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Abstract

Real-time navigation in dense human environments has been a challenging problem in
robotics for years. Most existing path planners fail to account for the dynamics of pedestri-
ans because introducing time as an additional dimension in search space is computation-
ally prohibitive. Alternatively, most local motion planners only address imminent collision
avoidance and fail to offer long-term optimality. In this work, we present an approach,
called Dynamic Channels, to solve this global to local quandary. Our method combines
the high-level topological path planning with low-level motion planning into a complete
pipeline. By formulating the path planning problem as graph-searching in the triangulation
space, our planner is able to explicitly reason about the obstacle dynamics and capture the
environmental change efficiently. We evaluate efficiency and performance of our approach
on public pedestrian datasets and compare it to a state-of-the-art planning algorithm for
dynamic obstacle avoidance.
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Chapter 1

Introduction

Autonomously navigating through crowded human environments is a cornerstone func-
tionality for many mobile robot applications (e.g., service, safety, and logistic robotics).
However, crowd navigation requires safe operation of the robot in close proximity to agile
pedestrians: a competent crowd planner needs to efficiently generate feasible, optimal, and
even socially compliant trajectories. A typical crowd navigation scenario is shown in Figure
where the highly dense human crowd poses a huge challenge for path planning. Most
existing approaches focus on either global or local optimality. For instance, sampling-based
motion planners often assume a static environment because adding a time dimension ex-
ponentially increases computation. Search-based, optimization-based and geometry-based
planning algorithms are subject to the same computational shortcoming. Alternatively, lo-
cal planners attend to agent dynamics by seeking collision-free paths over short time hori-
zons but neglect global optimality.

We introduce dynamic channels, a novel crowd navigation architecture combining global
optimality and a heuristic for efficiently managing agent dynamics. Our method abstracts
the environment using Delaunay Triangulation and then projects obstacle dynamics onto
the triangulation. A modified A* algorithm then computes the optimal path, as abstracted
in Figure where the optimal path is shown in red. Empirically, performance and effi-
ciency are validated with thousands of real world pedestrian datasets. Our approach out-
performs state-of-the-art methods by a significant margin for task completion while remain-
ing real-time computable even for large numbers of dynamic obstacles. It is worth pointing
out that our algorithm assumes linear motions of pedestrians during a short period of time,
which can be violated when the crowd density exceeds a certain threshold. However, for
crowds with moderate density as in the two datasets we evaluate on, our algorithm per-
forms significantly better.

The rest of this report is organized as follows. Chapter 2| gives a detailed discussion on
related work with a focus on motion planning in dynamic environments and crowd navi-
gation. Chapter 3|gives a mathematical formulation of the crowd navigation problem and
discusses in detail our geometry-based planning framework. In Chapter [4 the experimen-
tal evaluation is given to highlight the performance of our method. The completeness proof
of our algorithm under such formulation is given in Chapter ] Chapter [f] concludes our
work and presents future work and possible extensions.



Figure 1.1: (a) A crowded crosswalk in Japan, where the navigation of a robot will be challenging without an
efficient planner. (b) The environment abstraction used in our framework. Pedestrians are shown as circles with
arrows indicating the moving direction and speed. The “Dynamic Channel” and a safe trajectory inside are shown
by bold line segments and the red curve with an arrow.



Chapter 2

Related Work

2.1 Local and Global Planning

Local planning seeks to optimize near-term objective functions; classic approaches include
the Dynamic Window Approach [11], Inevitable Collision States [12], and Velocity Obsta-
cles [10]]. Variants of Velocity Obstacles [34,37)38|/40] solve the multi-agent system problem
for reciprocal collision avoidance by assuming that each agent adopts the same navigation
strategy (e.g., each agent passes to the right). However, human behavior is probabilistic,
and so assuming fixed actions can lead to unsafe robot behaviors. However, even with
guaranteed collision-free local actions, local planning is insufficient, since such trajectories
may not guarantee, e.g., the shortest traveling distance.

Global planning searches for feasible paths connecting initial and goal states of the robot.
Most traditional sampling-based algorithms including Rapidly-exploring Random Tree (RRT) [24]
and Probabilistic Roadmap methods (PRM) [19,[20] assume the environment to be static
when planning; replanning is employed to account for dynamics. To reduce unnecessary
computation [43] proposed a dynamic RRT variant by reusing branches from previous
search trees. In [7] a replanning scheme based on RRT* [18] dealt with unknown dynamic
obstacles blocking the robot’s path.

Many global planners decouple static and dynamic obstacles. An intuitive strategy re-
lies on a local reactive collision avoidance system to deal with local disturbances. Separating
static and dynamic obstacles can also be achieved by hierarchical planning and the combi-
nation of potential fields: [16}39] decouples high- and low-level planning with a two-level
search. Globally, a roadmap is built upon static obstacles while locally a collision-free tra-
jectory is obtained. In [35], a dynamic pedestrian potential field selects the traversal and
safety optimal trajectory. The same problem also exists in other planning methods. For
Elastic Band [32], Timed Elastic Band [33] and spline-based planners [25], the initial guess
determines path partition, which is based on the static assumption. Ultimately, treating
static and dynamic obstacles separately has the advantage of being efficient and probabilis-
tically complete. However, sub-optimal paths can result because obstacle dynamics affects
global optimality.

An important class of planning methods leverages computational geometry to gain effi-
ciency; Voronoi diagrams and Delaunay Triangulation have long been used for environment
abstraction. With Voronoi diagrams, the decomposition of free space based on Voronoi
cells efficiently generates homotopically distinct paths [1}/6}13,23]]. Delaunay Triangulation



has also been used in graphics to solve the virtual character navigation [2,[17]. These data
structures have important complexity properties in 2D planar environments: compared to
grid-based maps, computational geometric approaches search a much smaller graph while
faithfully capturing topological properties like connectivity. In [9] Triangulation A* (TA*)
and Triangulation Reduction A* (TRA*) are introduced for pathfinding in the triangulation
space. Similarly, [42] presents a path planning approach in Constrained Delaunay Trian-
gulation (CDT) to account for static polygon obstacles. Finally [4] uses dynamic Delaunay
triangulation (DDT) to solve the problem of navigation in the absence of a pre-specified
goal position.

However, these algorithms do not reason about obstacle dynamics, and naively adding
a time dimension results in exponential computation. Our approach introduces a novel
approach to incorporate obstacle dynamics in the global planning step and extends the
pathfinding algorithm to efficiently analyze environmental evolution.

2.2 Human Aware Navigation

Human-aware navigation [21] focuses on socially acceptable robot behaviors rather than ex-
plicitly solving the collision avoidance problem. In [36] cooperative collision avoidance
is leveraged to develop a tractable interacting Gaussian Process (IGP) model. A socially-
inspired crowd navigation approach is developed in [30] where the robot follows pedes-
trians moving towards its goal. However, this method might fail in situations where the
major flow of pedestrians is not in the robot’s goal direction. Other work leverages learning
to model and replicate socially compliant behaviors for crowd navigation [5}/14,22,28|29]

In this work, we do not explicitly address socially acceptable navigation. However, our
framework can be extended to incorporate social norms. For example, in the graph con-
struction step (described below), the interaction between people can be encoded in the
graph if it is obtainable (one person taking pictures for the other, a group of friends walking
together), so that edges between pedestrians can be denoted as non-crossable for the robot.
Moreover, the path generated by our planner naturally captures some social norms. For ex-
ample, when passing a pedestrian, our planner will favor passing from behind rather than
in front of the pedestrian, because the former leads to a shorter traveling distance.



Chapter 3

Methodology

Let the crowd positions at time 7 be denoted as P, = {p] | p] € R?,i =1,...,n;}, wheren,
is the number of pedestrians. Let V, = {v] | v] € R% i = 1,...,n;} be pedestrian velocities
at 7. Let the robot starting point be s € R? and goal ¢t € R% We seek the collision-free
trajectory that is optimal with respect to travel time and distance.

(@) (b) (c) (d)

Figure 3.1: (a) A path from s to ¢ planned through the crowd. Pedestrians are shown as grey circles with arrows
denoting velocities. (b) The path sequentially passes through pairs of pedestrians shown as darker circles con-
nected by dashed line segments. (c) The dual graph 7 of the triangulation of P. A path connecting s and ¢ is
shown in red. (d) A “channel” (bold line segments) and the corresponding homotopy class of paths (red curves)
bounded within.

3.1 Delaunay Triangulation

Our first objective is to plan a path through the obstacles P, at the topological level. This is
achieved by Delaunay triangulation on P,, which produces the graph 7, (light gray graph
in Fig. py are vertices). The dual graph 7* (black graph in Fig. has one vertex
for each face of 7; and one edge for face pairs separated by an edge in 7,. If we define
homotopic equivalence as paths that can be continuously deformed into each other without
passing through vertices p], then R?-paths and 7*-graphs are equivalent (Fig :

Theorem 3.1.1. Any path through P in R? uniquely determines a path in T.

Theorem 3.1.2. A path on T without repeating vertices corresponds to one homotopy class of paths
in R?



For brevity, we prove these theorems in Chapter [5| Thus, instead of optimizing paths in R>
we can equivalently search the graph T*. This graph search is computationally efficient (Section[4.2).
An important advantage of searching 7.* is that we can reason about pedestrian pair in-
teractions, instead of individually checking collisions. Consider a path passing through a
group of people as shown in Fig. and the directional curve showing the robot path.
By projecting pedestrian velocities onto triangulation edges, triangulation time evolution is
achieved. In this manner, pedestrian dynamics are analyzed as a network.

3.2 Dynamic Channel

A path on 7* (Fig. 3.1c) is equivalent to a triangulated simple polygon called a “chan-
nel” [17] (Fig.[3.1d). We extend this concept to a “dynamic channel.” This dynamic channel
is precisely the time evolution of our triangulation.

Pedestrian dynamics cause the dynamic channel to deform constantly. Of most concern
is “gate” change (light gray dashed lines in Fig.|3.1d), the distance between pedestrian i and
7 at time 7:

DY(7) = [|pt = pl|| 3.1)

where ||.|| denotes the Euclidean distance. Let Dyjresn = 2(7obs + Ssafe) be a threshold for
the width of a gate considered feasible for the robot to pass, where 7 is the radius of a
pedestrian expanded by the radius of the robot, and Ss, . is the minimum safe distance
between the robot and pedestrians. Solving for

Dij (T) > Dthresh (32)

we obtain the time intervals T'tcqsibie = [T1, 72]U- - -U[Ty—1, Tr] Wwhen the gate is wide enough
for the robot to cross. Given the Estimated Time of Arrival (ETA) for the robot to reach the
gate Tgr 4 (detailed in the next section), safe passage is guaranteed when 7e74 € T'teqsible-
This condition must hold for all gates to guarantee safe passage.

We assume that pedestrian behaviors can be modeled linearly. Thus the trajectory (start-
ing from the current frame 7 = 0) of pedestrian ¢ can be described by:

p'(t) = pé + o' (3.3)

where pg and v’ are the current position and velocity. D% (7) is then a quadratic function
with respect to 7 and the graph of D% (7) is a parabola opening upward as in Fig.
Solving for Equation gives zero, one or two solutions. When there is no solution, the
minimum distance D', () between pedestrians i and j will never be too close for the robot
to cross. When there is only one solution, a critical moment exists when the robot can be
just safe enough to cross. When there are two solutions, denoting ¢; and ¢, with t; < t,
it is required that tgra € ([—00, 1] U [t2, +00]) N [0, +00] for safe passage as shown in Fig.
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Figure 3.2: (a) A gate formed by pedestrians p; and p;. A path 7 is planned through the gate. (b) The distance
between two pedestrians changes with time as a parabola. ¢; and t2 show the moments when the gate is wide
enough (above the threshold D;,.csp,) for safe passage.

3.3 Timed A* Search

The A* algorithm has been used for searching for shortest paths in the triangulation space,
which is referred to as Triangulation A* (TA*) [9[17]]. For TA¥, the states in the search are
nodes on the dual-graph 7. representing the triangles. Note that during the search, the ac-
tual path length through the sequence of triangles depends on the node placement, which
can only be determined by methods like the “Funnel Algorithm” (section[3.4) after the goal
point is reached. Thus care needs to be taken in computing the cost incurred (the g-value)
and the heuristic (the h-value) used in TA* to search for the shortest path. [42] proposes the
“target attractive principle” to determine the placements of nodes when building the dual
graph on constrained Delaunay Triangulation. Here we adopt a similar rule-based method
as in [42] to determine the graph nodes. Within a triangle, a graph node is placed relatively
closer to the goal point and further away from the constrained /non-crossable edges, fol-
lowing the “target attractive principle”. The detailed discussion on the node placements
can be found in [42]]. Note that in our work, the non-crossable constraints are introduced
by edges that will lead to potential collision rather than static obstacles.

Here, we use a modified A* algorithm to incorporate the robot and pedestrian dynam-
ics in the search of the shortest path. Within the triangulation framework, we focus on
the interaction between connected pedestrian pairs. Thus the dynamics of the robot and
pedestrians can be studied by projecting them along the edges in the triangulation. In par-
ticular, we compute the g and h-value with a lookahead time period 7. While searching,
the velocity of a node representing a triangle can be determined by interpolating the ve-
locities of three endpoints. Assuming the velocity of a node remains constant during 7,
we can then compute g(7) and h(7) using the position of the node after moving for time
7, which give the predicted cost incurred and heuristic. To determine a proper 7 for each
node, we compute the Estimated Time of Arrival (ETA) 714 of the robot arriving at that
node to obtain g(7gr4) and h(7gr.4). Similar to the estimate of g-value in a regular A* algo-
rithm, we track path history while searching. For each node, the current path to the node is
time-parameterized by taking into account the kinematics and dynamics of the robot and
curvature of the path. Note that due to the approximated node placements at searching



Figure 3.3: Within a channel the shortest path is determined by our funnel algorithm. Clearance radius is deter-
mined by whether the pedestrian is “threatening” or “enlarging” the channel. Larger radius is assigned for the
former (p;) while smaller radius is assigned to the latter (p;, py).

time as in [42] and the linear model assumption, 7z 4 can only be approximated accurately
in a finite time horizon. Due to the time-variant g(7) and h(7) value, our planner will seek
a candidate shortest path in the long term by taking into account the future evolvement of
the obstacles, while a normal A* search only considers the shortest path in the current time
frame assuming obstacles are static.

3.4 Path Optimization

The output from our Timed A* algorithm is a path on 7* consisting of a series of triangles
that form a channel. We find the shortest path in the channel that ensures sufficient clear-
ance. The Funnel algorithm [3]], [26], [15] can be used for computing a shortest path within a
simple triangulated polygon connecting the start and goal points. To account for non-zero-
radius obstacles, [9] proposed a modified funnel algorithm by inserting conceptual circles at
each vertex of the channel. The resulting path is composed of alternating straight-line seg-
ments and arcs. In our work, we further extend this method to account for the pedestrian
dynamics. Given a pedestrian p], we project the velocity v] onto the vector e;; = p; — p;,
where p; is the other end of the edge in the channel. If the projection v; > 0, the path will
pass by p7 in the front, potentially blocking p]’s moving direction. In this case, we assign a
circle with the radius r = k||v}|| around p] to create clearance, where k is a tunable parame-
ter. Similarly, if v] < 0, the path will pass from behind. Figure 3.3a|provides an illustration,
where pedestrians p;, p; and p;, are assigned different-sized circles based on their velocities.

Most of the collision avoidance effort described above is implicitly done by enforcing
timely traversal. However, when obstacles move faster than the robot or the linear mo-
tion assumption of the pedestrians is violated in crowds with high density, simply follow-
ing the path cannot guarantee collision-free navigation. In such cases, a low-level robot-
specific controller is needed to perform maneuvers for the robot to avoid collision. In a



Delaunay Triangulation, the circumcircle of any triangle will not include other points in-
side. Thanks to this property, a collision-free circular area can be identified in the robot’s
vicinity, which can be used for local maneuvers when needed. Furthermore, if no paths are
found by the Timed A* algorithm, other behavioral strategies can be employed to utilizes
the local collision-free area. For example, the robot can follow the people walking in the
goal direction while maintaining a proper clearance to others, as in [30].



Chapter 4

Experimental Evaluation

We demonstrate the advantage of our planner by testing on a large number of navigation
tasks in simulated environments based on public human-trajectory datasets. We compare
success rate, efficiency of traversal, and time complexity of our algorithm against two other
planning methods. Finally, we empirically study the effect of observability on our algo-
rithm.

4.1 Experiment Settings

4.1.1 Datasets

For experiments, we implemented our planning framework to control a car-like robot nav-
igating in simulated environments. In particular, we use the pure-pursuit algorithm [_8] to
track a path output from our planner. For benchmarking, in our simulation we replay the
human-trajectories from two public datasets: ETH [31]] and UCY [27]. There are five subsets
in total recorded in different scenarios, denoted as eth_hotel, eth_univ, ucy_univ, ucy_zaraQl
and ucy_zara02.

For each dataset, the trajectory data are first interpolated and then re-projected back
to the world coordinates using the homography matrices provided. We define a rectan-
gular region as the workspace which is bounded by extreme values of the pedestrian po-
sitions of each dataset. For the navigation task, the robot starts at four mid-points of the
workspace boundaries and moves to the antipodal goal position, as shown in fig[4.1} In the
experiments, only pedestrians are considered to be obstacles and all free space is assumed
traversable for the robot. Fig. [£.1b|shows an example testing configuration, where pedestri-
ans are shown as yellow circles with black arrows indicating velocity. The starting positions
are shown as red circles with arrows. The velocities of pedestrians are approximated by the
position differences between two consecutive frames divided by the sampling period.

Trials begin at a sequence of starting times at intervals of 3s, which results in 1520, 1148,
184, 148, and 120 trials for each dataset respectively. All experiments were runona 2.6 GHz
CPU/15.5 GB memory computer.
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Figure 4.1: Experiment Settings. (a) shows a frame from the ETH dataset. (b) shows the pedestrian positions
extracted from the frame. Red circles with arrows show the starting positions of the robot in the experiments.

4.1.2 Generalized Velocity Obstacle Planner

For comparison, we implemented a planning algorithm based on the Generalized Velocity
Obstacle (GVO, [41]) to control the same car-like robot. The algorithm first randomly sam-
ples a controlinput u from a feasible set. Then a trajectory is simulated within a time horizon
for the input, which takes into account the robot dynamics. The trajectory is then checked
for collision with GVO prediction on each moving agent. Finally, among all collision-free
control inputs, the one closest to the preferred control u* is chosen. As suggested in the pa-
per, we choose the preferred control to be the one driving the robot directly to the goal as
if there were no obstacles. However, we do not explicitly solve the optimization problem
for t* that results in minimum distance between the robot trajectory and obstacles. Instead,
we discretize the trajectory and check collision at 10Hz. Only in this manner can we run
the algorithm efficiently enough for the benchmarking. The other parameters used were
time_horizon = 3.5s, wheelbase = 1m and sampling_per _timestep = 40.

4.1.3 "Wait-and-go” Planner

We designed the simplest possible crowd navigation strategy, “wait-and-go”, as a baseline:
the robot drives in a straight-line towards the goal. When the robot comes too close to
pedestrians or there is a potential collision determined by Velocity Obstacle, the robot stops
(wait) and resumes moving (go) when possible.

4.2 Comparing success rate, efficiency of traversal and time
complexity

We run each trial until the robot reaches the goal position. In the case when all the frames
have run out before the robot reaches the goal position, we replay the sequence from the
beginning for a fixed number of times. If the distance between the robot and any pedestrian
is less than 1m during the run, a collision is reported and the trial fails. Otherwise, if there is
no collision reported and the robot reaches the goal position before all the frames run out,
the trial is marked successful. We also calculated running time to compare the traversal

11



efficiency of the three approaches. Note that when a trial fails, the timer will not stop until
the trial is finished. The robot has a speed limit of 1.2m/s, which is slightly slower than the
average human walking speed.
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Figure 4.2: Experiment Results. Comparison of: (a) the success rate of navigation tasks in each dataset. (b) The
average traveling time of the robot in each dataset. Vertical line segments show the variance by a standard devia-
tion.
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Figure 4.3: Experiment Results. Comparison of: (a) the average planning time of a frame for each dataset. (b) The
average number of pedestrians in each dataset. Vertical line segments show the variance by a standard deviation.

4.2.1 Success Rate

From the result shown in Fig. our planner has the highest success rates in all five
datasets, while GVO ranks second and the baseline planner performs last. For the chal-
lenging dataset ucy_univ, where the crowd density reaches 30 pedestrians per frame, our
planner significantly outperforms the baselines. Anecdotally, most of the failure cases of
our algorithm are due to sudden pedestrian appearance and nonlinear pedestrian move-
ment, while the causes of failure of GVO and wait-and-go are mostly due to being trapped
in sub-optimal situation (e.g. surrounded by a group of pedestrians).

4.2.2 Traveling time

For traversal time, as shown in Fig. our planner is comparable to the “wait-and-go”
baseline and is more efficient than GVO, where GVO exhibits much longer times with much
larger variance. This is because GVO tends to passively dodge approaching pedestrians
(resulting in more evasive strategies), while our planner actively looks for open spaces and
a long-term shortest route.
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4.2.3 Computational Complexity

For computational complexity ([4.3a)), both our approach and GVO sees an increase in com-
putation as more pedestrians enter the scene. However, our method is significantly more
time-efficient than GVO.

(a)t = 2s (b)t = 7.25s ()t =11.25s (d)t = 15s

Figure 4.4: The path found by our planner in the eth_univ dataset. Green areas show dynamic channel. Cyan line
shows trajectory. Blue line segments show valid gates to cross; red ones show unsafe gates. The robot (red filled
circle) attempts to navigate from bottom to top. Note that we place four static “virtual pedestrians” at the four
corners of the workspace, allowing the robot to find the paths that go around the “actual” crowd if it is necessary.

Qualitatively, Fig. [4.4{shows a sequence of the robot navigating in the eth_hotel dataset.
At the beginning, the robot plans to pass by the pedestrians on the right. Between ¢t = 7.25
and ¢ = 11.25, there suddenly appears a group of people on the right side. Our planner is
able to adapt to this and steer the robot to the left for a safe-pass.

4.3 Observability Effects

We also study observability effects by testing our planner on a larger simulated scene with
limited sensor ranges. The simulated pedestrians are generated as follows. For every 5s, 2
pedestrians are spawned from the two sides of the workspace. Each pedestrian is assigned
with a random goal position at the other side and a random linear velocity towards the goal.
While traveling to the goal the pedestrians will randomly change their goal and speeds
every 3s. The observation range of the robot is tested from 1m to 30m, with the interval
being 1m when under 10m and 5m when above 10m. We also run trials without sensor
range limit for comparison. Beyond the sensing range, only the goal position is known, so
the robot has no information about pedestrians outside the field of view. In each trial, the
robot navigates from the lower right corner to the upper left corner or reversely. For each
sensing range, 100 trials are performed. Fig. shows an example scene when the robot
navigates in the synthetic crowd with the sensing range limited to 10m.
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(a)

Figure 4.5: Path found by our planner in a synthetic dataset with a limited sensor range, denoted by the red circle.
Pedestrians outside the sensor range are not included in the triangulation and thus not observed by the planner.
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(b) average traveling time, (c) average planning time and (d) average number of pedestrians seen by the planner
with different sensing ranges. Vertical line segments show standard deviation.
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Results are presented in Fig. In Fig. and Fig. [4.6b| we observe that the sensor
range does not make a big difference for the success rate and traveling time beyond 3m.
Medium ranges (3 to 9m) are only slightly better than long ranges (10 to without limit). This
is because the longer the channel, the less accurate the 774 will be, and thus the guarantee
for safe-passage for later portions of the channel is less likely to be valid. A practical solution
to this problem is to set a time horizon for the planner. Whenever the estimated 774 is
longer than the horizon, we release the safety check. For the time complexity in Fig. we
see that the time needed for a planning cycle increases rapidly with the increasing number
of pedestrians per frame, as in Fig. However, our algorithm is still efficient in such
crowded environments. It can be seen from the figure that for pedestrian number over 50,
our method re-plans at 50Hz and with fewer than 30 pedestrians our method re-plans at
100Hz. Note that with the observability limit, only a subset of the crowd is considered by
our algorithm, which no longer guarantees the topological completeness with respect to all
the pedestrians. However, our above experiment results show that this does not become a
tradeoff between the success rate and computational complexity.
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Chapter 5

Proof of Topological Completeness

We present a detailed discussion on the completeness of pathfinding in triangulation. Let
the crowd positions at time 7 be denoted as a finite point set P, = {p] | p] € R%,i =
1,...,n:}, where n, is the number of pedestrians, the robot starting point be s € R?, and
the robot ending point be ¢ € R? (¢ # s). The task is to plan homotopically distinct paths
through the crowd. Without loss of generality, we assume that s and ¢ are outside of the
convex hull of P,. In the context of path planning for crowd navigation, which seeks the
shortest path, we restrict the following discussion to paths without loops/duplicate vertices
only. Here we provide the following important definitions.

Definition 1 (Path). A path is a continuous mapping f : [0, 1] — R? with £(0) = s and (1) = ¢.

Definition 2 (Path homotopy). Two paths f; and {5 are said to be path-homotpic if there exists a
continuous map F : [0,1] x [0,1] — R? such that F(i,0) = f; and F(i,1) = f5, F(0,5) = s and
F(1,5) =t,Vi,j €[0,1].

Lemma 5.0.1. A path can be approximated arbitrarily well by a bivariate polynomial parameterized
as f(z,y) = 0.

Proof. This directly follows from the Weierstrass approximation theorem. O

In the following discussion, we use f(z,y) = 0 to denote the polynomial and the path
approximated by the polynomial interchangeably. Informally, in the context of motion plan-
ning among obstacles P,, we say f; and f; are path-homotopic with respect to P, if one can
be continuously deformed into the other without intersecting any points in P,. Note that a
path f(z,y) = 0 intersects with points from P, when f(z,,yp) =0, (p,yp) € P~

Lemma 5.0.2. A path f(z,y) = 0 not intersecting points from P, partitions P, into two dis-
joint sets (PF,P7), where PY = {(zp,yp) € Prlf(zp,yp) > O} and Pr = {(xp,yp) €
Pr|f(2p, yp) <0}

Proof. A polynomial parameterized by f(x,y) = 0 partitions the R? space into three disjoint
open sets Uy = {(x,y) € R?|f(x,y) = 0}, Uy = {(z,y) € R*|f(x,y) > 0} and U3 =
{(z,y) € R?|f(z,y) < 0}. With P, NUs = (), we have P = P, N U, P = P; NU; and
P, =PrUP,. O
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fs,y)=0,° 1

Figure 5.1: Illustration of a partition of P by f(x,y) = 0.

Proposition 5.0.3. Given two paths fi(z,y) = 0and fo(z,y) = 0 partitioning P, into (B*, B™)
and (C*,C™) respectively, (a) if f1 and fo are homotopic, then Bt = Ct and B~ = C~. (b) if
Bt =C"and B~ = C~, then f and f5 are homotopic.

Proof. Proof of (a): Prove by contradiction. Assume that Bt # C* and B~ # C~, there
exists a point p = (x,y,) such thatp € Bt and p ¢ C't, which impliesp € Bt andp € C~.
Therefore, fi(xp,y,) > 0and fo(xp,yp) < 0. Since f; and f> are homotopic, let H be a
continuous map from f to fo, H : R? x [0,1] — R, then

H(LCJ/?O) = fl(xvy)

(5.1)
H(LL‘,y, ]-) - fQ(x,y)
for all z, y in the domain of f; and f;. Then at x = z, and y = vy,
H(Ip, Yp, 0) = fl(xpayp) >0 (5 2)

H(xp,yp, 1) = f2(37payp) <0

Because H is continuous, by the intermediate value theorem, there exists some T' € (0, 1),
such that H(z,,y,,T) = 0. Thus contradiction occurs.

Proof of (b): We will prove the contrapositive. Consider two paths f; and £, that are not
homotopic, then one cannot continuously deform into the other without intersecting P-. It
follows that for any continuous map H from f; to fo, there exists a point p = (zp, yp) € P»
and T € (0,1) such that

H(xp, yp, T) =0 (5.3)
and
H(xwyp?O)H(xpaypal) < 0 (54)

Otherwise, there exists H(z,y,t) > 0 or H(z,y,t) < 0,Vt € (0,1), which means f; can
continuously deform to f, without intersecting p. Therefore, fi(xp, yp)f2(Tp, yp) < 0. Let
J1(zp,yp) > 0, then fo(xp,y,) < 0, which impliesp € BT and p € C~ = p ¢ C*. Therefore
Bt £ C* and B~ # C~, which also holds when fi(z,,y,) < 0and f2(z;,y,) > 0.

O
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Definition 3 (Triangulation 7 of P;). A triangulated graph T = (V, E), where V. = P, and E
gives a maximal set of non-crossing edges between points of P-

Fig. shows an example of the triangulation 7 = (V, E) of P, where V and E are
shown as grey filled circles and line segments, respectively.

Definition 4 (A cut/cut-set of 7). A cut of T = (V, E) is a partition of V into two disjoint
subsets. A cut-set is the set of edges that have one endpoint in each subset.

Fig. gives an example of cut of 7. Vertices of 7 are partitioned into two disjoint
subsets distinguished by red and blue circles. Edges in the cut-set are shown by the dashed
line segments.

@) (b)
Proposition 5.0.4. A cut of T uniquely determines a homotopy class of a path through P.

Proof. Leta cut of T partition P, into two disjoint subsets A and B. Let P = Aand P, =
B, according to Lemma we can find a curve parameterized by f(z,y) = 0 that gives
the partition P, = (P;,P. ). Because of propositionm the partition is equivalent to a
homotopy class of paths. Therefore, a cut of 7 uniquely determines a homotopy class. [

Definition 5 (Face/Outer face of 7). A face of T is the region bounded by edges of a triangle in
T, as illustrated in Fig. The (outer face) is defined as the "exterior” region outside the convex
hull of P-, of which the boundary consists of edges from T and forms a Jordan Curve.

Definition 6 (Dual graph 7* on 7). The dual graph T* = (V*, E*) has a vertex for each face of
T and an edge connecting two vertices if the faces in T are adjacent. Note that there is a vertex voy:
representing the outer face of T.

Fig.[5.2a| gives an example of a dual graph 7* on T, where V* and E* are shown in red
circles and line segments. The blue circle shows the v,,:. Note s and ¢ are in the outer face
represented by v, since they are outside of the convex hull of P-.

Definition 7 (A walk w on 7*). Given T* = (V*, E*), a walk w on an T* is a finite alternating
sequence of vertices and edges.

Definition 8 (s-t cycle on 7). An s-t cycle on T is a walk w on T* with the starting and ending
vertex voyy representing the outer face. Note that there is no repeated vertices on the walk except for
the starting and ending vertex.

Fig. gives an example of s-t on 7* starting and ending at voy;.
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Figure 5.2: (a) Dual graph in red. (b) A loopy walk through 7*. (c) A channel (interior of blue lines).

Definition 9 (Channel). A channel is a series of triangles uniquely determined by a loopless walk
on T*.

Fig. gives an example of a channel determined by a walk on 7*. Note that the
starting and ending triangles are both represented by vgy:.

Proposition 5.0.5. An s-t cycle T* uniquely determines a homotopy class of a path through P;.

Proof. Because of the duality between cycles and cuts in dual planar graphs, an s-t cycle
on 7" uniquely determines a cut on 7. According to Proposition the cut on 7 is in
turn equivalent to a homotopy class of paths through P,. Therefore, an s-t cycle is also
equivalent to a homotopy class. O

Theorem 5.0.6. A channel on T uniquely determines a homotopy class of a path through P-.
Proof. By Definition[9]and Proposition O

Theorem 5.0.7. Every path through P, uniquely determines a walk on T*, which is equivalent to
a channel by Definition [9}

Proof. Letf : [0,1] — R?be a path intersecting the edges of T at intersection points {ig, i1, . . .
Let I., = {ii,%i+1,- - -, litm—1} be m consecutive intersecting points with the same edge e;
(see Fig.[5.3a). Given [|I,|| = m, I, can be reduced to I}, where ||I] || = m mod 2 with-
out changing the homotopy class of f. Namely, if m is odd, then I., can be reduced to
I, = {iixj},j € [0,m — 1] and if m is even, I., can be reduced to I/, = (). This is because
that for any two consecutive intersection points i; and ;41 with the same edge, the line
segment e;, _, and path segment fiijﬂﬂ.j forms a loop that contains no vertices from
P- inside, otherwise intersections with other edges will occur between i; and ;1 because
vertices are all connected. Therefore, a path f with the set of intersection points given by I¢
is homotopically equivalent to f’ with Iy = It — {i;,%;11}. Thus the reduction of every I,
described above is legitimate. An example is illustrated by Fig. In Fig. [5.3a] when m is
even, the path is equivalent to never intersecting with edge e;. In Fig. when m is odd,
the path is equivalent to only intersecting with edge e; once.

As shown above, a path f can be reduced to f’ such that every two consecutive intersec-
tions of f” are with distinct edges of 7. For each intersection points i; € I¢, an edge in 7*
can be uniquely determined. For every two consecutive intersection points i, i;41 € I¢, the
triangle that both edges belong to (a vertex in 7*) can be uniquely determined. Therefore,
consecutive edges of 7* given by Ir are connected with each other, which forms unique a
walk on 7. O
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(a) m is even. (b) m is odd.

Figure 5.3: Illustration for Theorem

By proving Theorem and Theorem we show that there is an one-to-one cor-
respondence between a channel in 7" and a homotopy class of paths through P,. In other
words, a path on the discrete graph 7* is related to a class of homotopic paths in the contin-
uous R? space, where searching in the former is significantly more efficient than searching
in the latter.
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Chapter 6

Conclusions and Future Work

We introduced a geometry-based planning framework for crowd navigation. Our primary
contribution is efficient global planning while accounting for obstacle dynamics; a proof of
completeness and optimality is provided. Empirically, dynamic channels improved success
rate by up to a factor of six in the most crowded environments and task completion by up
to a factor of three, and decreased computational burden by a factor of two. However, our
framework has limitations. First, the method assumes perfect measurements. Second, we
assume linear pedestrian motion models; even though our method was evaluated on real
world pedestrian datasets with extended periods of nonlinear motion, further experiments
are needed to validate robustness in interactive crowds. Future work will integrate dynamic
channels with low-level planners to increase this robustness. Additionally, we will extend
our architecture for multi-robot navigation, crowd simulation, and the handling of both
dynamic and static obstacles with arbitrary shapes and movement uncertainty.
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