3.2e+4 0 0 -9.1e+3

0.78 4.3e+5 -2.1e+5 -2.4e+5 0 6.1e+3 6.2e+3 -3.3e+4 3.3e+4 0 -1.0e+4 -8.6e+3

0.78 4.3e+5 -2.1e+5 -2.4e+5 6.6e+3 6.5e+3 -3.4e+4 3.4e+4 -1.1e+4 0 -3.2e+3 -1.0e+4

0.78 4.3e+5 -2.0e+5 -2.4e+5 6.8e+3 6.6e+3 -3.4e+4 3.4e+4 -9.4e+3 -1.8e+3 -3.8e+3 -1.1e+4

Chapter 4. Parametric Insights into Optimal Locomotion Policies 77

Amongst the basis functions that we considered in our study, some play

a more important role than others, depending on the gait phase. Next, we

describe the relative importance of different basis functions to specific poli-

cies.

4.3.1 Minimum time

Running

For the flight phase of a running target, the minimum time control policy is

strongly correlated with the center of mass vertical height and the product

of vertical height and vertical velocity. The square of the horizontal velocity

plays an important role in models of 4 or less basis functions, but gets re-

placed by the square of the vertical velocity beyond models of complexity

greater than 4.

In the single support phase, the minimum time control policy is domi-

nated by the leg angle basis function and the product of vertical speed and

horizontal foot position. The product of vertical velocity and leg length plays

a role in models of complexity greater than 4.

In the double support phase, the leg velocity is an important feature for

all models. On the other hand, there is no clear correlation between the

control and other features for model complexity less than 4. For complexity

4 and greater, the product of leg length and horizontal velocity, as well as the

product of vertical velocity and horizontal foot position become important

features. These results can be seen in Table 4.2.

Chapter 4. Parametric Insights into Optimal Locomotion Policies 78

Walking

For the minimum time walking target, the basis functions behave very dif-

ferently than the running case, which is expected as the control policies are

significantly different. In flight, both the product of vertical height and ver-

tical velocity, as well as squared horizontal velocity are correlated with the

control policies. These are neatly followed by vertical height and then hori-

zontal velocity. The remaining basis functions do not play a large role here.

For the single support phase, the leg angle is dominant, similar to the run-

ning target. The next most active features include the product of horizontal

velocity and horizontal foot position, and the product of vertical velocity and

horizontal foot position.

In double support, the leg velocity is highly correlated with the control

for all model complexities. A second feature that plays a important role is

the product of the leg length and the curve described by arccos(1−z/l), which

is related to a cycloid. These results can be seen in Table 4.3.

4.3.2 Minimum leg force

Running

Minimum leg force running shows slightly different trends than the min-

imum time case. The flight phase shows a strong correlation with vertical

height and horizontal velocity. Squared horizontal velocity also shows some

significance. The single support phase again is highly reliant on leg angle,

but does not show strong correlation with the other basis functions. Dou-

ble support results show dependence on leg length and the cycloidal curve.

These results can be seen in Table 4.4.

Chapter 4. Parametric Insights into Optimal Locomotion Policies 79

Walking

The walking solution flight phase features the horizontal velocity and its

squared quantity prominently in the models. Vertical height and its product

with horizontal foot position also play a large role in the models. The single

support phase shows less clear relationships, aside from leg angle which is

included in all model. Double support models have a clear relationship with

leg length, the product of vertical height and horizontal foot position, and

the product of vertical velocity and leg length. These results can be seen in

Table 4.5.

4.3.3 Minimum positive mechanical power

Running

Minimizing the positive mechanical power of the system yields a different

set of parametric models. The R2 scores for this running target cost func-

tion are also noticeably higher, indicating better linear fits. During the flight

phase, the models are dominated by vertical height, horizontal velocity, and

vertical velocity. Single support models only show a strong trend with the

cycloidal term, but double support shows a clearer ordering of terms. Leg

length has the highest frequency, followed by legvelocity, and then the prod-

uct of horizontal velocity and horizontal foot position. These results can be

seen in Table 4.6.

Walking

The walking results show similar trends. The flight phase models appear

to weakly favor horizontal velocity, vertical height, and squared horizontal

Chapter 4. Parametric Insights into Optimal Locomotion Policies 80

velocity. The single support models do not show as many consistent trends,

but do frequently use the squared leg length. Finally, the double support

phase results showmore order. Leg length and legvelocityhave the strongest

relationships, aswas the casewith the running target. The product of vertical

velocity and horizontal foot position follow these quantities in importance.

Our analysis shows that parts of the gait cycle for specific targets can be

explained by different gait features. This gives a way of approximating high-

dimensional policies from dynamic programming in a concise, parametric

manner. This can furtherbe used to reason about the nature of policies being

generated, and provide insights about them.

Chapter 5

Deadbeat SpringMass Model

Running on ATRIAS

The simple spring mass model (SMM) describes a point mass rebounding on

massless spring legs. Research on this model has led to deadbeat foot place-

ment strategies that produce highly robust SMM running in the presence of

large and frequent, unexpected gait disturbances [25, 101, 111, 130]. This the-

oretical performance goes far beyond what has been demonstrated in run-

ning robots [57, 59, 93, 116]. However, these robots are clearly more complex

systems than the conceptual SMM. They possess more degrees of freedom

leading to additional dynamics, are limited by actuator saturation, and expe-

rience sensory noise that produces uncertainty about the actual state of the

system. As a result, the utility of SMM theories for the control of complex

running robots remains largely unclear.

Addressing this gap in understanding, several researchers have investi-

gated the foot placement strategies of the SMM on more simplified hopping

robots. For an early example, Zeglin [133] investigated state space plan-

ning algorithms based on the SMM for a bow-legged hopper with a com-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 82

Figure 5.1: CMU’s ATRIAS biped shown in the boom testbed during the
ground disturbance experiments with unexpected height changes of ±15 cm
(discussed in section 5.3.3).

pressible spring and passively stabilized trunk. More recently, Shemer and

Degani [114] investigated deadbeat hopping policies for a similar monopod

robot with a gyroscopically stabilized trunk in a low gravity environment.

They used an analytical approximation of the SMM to compare the effect

of constant deadbeat impact angles to swing leg retraction policies. Finally,

Uyanık and colleagues [123] quantified the predictive performance of ana-

lytical approximations of the SMM in achieving deadbeat behavior using a

monopedal spring leg with no attached trunk. All these studies have in com-

mon that they were performed with small and specialized one-legged plat-

forms, characterized by prismatic legs, passively stabilized trunk motion in

stance, and external sensor measurements. In contrast, we are interested in

understanding if the SMM legplacement theories can be transferred to more

humanoid robots and attempt the transfer on ATRIAS, a bipedal machine of

human scale and weight with an actively controlled trunk and without exter-

nal sensing (Fig. 5.1).

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 83

For the transfer, we focus on rendering the best possible behavior match

between the SMM and ATRIAS. To achieve this goal, we use a model-based

force control approach during the stance phase of running. Controllers of

this type have been implemented successfully on legged robots for track-

ing desired forces during locomotion [48, 64, 67]. Combined with tracking

the deadbeat foot placements of the SMM in flight, ATRIAS should match

the behavior and robustness observed in the simplified model. However, we

expect deviations from this ideal behavior due to the real world challenges

faced by the machine. We perform planar running experiments to quantify

these deviations, and thus, the utility of the SMM theories for more complex

robots.

The remainder of this section is organized in four parts. We first provide

a general overview of our control approach in section 5.1 before detailing its

implementation on ATRIAS in section 5.2. We then present the results of

the running experiments in section 5.3, which show that the resulting con-

troller achieves velocity tracking that is consistent with deadbeat behavior of

the underlying model for velocity changes of ±0.2m · s−1. For larger velocity

changes and ground height disturbances up to ±15 cm, the controller perfor-

mance degrades, although the robot maintains running. We discuss the rea-

sons for this degradation and highlight in section 5.4 directions to improve

on these initial results about SMM-based control for generating robust and

versatile behavior in running robots.

5.1 Control Approach

The SMM consists of a point mass m rebounding on a massless spring leg of

stiffness k and rest length l0. This system behaves as a purely ballistic projec-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 84

tile during flight and as a spring-loaded inverted pendulum during stance

with
mẍ = k

[
l0 (x2 + z2)−1/2 − 1

]
x,

mz̈ = k
[
l0 (x2 + z2)−1/2 − 1

]
z − mg,

(5.1)

where (x, z) are the coordinates of the point mass in the horizontal and verti-

cal dimensions. The model does not consider sliding during stance. Stance

occurs when the foot point strikes the ground and flight resumes once the

leg length reaches l0 during rebound. The model’s trajectory in flight is fully

determined by the horizontal speed ẋ and the system energy Es, which is a

constant parameter of the model. Given the speed in one flight phase, the

model behavior in the ensuing stance and flight phases is controlled by the

leg angle αTD at touchdown [111]. This influence of the landing angle on the

model behavior can be captured with the apex return map, ẋi+1 = f (ẋi, αTD,i),

which relates the state of the model between the apexes of two subsequent

flight phases (i and i+1). Inverting this function yields a deadbeat touchdown

angle that takes the system from the current forward velocity ẋi to a desired

forward velocity ẋi+1 = ẋ∗a in a single step,

α∗TD,i = f −1(ẋi, ẋ∗a). (5.2)

Deadbeat controllers based on this theory have been identified that provide

robustness to unobserved rough terrain for the SMM in simulation [25, 111,

130].

Our target platform for translating this theory is CMU’s ATRIAS (Fig. 5.1),

one of three identical copies of a human-sized bipedal robot developed by

the Dynamic Robotics Laboratory at Oregon State University [58]. The cen-

troidal dynamics of ATRIAS has inertial properties similar to that of human

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 85

locomotion. The robot weighs about 64kg with its mass concentrated in

the trunk, 0.19m above the pelvis. The trunk’s rotational inertia is about

2.2kg ·m2. Each legof this bipedal robot is constructed from four lightweight

carbon fiber segments. The proximal segments are driven in the sagittal

plane by series elastic actuators (SEA) composed of a fiberglass leaf spring

and a geared electric DC motor. The reflected inertia of these hip-anchored

motors is about 3.75kg ·m2 after gearing. With a power supply stabilized

by a 0.12F electrolytic capacitor, these motors can draw peak currents of

165A each, which translates into peak torques of about 600N ·m per actua-

tor at the joint level. In addition, frontal plane abduction and adduction of

each hip is provided by a third DC motor mounted on the trunk. Although

ATRIAS is capable of untethered 3-D locomotion, this paper focuses on pla-

nar control theory of the SMM; hence, the trunk is attached to a boom but is

free to pitch in the sagittal plane. The boom constrains the robot to move in

a sphere and has negligible mass and inertia. The boom pivot point moves

freelywith the robot, and thus does not transmit any significant forces in the

sagittal plane that could stabilize the trunk’s pitch.

5.1.1 Implicit regulation of system energy

Two points complicate the transfer of control theories developed for the

SMM onto legged robots such as ATRIAS. The first point is that the system

energy is constant in the model but will change in a robot due to the desire

to accelerate and brake as well as internal friction. One way of changing en-

ergy in the SMM is to introduce another control input, such as a variable leg

stiffness during stance [131]. However, we adopt a different approach. We

approximate the SMM dynamics (5.1) around the vertical pose (x, z) = (0, z∗0)

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 86

with z∗0 < l0 by

mẍ = k (z∗0 − z)
x
z
, (5.3)

mz̈ = k (z∗0 − z) − mg. (5.4)

This approximate SMM is similar to the one used in [80]; it has decoupled

vertical dynamics, which enables independent control of apex height and

horizontal speed achieved during flight, implicitly regulating system energy

with more natural gait variables. Specifically, we use (5.4) to prescribe a de-

sired vertical motion z∗(t) for ATRIAS with apex height z∗a and landing and

takeoff height z∗0 (Fig. 5.2). Given this reference, we compute the correspond-

ing return map of the horizontal motion from (5.3). Thus, the updated dead-

beat control law for leg placement in flight becomes

α∗TD,i = f −1approx(ẋi, ẋ∗a, z
∗(t)), (5.5)

which regulates running speed on ATRIAS.

Besides implicit regulation of system energy, the approximation of the

SMM with (5.3) and (5.4) allows us to easily generalize this model from a

point mass to a rigid body, which we address in the next section.

5.1.2 Explicit stabilization of trunk orientation

A second point complicating the transfer of SMM theories on to bipedal

robots is that they require stabilization of trunk orientation, which is ignored

in the SMM. This is a common problem in humanoid walking control based

on the linear inverted pendulum model. It is often solved using a nonlinear

quadratic program for a full order dynamics model of the robot [48, 64, 67].

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 87

0 tT D = 78 tTO = 369 447

0.97

z∗0 = 1.09

z∗a = 1.12
flight stance flight

time (ms)

ve
rt

ic
al

p
o
si
ti
o
n

(m
)

Figure 5.2: Prescribed vertical motion z∗(t) between two apexes. The mo-
tion is derived from (5.4) assuming m = 64kg and k = 16kN ·m−1 (details on
the choice of k provided in Sec. 5.3.1). The motion is used by the ATRIAS
controller as a target behavior and re-initiated in every flight phase.

This optimization balances different goals, such as the center of mass (CoM)

behavior, trunk orientation, and other constraints on the robot motion. Due

to computational costs, the optimization typically applies to only the current

time step without taking advantage of future dynamics. In contrast to this

approach, we introduce an intermediate model of reduced order (Fig. 5.3b)

that allows us to consider the future dynamics of a floating rigid body with

orientation θ, inertia I, and dynamics

mẍ = Fx,

mz̈ = Fz − mg,

Iθ̈ = −zFx + xFz,

(5.6)

using finite-horizon linear quadratic regulation (LQR), as detailed in sec-

tion 5.2.2. Here Fx and Fz are the ground reaction forces of the approximate

SMM model modified by a stabilizing control for the trunk orientation (de-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 88

tailed in section 5.2.2 below, equation 5.9). We assume that the centralized

inertia I on ATRIAS is constant, rather than configuration-dependent, be-

cause the robot’s legs are light relative to its body.

5.1.3 Overview of control flow

Given the approximate spring mass model, the intermediate complexity

model distributes translational and rotationalmotion. However, a third layer

ofmodel complexity is required to translate this centroidalmotion into robot

control. Overall this leads to a three layer control structure.

Figure 5.3 summarizes the flowof this control structure for the transfer of

SMM control theory onto theATRIAS biped. At the highest level, we define a

spring mass gait based on desired speed and desired apex height. The corre-

sponding approximate SMM provides the desired CoM trajectory in stance

and the desired deadbeat angle in flight (Fig. 5.3a). In stance, the interme-

diate implementation level then generates GRFs that optimally trade off the

desired CoM behavior against the desired trunkorientation (Fig. 5.3b). These

GRFs are mapped in the next level by a dynamics model of theATRIAS robot

(detailed in [131]),

Mq̈ + h = S τ + JTF , (5.7)

to the required joint torques (Fig. 5.3c), which are finally converted into de-

sired motor velocities for the torque control of ATRIAS’s SEAs (Fig. 5.3d).

In flight, the deadbeat angle from the approximate SMM is used to gen-

erate a foot point trajectory for the leg that achieves the target angle at a

designated touchdown time (Fig. 5.2). This foot trajectory is converted into

joint trajectories using a kinematics model of ATRIAS (Fig. 5.3c). The joints

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 89

[
x∗(t)
z∗(t)

]

[
Fx
Fz

]

θ

τ fτb

a

b

c

d

approximate spring mass model

ẋ∗, z∗a

CoM
trajectory

stance

LQR

inverse
dynamics

SEA force
control

robot hardware

[
x∗(t)
z∗(t)

]
θ∗

[
Fx
Fz

]

(τ f , τb)

θ̇m

deadbeat
target

flight

position
control

αT D

θ̇m

kinematics

CoM state
estimator

q, IMU

x̂R, x̂L, ˆ̈xA

α̂

[
x̂
ẑ

]

ˆ̇x

Figure 5.3: Overview of implemented control. See section 5.1.3 for details.

are then position-controlled by sending a velocity command to the robot’s

SEAs (Fig. 5.3d).

5.2 Implementation

The control implementation on the ATRIAS biped requires more consider-

ation. Besides detailing the individual layers of the control flow presented

in the last section, this section explains how we address state estimation, ex-

ternal disturbances, and model inaccuracies. All described control is imple-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 90

mented onboard ATRIAS using MATLAB Simulink Realtime software with

an update rate of 1 kHz.

5.2.1 Estimation of CoM and contact states

Tracking the CoM of ATRIAS and knowledge about its ground contact state

are prerequisites for implementing the SMM control. For the first, we use

two independent but identically structuredKalmanfilters estimating the hor-

izontal and vertical CoM states. In both filters, the underlying model is a

point mass m influenced by an applied force F. For instance, the resulting

discrete time process equation of the filter for the horizontal states is


xt+1

ẋt+1

ẍt+1

 =

1 ∆t 0

0 1 ∆t

0 0 1




xt

ẋt

ẍt

 +

0

0

1
m

 (F̂
x
t − F̂ x

t−1) +


0

0

1
m

 wt,

where ∆t = 1ms is the time step and w is Gaussian white process noise with

covariance Q = 25N2. The force F̂ x is estimated from the measured torques

of the hip SEAs and the commanded torques of the lateral motors (ATRIAS

has no torque sensing for its lateral motors). This is accomplished by solving

for F in equation 5.7 with the constraint Jq̈ = −J̇ q̇, which assumes a static

point of contact, yielding the dynamics,

F̂ = fdyn(τ̂ , q, q̇). (5.8)

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 91

The measurement equation of the filter is


x̂R

t

x̂L
t

ˆ̈xA
t

 =

1 0 0

1 0 0

0 0 1




xt

ẋt

ẍt

 + vt,

where x̂L/R are estimates of the horizontal distances from the left and right

feet to the CoM, respectively, ˆ̈xA is an estimate of the horizontal accelera-

tion of the CoM, and v is measurement noise. The distances are computed

from the kinematics model of ATRIAS using the robot’s measured joint an-

gles and trunk orientation. The acceleration is calculated using acceleration

measurements from an IMU attached to ATRIAS’s trunk. The horizontal fil-

ter is initialized using these measurements on every touchdown to account

for a changing foot point. The vertical filter is only initialized once on the

first touchdown. The covariance matrix

Rt =
1

∆t


Rmx − µR(Rmx − Rmn) 0 0

0 Rmx − µL(Rmx − Rmn) 0

0 0 RA


of the measurement noise is adaptive. Specifically, the covariance for the

distance measurement noise is inversely proportional to the estimated load

on each leg in units of body weight, µR/L = 10 F̂z
R/L/(mg) (µR/L clamped to [0, 1],

Rmn = 5 × 10−5 m2, Rmx = 1m2, and RA = 4m2/s4).

The contact state of each leg is determined from the estimated vertical

GRF, F̂z. ATRIAS has no explicit contact or force sensing at its feet; instead,

the force estimate (5.8) is used to determine if a leg is in stance. An F̂z ex-

ceeding 50% of body weight triggers the touchdown event and causes the

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 92

control to enter the stance phase. Conversely, once the vertical CoM veloc-

ity ˆ̇z crosses from negative to positive values, indicating rebound, a drop in

F̂z below the 50% threshold triggers take off and the exit from stance control.

This threshold level creates a small delay of approximately 15ms (about 5%

of stance duration) in contact detection.

5.2.2 Stance control

Upon transition of ATRIAS into the stance phase, the approximate SMM

layer of the control (Fig. 5.3a) generates a desired CoM trajectory [x∗(t), z∗(t)]

based on the previous takeoffvelocity ˆ̇xi, the next desired takeoffvelocity ẋ∗i+1,

the prescribed vertical motion z∗(t), and equation (5.3) (Sec. 5.1.1). Note, al-

though x∗(t) describes the horizontal motion in stance, it is chosen alongwith

the foot placement based on the system state at the previous takeoff. The

layer also generates a corresponding force input u∗(t) = [F∗x(t), F∗z (t)] from the

GRFs of the approximate SMMwith F∗z (t) = k(z∗0−z∗(t)) and F∗x(t) = F∗z (t)x
∗(t)/z∗(t).

In the second control layer (Fig. 5.3b), the force input is modified to ac-

count for trunk stabilization. The desired CoM trajectory is combined with

a desired trunk orientation θ∗(t) = 0 into a reference motion

ξ∗(t) = [x∗(t), ẋ∗(t), θ∗(t), θ̇∗(t), z∗(t), ż∗(t)]

for a floating rigid body (Sec. 5.1.2). We convert the floating rigid body dy-

namics (equation 5.6) to state space form and linearize the error dynamics

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 93

around this reference trajectory, which yields,

∆ξ̇ =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

F∗z (t)
I 0 0 0 −

F∗x(t)
I 0

0 0 0 0 0 1

0 0 0 0 0 0



∆ξ +



0 0

1/m 0

0 0

−z∗(t)
I

x∗(t)
I

0 0

0 1/m



∆u,

where∆ξ = ξ−ξ∗ and∆u = u−u∗. We approximate F∗x(t) = 0 and x∗(t) = 0, which

decouples the vertical state error dynamics. As this approximate model is

linear, finite horizon LQRyields the optimal force control input u(t) = u∗(t)−

K(t)(ξ(t) − ξ∗(t)) for trading off tracking the SMM behavior against balancing

the trunk, with the feedback gain K(t) = [Kx(t),Kz]. Thus, the second control

layer generates the modified desired GRFu(t) = [Fx(t), Fz(t)]with components

Fx = F∗x −Kx



x − x∗

ẋ − ẋ∗

θ − θ∗

θ̇ − θ̇∗


, Fz = F∗z −Kz

z − z∗

ż − ż∗

 . (5.9)

The third control layer (Fig. 5.3c) converts the desired GRFs (5.9) into mo-

tor commands of the robot’s SEAs in three steps. First, the forces are passed

through a safety check to ensure that the foot does not slip on the ground.

This requires the vertical force to remain positive, Fz ≥ 0, and the horizontal

force Fx to be inside a friction cone with stiction coefficient of 0.5. It is im-

portant to note that these two constraints are almost never active onATRIAS

because stance beginswhen Fz exceeds 50% of bodyweight (Sec. 5.2.1) and the

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 94

stance leg is typically near the vertical. Second, the control compensates for

the vertical constraint forces caused by the boom (Fig. 5.1), F†z = FzF̂z/(mˆ̈z),

where ˆ̈z is provided by the CoM state estimator (Sec. 5.2.1). Third, the modi-

fied desired forces, F†x and F†z , are then mapped based on the dynamics model

of ATRIAS (5.7) into joint torques using

ζ =

M5× 5 −S5× 2

J2× 5 02× 2


−1 

 h5× 1

−(_J_q)2× 1

 +
 J

T
5× 2

02× 2


F
†
x

F†z




with ζ = [ẍ z̈ θ̈ l̈ γ̈l τ f τb]
T specifying accelerations as well as joint torques,

and l̈ and γ̈l being the leg length and angle accelerations, respectively (de-

tailed in [131]). Although the solution vector ζ contains both accelerations

and torques, the accelerations are not used by the controller. Furthermore,

because the swing leg is light, we do not account for its accelerations and

control it independently as described in the next section. Finally, the result-

ing joint torques, τ f and τb, are tracked on ATRIAS using the velocity-based

SEA controller described in [102].

5.2.3 Flight control

Once ATRIAS transitions out of stance, the SMM prescribes only a desired

landing angle α∗TD,i (5.5). The model does not specify which of the robot’s

two legs is to land or how it shall reach the target. We solve the first prob-

lem by introducing a transitory control phase and the second by defining a

kinematic trajectory for the foot point.

Figure 5.4 summarizes the state machine of theATRIAS controller. While

one leg follows the SMM stance and flight behaviors, the other leg remains

in a mirror control phase. For instance, when the right leg takes off (RTO),

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 95

mirror

SMM
stance

SMM
flight

LLTD

LTO

SMM
flight

SMM
stance

R RTD

RTO

Figure 5.4: State-machine of ATRIAS biped control. While the left (L) or
right (R) leg cycles through an SMM flight and stance phase, the other leg
remains in the transitory mirror phase. Both legs switch roles when take off
occurs. TD/TO: touchdown/takeoff.

it enters this mirror phase and the left leg simultaneously transitions from it

into the flight control phase. The right leg remains in the mirror phase while

the left leg cycles through an entire step until it takes off (LTO), atwhich point

both legs switch roles.

When a leg is in the mirror control phase, its motion reflects that of the

other leg. Raibert [93] introduced this concept of symmetric leg motion,

which reduces trunk pitching and prepares the leg for landing. Specifically

on ATRIAS, we reflect the foot-to-CoM reference [x∗(t), z∗(t)] from the simpli-

fied model (Sec. 5.2.2) across the line x = 0. We then negate this reflection to

transform it into a CoM-to-foot trajectory,

rmirror(t) = [x∗(t) , − (z∗(t) − ρ)] ,

where ρ = 0.2m ensures leg retraction for ground clearance.

When a leg switches into the flight control phase at takeoff time tTO, a new

CoM-to-foot trajectory is engaged,

rflight(t) =
[
xflight(t) , zflight(t)

]
,

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 96

tTO tT D

xTO

x∗T D

t

x

tTO tT D

zTO

z∗0

t

z

xTO x∗T D

zTO

z∗0

x

z

Figure 5.5: Desired foot point trajectory in the flight control phase. The hor-
izontal trajectory is a quadratic function. The vertical trajectory is composed
of a quadratic function,which increases zflight to encourage leg retraction, and
a cosine function to approach the landing condition.

where xflight(t) and zflight(t) are analytic functions that guide the foot to the de-

sired landing condition at a predicted touchdown time t̂TD (Fig. 5.5). These

functions begin at the takeoff mirror position, rmirror(tTO), and end at the de-

sired deadbeat landing position, rflight(t̂TD) = −[z∗0/ tan(α∗TD,i), z
∗
0]. The veloc-

ity at the expected touchdown time is chosen to match the ground speed,

ṙflight(t̂TD) = [− ˙̂xTO, 0], based on the estimated horizontal velocity at takeoff.

The predicted touchdown time

t̂TD =
˙̂zTO

g
+

1

g

√
˙̂z2TO − 2g(z∗0 − ẑTO)

is calculated from the expected touchdown state (Sec. 5.1.1) and from the

estimated (Sec. 5.2.1) vertical CoM position ẑTO and velocity ˙̂zTO at takeoff.

Both the mirror and flight foot trajectories are mapped through the kine-

matics model of ATRIAS into leg joint trajectories q(t) that are tracked with

position control (Fig. 5.3c). Here the compliance of the SEAs is ignored by

assuming the motor output shafts are rigidly connected to the joints.

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 97

5.2.4 Online adaptation of return map

The final piece of control implementation is the online adaptation of the

deadbeat control (5.5) derived from the approximate SMM.To counter small

systematic modeling errors and imperfect torque tracking of ATRIAS, the

observed error in the return map behavior of ATRIAS is approximated by a

linear model

˙̂xi+1 − ẋ∗a = ε1 ẋ∗a + ε0, (5.10)

where ˙̂xi+1 is the observed speed in the flight phase i + 1 and ε0 and ε1 are

obtained online through linear regression,

ε1ε0
 = (XT X)−1XT Y,

with Xi = [ẋ∗a 1] and Yi = ˙̂xi+1 − ẋ∗a. This error is compensated for by adapting

the landing angle. For small deviations, the return map of the approximate

SMM generates an error

ẋi+1 − ẋ∗a = ∂ẋ f ∗ (ẋi − ẋ∗a) + ∂α f ∗ (αT D,i − α
∗
T D,i)

with the partial derivatives pre-computed from the SMMreturnmap. Hence,

the observed error (5.10) is compensated for by the adapted landing angle,

α†T D,i = α
∗
T D,i − (ε1 ẋ∗a + ε0 + ∂ẋ f ∗ (ẋi − ẋ∗a)) / ∂α f ∗.

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 98

5.3 Hardware Experiments

To evaluate the planar running control developed in sections 5.1 and 5.2,

we perform several experiments on undisturbed and disturbed locomotion

using the ATRIAS biped attached to the boom (Fig. 5.1 and supplementary

video). In this setup, power is supplied to the robot externally; however, all

sensing and computation is performed on-board. Each experiment starts

with ATRIAS standing still in a reference pose on one leg. A human operator

then holds the boom to stabilize the robot while it follows a reference chirp

signal for its CoM height. When takeoff occurs, the actual controller engages

and the operator releases the boom. Besides the constant apex height target

z∗a (Fig. 5.2), the input provided in each trial by the operator to the ATRIAS

controller is a profile of apex velocity targets ẋ∗a indexed by step number. The

first and last velocity targets are always zero, and each experiment ends once

the robot reaches the last step.

5.3.1 Undisturbed running

First, we evaluate the performance of the proposed controller in undisturbed

running over level ground at a speed of 1m · s−1. In this gait, about 80% of the

available torque of ATRIAS’s SEAs is consumed for generating the desired

spring mass rebound behavior (eqs. 5.3 and 5.4) with a stiffness k =16kN ·m−1.

This stiffness optimally trades off longer stance phases (larger vertical im-

pulses) against the reduced mechanical advantage of ATRIAS’s legs with in-

creasing compression [72]. As a result, it enables the largest hopping heights

of about 3 cm with appreciable flight times of about 150ms (Fig. 5.2). The re-

maining 20% of torque capacity is available for error compensation. ATRIAS

utilizes a large amount of torque to achieve this gait due to the low mechan-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 99

L R

78

83

88
α

(d
eg

)

L R

−250

0

250

F
∗ x
(N

)

−0.2

0

0.2

x∗
(m

)

0

1,000

2,000

F
∗ z
(N

)

0.95

1.1

z∗
(m

)

−600

−300

0

τ b
(N

m
)

0 250 500 750 1000

0

6

12

time (ms)

θ
(d

eg
)

0 250 500 750 1000

0

300

600

time (ms)

τ
f
(N

m
)

(a)

(b)

(c)

(d)

Figure 5.6: Tracking performance of implemented controller for ATRIAS
running at 1m · s−1 over flat ground without gait disturbances. Shown are the
desired (red dashed) and observed trajectories (black solid) of key control
variables (Fig. 5.3) for two consecutive steps. The asymmetry between the
left (L) and right leg (R) occurs due to the boom constraint.

ical advantage in its legs. Other similarly sized robots with different geome-

tries would require different torques, but the ground reaction forces for this

spring mass behavior would remain the same.

The tracking performance of the controller is summarized in figure 5.6.

At the SMM level, the controller tracks the desired CoM trajectory [x∗(t), z∗(t)]

in stance with an error (mean and standard deviation) of 4.5 ± 4.7 cm in x

and 2.6 ± 2.0 cm in z, and tracks the target leg angle at touchdown with an

error of 0.99 ± 0.80 ° (Fig. 5.6a). The model deviations originate from two

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 100

primary sources. The first source is the GRF tracking error due to ground

impacts, delayed contact detection, and limited actuator bandwidth. These

force errors are reflected in the tracking of the desired SEA torques (53 ± 68

N ·m error, Fig. 5.6d), which is limited by a 20Hz closed-loop bandwidth

of ATRIAS’s SEAs. The second source is the stance feedback control, which

creates deviations from the simplified model in order to stabilize the trunk

orientation (error of 7.6 ± 6.2 °, Fig. 5.6b) as shown by the deviation in the

GRF from the reference GRF of the SMM (error 110 ± 130 N, Fig. 5.6c).

5.3.2 Tracking SMM deadbeat velocity targets

In a second series of experiments we quantify how closely the implemented

controller can realize the deadbeat behavior of the theoretical SMM model

when the desired velocity ẋ∗a changes. We perform two sets of five repeated

trials, in which ATRIAS runs over flat ground with desired apex velocities

that change every five steps (Fig. 5.7a). In the first set, the change is 0.2m · s−1

with a maximum base velocity of 1.0m · s−1. In the second set, the change and

maximum base velocity are 0.4m · s−1 and 1.6m · s−1, respectively. Larger step

sizes require deadbeat foot targets beyond the mechanical limits of ATRIAS

at highvelocities. These limits impose amaximumpossiblevelocityof 2.6m · s−1

for the chosen spring mass gait.

The observedvelocity tracking performance is summarized in figure 5.7b.

ATRIAS tracks desired velocity changes of 0.2m · s−1 (circles) with the aver-

age error observed in undisturbed running (0.05m · s−1, dashed line; com-

pare Sec. 5.3.1) after one step, indicating spring-mass-like deadbeat behavior

within the performance bounds of undisturbed gait. However, the robot

requires more steps for tracking 0.4m · s−1 changes (crosses), caused mainly

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 101

adaptation

1 20 67 77

0

1.6

step number

ẋ∗ a
(m
·
s−

1)

reference velocities

1 2 3 4 5

0

0.1

0.2

0.3

steps taken

R
M

S
E

ve
lo

ci
ty

(m
·
s−

1)

∆ẋ∗a = 0.2m · s−1

mean

individual

steady state

1 2 3 4 5

0

0.1

0.2

0.3

steps taken

R
M

S
E

ve
lo

ci
ty

(m
·
s−

1)

∆ẋ∗a = 0.4m · s−1

mean

individual

steady state

(a)

(b)

Figure 5.7: Tracking of SMM deadbeat velocity targets. (a) Profile of desired
apex velocities ẋ∗a for changes of 0.2m · s−1 (circles) and 0.4m · s−1 (crosses).
The first 20 steps are used in each trial for the online adaptation of the return
map (Sec. 5.2.4) and do not count toward the experiments. (b) Root-mean-
square error between the target velocity and the robot’s velocity in flight over
the number of consecutive steps taken after a change in the velocity target.
Averages over all five trials are shown for the entire experiment (black) and
separated out based on the different trials (gray). The dashed line indicates
the average tracking error in undisturbed locomotion at 1m · s−1 (Sec. 5.3.1).

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 102

by increased ground impacts at the higher horizontal velocities. We mea-

sure a peak horizontal impact force of approximately 200N when running

at 1.0m · s−1. This impact force increases to nearly 300N when running at

1.6m · s−1.

As described in section 5.3.1, the deviations from the simplified model

are due to force tracking errors and trunk stabilization. For comparison to

the hardware results, we quantify these two sources of deviation in simu-

lation. When the simplified model is simulated with the same force errors

measured on hardware, we observe similar velocity tracking errors of up to

0.15m · s−1 at 1.6m · s−1. When the intermediate complexity model (Fig. 5.3b)

is simulated with an initial orientation error of 10°, we observe a velocity er-

ror of 0.05m · s−1 after one step. The system completely recovers after three

steps. Thus, errors in force tracking and trunk orientation lead to a sub-

stantial performance deterioration compared to the SMM deadbeat control

theory. This suggests that performance could be improved by extending the

simplified model to account for ground impacts and rotational dynamics of

the center body in legged locomotion.

5.3.3 Rejecting unexpected ground changes

With the third series of experiments, we explore how closely the imple-

mented controller follows the deadbeat behaviorof the SMMwhen the robot

encounters unexpected changes in ground height. We perform experiments

for six different ground height changes of ±6cm, ±11 cm and ±15 cm, each

repeated for three trials. In all trials, ATRIAS encounters the ground distur-

bance while running at 1.0m · s−1 with its reference gait. (Sec. 5.3.1).

Figure 5.8 shows the velocity tracking performance of ATRIAS after en-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 103

0

0.2

0.4

0.6
∆z = +6cm
∆z = -6cm

0

0.2

0.4

0.6

R
M

S
E

ve
lo

ci
ty

(m
·
s−

1) ∆z = +11 cm
∆z = -11 cm

1 2 3 4 5

0

0.2

0.4

0.6

steps taken

∆z = +15 cm
∆z = -15 cm

Figure 5.8: Ground disturbance rejection. Shown are the averages over
three trials for the root-mean-square error between the desired velocity
x∗a = 1.0m · s−1 and the velocity achieved by the robot during flight over the
number of consecutive steps taken after experiencing an unexpected ground
height change ∆z.

countering a ground height change measured as the error in velocity over

the steps taken. Deadbeat behavior would result in an error no larger than

the average error of 0.05m · s−1 observed in undisturbed running at 1.0m · s−1

from the first step on. However, each of the ground height changes results in

a substantial velocity error in the first step of about the same size (0.2m · s−1

to 0.4m · s−1), which only gradually diminishes in the next steps.

The velocity error and its gradual decay are largely independent of the di-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 104

Figure 5.9: Photos of hardware experiments involving unexpected ground
height changes for the ATRIAS biped.

rection and size of the ground height change, which seems counterintuitive.

For instance, a height drop of 15 cm results in an increase in speed to 2m · s−1

if maintaining the same total system energy. Similarly, a height increase

of the same amount cannot be achieved without increasing system energy,

even with zero speed. Comparing the two cases, it seems they should lead to

very different behaviors, and thus velocity errors, after the disturbance.

The reason why the errors behave similarly is because they are due to the

increased ground impacts and trunk orientation errors that are common to

all of the height changes. The sudden ground height changes are imple-

mented as sheer jumps in the floor surface using concrete blocks (Fig. 5.1).

This leads to increased impact forces of nearly 500N and swing foot impacts

with the side of the elevated ground. Thus, most of the observed perfor-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 105

mance degradation compared to the SMM deadbeat control theory is again

due to the increased ground impacts and required trunk stabilization. The

detrimental effect of swing leg impacts suggests that hardware implementa-

tions should focus on more compliant swing leg motions than stiff kinematic

control provides.

5.4 Conclusion

We investigated if the SMM leg placement theory can be transferred to run-

ning robots beyond the simplified one-legged test platforms used in previ-

ous studies. Specifically, we have evaluated the utility of spring mass theory

on a robot of human scale and weight with an actively controlled trunk, ar-

ticulated legs, and without external sensing. To this end, we focused on the

ATRIAS biped platformand implemented on it a controller that transfers the

SMM behavior through model-based force control in stance and kinematic

control of foot placement in flight. We found that the proposed controller

achieves on ATRIAS SMM-like deadbeat performance for velocity changes

up to ±0.2m · s−1. For larger velocity changes and for ground height changes

ranging from ±6cm to ±15 cm, the controller performance degraded, albeit

without compromising gait robustness. The degradation was in large part

due to ground impacts and the incessant need to stabilize the robot’s trunk,

neither of which are considered in the SMM theory. The results highlight

the limited utility of this theory for the control of more complex running

machines; on the other hand, they also point to the potential of such an

SMM-based control for generating robust and versatile behavior in running

robots.

The achieved performance mirrors the performance observed for the

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 106

implementation of SMM-baseddeadbeat control strategies on themuch sim-

pler robot platforms. The velocity tracking error of 5% on ATRIAS dur-

ing undisturbed running is in line with the results obtained by Zeglin, who

demonstrated deadbeat hoppingwith ameanvelocityerrorof approximately

15% between steps [133]. The ability of the proposed controller to tolerate

unobserved rough terrain of at least 17% of the nominal leg length (0.9m)

is similar to the performance described by Shemer and Degani [114], who

demonstrated deadbeat hopping over terrain height changes of about 15% of

leg length. In contrast to the previous results, however, the demonstration

of these capabilities on ATRIAS with similar performance shows that they

generalize to more complex and human-like bipedal robots.

One keyadvantage of the model-based control framework [48, 64, 67] also

pursued in thiswork is that it is easier to generalize behavior beyond scripted

motions. For example, the MABEL robot is capable of planar running using

a control framework based on hybrid zero dynamics. However, as the robot

encounters perturbations, its controller must adapt speed to maintain sta-

bility leading to “considerable variation” in forward velocity [116]. Similarly,

Hubicki and colleagues [57] discovered that ATRIAS is capable of 3-D run-

ning (although with very short flight phases of about 30ms) when a heuris-

tic controller designed for walking was commanded higher desired veloci-

ties. In contrast, our proposed controller can (within the bounds provided

by the torque capacity of the actuators) freely choose the speed at which it

runs from step to step, whether on flat ground or after a disturbance, by tak-

ing advantage of the underlying gait model and its deadbeat foot placement

strategies.

Several research directions will help to further the model-based control

framework for running robots. First, the SMM theory remains to be evalu-

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 107

ated on robots running in 3-D environments. Second, performance degra-

dation due to force errors and trunk stabilization suggests that the utility of

the SMM theory could be increased by extending it to account for ground

impacts and the rotational dynamics of a trunk. These force errors could

also be mitigated by designing a more compliant swing leg control. Third,

the mechanical limits of real robots prevent reaching certain target states in

a single step. Robustness could potentially be improved in this case by con-

sidering these actuation limits [34, 40]. Finally, the transfer of SMM-based

control to walking robots could substantially enlarge the range of robust be-

haviors that can be addressed. It is our goal to pursue these research di-

rections in order to demonstrate highly robust 3-D running and walking on

ATRIAS over uncertain terrain.

Chapter 5. Deadbeat Spring Mass Model Running on ATRIAS 108

Chapter 6

Dynamic Programming Policies

on ATRIAS

In this chapter,we present the details of implementing the policies generated

from dynamic programming on a full sized bipedal robot, ATRIAS. First, we

describe the modifications that need to be made to the controller framework

described in the previous chapter to accommodatewalking gaits. Second,we

explain how to execute the optimal plans generated from a simplified model.

Lastly, we demonstrate the generated controllers on bipedal robot hardware.

6.1 Extending theControl Framework forWalking

The deadbeat running framework described in the previous section is capa-

ble of robust locomotion (Fig. 6.1), but is limited to a single vertical running

trajectory. This prevents the system from executing bipedal gaits which re-

quire a double support phase and forces the system to maintain a fixed hop-

ping pattern regardless of desired horizontal velocity. This sectionwill detail

what control framework changeswere necessary to allow theATRIAS system

Chapter 6. Dynamic Programming Policies on ATRIAS 110

Figure 6.1: Example photos of our deadbeat running controller handling
a large number of unexpected ground disturbances. The concrete blocks
create changing ground heights and unsteady foot holds which often slide
around during locomotion.

to target a range of gaits, including walking and standing, using the optimal

controls calculated in chapter 3. These changes fall into three primary cate-

gories: system modeling, motion planning, and gait phase detection.

6.1.1 Modeling Double Support

The inclusion of a double support phase is necessary to execute walking

plans on a bipedal system. Our heavily model-based controller design re-

quires updated dynamics models in order to successfully plan and recreate

behaviors with two feet on the ground. Although the floating point-mass

model, used for state estimation (Sec. 5.2.1), does not need to be updated,

the floating centroidal model (Eq. 5.6), used for predicting future dynamics,

requires the position of the second foot hold. This modification doubles the

Chapter 6. Dynamic Programming Policies on ATRIAS 111

number of force inputs and results in the dynamics

mẍ = Fx1 + Fx2,

mz̈ = Fz1 + Fz2 − mg,

Iθ̈ = −z(Fx1 + Fx2) + xFz1 + (x + d)Fz2,

(6.1)

where Fx and Fz now include indices for each leg and the quantity d defines

the horizontal displacement from first to second foot point. We can sim-

plify the dynamics equations slightly by replacing the horizontal force sum-

mations with Fx(1+2); the horizontal forces do not feature independently in

these equations.

Similarly, the full order dynamics equations used for reproducing de-

sired ground forces on ATRIAS (Eq. 5.7), must also be extended to include

the effects of a second foot point. We use the same Lagrangian approach

detailed in [131] to create a mapping between joint torques and ground re-

action forces of the system. Rather than abruptly change dynamics models

after foot placement, we leverage underlying continuity of the single sup-

port and double support equations. We target zero force at the second foot

point during the single support phase, which permits a unified set of inverse

dynamics equations for all stance phases. In practice, the increased number

of state variables now necessitates numerical matrix inversion rather than a

closed-form analytic solution.

6.1.2 Executing Optimal Motion Plans

Following the optimal spring mass model motion plans requires a combina-

tion of stance and swing control for each leg. Compared to our initial dead-

beat running controller, the system must now follow a significantly larger

Chapter 6. Dynamic Programming Policies on ATRIAS 112

library of center of mass trajectories. We maintain the same architecture

philosophy when designing this new control framework. Control is imple-

mented in a hierarchical fashion using plans from the simplified model to

produce the behaviors of an embedded virtual spring mass model.

Stance Control

During single and double support phases, legs in contactwith the ground are

used to produce desired motions of ATRIAS’s center of mass and torso. This

control pipeline follows the same broad structure as that used for deadbeat

running (Fig. 5.3), but includes modifications to allow for more general mo-

tion behaviors. The pipeline contains four major components: (1) motion

planner, (2) finite-horizon linear quadratic regulator, (3) inverse dynamics,

and (4) series elastic actuator control.

The motion planner module produces desired center of mass trajectories

based on previously generated optimal control lookup tables. These tra-

jectories can either be formed online using gridded interpolation during a

hardware rollout or offline as a static motion library. We investigated both

planning methods on ATRIAS and found that the offline approach had clear

advantages over online rollout for our system. This is due to the sensitiv-

ity of the underlying simplified model to control interpolation errors. Dur-

ing online forward simulations of the simplified model, important discrete

events are occasionally missed unless the control lookup table has an unrea-

sonably high resolution, which results in high memory consumption and

lookup times. On the other hand, a static offline motion library requires less

memory and provides a grid of reliable optimal trajectories. Although linear

interpolation cannot be used between offline trajectories, due to their vari-

able lengths, choosing a nearest neighbor initial state is sufficient for our con-

Chapter 6. Dynamic Programming Policies on ATRIAS 113

trol. In this work, each offline library contains approximately 30000 unique

trajectories and requires 15 MB of memory.

Due to the large number of possible motion plans, finite-horizon LQR

gains must now be generated online rather than offline in order to obey our

system’s memory constraints. We follow roughly the same process as before

(Sec. 5.2.2) but now compute the optimal force control plan in real-time on

ATRIAS. When a gait event is reached, such as the start of single or double

support, the motion planner is queried to find the closest CoM trajectory

[x∗(t), z∗(t)] based on the current system state. The planner also provides a

matching force trajectory u∗(t) = [F∗x1(t) + F∗x2(t), F∗z1(t), F∗z2(t)] based on the mo-

tion plan accelerations. Multiple feedforward force profiles are possible, so

we select forces which do not create angular accelerations of the trunk. The

CoM trajectories are combined with a desired trunk orientation θ∗(t) = 0 to

generate a complete reference ξ∗(t) = [x∗(t), ẋ∗(t), θ∗(t), θ̇∗(t), z∗(t), ż∗(t)] for a

floating rigid body. We use the updated centroidal dynamics (Eq. 6.1) to find

the linearized error dynamics around this reference trajectory, which yields,

∆ξ̇ =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

F∗z1(t)+F∗z2(t)
I 0 0 0 −

F∗x1(t)+F∗x2(t)
I 0

0 0 0 0 0 1

0 0 0 0 0 0



∆ξ +



0 0 0

1/m 0 0

0 0 0

−z∗(t)
I

x∗(t)
I

x∗(t)+d
I

0 0 0

0 1/m 1/m



∆u,

where ∆ξ = ξ − ξ∗ and ∆u = u − u∗. Rather than decoupling the vertical state

error dynamics as before, we now run finite-horizon LQR on the full order

linear model to yield the optimal force control plan u(t) = u∗(t) − K(t)(ξ(t) −

Chapter 6. Dynamic Programming Policies on ATRIAS 114

ξ∗(t)). This policy trades off between errors in the horizontal, vertical, and

angular states of the system.

6.1.3 Contact Detection

Finally, the contact state estimation was modified to improve detection sen-

sitivity and allow for arbitrary phase transitions between flight, single sup-

port, and double support. Rather than compare each legs’ estimated vertical

GRF, F̂z1 and F̂z2, against a stationary threshold of 50% bodyweight (Sec. 5.2.1),

we now introduce a variable force threshold. We linearly adjust each foot’s

threshold between 20% and 50% of body weight based on the estimated rate

of change of vertical force, ˆ̇Fz1 or ˆ̇Fz2, and the estimated vertical foot height

assuming a flat terrain. We decrease the threshold when the rate of force

change is high or the foot is near the ground, and increase the threshold

when the rate of force change is low or the foot is far from the ground. This

modification prevents large time delays in contact detection that can occur

when ATRIAS’s ground forces are near body weight, as is the case during

walking gaits.

6.2 Demonstrating Optimal Gaits on the ATRIAS

Biped

We combine the discrete control scheme described in section 3.5.2 with the

framework extensions detailed in section 6.1 in order to realize the low-

dimensional optimal gait plans on the ATRIAS biped. The full controller

code contains a large number of components that must be carefully de-

bugged when unexpected behaviors occur. Due to the time-intensive nature

Chapter 6. Dynamic Programming Policies on ATRIAS 115

Figure 6.2: Simulation of the ATRIAS testbed used to pre-tune control and
provide performance benchmarks for the hardware implementations.

of collecting hardware data, we use a high fidelity simulation of the system to

untangle errors in the framework code and rapidly iterate through tunable

controller parameters, such as LQRweights. This transition step allows us to

deploy the control framework on hardware without having to resolve initial

code errors during hardware experiments.

We have developed a detailed simulator of the ATRIAS testbed in MAT-

LAB SimScape Multibody (Mathworks, Natick, MA) for pre-tuning the con-

trol and providing performance benchmarks for the hardware implemen-

tations (Fig. 6.2). The simulated environment contains 13 degrees of free-

dom (4 for the four-bar mechanisms, 4 for the SEA motor positions, 2 for

the frontal plane motors, 1 for the trunk pitch, and 2 for the boom con-

straining roll and yaw) and models the main mechanical components (seg-

mented chain, gear stages, springs, motor dynamics) and electrical compo-

nents (electrical motor dynamics, discrete time control) of the robot testbed.

In addition, the simulation includes contact points on the robot’s feet, mod-

eling the dissipative ground reaction dynamics as nonlinear spring-dampers

with stick-slip transitions [52]. Gaussian sensor noise and joint friction are

also included to create a realistic system.

Figure 6.3 shows a simulated ATRIAS experiment involving gait transi-

Chapter 6. Dynamic Programming Policies on ATRIAS 116

tions between standing, walking, and running. ATRIAS begins by balancing

in a standing double support pose and then commenceswalking at 0.6 m · s−1

before transitioning into a slow running gait at the same forward velocity.

This is followed by progression to a faster running gait at 1.2 m · s−1. Each of

these gait transitions is then performed in reverse order to bring the system

back to rest. State variable tracking is shown in figure 6.4.

We are able to transfer the same control code to theATRIAShardware and

rollout the policies in real-time (Fig. 6.5). Although certain features, such as

force tracking and contact estimation degrade slightly, the system is able to

produce comparable performance to that of simulation. However, the rate at

which motion plans can be queried must be reduced from 1000 Hz to 125 Hz

to prevent overloading the robot’s CPU. This leads to additional delays in

phase transitions, but does not notably destabilize the system. Figure 6.6

shows an example of tracking performance on the robot hardware. A new

center of mass motion plan is generated at the start of each step, resulting in

diverse behaviors of the system. Each plan provides a corrective trajectory

that brings the system closer to the targeted gait.

6.2.1 Executing online generated plans on the hardware

One way of implementing dynamic programming policies on hardware is

to collect offline generated optimal control actions like leg stiffness, damp-

ing, and leg angle for awide range of initial conditions. Next on hardware, we

can interpolate between collected actions and integrate the simplified model

dynamics to get a desired trajectory of the center of mass and touch down

angles. This target policy can now be executed on the robot using the frame-

work described above. However, in practice, the generated trajectories of-

Chapter 6. Dynamic Programming Policies on ATRIAS 117

Figure 6.3: Simulation of spring mass model gait transitions on the ATRIAS
biped. This experiment incorporates standing, walking, and running behav-
iors based on optimal motions plans for the system’s center of mass. Row 1
& 2: Stand to walk, Row 3: Walking, Row 4 & 5: Walk to run.

ten miss zero-crossings on Poincare events like foot touchdown. In such a

case, the simplified model does not detect the next gait event, leading to the

robot falling. Also, generating online trajectories with a small integration

Chapter 6. Dynamic Programming Policies on ATRIAS 118

Figure 6.4: Trajectories of regulated state variables during simulated gait
transitions on ATRIAS (Fig. 6.3). Most transitions are smooth, but the walk-
to-run example here (at approximately9 seconds) demonstrates a large torso
disturbance and recovery. Dotted red lines indicate desired motion plans
from the simplified model, while black solid lines indicate measured quan-
tities of ATRIAS.

time-step can be slow. This motivates using offline-generated plans when

executing control policies on hardware.

6.2.2 Executing offline plans on the hardware

In an attempt to alleviate the problems described above, we collect inte-

grated trajectories of center of mass motion and touch down angle offline.

These dynamic programming plans are generated over a large number of

Chapter 6. Dynamic Programming Policies on ATRIAS 119

Figure 6.5: Hardware experiments of general spring mass model gaits on the
ATRIAS biped over flat terrain. These policies involve over 30,000 center of
mass trajectories generated using dynamic programming on a spring mass
model.

initial conditions for a spring mass model, and followed on hardware using

the frameworks described before. On hardware, we query the pre-generated

plans for the nearest initial state at every gait event. This plan now becomes

the desired center of mass plan. However, the offline generated plans lead

to a very large lookup table that can be difficult to query at 1000Hz. As a re-

sult, we bring down the rate of trajectory lookup from 1000 to 250Hz for the

Chapter 6. Dynamic Programming Policies on ATRIAS 120

Figure 6.6: Trajectories of regulated state variables during actual hardware
rollouts onATRIAS.Tracking performance is similar to that observed in sim-
ulation, but the system is sensitive to tunable controller parameters. Dotted
red lines indicate desired motion plans from the simplified model, while
black solid lines indicate measured quantities of ATRIAS.

center of mass planner. The inverse dynamics is still conducted at 1000Hz,

but the center of mass plan is now updated at a lower frequency.

6.3 Discussion

In this chapter, we described our attempts at executing dynamic program-

ming policies generated on simplified models on the ATRIAS bipedal robot.

We started bydeveloping a control framework that can generalize towalking

Chapter 6. Dynamic Programming Policies on ATRIAS 121

and running gaits, so that the policies generated from dynamic program-

ming can be executed on the robot. With this in place, we could implement

dynamic programming control policies for walking and running targets on

the ATRIAS simulation and hardware. This is a demonstration of a unified

gait transition framework for bipedal systems on a full-size bipedal robot.

In our experiments, we found that the stability of the optimal policies

from simulation depended greatly on the accuracy of center of mass mo-

tion tracking on hardware. Though the policies were able to reject some

disturbance by switching to running from walking, the generated policies

were prone to tilting the torso, or slipping at contact. These are physical

aspects of the system which were not considered in the simplified model.

Hence, it is not surprising that the policies generated are not robust to these

disturbances.

Since dynamic programming can generalize to more complex simpli-

fied models, albeit at a computational cost, it would be beneficial to study

how to incorporate such features into the simplified model. Incorporating

more details about the problem,while keeping the problemcomputationally

tractable is an interesting avenue that can be explored in the future.

Chapter 6. Dynamic Programming Policies on ATRIAS 122

Chapter 7

Conclusion

7.1 Overview

Collectively, this work provides a better general understanding of how com-

pliant simplified models can be used to realize multiple dynamic gaits on

legged robot platforms. Point-mass models provide very low-dimensional

locomotion templates,whichworkwellwithvalue-based optimizationmeth-

ods, such as dynamic programming. When using this kind of model, the

necessary discrete value function grid can be densely sampled for two rea-

sons: theyhave relatively small state spaces and dynamics that can be quickly

numerically integrated. This enables methods such as value iteration to pop-

ulate the space with billions of samples using few computational resources.

In this context, the utility of locomotion models is a trade-off between how

easily their optimal control can be computed and the level of detail that

they provide. Although the spring mass model is a coarse representation

of a legged system, it captures the essential components of walking and run-

ning. Thismakes it general enough to informcontrollers for awidevarietyof

legged robots. Furthermore, the center of mass level gaits that it can produce

Chapter 7. Conclusion 124

have nearly the best possible performance for a point-mass model. Lever-

aging these policies allows us to not only robustly control simulated models,

but also leads to robust walking and running on legged robot hardware.

7.2 Contributions

In this thesis, we made three contributions spanning the theory and practice

of compliant models for controlling legged robots.

First, we apply dynamic programming methods to compute approxima-

tions of the continuous-timeoptimal control for a bipedal point-massmodel.

Although these results are generated numerically, they represent approxi-

mations of the underlying globallyoptimal solutions and are free fromheuris-

tic design decisions.

Second,we present an event-based control framework for the springmass

model, which is able to freely transition between flight, single support, and

double support phases without relying on secondary optimizations. This

enables the model to target standing, walking, running, and gait transitions

within a single control structure based on a single simplified model. The

resultingmotion plans can be generated efficiently foruse on real-time robot

systems.

Third, we demonstrate that these spring mass model motion plans can

be transferred to bipedal robot hardware using a model-based controller to

embed the center of mass behavior. This leads to stable standing, walking,

and running on the ATRIAS platform.

Chapter 7. Conclusion 125

7.3 Future Research Directions

A necessary shortcoming of optimizing very simple models is their inability

to capture all the details of a higher order system. The point-mass mod-

els used in this work are capable of achieving many walking and running

gaits, but are not guaranteed to respect the constraints of arbitrary robot

hardware. ForATRIAS, we primarily encountered constraints on the robot’s

kinematic configurations and available force bandwidth; the extent of these

restrictions ultimately depend on the specific robot hardware. Future work

on optimal gait controllers would strongly benefit from finding ways to in-

corporate these platform-specific limits into the low-ordermotion plans. In-

creasing the model dimensionality to include a rotating torso or the center

of mass acceleration is a reasonable first step, but comes at the cost of sig-

nificantly increased computational complexity. For example, when adding

two additional dimensions to controllers in this work, solutions converge

on the order of days or weeks rather than hours. This can be combated by

accepting higher levels of approximation during the optimization process.

While we expect legged robot technology to continue to expand in capabil-

ity, more advanced hardware will likely introduce more degrees of freedom

and new problem constraints. For this reason, simplified model based con-

trol schemes will need to consider how to deal with these real-world com-

plexities.

Chapter 7. Conclusion 126

Bibliography

[1] RAlexander andAS Jayes. Vertical movements inwalking and running.

Journal of Zoology, 185(1):27–40, 1978. 2.1.1

[2] RAlexander andAlexandraVernon.The mechanics of hopping bykan-

garoos (macropodidae). Journal of Zoology, 177(2):265–303, 1975. 2.1.1

[3] R McN Alexander. A model of bipedal locomotion on compliant legs.

Philosophical Transactions of the Royal Society of London B: Biological Sci-

ences, 338(1284):189–198, 1992. 2.1.1

[4] RM Alexander. Optimization and gaits in the locomotion of verte-

brates. Physiological reviews, 69(4):1199–1227, 1989. 1.1

[5] RMcn Alexander. Mechanics of bipedal locomotion. Perspectives in ex-

perimental biology, 1:493–504, 1976. 2.1.1

[6] AdamantiosArampatzis, Gert-Peter Brüggemann, andVerena Metzler.

The effect of speed on leg stiffness and joint kinetics in human running.

Journal of biomechanics, 32(12):1349–1353, 1999. 3.2.1

[7] Christopher G Atkeson. Randomly sampling actions in dynamic pro-

gramming. In 2007 IEEE International Symposium on Approximate Dy-

namic Programming and Reinforcement Learning, pages 185–192. IEEE,

2007. 2.2.1, 3.4.2

[8] M Bardi and M Falcone. An approximation scheme for the minimum

Bibliography 128

time function. SIAMJournal onControl andOptimization, 28(4):950–965,

1990. 3.3.2

[9] M Bardi and M Falcone. Discrete approximation of the minimal time

function for systems with regular optimal trajectories. In Analysis and

Optimization of Systes, pages 103–112. Springer, 1990. 3.3.2

[10] Martino Bardi and Italo Capuzzo-Dolcetta. Optimal control and viscosity

solutions of Hamilton-Jacobi-Bellman equations. Springer Science & Busi-

ness Media, 2008. 3.3.2

[11] Guy Barles. Discontinuous viscosity solutions of first-order hamilton-

jacobi equations: a guided visit. Nonlinear Analysis: Theory, Methods &

Applications, 20(9):1123–1134, 1993. 3.3.2

[12] Guy Barles and Panagiotis E Souganidis. Convergence of approxima-

tion schemes for fully nonlinear second order equations. Asymptotic

analysis, 4(3):271–283, 1991. 3.3.2

[13] R Bellman. Curse of dimensionality. Adaptive control processes: a guided

tour. Princeton, NJ, 1961. 3.3.2

[14] R. Bellman. Dynamic Programming. DoverBooks on Computer Science.

Dover Publications, 2013. ISBN 9780486317199. URL https://books.

google.com/books?id=CG7CAgAAQBAJ. 2.2.1

[15] Richard Bellman. Dynamic programming. 1957. 3.3.2

[16] Hamid Benbrahim and Judy A Franklin. Biped dynamic walking us-

ing reinforcement learning. Robotics andAutonomous Systems, 22(3):283–

302, 1997. 2.2.2

[17] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic Programming. Anthro-

pological Field Studies. Athena Scientific, 1996. ISBN 9781886529106.

https://books.google.com/books?id=CG7CAgAAQBAJ
https://books.google.com/books?id=CG7CAgAAQBAJ

Bibliography 129

URL https://books.google.com/books?id=WxCCQgAACAAJ. 2.2.1, 3.3.2

[18] Andrew A Biewener and C Richard Taylor. Bone strain: a determinant

of gait and speed? Journal of experimental Biology, 123(1):383–400, 1986.

1.1

[19] Reinhard Blickhan. The spring-mass model for running and hopping.

Journal of biomechanics, 22(11-12):1217–1227, 1989. 2.1.1, 3, 3.2.1

[20] Reinhard Blickhan and RJ Full. Similarity in multilegged locomotion:

bouncing like a monopode. Journal of Comparative Physiology A, 173(5):

509–517, 1993. 2.1.1

[21] Dennis M Bramble and Daniel E Lieberman. Endurance running and

the evolution of homo. Nature, 432(7015):345, 2004. 1.1

[22] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst.

Reinforcement learning and dynamic programming using function approxi-

mators, volume 39. CRC press, 2010. 2.2.1

[23] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisen-

roth. An experimental comparison of bayesian optimization for

bipedal locomotion. In 2014 IEEE International Conference on Robotics

andAutomation (ICRA), pages 1951–1958. IEEE, 2014. 2.2.2

[24] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisen-

roth. Bayesian optimization for learning gaits under uncertainty. An-

nals of Mathematics andArtificial Intelligence, 76(1-2):5–23, 2016. 2.2.2

[25] Sean G Carver, Noah J Cowan, and John M Guckenheimer. Lateral

stability of the spring-mass hopper suggests a two-step control strategy

for running. Chaos: An Interdisciplinary Journal ofNonlinear Science, 19(2):

026106, 2009. 2.1.2, 3.3.2, 5, 5.1

https://books.google.com/books?id=WxCCQgAACAAJ

Bibliography 130

[26] Sean Goodwin Carver. Control of a spring-mass hopper. Cornell Univer-

sity, 2003. 2.1.2

[27] GA Cavagna. The landing–take-off asymmetry in human running.

Journal of Experimental Biology, 209(20):4051–4060, 2006. 3.2.4

[28] GA Cavagna and M Kaneko. Mechanical work and efficiency in level

walking and running. The Journal of physiology, 268(2):467, 1977. 2.1.1,

3.2.4

[29] GA Cavagna, FP Saibene, and R Margaria. External work in walking.

Journal of applied physiology, 18(1):1–9, 1963. 3.2.4

[30] GA Cavagna, FP Saibene, and R Margaria. Mechanicalwork in running.

Journal of applied physiology, 19(2):249–256, 1964. 2.1.1, 3.2.4

[31] Giovanni A Cavagna. Storage and utilization of elastic energy in skele-

tal muscle. Exercise and sport sciences reviews, 5(1):89–130, 1977. 2.1.1

[32] Giovanni A Cavagna, H Thys, and A Zamboni. The sources of external

work in level walking and running. The Journal of physiology, 262(3):639,

1976. 2.1.1

[33] Giovanni A Cavagna, Norman C Heglund, and C Richard Taylor.

Mechanical work in terrestrial locomotion: two basic mechanisms

for minimizing energy expenditure. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology, 233(5):R243–R261,

1977. 1.1, 2.1.1, 3.1

[34] Tom Cnops, Zhenyu Gan, and C David Remy. The basin of attraction

for running robots: Fractals, multistep trajectories, and the choice of

control. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Interna-

tional Conference on, pages 1586–1591. IEEE, 2015. 3, 3.3.2, 5.4

Bibliography 131

[35] Creative Commons. Attribution-NoDerivs 2.0 generic license. URL

https://creativecommons.org/licenses/by-nd/2.0/. 1.1

[36] Michael H Dickinson, Claire T Farley, Robert J Full, MAR Koehl,

Rodger Kram, and Steven Lehman. How animals move: an integra-

tive view. Science, 288(5463):100–106, 2000. 2.1.1

[37] J Maxwell Donelan, RodgerKram, andArthur D Kuo. Mechanicalwork

for step-to-step transitions is a major determinant of the metabolic

cost of human walking. Journal of Experimental Biology, 205(23):3717–

3727, 2002. 3.2.5

[38] Boston Dynamics, 2019. URL https://www.bostondynamics.com/atlas.

2.3.2

[39] Gen Endo, Jun Morimoto, Takamitsu Matsubara, Jun Nakanishi, and

Gordon Cheng. Learning cpg sensory feedback with policy gradient

for biped locomotion for a full-body humanoid. In Proceedings of the

national conference on artificial intelligence, volume 20, page 1267. Menlo

Park, CA;Cambridge, MA; London;AAAI Press; MITPress; 1999, 2005.

2.2.2

[40] Michael Ernst, Hartmut Geyer, and Reinhard Blickhan. Extension and

customization of self-stability control in compliant legged systems.

Bioinspiration & biomimetics, 7(4):046002, 2012. 5.4

[41] Marizio Falcone and Roberto Ferretti. Discrete time high-order

schemes for viscosity solutions of hamilton-jacobi-bellman equations.

Numerische Mathematik, 67(3):315–344, 1994. 3.3.2

[42] Maurizio Falcone. Numerical solution of dynamic programming

equations. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-

Bellman equations. Birkhäuser, 1997. 3.3.2

https://creativecommons.org/licenses/by-nd/2.0/
https://www.bostondynamics.com/atlas

Bibliography 132

[43] Maurizio Falcone and Roberto Ferretti. Semi-Lagrangian approximation

schemes for linear andHamilton-Jacobi equations, volume 133. SIAM, 2013.

3.3.2, 3.3.2, 3.3.2

[44] Claire T Farley and Daniel P Ferris. 10 biomechanics of walking and

running: Center of mass movements to muscle action. Exercise and

sport sciences reviews, 26(1):253–286, 1998. 2.1.1

[45] Claire T Farley and Octavio GonzalezArampatzis. Leg stiffness and

stride frequency in human running. Journal of biomechanics, 29(2):181–

186, 1996. 2.1.1, 3.2.1

[46] ClaireTFarley and C RichardTaylor. Amechanical trigger for the trot-

gallop transition in horses. Science, 253(5017):306–308, 1991. 1.1

[47] Claire T Farley, James Glasheen, and Thomas A McMahon. Running

springs: speed and animal size. Journal of experimental Biology, 185(1):

71–86, 1993. 2.1.1

[48] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson.

Optimization-based full body control for the darpa robotics challenge.

Journal of Field Robotics, 32(2):293–312, 2015. 2.3.1, 5, 5.1.2, 5.4

[49] Daniel P Ferris, Micky Louie, and Claire T Farley. Running in the real

world: adjusting leg stiffness for different surfaces. Proceedings of the

Royal Society of London B: Biological Sciences, 265(1400):989–994, 1998.

2.1.1

[50] Robert J Full and Daniel E Koditschek. Templates and anchors: neu-

romechanical hypotheses of legged locomotion on land. Journal of Ex-

perimental Biology, 202(23):3325–3332, 1999. 2.1.3

[51] Steven A Gard, Steve C Miff, and Arthur D Kuo. Comparison of kine-

Bibliography 133

matic and kinetic methods for computing the vertical motion of the

body center of mass during walking. Human movement science, 22(6):

597–610, 2004. 3.2.3

[52] Hartmut Geyer and Hugh Herr. A muscle-reflex model that encodes

principles of legged mechanics produces human walking dynamics

and muscle activities. IEEE Transactions on neural systems and rehabil-

itation engineering, 18(3):263–273, 2010. 6.2

[53] Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant

leg behaviour explains basic dynamics of walking and running. Pro-

ceedings of the Royal Society of London B: Biological Sciences, 273(1603):

2861–2867, 2006. 2.1.3, 3, 3.1, 3.2.2

[54] Alastair Hanna, Bruce Abernethy, Robert J Neal, and Robin Burgess-

Limerick. Triggers for the transition between human walking and run-

ning. Energetics of human activity, pages 124–164, 2000. 1.1

[55] Jessica K Hodgins. Biped gait transitions. In Robotics and Automation,

1991. Proceedings., 1991 IEEE International Conference on, pages 2092–

2097. IEEE, 1991. 2.1.3, 2.3.2, 3

[56] Alan Hreljac, Alan Arata, Reed Ferber, John A Mercer, and Brandi S

Row. An electromyographical analysis of the role of dorsiflexors on

the gait transition during human locomotion. Journal of applied biome-

chanics, 17(4):287–296, 2001. 1.1

[57] Christian Hubicki, Andy Abate, Patrick Clary, Siavash Rezazadeh,

Mikhail Jones, Andrew Peekema, Johnathan Van Why, Ryan Domres,

AlbertWu,William Martin, Hartmut Geyer, and Jonathan Hurst. Walk-

ing and running with passive compliance: Lessons from engineering

a live demonstration of the atrias biped. IEEE Robotics and Automation

Bibliography 134

Magazine, 2016. 2.3.2, 3, 5, 5.4

[58] Christian Hubicki, Jesse Grimes, Mikhail Jones, Daniel Renjewski,

Alexander Spröwitz, Andy Abate, and Jonathan Hurst. Atrias: Design

and validation of a tether-free 3d-capable spring-mass bipedal robot.

The International Journal of Robotics Research, page 0278364916648388,

2016. 1.2.3, 5.1

[59] Dong Jin Hyun, Sangok Seok, Jongwoo Lee, and Sangbae Kim. High

speed trot-running: Implementation of a hierarchical controller using

proprioceptive impedance control on the mit cheetah. The Interna-

tional Journal of Robotics Research, 33(11):1417–1445, 2014. 5

[60] Shuuji Kajita and Kazuo Tani. Study of dynamic biped locomotion on

rugged terrain-derivation and application of the linear inverted pen-

dulum mode. In Robotics and Automation, 1991. Proceedings., 1991 IEEE

International Conference on, pages 1405–1411. IEEE, 1991. 3

[61] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Ken-

suke Harada, Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking

pattern generation by using preview control of zero-moment point. In

Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International

Conference on, volume 2, pages 1620–1626. IEEE, 2003. 3

[62] Tony S Keller, AM Weisberger, JL Ray, SS Hasan, RG Shiavi, and

DM Spengler. Relationship betweenvertical ground reaction force and

speed during walking, slow jogging, and running. Clinical biomechanics,

11(5):253–259, 1996. 3.2.4

[63] Oussama Khatib. A unified approach for motion and force control of

robot manipulators: The operational space formulation. IEEE Journal

on Robotics andAutomation, 3(1):43–53, 1987. 2.3.1

Bibliography 135

[64] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas De Boer,

Tingfan Wu, Jesper Smith, Johannes Englsberger, and Jerry Pratt. De-

sign of a momentum-based control framework and application to the

humanoid robot atlas. International Journal of Humanoid Robotics, 13(01):

1650007, 2016. 2.3.1, 5, 5.1.2, 5.4

[65] Rodger Kram, Antoinette Domingo, and Daniel P Ferris. Effect of re-

duced gravity on the preferred walk-run transition speed. Journal of

Experimental Biology, 200(4):821–826, 1997. 1.1

[66] SN Kružkov. Generalized solutions of the hamilton-jacobi equations of

eikonal type. i. formulation of the problems; existence, uniqueness and

stability theorems; some properties of the solutions. Sbornik: Mathe-

matics, 27(3):406–446, 1975. 3.3.2

[67] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela,

Hongkai Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ

Tedrake. Optimization-based locomotion planning, estimation, and

control design for the atlas humanoid robot. Autonomous Robots, 40(3):

429–455, 2016. 2.3.1, 5, 5.1.2, 5.4

[68] Cynthia R Lee and Claire T Farley. Determinants of the center of mass

trajectory in human walking and running. Journal of experimental biol-

ogy, 201(21):2935–2944, 1998. 3.2.3, 3.2.4

[69] Sung-Hee Lee and Ambarish Goswami. Reaction mass pendulum

(rmp): An explicit model for centroidal angular momentum of hu-

manoid robots. In Proceedings 2007 IEEE International Conference on

Robotics andAutomation, pages 4667–4672. IEEE, 2007. 2.3.1

[70] Susanne W Lipfert, Michael Günther, Daniel Renjewski, Sten Grim-

mer, and Andre Seyfarth. A model-experiment comparison of system

Bibliography 136

dynamics for human walking and running. Journal of Theoretical Biol-

ogy, 292:11–17, 2012. 2.1.3, 3.2.1, 3.2.2

[71] R Margaria, P Cerretelli, P Aghemo, and G Sassi. Energy cost of run-

ning. Journal of applied physiology, 18(2):367–370, 1963. 1.1

[72] William C Martin, Albert Wu, and Hartmut Geyer. Robust spring mass

model running for a physical bipedal robot. In 2015 IEEE International

Conference on Robotics and Automation (ICRA), pages 6307–6312. IEEE,

2015. 5.3.1

[73] Harold Roberto Martinez and Juan Pablo Carbajal. From walking to

running a natural transition in the slip model using the hopping gait.

In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference

on, pages 2163–2168. IEEE, 2011. 3

[74] Tad McGeer. Passive bipedal running. Proceedings of the Royal Society of

London B: Biological Sciences, 240(1297):107–134, 1990. 2.1.2

[75] Robert T M’Closkey and Joel W Burdick. Periodic motions of a hop-

ping robot with vertical and forward motion. The International journal

of robotics research, 12(3):197–218, 1993. 2.1.2

[76] TA McMahon. The role of compliance in mammalian running gaits.

Journal of Experimental Biology, 115(1):263–282, 1985. 2.1.1

[77] ThomasAMcMahon and George C Cheng. The mechanics of running:

how does stiffness couple with speed? Journal of biomechanics, 23:65–78,

1990. 2.1.1, 3.2.1, 3.2.2

[78] ThomasAMcMahon and Peter RGreene. Fast running tracks. Scientific

American, 239(6):148–163, 1978. 2.1.1

[79] Thomas A McMahon, Gordon Valiant, and Edward C Frederick. Grou-

Bibliography 137

cho running. Journal of Applied Physiology, 62(6):2326–2337, 1987. 2.1.1,

2.1.3, 3.2.4

[80] Igor Mordatch, Martin De Lasa, and Aaron Hertzmann. Robust

physics-based locomotion using low-dimensional planning. In ACM

Transactions on Graphics (TOG), volume 29, page 71. ACM, 2010. 5.1.1

[81] Takeshi Mori, Yutaka Nakamura, Masa-Aki Sato, and Shin Ishii. Re-

inforcement learning for cpg-driven biped robot. In AAAI, volume 4,

pages 623–630, 2004. 2.2.2

[82] Jun Morimoto and Christopher G Atkeson. Learning biped locomo-

tion. IEEE Robotics & Automation Magazine, 14(2):41–51, 2007. 2.2.2

[83] BenMorris, ERWestervelt, ChristineChevallereau, Gabriel Buche, and

JW Grizzle. Achieving bipedal running with rabbit: Six steps toward

infinity. In Fast Motions in Biomechanics and Robotics, pages 277–297.

Springer, 2006. 2.3.2, 3

[84] Yutaka Nakamura, Takeshi Mori, and Shin Ishii. Natural policy gradi-

ent reinforcement learning for a cpg control of a biped robot. In In-

ternational Conference on Parallel Problem Solving fromNature, pages 972–

981. Springer, 2004. 2.2.2

[85] David E Orin and Ambarish Goswami. Centroidal momentum ma-

trix of a humanoid robot: Structure and properties. In 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 653–659.

IEEE, 2008. 2.3.1

[86] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Dynamic ter-

rain traversal skills using reinforcement learning. ACMTransactions on

Graphics (TOG), 34(4):80, 2015. 2.2, 2.2.1

Bibliography 138

[87] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Terrain-

adaptive locomotion skills using deep reinforcement learning. ACM

Transactions on Graphics (TOG), 35(4):81, 2016. 2.2, 2.2.1

[88] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills

with policy gradients. Neural networks, 21(4):682–697, 2008. 2.2.1

[89] Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill

Pratt. Virtual model control: An intuitive approach for bipedal lo-

comotion. The International Journal of Robotics Research, 20(2):129–143,

2001. 3

[90] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami.

Capture point: A step toward humanoid push recovery. In Humanoid

Robots, 2006 6th IEEE-RAS International Conference on, pages 200–207.

IEEE, 2006. 3

[91] Boris I Prilutsky and Robert J Gregor. Swing-and support-related mus-

cle actions differentially trigger human walk–run and run–walk tran-

sitions. Journal of Experimental Biology, 204(13):2277–2287, 2001. 1.1

[92] Marc H Raibert. Dynamically stable legged locomotion: progress re-

port: October 1982-october 1983. 1983. 2.1.2

[93] Marc H Raibert. Legged robots that balance. MIT press, 1986. 2.1.2, 2.3.1,

3, 5, 5.2.3

[94] Annette J Raynor, Chow Jia Yi, Bruce Abernethy, and Quek Jin Jong.

Are transitions in human gait determined by mechanical, kinetic or

energetic factors? Humanmovement science, 21(5-6):785–805, 2002. 1.1

[95] Siavash Rezazadeh, Christian Hubicki, Mikhail Jones, Andrew

Peekema, Johnathan Van Why, Andy Abate, and Jonathan Hurst.

Bibliography 139

Spring-mass walking with atrias in 3d: Robust gait control spanning

zero to 4.3 kph on a heavily underactuated bipedal robot. In ASME

2015 Dynamic Systems and Control Conference, pages V001T04A003–

V001T04A003. American Society of Mechanical Engineers, 2015. 2.3.1

[96] I Michael Ross. A primer on Pontryagin’s principle in optimal control, vol-

ume 2. Collegiate publishers San Francisco, CA, 2015. 1.2.1

[97] Jonas Rubenson, Denham B Heliams, David G Lloyd, and Paul A

Fournier. Gait selection in the ostrich: mechanical and metabolic char-

acteristics of walking and running with and without an aerial phase.

Proceedings of the Royal Society of London-B, 271(1543):1091, 2004. 2.1.3,

3.2.4

[98] Juergen Rummel, Yvonne Blum, and Andre Seyfarth. From walking

to running. In Autonome Mobile Systeme 2009, pages 89–96. Springer,

2009. 3.2.2

[99] Donna Rutherford. IMG_6077, 2013. URL https://www.flickr.com/

photos/donna_rutherford/8727939197/. Licensed under Creative Com-

mons BY-ND 2.0. 1.1

[100] Harold Roberto Martinez Salazar and Juan Pablo Carbajal. Exploiting

the passive dynamics of a compliant leg to develop gait transitions.

Physical Review E, 83(6):066707, 2011. 2.1.3

[101] Uluc Saranli, William J Schwind, and Daniel E Koditschek. Toward the

control of amulti-jointed, monoped runner. InRobotics andAutomation,

1998. Proceedings. 1998 IEEE InternationalConference on, volume3, pages

2676–2682. IEEE, 1998. 2.1.2, 3.3.2, 5

[102] Alexander Schepelmann, Michael D Taylor, and Hartmut Geyer. De-

velopment of a testbed for robotic neuromuscular controllers. Robotics:

https://www.flickr.com/photos/donna_rutherford/8727939197/
https://www.flickr.com/photos/donna_rutherford/8727939197/

Bibliography 140

Science and Systems VIII, 2012. 5.2.2

[103] William J Schwind and Daniel E Koditschek. Control of forward ve-

locity for a simplified planar hopping robot. In Robotics and Automa-

tion, 1995. Proceedings., 1995 IEEE International Conference on, volume 1,

pages 691–696. IEEE, 1995. 2.1.2

[104] Gorkem Secer and Uluc Saranli. Control of hopping through active

virtual tuning of leg damping for serially actuated legged robots. In

Robotics and Automation (ICRA), 2014 IEEE International Conference on,

pages 4556–4561. IEEE, 2014. 3.1

[105] Veerle Segers. A biomechanical analysis of the realization of actual human

gait transition. PhD thesis, Ghent University, 2006. 1.1, 3.2.4

[106] Veerle Segers, Peter Aerts, M Lenoir, and Dirk De Clercq. Spatiotem-

poral characteristics of the walk-to-run and run-to-walk transition

when gradually changing speed. Gait & posture, 24(2):247–254, 2006.

3.2.5

[107] Veerle Segers, Matthieu Lenoir, PeterAerts, and Dirk De Clercq. Kine-

matics of the transition between walking and running when gradually

changing speed. Gait & posture, 26(3):349–361, 2007. 3.2.4

[108] Noboru Sekiya, Hiroshi Nagasaki, Hajime Ito, and Taketo Furuna. Op-

timal walking in terms of variability in step length. Journal of Or-

thopaedic & Sports Physical Therapy, 26(5):266–272, 1997. 3.2.5

[109] Andre Seyfarth and Hartmut Geyer. Natural control of spring-like

running–optimized self-stabilization. In Proceedings of the Fifth Interna-

tional Conference on Climbing andWalking Robots. Professional Engineering

Publishing Limited, pages 81–85, 2002. 3.4.2, 3.4

Bibliography 141

[110] Andre Seyfarth, Hartmut Geyer, Michael Günther, and Reinhard

Blickhan. A movement criterion for running. Journal of biomechanics,

35(5):649–655, 2002. 2.1.2, 3.2.2

[111] André Seyfarth, Hartmut Geyer, and Hugh Herr. Swing-leg retraction:

a simple control model for stable running. Journal of Experimental Biol-

ogy, 206(15):2547–2555, 2003. 2.1.2, 5, 5.1, 5.1

[112] M Shahbazi, GAD Lopes, and Robert Babuska. Automated transitions

between walking and running in legged robots. IFAC Proceedings Vol-

umes, 47(3):2171–2176, 2014. 2.1.3, 3, 3.1

[113] Mohammad Shahbazi, Robert Babuška, and GabrielAD Lopes. Unified

modeling and control of walking and running on the spring-loaded

inverted pendulum. IEEE Trans. Robotics, 32:1178–95, 2016. 2.1.3, 3,

3.6, 3.5.3

[114] Natan Shemer and Amir Degani. Analytical control parameters of the

swing leg retraction method using an instantaneous slip model. In 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

4065–4070. IEEE, 2014. 5, 5.4

[115] Panagiotis E Souganidis. Approximation schemes for viscosity solu-

tions of hamilton-jacobi equations. Journal of differential equations, 59

(1):1–43, 1985. 3.3.2

[116] Koushil Sreenath, Hae-Won Park, Ioannis Poulakakis, and JW Grizzle.

Embedding active force control within the compliant hybrid zero dy-

namics to achieve stable, fast running on mabel. The International Jour-

nal of Robotics Research, 32(3):324–345, 2013. 2.3.2, 3, 5, 5.4

[117] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction, volume 1. MIT press Cambridge, 1998. 2.2.1, 2.2.1, 2.2.1

Bibliography 142

[118] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Man-

sour, et al. Policy gradient methods for reinforcement learning with

function approximation. In NIPS, volume 99, pages 1057–1063, 1999.

2.2.1

[119] Toru Takenaka, Takashi Matsumoto, and Takahide Yoshiike. Real time

motion generation and control for biped robot-1 st report: Walking

gait pattern generation. In 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1084–1091. IEEE, 2009. 2.3.2, 3

[120] Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike, and Shinya

Shirokura. Real time motion generation and control for biped robot-2

nd report: Running gait pattern generation. In 2009 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 1092–1099.

IEEE, 2009. 2.3.2

[121] Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike, and Shinya

Shirokura. Real time motion generation and control for biped robot-2

nd report: Running gait pattern generation. In Intelligent Robots and

Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages

1092–1099. IEEE, 2009. 3

[122] R Tedrake, TW Zhang, and HS Seung. Learning to walk in 20 min.

In Proceedings of the Yale workshop on adaptive and learning systems, pages

10–22, 2005. 2.2.2

[123] İsmail Uyanık, Ömer Morgül, and Uluc Saranli. Experimental valida-

tion of a feed-forward predictor for the spring-loaded inverted pen-

dulum template. IEEE Transactions on Robotics, 31(1):208–216, 2015. 5

[124] MVan Gurp, HC Schamhardt, andA Crowe. The ground reaction force

pattern from the hindlimb of the horse simulated by a spring model.

Bibliography 143

Cells Tissues Organs, 129(1):31–33, 1987. 2.1.1

[125] Hado Van Hasselt and Marco A Wiering. Reinforcement learning in

continuous action spaces. In 2007 IEEE International Symposium onAp-

proximate Dynamic Programming and Reinforcement Learning, pages 272–

279. IEEE, 2007. 2.2.1

[126] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-

ing, 8(3-4):279–292, 1992. 2.2.1

[127] Patrick M Wensing and David E Orin. High-speed humanoid running

through control with a 3d-slip model. In 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 5134–5140. IEEE, 2013.

2.3.1

[128] Ronald JWilliams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning, 8(3-4):229–

256, 1992. 2.2.1

[129] Albert Wu. The Theory, Implementation, and Evaluation of Spring Mass

Running on ATRIAS, a Bipedal Robot. PhD thesis, PhD thesis, Carnegie

Mellon University, 2017. 1.2.3

[130] Albert Wu and Hartmut Geyer. The 3-d spring–mass model reveals a

time-based deadbeat control for highly robust running and steering in

uncertain environments. IEEETransactions on Robotics, 29(5):1114–1124,

2013. 2.1.2, 3.3.2, 5, 5.1

[131] Albert Wu and Hartmut Geyer. Highly robust running of articulated

bipeds in unobserved terrain. In 2014 IEEE/RSJ InternationalConference

on Intelligent Robots andSystems, pages 2558–2565. IEEE, 2014. 5.1.1, 5.1.3,

5.2.2, 6.1.1

Bibliography 144

[132] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon:

Simple biped locomotion control. In ACM Transactions on Graphics

(TOG), volume 26, page 105. ACM, 2007. 2.3.1

[133] Garth Zeglin. The bow leg hopping robot. PhD thesis, Carnegie Mellon

University, 1999. 5, 5.4

	1 Introduction
	1.1 Barriers to progress
	1.2 Summary of Goals and Approach
	1.2.1 Computing an Optimal Control Law
	1.2.2 Comparing Performance Metrics
	1.2.3 Transferring to Real-world Bipedal Robot Hardware

	1.3 Contributions

	2 Background
	2.1 The Spring Mass Model
	2.1.1 Early Biomechanical Studies
	2.1.2 Control of The Spring Mass Model for Running
	2.1.3 Unification with Walking and Gait Transitions

	2.2 Optimal Control for Legged Locomotion
	2.2.1 Comparison of Approaches
	2.2.2 Applied to Bipedal Robot Hardware

	2.3 Control Realization on Hardware
	2.3.1 Methods of Embedding Center of Mass Behaviors
	2.3.2 The Lack of Controlled Gait Transitions for Bipedal Robots

	3 Optimal Locomotion Policies for Point Mass Models
	3.1 Choosing a Dynamics Model
	3.2 Choosing Problem Boundaries
	3.2.1 Virtual Leg Stiffness
	3.2.2 Virtual Leg Touchdown Angle
	3.2.3 Virtual Leg Compression
	3.2.4 Horizontal and Vertical Center of Mass Velocity
	3.2.5 Step Length

	3.3 Choosing an Optimization Framework
	3.3.1 Candidate Optimization Methods
	3.3.2 Semi-Lagrangian Dynamic Programming

	3.4 Algorithm Implementation Details
	3.4.1 Cost Functions
	3.4.2 Continuous-Time Algorithm
	3.4.3 Discrete Gait Event Algorithm
	3.4.4 Common Pitfalls and Acceleration Methods

	3.5 Results on Point Mass Models
	3.5.1 Continuous-Time Optimal Control Solutions
	3.5.2 Discrete Gait Event Optimal Control Solutions
	3.5.3 Comparisons with baselines

	4 Parametric Insights into Optimal Locomotion Policies
	4.1 Fitting Parametric Linear Models
	4.1.1 Choice of basis functions

	4.2 Linear value function models
	4.2.1 Results

	4.3 Discussion
	4.3.1 Minimum time
	4.3.2 Minimum leg force
	4.3.3 Minimum positive mechanical power

	5 Deadbeat Spring Mass Model Running on ATRIAS
	5.1 Control Approach
	5.1.1 Implicit regulation of system energy
	5.1.2 Explicit stabilization of trunk orientation
	5.1.3 Overview of control flow

	5.2 Implementation
	5.2.1 Estimation of CoM and contact states
	5.2.2 Stance control
	5.2.3 Flight control
	5.2.4 Online adaptation of return map

	5.3 Hardware Experiments
	5.3.1 Undisturbed running
	5.3.2 Tracking SMM deadbeat velocity targets
	5.3.3 Rejecting unexpected ground changes

	5.4 Conclusion

	6 Dynamic Programming Policies on ATRIAS
	6.1 Extending the Control Framework for Walking
	6.1.1 Modeling Double Support
	6.1.2 Executing Optimal Motion Plans
	6.1.3 Contact Detection

	6.2 Demonstrating Optimal Gaits on the ATRIAS Biped
	6.2.1 Executing online generated plans on the hardware
	6.2.2 Executing offline plans on the hardware

	6.3 Discussion

	7 Conclusion
	7.1 Overview
	7.2 Contributions
	7.3 Future Research Directions

	Bibliography

