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Abstract

Deep reinforcement learning has been applied to many domains from
computer games, natural language processing, recommendation systems
to robotics. While there are many scenarios where huge amounts of data
is easily available such as games, the applications of deep reinforcement
learning to robotics is often limited by the bottleneck of acquiring data.
Hence, generalization becomes essential in making the learning algorithm
practical in robotics. We found out that using prior knowledge of the
tasks can significantly boost the learning performance and generalization
capabilities.

Deep reinforcement learning could be used to learn dexterous robotic
policies but it is challenging to transfer them to new robots with vastly
different hardware properties. It is also prohibitively expensive to learn a
new policy from scratch for each robot hardware due to the high sample
complexity of modern state-of-the-art algorithms. We propose a novel
approach called Hardware Conditioned Policies where we train a universal
policy conditioned on a vector representation of robot hardware. We
considered robots in simulation with varied dynamics, kinematic structure,
kinematic lengths and degrees-of-freedom and show better generalization
with our method.

In this thesis, we also explore the generalization problem in navigation.
Even though numerous past works have tackled the problem of task-
driven navigation, how to effectively explore a new environment to enable
a variety of down-stream tasks has received much less attention. We
study how agents can autonomously explore realistic and complex 3D
environments without the context of task-rewards. We propose a learning-
based approach and investigate different policy architectures, reward
functions, and training paradigms. We find that use of policies with
spatial memory that are bootstrapped with imitation learning and finally
fine-tuned with coverage rewards derived purely from on-board sensors
can be effective at exploring novel environments. We also show how such
task-agnostic exploration can be used for down-stream tasks.
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Chapter 1

Introduction

A long-lasting goal of robotics is to perceive the world, reason the consequence, and

react to the changes. One of the fundamental challenges involved here is the sequential

decision making problem. An intelligent machine needs to have the ability to predict

the future and make long-horizon sequential decisions in order to interact coherently

with the environment. Reinforcement learning is a learning framework which formally

defines and provides mathematical tools to approach such problems. One of the most

notable formula used in reinforcement learning is the Bellman equation, which converts

the dynamic programming problem into a sequence of sub-problems and makes the

optimization tractable. To make reinforcement learning algorithms applicable to

high-dimensional state spaces and action spaces, researchers often use high-capacity

non-linear functions, such as deep neural networks, to approximate policy or value

functions. We have seen many such successful applications in computer games and

robotics control [1, 2, 3]. However, this brings the downside of high demands of big

data, which is often quite expensive and infeasible to collect in real world robotic

settings. Therefore, more data-efficient or more transferable learning policies are

desired.

The state-of-the-art model-free deep reinforcement learning algorithms [4, 5,

6] provide a promising approach in solving sequential decision making problems

without the knowledge of the environment model (dynamics). This make the learning

algorithms more general and applicable to various domains. However, the huge

amount of data needed to train such algorithms make it extremely expensive to be

1



1. Introduction

re-trained from scratch in order to be applied to different agents or environments.

This thesis focuses on how to equip deep reinforcement learning algorithms with

better generalization capabilities so that it reduces the demands of big data when the

policy is applied to a new agent or a new environment. More specifically, we looked

into two fields: multi-robot transfer learning and navigation.

Even though we have seen remarkable progress in deep reinforcement learning,

one major shortcoming of the current approaches is that the policy learned for a robot

is specific to the hardware, and thus tends to over-fit to one robot. This prevents the

policy from generalizing to other robots. So we propose a method called Hardware

Conditioned Policies to improve the policy generalization over robots with different

kinematics structures, link length and dynamics. The main idea is to augment

the state with an additional robot-specific representation using prior knowledge to

make the policy aware of the robot characteristics. Such a representation can be

either explicitly constructed given enough prior knowledge or implicitly learned via

back-propagation. The experiments show that our methods greatly improve the

generalization of the policy over different robots.

In navigation, there have been many works formulating the navigation as a learning

problem [7, 8, 9, 10] in the past few years. Learning methods are poised to learn

the semantic structures and common sense of the environment and thus have the

promises to overcome the requirement of precise depth sensors required by most of

the geometric-based navigation methods such as SLAM. We developed a learning

method that can learn an exploration policy which generalizes to completely new

environments. The goal of the policy is to make the agent automatically explore the

environment when it is deployed in a new house or building, similar to what a human

does when he/she walks into a new building. We propose a novel policy architecture

with an augmented state representation using prior knowledge. Our results show that

our policy can generalize to new environments much better compared to the policy

without the state augmentation.

We show the detailed alogrithms and experiments in multi-robot transfer learning

in Chapter 2 and navigation in Chapter 3.

2



Chapter 2

Multi-Robot Transfer Learning

2.1 Introduction

In recent years, we have seen remarkable success in the field of deep reinforcement

learning (DRL). From learning policies for games [11, 12] to training robots in

simulators [5], neural network based policies have shown remarkable success. But

will these successes translate to real world robots? Can we use DRL for learning

policies of how to open a bottle, grasping or even simpler tasks like fixturing and

peg-insertion? One major shortcoming of current approaches is that they are not

sample-efficient. We need millions of training examples to learn policies for even

simple actions. Another major bottleneck is that these policies are specific to the

hardware on which training is performed. If we apply a policy trained on one robot

to a different robot it will fail to generalize. Therefore, in this paradigm, one would

need to collect millions of examples for each task and each robot.

But what makes this problem even more frustrating is that since there is no

standardization in terms of hardware, different labs collect large-scale data using

different hardware. These hardware vary in degrees of freedom (DOF), kinematic

design and even dynamics. Because the learning process is so hardware-specific, there

is no way to pool and use all the shared data collected across using different types

of robots, especially when the robots are trained under torque control. There have

been efforts to overcome dependence on hardware properties by learning invariance

to robot dynamics using dynamic randomization [13]. However, learning a policy

3



2. Multi-Robot Transfer Learning

invariant to other hardware properties such as degrees of freedom and kinematic

structure is a challenging problem.

In this chapter, we propose an alternative solution: instead of trying to learn

the invariance to hardware; we embrace these differences and propose to learn a

policy conditioned on the hardware properties itself. Our core idea is to formulate

the policy π as a function of current state st and the hardware properties vh. So,

in our formulation, the policy decides the action based on current state and its

own capabilities (as defined by hardware vector). But how do you represent the

robot hardware as vector? In this paper, we propose two different possibilities.

First, we propose an explicit representation where the kinematic structure itself

is fed as input to the policy function. But such an approach will not be able to

encode robot dynamics which might be hard to measure. Therefore, our second

solution is to learn an embedding space for robot hardware itself. Our results indicate

that encoding the kinematic structures explicitly enables high success rate on zero-

shot transfer to new kinematic structure. And learning the embedding vector for

hardware implicitly without using kinematics and dynamics information is able to

give comparable performance to the model where we use all of the kinematics and

dynamics information. Finally, we also demonstrate that the learned policy can also

adapt to new robots with much less data samples via finetuning.

2.2 Related Work

Transfer in Robot Learning Transfer learning has a lot of practical value in

robotics, given that it is computationally expensive to collect data on real robot

hardware and that many reinforcement learning algorithms have high sample com-

plexity. Taylor et al. present an extensive survey of different transfer learning work in

reinforcement learning [14]. Prior work has broadly focused on the transfer of policies

between tasks [15, 16, 17, 18], control parameters [19], dynamics [13, 20, 21, 22],

visual inputs [23], non-stationary environments [24], goal targets [25]. Nilim et. al.

presented theoretical results on the performance of transfer under conditions with

bounded disturbances in the dynamics [21]. There have been efforts in applying

domain adaption such as learning common invariant feature spaces between domains

[26] and learning a mapping from target to source domain [27]. Such approaches

4



2. Multi-Robot Transfer Learning

require prior knowledge and data from the target domain. A lot of recent work has

focused on transferring policies trained in simulation to a real robot [13, 23, 28, 29].

However, there has been very limited work on transferring knowledge and skills

between different robots [15, 30]. The most relevant paper is Devin et al. [15], who

propose module networks for transfer learning and used it to transfer 2D planar

policies across hand-designed robots. The key idea is to decompose policy network

into robot-specific module and task-specific module. In our work, a universal policy

is conditioned on a vector representation of the robot hardware - the policy does not

necessarily need to be completely retrained for a new robot. There has also been

some concurrent work in applying graph neural networks (GNN) as the policy class in

continuous control [31, 32]. [31] uses a GNN instead of a MLP to train a policy. [32]

uses a GNN to learn a forward prediction model for future states and performs model

predictive control on agents. Our work is orthogonal to these methods as we condition

the policy on the augmented state of the robot hardware, which is independant of

the policy class.

Robust Control and Adaptive Control Robust control can be considered

from several vantage points. In the context of trajectory optimization methods, model

predictive control (MPC) is a popular framework which continuously resolves an

open-loop optimization problem, resulting in a closed loop algorithm that is robust to

dynamics disturbances. In the context of deep reinforcement learning, prior work has

explored trajectory planning with an ensemble of dynamics models [33], adversarial

disturbances [22], training with random dynamics parameters in simulation [13, 20],

etc. [13] uses randomization over dynamics so that the policy network can generalize

over a large range of dynamics variations for both the robot and the environment.

However, it uses position control where robot dynamics has little direct impact on

control. We use low-level torque control which is severely affected by robot dynamics

and show transfer even between kinematically different agents. There have been

similar works in the area of adaptive control [34] as well, where unknown dynamics

parameters are estimated online and adaptive controllers adapt the control parameters

by tracking motion error. Our work is a model-free method which does not make

assumptions like linear system dynamics. We also show transfer results on robots

with different DOFs and joint displacements.

System Identification System identification is a necessary process in robotics to

5



2. Multi-Robot Transfer Learning

find unknown physical parameters or to address model inconsistency during training

and execution. For control systems based on analytic models, as is common in the

legged locomotion community, physical parameters such as the moment of inertia or

friction have to be estimated for each custom robotic hardware [35, 36]. Another form

of system identification involves the learning of a dynamics model for use in model-

based reinforcement learning. Several prior research work have iterated between

building a dynamics model and policy optimization [37, 38, 39]. In the context of

model-free RL, Yu et al. proposed an Online System Identification [40] module that

is trained to predict physical environmental factors such as the agent mass, friction

of the floor, etc. which are then fed into the policy along with the agent state [40].

However, results were shown for simple simulated domains and even then it required

a lot of samples to learn an accurate regression function of the environmental factors.

There is also concurrent work which uses graph networks [32] to learn a forward

prediction model for future states and to perform model predictive control. Our

method is model-free and only requires a simple hardware augmentation as input

regardless of the policy class or DRL algorithms.

2.3 Preliminaries

We consider the multi-robot transfer learning problem under the reinforcement

learning framework and deal with fully observable environments that are modeled

as continuous space Markov Decision Processes (MDP). The MDPs are represented

by the tuple (S,A, P, r, ρ0, γ), where S is a set of continuous states, A is a set of

continuous actions, P : S × A × S → R is the transition probability distribution,

r : S×A → R is the reward function, ρ0 is the initial state distribution, and γ ∈ (0, 1]

is the discount factor. The aim is to find a policy π : S → A that maximizes the

expected return.

There are two classes of approaches used for optimization: on-policy and off-policy.

On-policy approaches (e.g., Proximal Policy Optimization (PPO) [4]) optimize the

same policy that is used to make decisions during exploration. On the other hand,

off-policy approaches allow policy optimization on data obtained by a behavior policy

different from the policy being optimized. Deep deterministic policy gradient (DDPG)

[5] is a model-free actor-critic off-policy algorithm which uses deterministic action

6



2. Multi-Robot Transfer Learning

policy and is applicable to continuous action spaces.

One common issue with training these approaches is sparse rewards. Hindsight

experience replay (HER) [41] was proposed to improve the learning under the sparse

reward setting for off-policy algorithms. The key insight of HER is that even though

the agent has not succeeded at reaching the specified goal, the agent could have at

least achieved a different one. So HER pretends that the agent was asked to achieve

the goal it ended up with in that episode at the first place, instead of the one that

we set out to achieve originally. By repeating the goal substitution process, the agent

eventually learns how to achieve the goals we specified.

2.4 Hardware Conditioned Policies

Our proposed method, Hardware Conditioned Policies (HCP), takes robot hardware

information into account in order to generalize the policy network over robots with

different kinematics and dynamics. The main idea is to construct a vector representa-

tion vh of each robot hardware that can guide the policy network to make decisions

based on the hardware characteristics. Therefore, the learned policy network should

learn to act in the environment, conditioned on both the state st and vh. There are

several factors that encompass robot hardware that we have considered in our frame-

work - robot kinematics (degree of freedom, kinematic structure such as relative joint

positions and orientations, and link length), robot dynamics (joint damping, friction,

armature, and link mass) - and other aspects such as shape geometry, actuation

design, etc. that we will explore in future work. It is also noteworthy that the robot

kinematics is typically available for any newly designed robot, for instance through

the Universal Robot Description Format-URDF [42]. Nonetheless, the dynamics are

typically not available and may be inaccurate or change over time even if provided.

We now explain two ways on how to encode the robot hardware via vector vh.

2.4.1 Explicit Encoding

First, we propose to represent robot hardware information via an explicit encoding

method (HCP-E). In explicit encoding, we directly use the kinematic structure as

input to the policy function. Note that while estimating the kinematic structure is

7



2. Multi-Robot Transfer Learning

feasible, it is not feasible to measure dynamics. However, some environments and tasks

might not be heavily dependent on robot dynamics and in those scenarios explicit

encoding (HCP-E) might be simple and more practical than implicit embedding1.

We followed the popular URDF convention in ROS to frame our explicit encoding

and incorporate the least amount of information to fully define a multi-DOF robot

for the explicit encoding. It is difficult to completely define a robot with just its

end-effector information, as the kinematic structure (even for the same DOF) affects

the robot behaviour. For instance, the whole kinematic chain is important when

there are obstacles in the work space and the policy has to learn to avoid collisions

with its links.

xi

yi
zi

xi+1

zi+1
yi+1

di

Ji+1

Ji

Figure 2.1: Local
coordinate systems
for two consecutive
joints

We consider manipulators composed of n revolute joints

(J0, J1, ..., Jn−1). Figure 2.1 shows two consecutive joints Ji, Ji+1

on the two ends of an L-shape link and their corresponding local

coordinate systems {xiyizi} with origin Oi and {xi+1yi+1zi+1}
with origin Oi+1 where z-axis is the direction of revolute joint

axis. To represent spatial relationship between Ji, Ji+1, one needs

to know the relative pose2 Pi between Ji and Ji+1.

Relative pose Pi can be decomposed into relative position and

orientation. Relative position is represented by the difference

vector di between Oi and Oi+1, i.e., di = Oi+1 −Oi and di ∈ R3.

The relative rotation matrix from {xi+1yi+1zi+1} to {xiyizi} is

Ri+1
i = (Ri

w)−1Ri+1
w , where Ri

w is the rotation matrix of {xiyizi} relative to the world

coordinate system. One can further convert rotation matrix which has 9 elements

into Euler rotation vector with only 3 independent elements. Therefore, relative

rotation can be represented by an Euler rotation vector ei = (θix, θiy, θiz), ei ∈ R3.

The relative pose is then Pi = di ⊕ ei ∈ R6, where ⊕ denotes concatenation.

With relative pose Pi of consecutive joints in hand, the encoding vector vh to

1We will elaborate such environments on section 2.5.1. We also experimentally show the effect of
dynamics for transferring policies in such environments in Appendix A.3.1 and A.3.2.

2If the manipulators only differ in length of all links, vh can be simply the vector of each link’s
length. When the kinematic structure and DOF also vary, vh composed of link length is not enough.

8



2. Multi-Robot Transfer Learning

represent the robot can be explicitly constructed as follows3:

vh = P−1 ⊕ P0 ⊕ · · · ⊕ Pn−1

2.4.2 Implicit Encoding

In the above section, we discussed how kinematic structure of the hardware can

be explicitly encoded as vh. However, in most cases, we need to not only encode

kinematic structure but also the underlying dynamic factors. In such scenarios,

explicit encoding is not possible since one cannot measure friction or damping in

motors so easily. In this section, we discuss how we can learn an embedding space

for robot hardware while simultaneously learning the action policies. Our goal is

to estimate vh for each robot hardware such that when a policy function π(st, vh)

is used to take actions it maximizes the expected return. For each robot hardware,

we initialize vh randomly. We also randomly initialize the parameters of the policy

network. We then use standard policy optimization algorithms to update network

parameters via back-propagation. However, since vh is also a learned parameter, the

gradients flow back all the way to the encoding vector vh and update vh via gradient

descent: vh ← vh − α∇vhL(vh, θ), where L is the cost function, α is the learning rate.

Intuitively, HPC-I trains the policy π(st, vh) such that it not only learns a mapping

from states to actions that maximizes the expected return, but also finds a good

representation for the robot hardware simultaneously.

2.4.3 Algorithm

The hardware representation vector vh can be incorporated into many deep reinforce-

ment learning algorithms by augmenting states to be: ŝt ← st ⊕ vh. We use PPO

in environments with dense reward and DDPG + HER in environments with sparse

reward in this paper. During training, a robot will be randomly sampled in each

episode from a pre-generated robot pool P filled with a large number of robots with

different kinematics and dynamics. Alg. 1 provides an overview of our algorithm.

3Pi is relative pose from U to V . If i = −1, U = J0, V = robot base. If i = 0, 1, ..., n − 2,
U = Ji+1,V= Ji. If i = n− 1, U = end effector, V = Jn−1.
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2. Multi-Robot Transfer Learning

Algorithm 1 Hardware Conditioned Policies (HCP)

Initialize a RL algorithm Ψ . e.g. PPO, DDPG, DDPG+HER
Initialize a robot pool P of size N with robots in different kinematics and dynamics
for episode = 1:M do

Sample a robot instance I ∈ P
Sample an initial state s0

Retrieve the robot hardware representation vector vh
Run policy π in the environment for T timesteps
Augment all states with vh: ŝ← s⊕ vh . ⊕ denotes concatenation
for n=1:W do

Optimize actor and critic networks with Ψ via minibatch gradient descent
if vh is to be learned (i.e. for implicit encoding, HCP-I) then

update vh via gradient descent in the optimization step as well
end if

end for
end for

The detailed algorithms are summarized in Appendix A.1 (Alg. 2 for on-policy and

Alg. 3 for off-policy).

2.5 Experimental Evaluation

Our aim is to demonstrate the importance of conditioning the policy based on a

hardware representation vh for transferring complicated policies between dissimilar

robotic agents. We show performance gains on two diverse settings of manipulation

and hopper.

2.5.1 Explicit Encoding

Robot Hardwares: We created a set of robot manipulators based on the Sawyer

robot in MuJoCo [43]. The basic robot types are shown in Figure 2.2. By permuting

the chronology of revolute joints and ensuring the robot design is feasible, we designed

9 types of robots (named as A, B,..., I) in which the first four are 5 DOF, the next

four are 6 DOF, and the last one is 7 DOF, following the main feasible kinematic

designs described in hardware design literature [44]. Each of these 9 robots were

further varied with different link lengths and dynamics.

10



2. Multi-Robot Transfer Learning

Tasks: We consider reacher and peg insertion tasks to demonstrate the effec-

tiveness of explicit encoded representation. In reacher, robot starts from a random

initial pose and it needs to move the end effector to the random target position. In

peg-insertion, a peg is attached to the robot gripper and the task is to insert the peg

into the hole on the table. It’s considered a success only if the peg bottom goes inside

the hole more than 0.03m. Goals are described by the 3D target positions (xg, yg, zg)

of end effector (reacher) or peg bottom (peg insertion).

(a) A: 5 DOF (b) B: 5 DOF (c) C: 5 DOF

(d) D: 5 DOF (e) E: 6 DOF (f) F: 6 DOF

(g) G: 6 DOF (h) H: 6 DOF (i) I: 7 DOF

Figure 2.2: Robots with different DOF and kinematics
structures. The white rings represent joints. There are
4 variants of 5 and 6 DOF robots due to the different
placements of joints.

States and Actions:

The states of both envi-

ronments consist of the an-

gles and velocities of all

robot joints. Action is n-

dimensional torque control

over n (n ≤ 7) joints. Since

we consider robots with dif-

ferent DOF in this paper, we

use zero-padding for robots

with < 7 joints to construct a

fixed-length state vector for

different robots. And the pol-

icy network always outputs 7-

dimensional actions, but only

the first n elements are used as the control command.

Robot Representation: As mentioned in section 2.4.1, vh is explicitly con-

structed to represent the robot kinematic chain: vh = P−1 ⊕ P0 ⊕ · · · ⊕ Pn−1. We

use zero-padding for robots with < 7 joints to construct a fixed-length representation

vector vh for different robots.

Rewards: We use binary sparse reward setting because sparse reward is more

realistic in robotics applications. And we use DPPG+HER as the backbone training

algorithm. The agent only gets +1 reward if POI is within ε euclidean distance of

the desired goal position. Otherwise, it gets −1 reward. We use ε = 0.02m in all

experiments. However, this kind of sparse reward setting encourages the agent to

complete the task using as less time steps as possible to maximize the return in an

11
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episode, which encourages the agent to apply maximum torques on all the joints

so that the agent can move fast. This is referred to as bangbang control in control

theory[45]. Hence, we added action penalty on the reward.

More experiment details are shown in Appendix A.2.

2.5.1.1 Does HCP-E improve performance?

To show the importance of hardware information as input to the policy network,

we experiment on learning robotic skills among robots with different dynamics

(joint damping, friction, armature, link mass) and kinematics (link length, kinematic

structure, DOF). The 9 basic robot types are listed in Figure 2.2. We performed several

leave-one-out experiments (train on 8 robot types, leave 1 robot type untouched) on

these robot types. The sampling ranges for link length and dynamics parameters are

shown in Table A.1 in Appendix A.2.1.1. We compare our algorithm with vanilla

DDPG+HER (trained with data pooled from all robots) to show the necessity of

training a universal policy network conditioned on hardware characteristics. Figure

2.3 shows the learning curves4 of training on robot types A-G and I. It clearly shows

that our algorithm HCP-E outperforms the baseline. In fact, DDPG+HER without

any hardware information is unable to learn a common policy across multiple robots

as different robots will behave differently even if they execute the same action in the

same state. More leave-one-out experiments are shown in Appendix A.3.4.

2.5.1.2 Is HCP-E capable of zero-shot transfer to unseen robot

kinematic structure?

We now perform testing in the leave-one-out experiments. Specifically, we can test the

zero-shot transfer ability of policy network on new type of robots. Table 2.1 shows

the quantitative statistics about testing performance on new robot types that are

different from training robot types. Each data5 in the table is obtained by running

the model on 1000 unseen test robots (averaged over 10 trials, 100 robots per trial)

of that robot type but with different link lengths and dynamics.

4The learning curves are averaged over 5 random seeds on 100 testing robots and shaded areas
represent 1 standard deviation.

5The success rate is represented by the mean and standard deviation

12
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Figure 2.3: Learning curves for multi-DOF setup. Training robots contain Type A-G and
Type I robots (four 5-DOF types, three 6-DOF types, one 7-DOF type). Each type has 140
variants with different dynamics and link lengths. The 100 testing robots used to generate
the learning curves are from the same training robot types but with different link lengths
and dynamics. (a): reacher task with random initial pose and target position. (b): peg
insertion with fixed hole position. (c): peg insertion with hole position (x, y, z) randomly
sampled in a 0.2m box region. Notice that the converged success rate in (c) is only about
70%. This is because when we randomly generate the hole position, some robots cannot
actually insert the peg into hole due to physical limit. Some hole positions are not inside
the reachable space (workspace) of the robots. This is especially common in 5-DOF robots.

Table 2.1: Zero-shot testing performance on new robot type

Exp. Tasks
Training

Robot Types
Testing

Robot Type Alg. Success rate (%)

I

Reacher
(random goals)

A-G + I H
HCP-E 92.50 ± 1.96

II DDPG+HER 0.20± 0.40
III

A-D + F-I E
HCP-E 88.00 ± 2.00

IV DDPG+HER 2.70± 2.19

V

Peg Insertion
(fixed goal)

A-G + I H
HCP-E 92.20 ± 2.75

VI DDPG+HER 0.00± 0.00
VII

A-D + F-I E
HCP-E 87.60 ± 2.01

VIII DDPG+HER 0.80± 0.60
IX

A-H I
HCP-E 65.60 ± 3.77

X DDPG+HER 0.10± 0.30

XI

Peg Insertion
(random goals)

A-G + I H
HCP-E 4.10 ± 1.50

XII DDPG+HER 0.10± 0.30
XIII

A-D + F-I E
HCP-E 76.10 ± 3.96

XIV DDPG+HER 0.00± 0.00
XV

A-H I
HCP-E 23.50 ± 4.22

XVI DDPG+HER 0.20± 0.40
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2. Multi-Robot Transfer Learning

From Table 2.1, it is clear that HCP-E still maintains high success rates when the

policy is applied to new types of robots that have never been used in training, while

DDPG+HER barely succeeds at controlling new types of robots at all. The difference

between using robot types A-G+I and A-D+F-I (both have four 5-DOF types, three

6-DOF types, and one 7-DOF type) is that robot type H is harder for peg insertion

task than robot type E due to its joint configuration (it removes joint J5). As we can

see from Exp. I and V, HCP-E got about 90% zero-shot transfer success rate even if

it’s applied on the hard robot type H. Exp. X and XVI show the model trained with

only 5 DOF and 6 DOF being applied to 7-DOF robot type. We can see that it is

able to get about 65% success rate in peg insertion task with fixed goal6.

A B C
Exp
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)

Distance distribution
0.02m

Figure 2.4: Testing distance
distribution on a real sawyer
robot. A used the policy from
Exp. I, B used the policy from
Exp. II, C used the policy
trained with the actual Sawyer
CAD model in simulation with
randomized dynamics.

Zero-shot transfer to a real Sawyer robot:

We show results on the multi-goal reacher task, as peg

insertion required additional lab setup. Though the

control frequency on the real robot is not as stable

as that in simulation, we still found a high zero-shot

transfer rate. For quantitative evaluation, we ran three

policies on the real robot with results averaged over

20 random goal positions. A used the policy from

Exp. I (HCP-E), B used the policy from Exp. II

(DDPG+HER) while C used the policy trained with

actual Sawyer CAD model in simulation with just

randomized dynamics. The distance from target for

the 20-trials are summarized in Figure 2.4. Despite of

the large reality gap7, HCP-E (BLUE) is able to reach

the target positions with a high success rate (75%) 8.

DDPG+HER (RED) without hardware information was not even able to move the

6Since we are using direct torque control without gravity compensation, the trivial solution of
transferring where the network can regard the 7-DOF robot as a 6-DOF robot by keeping one joint
fixed doesn’t exist here.

7The reality gap is further exaggerated by the fact that we didn’t do any form of gravity
compensation in the simulation but the real-robot tests used the gravity compensation to make tests
safer.

8The HCP-E policy resulted in a motion that was jerky on the real Sawyer robot to reach the
target positions. This was because we used sparse reward during training. This could be mitigated
with better reward design to enforce smoothness.
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Figure 2.5: (a): Distribution (violin plots) of distance between the peg bottom at the end
of episode and the desired position. The three horizontal lines in each violin plot stand for
the lower extrema, median value, and the higher extrema. It clearly shows that HCP-E
moves the pegs much closer to the hole than DDPG+HER. (b): The brown curve is the
learning curve of training HCP-E on robot type H with different link lengths and dynamics
in multi-goal setup from scratch. The pink curve is the learning curve of training HCP-E on
same robots with pretrained model from Exp. XI. (c): Similar to (b), the training robots
are robot type I (7 DOF) and the pretrained model is from Exp. XV. (b) and (c) show
that applying the pretrained model that is trained on different robot types to a new robot
type can accelerate the learning by a large margin.

arm close to the desired position.

Fine-tuning the zero-shot policy: Table 2.1 also shows that Exp. XI and

Exp. XV have relatively low zero-shot success rates on new type of robots. Exp. XI is

trained on easier 6-DOF robots (E, F, G) and applied to a harder 6-DOF robot type

(H). Exp. XV is trained only on 5-DOF and 6-DOF robots and applied to 7-DOF

robots (I). The hole positions are randomly sampled in both experiments. Even

though the success rates are low, HCP-E is actually able to move the peg bottom

close to the hole in most testing robots, while DDPG+HER is much worse, as shown

in Figure 2.5a. We also fine-tune the model specifically on the new robot type for

these two experiments, as shown in Figure 2.5b and Figure 2.5c. It’s clear that even

though zero-shot success rates are low, the model can quickly adapt to the new robot

type with the pretrained model weights.

2.5.2 Implicit Encoding

Environment HCP-E shows remarkable success on transferring manipulator tasks

to different types of robots. However, in explicit encoding we only condition on

the kinematics of the robot hardware. For unstable systems in robotics, such as
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in legged locomotion where there is a lot of frequent nonlinear contacts [22], it is

crucial to consider robot dynamics as well. We propose to learn an implicit, latent

encoding (HCP-I) for each robot without actually using any kinematics and dynamics

information. We evaluate the effectiveness of HCP-I on the 2D hopper [46]. Hopper

is an ideal environment as it is an unstable system with sophisticated second-order

dynamics involving contact with the ground. We will demonstrate that adding

implicitly learned robot representation can lead to comparable performance to the

case where we know the ground-truth kinematics and dynamics. To create robots

with different kinematics and dynamics, we varied the length and mass of each hopper

link, damping, friction, armature of each joint, which are shown in Table A.4 in

Appendix A.2.

Performance We compare HCP-I with HCP-E, HCP-E+ground-truth dynamics,

and vanilla PPO model without kinematics and dynamics information augmented to

states. As shown in Figure 2.6a, HCP-I outperforms the baseline (PPO) by a large

margin. In fact, with the robot representation vh being automatically learned, we

see that HCP-I achieves comparable performance to HCP-E+Dyn that uses both

kinematics and dynamics information, which means the robot representation vh learns

the kinematics and dynamics implicitly. Since dynamics plays a key role in the hopper

performance which can be seen from the performance difference between HCP-E

and HCP-E+Dyn, the implicit encoding method obtains much higher return than

the explicit encoding method. This is because the implicit encoding method can

automatically learn a good robot hardware representation and include the kinematics

and dynamics information, while the explicit encoding method can only encode the

kinematics information as dynamics information is generally unavailable.

Transfer Learning on New Agents We now apply the learned HCP-I model as

a pretrained model onto new robots. However, since vh for the new robot is unknown,

we fine-tune the policy parameters and also estimate vh. As shown in Figure 2.6b,

HCP-I with pretrained weights learns much faster than HCP-I trained from scratch.

While in the current version, we do not show explicit few-shot results, one can train a

regression network to predict the trained vh based on the agent’s limited interaction

with environment.

Embedding Smoothness We found the implicit encoding vh to be a smooth

embedding space over the dynamics. For example, we only vary one parameter (the
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Figure 2.6: (a): Learning curves using 1000 hoppers with different kinematics and
dynamics in training. HCP-I is able to automatically learn a good robot representation
such that the learning performance can be on par with HCP-E+Dyn where we use the
ground-truth kinematics and dynamics values. And HCP-I has a much better performance
than vanilla PPO. (b): If we use the pretrained HCP-I model (only reuse the hidden layers)
from (a) on 100 new hoppers, HCP-I with pretrained weights learns much faster than
training from scratch. (c): Embedding visualization. The colorbar shows the hopper torso
mass value. We can see that the embedding is smooth as the color transition is smooth.

torso mass) and plot the resultant embedding vectors. Notice that we reduce the

dimension of vh to 2 since we only vary torso mass. Figure 2.6c shows a smooth

transition over torso mass (the color bar represents torso mass value, 1000 hoppers

with different torso mass), where robots with similar mass are clustered together.

2.6 Conclusion

We introduced a novel framework of Hardware Conditioned Policies for multi-robot

transfer learning. To represent the hardware properties as a vector, we propose two

methods depending on the task: explicit encoding (HCP-E) and implicit encoding

(HCP-I). HCP-E works well when task policy does not heavily depend on agent

dynamics. It has an obvious advantage that it is possible to transfer the policy

network to new robots in a zero-shot fashion. Even when zero-shot transfer gives low

success rate, we showed that HCP-E actually brings the agents very close to goals

and is able to adapt to the new robots very quickly with finetuning. When the robot

dynamics is so complicated that feeding dynamics information into policy network

helps improve learning, the explicit encoding is not enough as it can only encode

the kinematics information and dynamics information is usually challenging and
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sophisticated to acquire. To deal with such cases, we propose an implicit encoding

scheme (HCP-I) to learn the hardware embedding representation automatically

via back-propagation. We showed that HCP-I, without using any kinematics and

dynamics information, can achieve good performance on par with the model that

utilized both ground truth kinematics and dynamics information.
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Chapter 3

Exploration Policies for Navigation

3.1 Introduction

Imagine your first day at a new workplace. If you are like most people, the first

task you set for yourself is to become familiar with the office so that the next day

when you have to attend meetings and perform tasks, you can navigate efficiently

and seamlessly. To achieve that goal, you explore your office without the task context

of target locations you have to reach and build a generic understanding of space.

This step of task-independent exploration is quite critical yet often ignored in current

approaches for navigation.

When it comes to navigation, currently there are two paradigms: (a) geometric

reconstruction and path-planning based approaches [47, 48, 49], and (b) learning-

based approaches [7, 8, 9, 10]. SLAM-based approaches, first build a map and then

use localization and path planning for navigation. In doing this, one interesting

question that is often overlooked is: How does one build a map? How should we

explore the environment to build this map? Current approaches either use a human

operator to control the robot for building the map (e.g. [50]), or use heuristics such as

frontier-based exploration [51]. On the other hand for approaches that use learning,

most only learn policies for specific tasks [7, 8, 9], or assume environments have

already been explored [10]. Moreover, in context of such learning based approaches,

the question of exploration is not only important at test time, but also at train

time. And once again, this question is largely ignored. Current approaches either use
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sample inefficient random exploration or make impractical assumptions about full

map availability for generating supervision from optimal trajectories.

Thus, a big bottleneck for both these navigation paradigms is an exploration

policy: a task-agnostic policy that explores the environment to either build a map

or sample trajectories for learning a navigation policy in a sample-efficient manner.

But how do we learn this task-independent policy? What should be the reward

for such a policy? First possible way is to not use learning and use heuristic based

approaches [51]. However, there are four issues with non-learning based approaches:

(a) these approaches are brittle and fail when there is noise in ego-estimation or

localization; (b) they make strong assumptions about free-space/collisions and fail to

generalize when navigation requires interactions such as opening doors etc.; (c) they

fail to capture semantic priors that can reduce search-space significantly; and (d) they

heavily rely on specialized sensors such as range scanners. Another possibility is to

learn exploration policies on training environments. One way is to use reinforcement

learning (RL) with intrinsic rewards. Examples of intrinsic rewards can be “curiosity”

where prediction error is used as reward signal or “diversity” which discourages the

agent from revisiting the same states. While this seems like an effective reward, such

approaches are still sample inefficient due to blackbox reward functions that can’t be

differentiated to compute gradients effectively. So, what would be an effective way to

learn exploration policies for navigation?

In this chapter, we propose an approach for learning policies for exploration for

navigation. We explore this problem from multiple perspectives: (a) architectural

design, (b) reward function design, and (c) reward optimization. Specifically, from

perspective of reward function and optimization, we take the alternative paradigm and

use supervision from human explorations in conjunction with intrinsic rewards. We

notice that bootstrapping of learning from small amount of human supervision aids

learning of semantics (e.g. doors are pathways). It also provides a good initialization

for learning using intrinsic rewards. From the perspective of architecture design, we

explore how to use 3D information and use it efficiently while doing exploration. We

study proxy rewards that characterize coverage and demonstrate how this reward

outperforms other rewards such as curiosity. Finally, we show how experience gathered

from our learned exploration policies improves performance at down-stream navigation

tasks.
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3.2 Related Work

Our work on learning exploration policies for navigation in real world scenes is related

to active SLAM in classical robotics, and intrinsic rewards based exploration in

reinforcement learning. As we study the problem of navigation, we also draw upon

recent efforts that use learning for this problem. We survey related efforts in these

three directions.

Navigation in Classical Robotics. Classical approaches to navigation operate

by building a map of the environment, localizing the agent in this map, and then

planning paths to convey the agent to desired target locations. Consequently, the

problems of mapping, localization and path-planning have been very thoroughly

studied [47, 48, 49]. However, most of this research starts from a human-operated

traversal of the environment, and falls under the purview of passive SLAM. Active

SLAM, or how to automatically traverse a new environment for building spatial

representations is much less studied. [52] present an excellent review of active SLAM

literature, we summarize some key efforts here. Past works have formulated active

SLAM as Partially Observable Markov Decision Processes (POMDPs) [53], or as

choosing actions that reduce uncertainty in the estimated map [54]. While these

formulations enable theoretical analysis, they crucially rely on sensors to build maps

and localize. Thus, such approaches are highly susceptible to measurement noise.

Additionally, such methods treat exploration purely as a geometry problem, and

entirely ignore semantic cues for exploration such as doors.

Learning for Navigation. In order to leverage such semantic cues for navigation,

recent works have formulated navigation as a learning problem [7, 8, 9, 10]. A number

of design choices have been investigated. For example, these works have investigated

different policy architectures for representing space: [7] use feed-forward networks,

[9] use vanilla neural network memory, [8] use spatial memory and planning modules,

and [10] use semi-parametric topological memory. Different training paradigms have

also been explored: [8] learn to imitate behavior of an optimal expert, [9] and [7] use

extrinsic reward based reinforcement learning, [55] learn an inverse dynamics model on

the demonstrated trajectory way-points from the expert, while [10] use self-supervision.

In our work here, we build on insights from these past works. Our policy architecture

and reward definition use spatial memory to achieve long-horizon exploration, and we
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imitate human exploration demonstrations to boot-strap policy learning. However, in

crucial distinction, instead of studying goal-directed navigation (either in the form of

going to a particular goal location, or object of interest), we study the problem of

autonomous exploration of novel environments in a task-agnostic manner. In doing

so, unlike past works, we do not assume access to human demonstrations in the given

novel test environment like [10], nor do we assume availability of millions of samples

of experience or reward signals in the novel test environment like [7] or [9]. Moreover,

we do not depend on extrinsically defined reward signals for training. We derive

them using on-board sensors. This makes our proposed approach amenable to real

world deployment. Learning based approaches [56, 57] have also been used to learn

low-level collision avoidance policies. While they do not use task-context, they learn

to move towards open space, without the intent of exploring the whole environment.

[58] uses a differentiable map structure to mimic the SLAM techniques. Such works

are orthogonal to our effort on exploration as our exploration policy can benefit from

their learned maps instead of only using reconstructed occupancy map.

Exploration for Navigation. A notable few past works share a similar line of

thought, and investigate exploration in context of reinforcement learning [59, 60, 61,

62, 63, 64]. These works design intrinsic reward functions to capture novelty of states

or state-action transitions. Exploration policies are then learned by optimizing these

reward functions using reinforcement learning. Our work is most similar to these works.

However, we focus on this problem in the specific context of navigation in complex and

realistic 3D environments, and propose specialized policy architectures and intrinsic

reward functions. We experimentally demonstrate that these specializations improve

performance, and how learning based exploration techniques may not be too far from

real world deployment. [65] use a related reward function (pixel reconstruction) to

learn policies to look around (and subsequently solve tasks). However, they do it

in context of 360◦ images, and their precise reward can’t be estimated intrinsically.

[66] generate smooth movement path for high-quality camera scan by using time-

varying tensor fields. [67] propose an information-theoretic exploration method using

Gaussian Process regression and show experiments on simplistic map environments.

[68] assume access to the ground-truth map and learn an optimized trajectory that

maximizes the accuracy of the SLAM-derived map. In contrast, our learning policy

directly tells the action that the agent should take next and estimates the map on
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Figure 3.1: Policy and Training Architecture: Our scheme for learning exploration
policies for navigation. We assume a mobile robot with an RGB-D camera and a bump
sensor. We maintain a running estimate of its position x̂t. These position estimates are used
to stitch together an approximate map of the environment using the depth images. The
exploration policy πe is a recurrent network takes egocentric crops of this map at two scales,
and the current RGB image as input. The policy is trained using an intrinsic coverage
reward that is computed from the approximate map and a collision penalty obtained from
the bump sensor.

the fly.

System Identification. Finally, the general idea of exploration prior to goal-

driven behavior, is also related to the classical idea of system identification [69].

Recent interest in this idea with end-to-end learning [40, 70, 71] has been shown to

successfully adapt to novel mazes. In comparison, we tackle navigation in complex

and realistic 3D environments, with very long spatio-temporal dependencies.

3.3 Approach

Let us consider a mobile agent that is equipped with an RGB-D camera and that

can execute basic movement macro-actions. This agent has been dropped into a

novel environment that it has never been in before. We want to learn an exploration

policy πe that enables this agent to efficiently explore this new environment. A

successful exploration of the new environment should enable the agent to accomplish

down-stream tasks in this new environment efficiently.

We formulate estimation of πe as a learning problem. We design a reward function
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that is estimated entirely using on-board sensors, and learn πe using RL. Crucially, πe

is learned on a set of environments Etrain, and tested on a held-out set of environments

Etest, i.e., Etrain
⋂ Etest = φ.

The key novelties in our work are: a) the design of the policy πe, b) the design of

the reward function R, and c) use of human demonstrations to speed up training of

πe. The design of the policy and the reward function depend on a rudimentary map of

the environment that we maintain over time. We first describe the map construction

procedure, and then detail the aforementioned aspects.

3.3.1 Map Construction

As the agent moves around, it uses its depth camera to build and update a map of

the world around it. This is done by maintaining an estimate of the agent’s location

over time and projecting 3D points observed in the depth image into an allocentric

map of the environment.

More specifically, let us assume that the agent’s estimate of its current location

at time step t is x̂t, and that the agent starts from origin (i.e. x̂0 = 0). When the

agent executes an action at at time step t, it updates its position estimate through a

known transition function f , i.e., x̂t+1 = f(x̂t, at).

The depth image observation at time step t+ 1, Dt+1 is back-projected into 3D

points using known camera intrinsic parameters. These 3D points are transformed

using the estimate x̂t+1, and projected down to generate a 2D map of the environment

(that tracks what parts of space are known to be traversable or known to be non-

traversable or unknown). Note that, because of slippage in wheels etc., x̂t+1 may

not be the same as the true relative location of the agent from start of episode xt+1.

This leads to aliasing in the generated map. We do not use expensive non-linear

optimization (bundle adjustment) to improve our estimate x̂t+1, but instead rely on

learning to provide robustness against this mis-alignment. We use the new back-

projected 3D points to update the current map Mt and to obtain an updated map

Mt+1.
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3.3.2 Policy Architecture

Before we describe our policy architecture, let’s define what are the features that a

good exploration policy needs: (a) good exploration of a new environment requires

an agent to meaningfully move around by detecting and avoiding obstacles; (b) good

policy also requires the agent to identify semantic cues such as doors that may

facilitate exploration; (c) finally, it requires the agent to keep track of what parts of

the environment have or have not been explored, and to estimate how to get to parts

of the environment that may not have been explored.

This motivates our policy architecture. We fuse information from RGB image

observations and occupancy grid-based maps. Information from the RGB image

allows recognition of useful semantic cues. While information from the occupancy

maps allows the agent to keep track of parts of the environment that have or have

not been explored and to plan paths to unexplored regions without bumping into

obstacles.

The policy architecture is shown in Fig. 3.1. We describe it in detail here:

1. Information from RGB images: RGB images are processed through a CNN.

We use a ResNet-18 CNN that has been pre-trained on the ImageNet classification

task, and can identify semantic concepts in images.

2. Information from Occupancy Maps: We derive an occupancy map from

past observations (as described in Sec. 3.3.1), and use it with a ResNet-18 CNN

to extract features. To simplify learning, we do not use the allocentric map,

but transform it into an egocentric map using the estimated position x̂t (such

that the agent is always at the center of the map, facing upwards). This map

canonicalization aids learning. It allows the CNN to not only detect unexplored

space but to also locate it with respect to its current location. Additionally, we

use two such egocentric maps, a coarse map that captures information about a

40m× 40m area around the agent, and a detailed map that describes a 4m× 4m

neighborhood. Some of these design choices were inspired by recent work from [8],

[72] and [73], though we make some simplifications.

3. Recurrent Policy: Information from the RGB image and maps is fused and

passed into an RNN. Recurrence can allow the agent to exhibit coherent behavior.
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3.3.3 Coverage Reward

We now describe the intrinsic reward function that we use to train our exploration

policy. We derive this intrinsic rewards from the map Mt, by computing the coverage.

Coverage C(Mt) is defined as the total area in the map that is known to be traversable

or known to be non-traversable. Reward Rcov
int (t) at time step t is obtained via gain

in coverage in the map: C(Mt+1) − C(Mt). Intuitively, if the current observation

adds no obstacles or free-space to the map then it adds no information and hence no

reward is given. We also use a collision penalty, that is estimated using the bump

sensor, Rcoll
int (t) = −Bump(t+ 1), where Bump(t+ 1) denotes if a collision occurred

while executing action at. R
cov
int and Rcoll

int are combined to obtain the total reward.

3.3.4 Training Procedure

Finally, we describe how we optimize the policy. Navigating in complex realistic 3D

houses, requires long-term coherent behavior over multiple time steps, such as exiting

a room, going through doors, going down hallways. Such long-term behavior is hard to

learn using reinforcement learning, given sparsity in reward. This leads to excessively

large sample complexity for learning. To overcome this large sample complexity,

we pre-train our policy to imitate human demonstrations of how to explore a new

environment. We do this using trajectories collected from AMT workers as they

were answering questions in House3D [74]. We ignore the question that was posed to

the human, and treat these trajectories as a proxy for how a human will explore a

previosuly unseen environment. After this phase of imitation learning, πe is further

trained via policy gradients [75] using proximal policy optimization (PPO) from [76].

3.4 Experiments

The goal of this paper is to build agents that can autonomously explore novel complex

3D environments. We want to understand this in context of the different choices we

made in our design, as well as how our design compares to alternate existing techniques

for exploration. While coverage of the novel environment is a good task-agnostic

metric, we also design experiments to additionally quantify the utility of generic
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task-agnostic exploration for downstream tasks of interest. We first describe our

experimental setup that consists of complex realistic 3D environments and emphasizes

the study of generalization to novel environments. We then describe experiments that

measure task-agnostic exploration via coverage. And finally, we present experiments

where we use different exploration schemes for downstream navigation tasks.

3.4.1 Experimental Setup

We conducted our experiments on the House3D simulation environment [77]. House

3D is based on realistic apartment layouts from the SUNCG dataset [78] and simulates

first-person observations and actions of a robotic agent embodied in these apartments.

We use 20 houses each for training and testing. These sets are sampled from the

respective sets in House 3D, and do not overlap. That is, testing is done on a set

of houses not seen during training. This allows us to study generalization, i.e., how

well our learned policies perform in novel, previously unseen houses. We made one

customization to the House 3D environment: by default doors in House 3D are

rendered but not used for collision checking. We modified House 3D to also not render

doors, in addition to not using them for collision checking.

Observation Space. We assume that the agent has an RGB-D camera with a

field of view of 60◦, and a bump sensor. The RGB-D camera returns a regular RGB

image and a depth image that records the distance (depth information is clipped at

3m) of each pixel from the camera. The bump sensor returns if a collision happened

while executing the previous action.

Action Space. We followed the same action space as in EmbodiedQA [74], with

6 motion primitives: move forward 0.25m, move backward 0.25m, strafe left 0.25m,

strafe right 0.25m, turn left 9◦, and turn right 9◦.

Extrinsic Environmental Reward. We do not use any externally specified

reward signals from the environment: Rext(t) = 0.

Intrinsic Reward. As described in Sec. 3.3.3, the intrinsic reward of the agent is

based upon the map that it constructs as it moves around (as described in Sec. 3.3.1),

and readings from the bump sensor. Reward Rint(t) = αRcov
int (t) +βRcoll

int (t). Here Rcov
int

is the coverage reward, and Rcoll
int is the collision reward. α, β are hyper-parameters to

trade-off how aggressive the agent is.
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Training. As described in Sec. 3.3.4, we train policies using imitation of human

trajectories and RL.

1. Imitation from Human Exploration Trajectories. We leverage human exploration

trajectories collected from AMT workers as they answered questions for the

EmbodiedQA task [74]. We ignore the question that was posed to the AMT worker,

and train our policy to simply mimic the actions that the humans took. As the

humans were trying to answer these questions in previously unseen environments,

we assume that these trajectories largely exhibit exploration behavior. We used a

total of 693 human trajectories for this imitation.

2. Reinforcement Learning : After learning via imitation, we further train the policy

using reinforcement learning on the training houses. We use PPO [76] to optimize

the intrinsic reward defined above. At the start of each episode, the agent is

initialized at a random location inside one of the training houses. Each episode is

run for 500 time-steps. We run a total of 6400 episodes which amounts to a total

of 3.2M steps of experience.

Baselines. We next describe the various baseline methods that we experimented

with. We implemented a classical baseline that purely reasons using geometry, and a

learning baseline that uses curiosity for exploration.

1. Frontier-based Exploration. As a classical baseline, we experimented with frontier-

based exploration [51, 79]. This is a purely geometric method that utilizes the built

map Mt. Every iteration, it samples a point in currently unexplored space, and

plans a path towards it from the current location (unobserved space is assumed to

be free). As the plan is executed, both the map and the plan are updated. Once

the chosen point is reached, this process is repeated.

2. Curiosity-based Exploration. The next baseline we tried was curiosity-based

exploration. In particular, we use the version proposed by [61] that uses prediction

error of a forward model as reward. We use the modifications proposed by [80], and

only train a forward model. We prevent degeneracy in forward model by learning

it in the fixed feature space of a ResNet-18 model that has been pre-trained on

the ImageNet classification task.
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Figure 3.2: Coverage Performance. Policies are tested on 100 exploration runs (5
random start locations each on 20 testing houses). Left figure plots average coverage as a
function of number of time steps in the episode. Center figure studies impact of noise
in state estimation. We plot average coverage at end of episode as a function of amount
of noise. Right figure studies the case when there is a mis-match between geometry and
affordance, and plots average coverage as a function of time steps in episode. All plots
report mean performance over 3 runs, and the shaded area represents the minimum and
maximum performance.

3.4.2 Coverage Quality

We first measure exploration by itself, by measuring the true coverage of the agent.

We compute the true coverage using the map as described in Sec. 3.3.1, except for

using the true location of the agent rather than the estimated location (i.e. xt instead

of x̂t). We study the following three scenarios:

Without Estimation Noise: We first evaluate the performance of the agent

that is trained and tested without observation noise, that is, x̂t = xt. Note that

this setting is not very realistic as there is always observation error in an agent’s

estimate of its location. It is also highly favorable to the frontier-based exploration

agent, which very heavily relies on the accuracy of its maps. Fig. 3.2(left) presents

the performance of different policies for this scenario. We first note that the curiosity

based agent (IL + RL with Curiosity) explores better than a random exploration

policy (that executes a random action at each time step). Straight is a baseline

where the agent moves along a straight line and executes a random number of 9◦

turns when a collision occurs, which is a strategy used by many robot vacuums. Such

strategy does not require RGB or depth information, and performs better than the

curiosity based agent. However, both policies are worse than an RGB only version

of our method, an RGB only policy that is trained with our coverage reward (IL +

RL with RGB). Our full system (IL + RL with Map + RGB) that also uses
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maps as input performs even better. Frontier-based exploration (Frontier-based

Explr) has the best performance in this scenario. As noted, this is to expect as

this method gets access to perfect, fully-registered maps, and employs optimal path

planning algorithm to move from one place to another. It is also worth noting that,

it is hard to use such classical techniques in situations where we only have a RGB

images. In contrast, learning allows us to easily arrive at policies that can explore

using only RGB images at test time.

With Estimation Noise: We next describe a more realistic scenario that has

estimation noise, i.e. x̂t+1 is estimated using a noisy dynamics function. In particular,

we add truncated Gaussian noise to the transition function f at each time step. The

details of the noise generation is elaborated in Appendix B.3.4. The noise compounds

over time. Even though such a noise model leads to compounding errors over time

(as in the case of a real robot), we acknowledge that this simple noise model may not

perfectly match noise in the real world. Fig. 3.2(center) presents the coverage area at

the end of episode (1000 time steps) as a function of the amount of noise introduced1.

When the system suffers from sensor noise, the performance of the frontier-based

exploration method drops rapidly. In contrast, our learning-based agent that wasn’t

even trained with any noise continues to performs well. Even at relatively modest

noise of 4% our learning based method already does better than the frontier-based

agent. We additionally note that our agent can even be trained when the intrinsic

reward estimation itself suffers from state estimation noise: for instance performance

with 10% estimation noise (for intrinsic reward computation and map construction)

is 98.9m2, only a minor degradation from 117.4m2 (10% estimation noise for map

construction at test time only).

Geometry and Affordance Mismatch: Next, to emphasize the utility of

learning for this task, we experiment with a scenario where we explicitly create

a mismatch between geometry and affordance of the environment. We do this by

rendering doors, but not using them for collision checking (i.e. the default House

3D environment). This setting helps us investigate if learning based techniques go

beyond simple geometric reasoning in any way. Fig. 3.2(right) presents performance

1A noise of η means we sample perturbations from a truncated Gaussian distribution with
zero-mean, η standard deviation, and a total width of 2η. This sampled perturbation is scaled by
the step length (25cm for x, y and 9◦ for azimuth θ) and added to the state at each time step.
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curves. We see that there is a large drop in performance for the frontier-based agent.

This is because it is not able to distinguish doors from other obstacles, leading to path

planning failures. However, there is a relatively minor drop in performance of our

learning-based agent. This is because it can learn about doors (how to identify them

in RGB images and the fact that they can be traversed) from human demonstrations

and experience during reinforcement learning.

3.4.2.1 Ablation Study

We also conducted ablations of our method to identify what parts of our proposed

technique contribute to the performance. We do these ablations in the setting without

any estimation noise, and use coverage as the metric.

Imitation Learning: We check if pre-training with imitation learning is useful

for this task. We test this by comparing to the models that were trained only with

RL using the coverage reward. The left two plots in Fig. 3.3 shows performance of

agents with following combinations: RL: policy trained with PPO only, IL: policy

trained with imitation learning, Map: policy uses constructed maps as input, RGB :

policy uses RGB images as input. In all settings, pre-training with imitation learning

helps improve performance, though training with RL improves coverage further. Also,

policies trained using RL have a fairly large variance. Imitation learning also helps

reduce the variance.

RGB Observations and Map: Fig. 3.3 (left) and Fig. 3.3 (center) respectively

show that both RGB images and map inputs improve performance.

Intrinsic Reward: We also compare our intrinsic reward design with extrinsic

reward design, as shown in Fig. 3.3 (right). The extrinsic reward is setup as follows:

we randomly generated a number of locations evenly distributed across the traversable

area of the houses, where the agent will get a positive reward if the agent is close to

any of these locations. Once the agent gets a reward from a location, this location

will be no longer taken into account for future reward calculation. We tried two

settings where we place 1 or 4 reward-yielding objects per m2. We can see that our

coverage map reward provides a better reward signal and in fact can be estimated

intrinsically without needing to instrument the environment.
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Figure 3.3: Ablation Study: We report average coverage as a function of time step in
episode. As before we plot mean over 3 runs and minimum and maximum performance.
Left figure shows that using the RGB image helps improve performance, center figure
shows that using the map helps improve performance. We can also see that imitation
learning improves coverage and reduces the variance in performance. Right figure shows
the comparison between different reward design. We can see that our intrinsic reward
enables the agent to explore more efficiently in the testing time.

3.4.3 Using Exploration for Downstream Task

Now that we have established how to explore well, we next ask if task-agnostic

exploration is even useful for downstream tasks. We show this in context of goal-

driven navigation. We execute the learned exploration policy πe (for 1500 time steps)

to explore a new house, and collect experience (set of images I along with their pose

p). Once this exploration has finished, the agent is given different navigation tasks.

These navigation tasks put the agent at an arbitrary location in the environment, and

give it a goal image that it needs to reach. More specifically, we reset the agent to 50

random poses (positions and orientations) in each testing house (20 testing houses in

total) and get the RGB camera view. The agent then needs to use the experience

of the environment acquired during exploration to efficiently navigate to the desired

target location. The efficiency of navigation on these test queries measures the utility

of exploration.

This evaluation requires a navigation policy πn, that uses the exploration experi-

ence and the goal image to output actions that can convey the agent to the desired

target location. We opt for a simple policy πn. πn first localizes the target image using

nearest neighbor matching to the set of collected images I (in ImageNet pre-trained

ResNet-18 feature space). It then plans a path to the this estimated target location

using a occupancy map computed from I. We do this experiment in the setting

without any state estimation noise.
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Figure 3.4: Exploration for
downstream tasks. We evalu-
ate utility of exploration for the
down-stream navigation tasks.
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ing goals without and with maps
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We independently measure the effectiveness of ex-

ploration data for a) localization of the given target

images, and b) path planning efficiency in reaching

desired locations. Localization performance: We

measure the distance between the agent’s estimate

of the goal image location, and the true goal image

location. Fig. 3.4 (top) plots the success at localiza-

tion as a function of the success threshold (distance

at which we consider a localization as correct). We

report top-1 and top-5 success rates. We compare to

the random exploration baseline and curiosity-driven

baseline which serve to measure the hardness of the

task. We see our exploration scheme performs well.

Path planning efficiency: Next, we measure how

efficiently desired goal locations can be reached. We

measure performance using the SPL metric as de-

scribed by [81] (described in the appendix, higher is

better). We compare against a baseline that does not

have any prior experience in this environment and derives all map information on

the fly from goal driven behavior (going to the desired test location). Both agents

take actions based on the shortest-path motion planning algorithm. Once again these

serve as a measure of the hardness of the topology of the underlying environment. As

shown in Fig. 3.4 (bottom), using exploration data from our policy improves efficiency

of paths to reach target locations.

3.5 Discussion

In this chapter, we motivated the need for learning explorations policies for navigation

in novel 3D environments. We showed how to design and train such policies, and how

experience gathered from such policies enables better performance for downstream

tasks. We think we have just scratched the surface of this problem, and hope this

inspires future research towards semantic exploration using more expressive policy

architectures, reward functions and training techniques.
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Chapter 4

Conclusions

This thesis explores how to improve the generalization capability of deep reinforcement

learning algorithms using prior knowledge of the tasks. For multi-robot transfer

learning problem, we found that augmenting the state vector with a vector that can

represent the hardware characteristics enables the policy to generalize over robots

with different kinematic structures, link lengths, and dynamics. Such hardware

vectors can be either explicitly constructed given prior knowledge of the agents or

implicitly learned via back-propagation without using any prior knowledge. As for

learning exploration policies for navigation, a policy with projected 3D dense map

(occupancy map) as an augmented state input can be trained efficiently to retain its

ability to explore when placed in new environments. Our experiments show that such

policies significantly outperform policies with only RGB images as the input. The

key insight here is that the projected 3D dense map can serve as a spatial memory,

which resolves the forgetting issues that are typical in RNNs. Such long-horizon

exploration tasks require strong memory of the states that have been visited to make

the exploration efficient. And the spatial memory performs much better than LSTMs

or GRUs in such tasks. In conclusion, using prior knowledge can significantly improve

the learning speed as well as the generalization capabilities of deep reinforcement

learning algorithms, even in model-free algorithms.
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Appendix A

Multi-Robot Transfer Learning

A.1 Algorithms

A.1.1 Algorithms

In this section, we present two detailed practical algorithms based on the HCP

concept. Alg. 2 is HCP based on PPO which can be used to solve tasks with dense

reward. Alg. 3 is HCP based on DDPG+HER which can be used to solve multi-goal

tasks with sparse reward.
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Algorithm 2 Hardware Conditioned Policy (HCP) - on-policy
Initialize PPO algorithm

Initialize a robot pool P of size N with robots in different dynamics and kinematics

for episode = 1, M do

for actor=1, K do

Sample a robot instance I ∈ P
Sample an initial state s0

Retrieve the robot hardware representation vector vh

Augment s0:

ŝ0 ← s0 ⊕ vh
for t = 0, T-1 do

Sample action at ← π(ŝt) using current policy

Execute action at, receive reward rt, observe new state st+1, and augmented state ŝt+1

end for

Compute advantage estimates A0, A1, ..., AT−1

end for

for n=1,W do

Optimize actor and critic networks with PPO via minibatch gradient descent

if vh is to be learned then

update vh via gradient descent in the optimization step as well

end if

end for

end for

Algorithm 3 Hardware Conditioned Policy (HCP) - off-policy
Initialize DDPG algorithm

Initialize experience replay buffer R
Initialize a robot pool P of size N with robots in different dynamics and kinematics

for episode = 1, M do

Sample a robot instance I ∈ P
Sample a goal position g and an initial state s0

Retrieve the robot hardware representation vector vh

Augment s0:

ŝ0 ← s0 ⊕ g ⊕ vh
for t = 0, T-1 do

Sample action at ← πb(ŝt) using behavioral policy

Execute action at, receive reward rt, observe new state st+1, and augmented state ŝt+1

Store (ŝt, at, rt, ŝt+1) into R
end for

Augment R with pseudo-goals via HER

for n=1,W do

Optimize actor and critic networks with DDPG via minibatch gradient descent

if vh is to be learned then

update vh via gradient descent in the optimization step as well

end if

end for

end for
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A.2 Experiment Details

We performed experiments on three environments in this paper: reacher, peg insertion,

and hopper, as shown in Figure A.1. Videos of experiments are available at: https:

//sites.google.com/view/robot-transfer-hcp.

A.2.1 Reacher and Peg Insertion

The reason why we choose reacher and peg insertion task is that most of manipulator

tasks like welding, assembling, grasping can be seen as a sequence of reacher tasks

in essence. Reacher task is the building block of many manipulator tasks. And peg

insertion task can further show the control accuracy and robustness of the policy

network in transferring torque control to new robots.

(a) reacher (b) peg insertion (c) hopper

Figure A.1: (a): reacher, the green box represents end effector initial position distribution,
and the yellow box represents end effector target position distribution. (b): peg insertion.
The white rings in (a) and (b) represent joints. (c): hopper.

A.2.1.1 Robot Variants

During training time, we consider 9 basic robot types (named as Type A,B,...,I) as

shown in Figure 2.2 which have different DOF and joint placements. The 5-DOF and

6-DOF robots are created by removing joints from the 7-DOF robot.

We also show the length range of each link and dynamics parameter ranges in

Table A.1. The link name and joint name conventions are defined in Figure A.2.
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Notice that damping values ranged from [0, 1), (1,+∞) are called underdamped and

overdamped systems respectively. As these systems have very different dynamics

characteristics, 50% of the damping values sampled are less than 1, and the rest 50%

are greater than or equal to 1.

l1_1
l2

l3_1

l3_2

l4

l5_1

l5_2
l6

l1_2

J0

l0 J1

J2

J3

J4

J5

J6

Figure A.2: Link name and joint
name convention

Table A.1: Manipulator Parameters

Kinematics

Links Length Range (m)

l0 0.290± 0.10

l1 1 0.119± 0.05

l1 2 0.140± 0.07

l2 0.263± 0.12

l3 1 0.120± 0.06

l3 2 0.127± 0.06

l4 0.275± 0.12

l5 1 0.096± 0.04

l5 2 0.076± 0.03

l6 0.049± 0.02

Dynamics

damping [0.01, 30]

friction [0, 10]

armature [0.01, 4]

link mass [0.25, 4]× default mass

Even though we only train with robot types listed in Figure 2.2, our policy can

be directly transferred to other new robots like the Fetch robot shown in Figure A.3.

A.2.1.2 Hyperparameters

We closely followed the settings in original DDPG paper. Actions were added at the

second hidden layer of Q. All hidden layers used scaled exponential linear unit (SELU)

as the activation function and we used Adam optimizer. Other hyperparameters are

summarized in Table A.2.

Initial position distributions: For reacher task, the initial position of end

effector is randomly sampled from a box region 0.3m×0.4m×0.2m. For peg insertion

task, all robots start from a horizontal fully-expanded pose.

40



A. Multi-Robot Transfer Learning

(a) J: new 5-DOF robot (b) K: new 7-DOF robot (Fetch)

Figure A.3: New types of robot. We used the model trained in Exp. V and directly
applied to robot shown in (a) and Fetch robot shown in (b). We tested the model on 1000
unseen test robots (averaged over 10 trials, 100 robots per trial) of type J (as shown in (a)),
and got 86.30± 4.41% success rate. We tested on the fetch robot in (b) 10 times and got
100% success rate.

Goal distributions: For reacher task, the target end effector position region is

a box region 0.3m × 0.6m × 0.4m which is located 0.2m below the initial position

sampling region. For peg insertion task, we have experiments on hole position fixed

and hole position randomly moved. If the hole position is to be randomly moved, the

table’s position will be randomly sampled from a box region 0.2m× 0.2m× 0.2m.

Rewards: As mentioned in paper, we add action penalty on rewards so as to avoid

bang-bang control. The reward is defined as: r(st, at, g) =± (ε−‖st+1(POI)− g‖2)−
β ‖at‖2

2, where st+1(POI) is the position of the point of interest (POI, end effector in

reacher and peg bottom in peg insertion) after the execution of action at in the state

st, β is a hyperparameter β > 0 and β ‖at‖2
2 � 1.

Success criterion: For reacher task, the end effector has to be within 0.02m

Euclidean distance to the target position to be considered as a success. For peg

insertion task, the peg bottom has to be within 0.02m Euclidean distance to the

target peg bottom position to be considered as a success. Since the target peg bottom

position is always 0.05m below the table surface no matter how table moves, so the

peg has to be inserted into the hole more than 0.03m.

Observation noise: We add uniformly distributed observation noise on states

(joint angles and joint velocities). The noise is uniformly sampled from [−0.02, 0.02]

for both joint angles (rad) and joint velocities (rad s−1).
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Table A.2: Hyperparameters for reacher
and peg insertion tasks

number of training

robots for each type

140

success distance thresh-

old ε

0.02m

maximum episode time

steps

200

actor learning rate 0.0001

critic learning rate 0.0001

critic network weight de-

cay

0.001

hidden layers 128-256-256

discount factor γ 0.99

batch size 128

warmup episodes 50

experience replay buffer

size

1000000

network training itera-

tions after each episode

100

soft target update τ 0.01

number of future goals k 4

action penalty coeffi-

cient β

0.1

robot control frequency 50Hz

Table A.3: Hyperparameters for hopper

number of training hop-

pers

1000

number of actors K 8

maximum episode time

steps

2048

learning rate 0.0001

hidden layers 128-128

discount factor γ 0.99

GAE parameter λ 0.95

clip ratio η 0.2

batch size 512

vh dimension 32

network training epochs

after each rollout

5

value function loss coeffi-

cient c1

0.5

entropy loss coefficient c2 0.015

A.2.2 Hopper

We used the same reward design as the hopper environment in OpenAI Gym. As it’s a

dense reward setting, we use PPO for this task. All hidden layers used scaled exponen-

tial linear unit (SELU) as the activation function and we used Adam optimizer. Other

hyperparameters are summarized in Table A.3. And the sampling ranges of link lengths

and dynamics are shown in Table A.4.
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Table A.4: Hopper Parameters

Kinematics

Links Length Range (m)

torso 0.40± 0.10

thigh 0.45± 0.10

leg 0.50± 0.15

foot 0.39± 0.10

Dynamics

damping [0.01, 5]

friction [0, 2]

armature [0.1, 2]

link

mass

[0.25, 2]× default

mass

A.3 Supplementary

Experiments

In section A.3.1 and section A.3.2, we ex-

plore the dynamics effect in manipulators.

Section A.3.3 shows the learning curves for

7-DOF robots with different link lengths

and dynamics. In section A.3.4, we show

more training details of HCP-E experi-

ments on different combinations of robot

types and how well HCP-E models perform

on robots that belong to the same training robot types but with different link lengths

and dynamics.

A.3.1 Effect of Dynamics in Transferring Policies for

Manipulation

Explicit encoding is made possible when knowing the dynamics of the system doesn’t

help learning. In such environments, as long as the policy network is exposed

to a diversity of robots with different dynamics during training, it will be robust

enough to adapt to new robots with different dynamics. To show that knowing

ground-truth dynamics doesn’t help training for reacher and peg insertion tasks, we

experimented on 7-DOF robots (Type I) with different dynamics only with following

algorithms:DDPG+HER, DDPG+HER+dynamics, DDPG+HER+random number.

The first one uses DDPG+HER with only joint angles and joint velocities as the

state. The second experiment uses DDPG+HER with the dynamics parameter vector

added to the state. The dynamics are scaled to be within [0, 1). The third experiment

uses DDPG+HER with a random vector ranged from [0, 1) added to states that is

of same size as the dynamics vector. The dynamics parameters sampling ranges are

shown in Table A.1. The number of training robots is 100.
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Figure A.4 shows that DDPG+HER with only joint angles and joint velocities as

states is able to achieve about 100% success rate in both reacher and peg insertion

(fixed hole position) tasks. In fact, we see that even if state is augmented with a

random vector, the policy network can still generalize over new testing robots, which

means the policy network learns to ignore the augmented part. Figure A.4 also shows

that with ground-truth dynamics parameters or random vectors input to the policy

and value networks, the learning process becomes slower. In hindsight, this makes

sense because the dynamics information is not needed for the policy network and if

we forcefully feed in those information, it will take more time for the network to learn

to ignore this part and train a robust policy across robots with different dynamics.

0.0 0.5 1.0 1.5 2.0
Episodes 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Reacher

0.0 0.5 1.0 1.5 2.0
Episodes 1e4

0.0

0.2

0.4

0.6

0.8

1.0 Peg Insertion

DDPG+HER
DDPG+HER+dynamics
DDPG+HER+random

Figure A.4: Learning curves on 7-DOF robots with different dynamics only.

A.3.2 How robust is the policy network to changes in

dynamics?

We performed a stress test on the generalization or robustness of the policy network to

variation in dynamics. The experiments are similar to those in section A.3.1, but the

training joint damping values are randomly sampled from [0.01, 2) this time. Other

dynamics parameters are still randomly sampled according to Table A.1. The task

here is peg insertion. Figure A.5 and Table A.5 show the generalization capability of

the DDPG + HER model with only joint angles and joint velocities as the state.

We can see from Figure A.5 and Table A.5 that even though the DDPG +

HER model is trained with joint damping values sampled from [0.01, 2), it can

successfully control robots with damping values sampled from other ranges including
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Table A.5: Success rate on 100 testing robots

Testing damping range Success rate
[0.01, 2) 100%
[2, 10) 100%
[10, 20) 100%
[20, 30) 100%
[30, 40) 85%
[40, 50) 47%

[2, 10), [10, 20), [20, 30) with 100% success rate. It is noteworthy that a damping value

of 1 corresponds to critical damping (which is what most practical systems aim for),

while ¡ 1 is under-damped and above is over-damped. For the damping range [30, 40),

the success rate is 85%. In damping range [40, 50), the success rate is 47%. Note

that each joint has a torque limit, so when damping becomes too large, the control is

likely to be unable to move some joints and thus fail. Also, the larger the damping

values are, the more time steps it takes to finish the peg insertion task, as shown in

Figure A.5b.
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Figure A.5: Performance (violin plots) on 100 testing robots with damping values sampled
from different ranges using the DDPG+HER model trained with damping range [0.01, 2)).
Other dynamics parameters are still randomly sampled according to Table A.1. The left plot
shows the distribution of the distances between the robot’s peg bottom and the target peg
bottom position at the end of episode. The right plot shows the distribution of the episode
length. An episode will be ended early if the peg is inserted into the hole successfully and
the maximum number of episode time steps is 200. The three horizontal lines in each violin
plot stand for the lower extrema, median value, and the higher extrema.
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A.3.3 Learning curves for 7-DOF robots with different link

length and dynamics

In this section, we provide two supplementary experiments on training 7-DOF (type

I) to perform reacher and peg insertion task.
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Figure A.6: Learning curves for 7-DOF robots with different link length and dynamics.
We show the HCP-E+Dyn learning curves only for comparison. In real robots, dynamics
parameters are usually not easily accessible. So it’s not pratical to use dynamics information
in robotics applications. We can see that both HCP-I and HCP-E got much higher success
rates on both tasks than vanilla DDPG+HER.

A.3.4 Multi-DOF robots learning curves

Figure A.7 provides more details of training progress in different experiments.
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Figure A.7: Learning curves for multi-DOF setting. Symbol A,B,...,I in the figure represent
the types of robot used in training. All these experiments are only trained on 8 types of
robots (leave one out). The 100 testing robots used to generate the learning curves are from
the same training robot types but with different link length and dynamics. The second
row shows the results on peg insertion task with hole position randomly generated within
a 0.2m box region. (a): reacher task with robot types A-D + F-I. (b): peg insertion task
with a fixed hole position with robot types A-D + F-I. (c): peg insertion task with a fixed
hole position with robot types A-H. (d): peg insertion task with a random hole position
with robot types A-G + I. (e): peg insertion task with a random hole position with robot
types A-D + F-I. (f): peg insertion task with a random hole position with robot types A-H.

Table 2.1 in the paper shows how well HCP-E models perform when they are

applied to the new robot type that has never been trained before. Table A.6 to A.13

show how the universal policy behaves on the robot types that have been trained

before. These robots are from the training robot types, but with different link lengths

and dynamics.

The less DOF the robot has, the less dexterous the robot can be. Also, where to

place the n joints affects the workspace of the robot and determine how flexible the

robot can be. Therefore, we can see some low success rate data even in trained robot

types. For example,the trained HCP-E model only got 6.70 success rate when tested

on robot type D which has actually been trained in peg insertion tasks with random
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hole positions, as shown in Table A.11. This is because its joint displacements and

number of DOFs limit the flexibility as shown in Figure 2.2d. Type D doesn’t have

joint J4 and J5 which are crucial for peg insertion tasks.

Table A.6: Zero-shot testing performance on training robot types (Exp. I & II)

Alg. Testing Robot Types

A B C D E F G I

HCP-E 93.10±
2.91

95.70±
1.55

98.20±
1.55

97.50±
1.02

95.30±
1.49

94.00±
3.26

98.40±
1.11

97.90±
1.67

DDPG+HER 1.00±
1.22

1.00±
1.00

2.50±
1.36

0.10±
0.30

0.70±
0.78

1.20±
1.40

1.30±
1.35

2.00±
1.26

Table A.7: Zero-shot testing performance on training robot types (Exp. III & IV)

Alg. Testing Robot Types

A B C D F G H I

HCP-E 92.00±
2.28

89.60±
3.01

98.60±
1.20

99.00±
0.63

96.70±
1.42

97.90±
1.64

99.30±
0.64

99.20±
0.60

DDPG+HER 1.30±
0.90

1.30±
0.89

1.60±
0.92

0.70±
0.46

0.20±
0.40

2.30±
1.18

0.90±
0.83

1.40±
0.92

Table A.8: Zero-shot testing performance on training robot types (Exp. V & VI)

Alg. Testing Robot Types

A B C D E F G I

HCP-E 91.10±
2.77

95.90±
1.92

98.50±
1.50

84.89±
3.29

94.70±
1.85

92.00±
2.97

97.20±
1.32

94.20±
2.79

DDPG+HER 0.30±
0.46

1.90±
1.30

3.00±
1.26

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.60±
0.66

0.00±
0.00
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Table A.9: Zero-shot testing performance on training robot types (Exp. VII & VIII)

Alg. Testing Robot Types

A B C D E F G I

HCP-E 88.60±
2.45

95.30±
2.00

98.90±
0.83

83.30±
3.49

81.30±
3.20

92.00±
3.13

89.40±
3.20

88.00±
4.54

DDPG+HER 3.30±
2.32

1.70±
1.00

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.10±
0.30

Table A.10: Zero-shot testing performance on training robot types (Exp. IX & X)

Alg. Testing Robot Types

A B C D E F G H

HCP-E 92.90±
3.59

95.90±
1.70

97.30±
1.10

90.90±
3.58

95.59±
1.43

94.60±
1.28

98.80±
0.60

97.10±
1.51

DDPG+HER 1.60±
1.20

2.30±
1.27

0.40±
0.66

0.00±
0.00

1.80±
1.54

0.00±
0.00

0.40±
0.49

0.00±
0.00

Table A.11: Zero-shot testing performance on training robot types (Exp. XI & XII)

Alg. Testing Robot Types

A B C D E F G I

HCP-E 71.00±
5.22

85.80±
3.19

89.00±
2.53

6.70±
2.53

79.30±
3.90

45.70±
4.86

88.50±
2.42

68.50±
5.18

DDPG+HER 1.70±
1.88

3.90±
2.20

0.90±
1.04

0.10±
0.30

2.50±
0.92

0.10±
0.30

1.00±
1.00

0.70±
0.78
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Table A.12: Zero-shot testing performance on training robot types (Exp. XIII & XIV)

Alg. Testing Robot Types

A B C D F G H I

HCP-E 64.70±
6.30

86.10±
3.36

89.60±
2.95

54.10±
3.53

58.60±
3.83

83.20±
2.96

66.30±
3.57

62.50±
4.03

DDPG+HER 0.30±
0.46

0.10±
0.30

1.90±
0.94

0.00±
0.00

0.20±
0.40

1.90±
1.30

0.10±
0.30

2.80 ±
1.60

Table A.13: Zero-shot testing performance on training robot types (Exp. XV & XVI)

Alg. Testing Robot Types

A B C D E F G H

HCP-E 73.70±
4.79

86.20±
4.04

80.90±
3.88

16.00±
3.26

69.70±
4.54

76.80±
3.25

85.80±
4.38

59.90±
5.22

DDPG+HER 1.90±
1.37

7.60±
2.65

3.10±
1.04

0.00±
0.00

3.70±
1.62

0.60±
0.66

1.30±
1.00

0.40 ±
0.80

50



Appendix B

Exploration Policies for Navigation

B.1 SPL Metric

As defined by [81], Success weighted by (normalized inverse) Path Length or SPL is

computed as follows. Here, `i is the shortest-path distance between the starting and

goal position, pi is the length of the path actually executed by the agent, and Si is a

binary variable that indicates if the agent succeeded. SPL is computed over N trials

as follows:

SPL =
1

N

N∑
i=1

Si
`i

max(pi, `i)
. (B.1)

B.2 Examples of Policy Inputs and Maps

We show an example of the policy inputs (RGB image and maps in two different

scales) at time t and t+10 in Fig. B.1. Green area means the known(seen) traversable

area, blue area means known non-traversable area, and the white area means unknown

area. Fig. B.2 shows how the map evolves and the agent moves as it explores a new

house.
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(a) (b) (c)

(d) (e) (f)

Figure B.1: Examples of policy inputs at time step t and t+ 10. (a) and (d) are the RGB
images, (b) and (e) are the coarse maps, and (c) and (f) are the fine maps.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure B.2: Snapshots of the built map as the agent explores the house
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B.3 Experimental Details

B.3.1 Environment Details

In this paper, we simulated the agent in House3D environment [77] and used 20 houses

for training and 20 new houses for testing. Fig. C.1 shows the distribution of the

total traversable area of these houses. Fig. C.2 shows some examples of the top-down

views for training and testing houses (white is traversable, black is occupied).
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Figure C.1: Area distribution of training and testing houses (20 houses in each case). The
average movable area of the training houses is 289.7 m2. The average movable area of the
testing houses is 327.9 m2.

Figure C.2: Examples of house layouts (top-down views). The left three figures show 3
examples of the training houses. The right three figures show 3 examples of the testing
houses. White regions indicate traversable area, black regions represent occupied area.

B.3.2 Map Reconstruction

Given a sequence of camera poses (extrinsics) ([R1, t1], [R2, t2], ..., [RN , tN ]), and the

corresponding depth images (D1,D2, ...,DN ) at each time step as well as the camera

intrinsics K ∈ R3×3, we can reconstruct the point cloud of the scene based on the
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principle of mulitple-view geometry [47]. We can convert the points from pixel space

to the camera space and then to the world space. More specifically, the formulas to

achieve this can be summarized as follows:

λijxij = K [Ri, ti]wij ∀j ∈ {1, 2, ..., S}, i ∈ {1, ..., N} (B.2)

W =
N⋃
i=1

S⋃
j=1

wij (B.3)

where S is the total number of pixels in each depth image, xij ∈ R3 is the homogeneous

coordinates for jth pixel on ith depth image Di, λij ∈ R is the depth value of the jth

pixel on ith depth image Di, and wij ∈ R4 is the homogeneous coordinates for the

corresponding point in the world coordinate system. We can get wij from xij based

on Equation (B.2). And we can merge points via Equation (B.3).

B.3.3 Training Details

The occupancy map generated by the agent itself uses a resolution of 0.05m. Our

policy uses a coarse map, and a detailed map. The coarse map captures information

about a 40m×40m area around the agent, at a resolution of of 0.5m. The occupancy

map is down-sampled from 800× 800 to 80× 80 to generate the coarse map that is

fed into the policy network. The detailed map captures information about a 4m×4m

area around the agent at a 0.05m resolution. RGB images are rendered at 224× 224

resolution in House3D and re-sized into 80× 80 before they are fed into the policy

network.

The size of the last fully-connected layer in ResNet18 architecture is modified to

128. Outputs of the three ResNet18 networks are concatenated into a 384-dimensional

vector. This is transformed into a 128-dimensional vector via a fully-connected layer.

Next, it’s fed into a single-layer RNN(GRU) layer with 128 hidden layer size. The

output of RNN layer is followed by two heads. One head (the policy head) has

two fully-connected layers (128− 32− 6). The other head (the value head) has two

fully-connected layers (128−32−1). We use ELU as the nonlinear activation function

for the fully-connected layers after ResNet18.

Each episode consists of 500 steps in training. RNN time sequence length is 20.
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Coverage area C(Mt) is measured by the number of covered grids in the occupancy

map. Coefficient α for the coverage reward Rcov
int (t) is 0.0005, coefficient β for Rcoll

int (t) is

0.006. PPO entropy loss coefficient is 0.01. Network is optimized via Adam optimizer

with a learning rate of 0.00001.

B.3.4 Noise Model

Details of noise generation for experiments with estimation noise in Section 3.4.2:

1. Without loss of generality, we initialize the agent at the origin, that is x̂0 = x0 = 0.

2. The agent takes an action at. We add truncated Gaussian noise to the action

primitive(e.g., move forward 0.25m) to get the estimated pose x̂t+1, i.e., x̂t+1 =

x̂t + ãt where x̂t is the estimated pose in time step t and ãt is the action primitive

at with added noise.

3. Iterate the second step until the maximum number of steps is reached.

Thus, in this noise model, the agent estimates its new pose based on the estimated

pose from the last time step and the executed action. Thus, we dont use oracle

odometry in the noise experiments. This noise model leads to compounding errors

over time (as in the case of a real robot), though we acknowledge that this simple

noise model may not perfectly match noise in the real world.

B.3.5 Imitation Learning Details

We use behavioral cloning technique [82, 83, 84] to imitate the human behaviors in

exploring the environments. We got the human demonstration trajectories from [74].

We ignored the question-answering part of the data and only used the exploration

trajectories. We cleaned up the data by removing the trajectories that have less

than 100 time steps. The trajectories are then converted into short sequences of

trajectory segments ((si, ai, si+1, ai+1, ..., si+T , ai+T ), where T is based on the RNN

sequence length). The policy is pretrained with behavioral cloning by imitating actions

(ai, ai+1, ..., ai+T ) from the human demonstrations given the states (si, si+1, ..., si+T ).
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[54] Henry Carrillo, Ian Reid, and José A Castellanos. On the comparison of uncer-
tainty criteria for active slam. In ICRA, 2012. 21

[55] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen,
Yide Shentu, Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor
Darrell. Zero-shot visual imitation. In ICLR, 2018. 21

[56] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning to fly by crashing.
In IROS, 2017. 22

[57] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real single-image flight without
a single real image. In RSS, 2017. 22

[58] Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu.
Neural slam: Learning to explore with external memory. arXiv preprint, 2017.
22

[59] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in
model-building neural controllers. In International Conference on Simulation of

61



Bibliography

Adaptive Behavior: From Animals to Animats, 1991. 22

[60] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing explo-
ration in reinforcement learning with deep predictive models. arXiv preprint
arXiv:1507.00814, 2015. 22

[61] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In ICML, 2017. 22, 28

[62] Justin Fu, John Co-Reyes, and Sergey Levine. EX2: Exploration with exemplar
models for deep reinforcement learning. In NIPS, 2017. 22

[63] Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Explo-
ration in model-based reinforcement learning by empirically estimating learning
progress. In NIPS, 2012. 22

[64] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically
motivated reinforcement learning. In NIPS, 2005. 22

[65] Dinesh Jayaraman and Kristen Grauman. Learning to look around: Intelligently
exploring unseen environments for unknown tasks. In CVPR, 2018. 22

[66] Kai Xu, Lintao Zheng, Zihao Yan, Guohang Yan, Eugene Zhang, Matthias
Niessner, Oliver Deussen, Daniel Cohen-Or, and Hui Huang. Autonomous
reconstruction of unknown indoor scenes guided by time-varying tensor fields.
In SIGGRAPH Asia, 2017. 22

[67] Shi Bai, Jinkun Wang, Fanfei Chen, and Brendan Englot. Information-theoretic
exploration with bayesian optimization. In IROS, 2016. 22

[68] Thomas Kollar and Nicholas Roy. Trajectory optimization using reinforcement
learning for map exploration. IJRR, 2008. 22

[69] Lennart Ljung. System identification: theory for the user. Prentice-hall, 1987.
23

[70] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. RL2: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016. 23

[71] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple
neural attentive meta-learner. In ICLR, 2018. 23

[72] Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory
for deep reinforcement learning. In ICLR, 2018. 25

[73] Joao F Henriques and Andrea Vedaldi. MapNet: An allocentric spatial memory
for mapping environments. In CVPR, 2018. 25

[74] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and
Dhruv Batra. Embodied Question Answering. In CVPR, 2018. 26, 27, 28, 55

62



Bibliography

[75] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 1992. 26

[76] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
26, 28

[77] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable
agents with a realistic and rich 3d environment. arXiv preprint arXiv:1801.02209,
2018. 27, 53

[78] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and
Thomas Funkhouser. Semantic scene completion from a single depth image. In
CVPR, 2017. 27

[79] Christian Dornhege and Alexander Kleiner. A frontier-void-based approach for
autonomous exploration in 3D. Advanced Robotics, 2013. 28

[80] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A Efros. Large-scale study of curiosity-driven learning. In ICLR, 2019. 28

[81] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy,
Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mot-
taghi, Manolis Savva, and Amir Zamir. On evaluation of embodied navigation
agents. arXiv preprint arXiv:1807.06757, 2018. 33, 51

[82] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009. 55

[83] Ryszard S Michalski, Ivan Bratko, and Avan Bratko. Machine learning and data
mining; methods and applications. John Wiley & Sons, Inc., 1998. 55

[84] Robert G Abbott. Behavioral cloning for simulator validation. In Robot Soccer
World Cup, pages 329–336. Springer, 2007. 55

63


