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Abstract

Many robotic tasks, such as mobile manipulation, often require interac-

tion with unstructured environments and are subject to imperfect sensing

and actuation. This brings substantial uncertainty into the problems. Rea-

soning under this uncertainty can provide higher level of robustness but is

computationally significantly more challenging. More specifically, sequen-

tial decision making under motion and sensing uncertainty can be formu-

lated in a principled form as a Partially Observable Markov Decision Pro-

cess (POMDP). Solving POMDPs exactly is computationally intractable due

to their exponential complexity with the number of states and the depth of

the planning horizon, so called, the curse of dimensionality and the curse of

history, respectively.

In this work, we propose a novel search-based robust planning frame-

work that sample-efficiently finds a solution with theoretical suboptimality

bounds by leveraging multiple heuristics that are designed using domain

knowledge. The main contributions of this work can be summarized as fol-

lows: 1) it works with generative models, in the absence of mathematical

models, similarly to the reinforcement learning paradigm, but 2) it still ex-

hibits high sample-efficiency by bootstrapping with the domain knowledge

in the form of heuristics, and 3) it is empowered with effective guidance of

the search toward the goal through the systematic employment of multiple

heuristics. Its solution can be returned in an anytime fashion, and converges

to the bounded suboptimality with theoretical guarantees.

We validate the proposed frameworks through simulation and robot ex-

periments, which includes 2D rover navigation, PR2 parts assembly, and full

size mobile manipulator truck unloading tasks. The truck unloading task is

especially interesting, where the custom-built robot is to unload up to sev-

eral thousands of boxes from a truck. It is a challenging real-world manip-

ulation problem in continuous space with excessively high uncertainty, and

we demonstrate the efficacy of our approach in such a domain.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Consider a scenario where a mobile manipulator needs to assemble multiple parts for

a birdhouse (Fig. 1.1b). The robot has to depend on its visual sensor data with limited

resolution and accuracy for identifying and localizing a specific part. When the robot

picks up a part using a vacuum gripper, noise in the real world comes in and makes the

pose of the part slightly change. Under these sensing and motion uncertainty, the robot

often suffers from putting the pieces in right place before nailing them together. To find

a robust motion plan, it needs to take into account the amount of uncertainty at present

and the effect of taking a sequence of actions.

We can also think of a Mars rover navigation example under uncertainty (Fig. 1.2). The

rover’s mission is to navigate through an obstacle-laden environment to scientific target

locations. It is desired to complete the mission as soon as possible, while its safety should

always be guaranteed. However, the rough terrain on Mars makes the exact motion of

the rover unpredictable. When the rover is on feature-poor terrain such as sand, it cannot

localize itself on the map precisely. Thus, it is important to find a plan that the rover can

reach the target quickly while keeping itself away from hazard with a sufficiently small

localization error.
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(a) Peg-in-hole task. (b) Birdhouse assembly task.

Figure 1.1: Examples of manipulation tasks under motion and sensing uncertainty using PR2.

(a) NASA’s Mars 2020 Rover.
(Courtesy of NASA/JPL-Caltech.)

(b) Scientific targets on Pahrump Hills.
(Courtesy of NASA/JPL-Caltech/MSSS.)

Figure 1.2: Examples of Mars rover navigation under motion and sensing uncertainty.

The above-mentioned problems are instances of a general problem of decision-making

under uncertainty in the presence of risk and constraints. This problem in its most gen-

eral and principled form can be formulated as a Partially Observable Markov Decision

Process (POMDP) [1, 2]. It is known that the optimal solution of POMDP is intractable:

PSPACE-complete for a finite horizon [3] and NP-hard for an infinite horizon [4].

The two main reasons of this complexity are called the curse of dimensionality [1] and the

curse of history [1]. In a POMDP problem with n distinct states, a belief state which is a

probability distribution over the state space is in (n−1)-dimensional continuous space.

Even in the case the belief space is discretized, the complexity still grows exponentially

with the number of states. When thinking of the value iteration algorithm for POMDPs,

it starts from the initial belief and updates the values of the successor nodes in a breadth-

first manner. Then the number of distinct action-observation sequence grows exponen-

tially with the depth in the belief tree or the planning horizon at the end (Fig. 1.3a).
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In this work, we particularly tackle a challenging class of POMDPs, here referred to as a

Goal POMDP. (See section 2.2.2 for more information.) A Goal POMDP has an infinite

horizon without discounting but has terminal belief states or conditions. Its extensive

formulation is able to accommodate a variety of the robot motion planning problems

under uncertainty with specific goals or safety-critical constraints, including the two

scenarios introduced above.

1.2 Proposed Approach

Many of the state-of-the-art POMDP solvers use forward search from the initial belief to

the finite horizon or discount horizon to explore the reachable belief space. However, in

Goal POMDP problems with infinite horizons in complex environments, it is not trivial

to find a valid path that satisfy the goal condition. For example, a stochastic shortest-path

finding problem in a 2D maze requires the planner to solve the maze at every episodic

forward search. In this case, random rollout policy or simple heuristic such as preferred

action set cannot efficiently guide the forward search to reach the goal.

In terms of heuristics, it is often not easy to design a single heuristic that captures all

the complexities of the problem. Moreover, it is possible that a heuristic derived from

domain-specific knowledge is informative but not consistent and admissible for the the-

oretic optimality guarantees.

We propose a new search-based belief space planning framework that leverages multiple

heuristics to remedy these problems. A more complex guidance scheme can be repre-

sented by an ensemble of multiple heuristics, so that the forward search can be much

more efficient in complex environments [5]. Given at least one admissible heuristic, we

can guarantee its completeness and theoretic suboptimality bounds in conformant planning.

In contingent planning, we can guide the search to explore ǫ-optimally reachable region

in an anytime fashion, which helps the planner to cover the reachable region more effi-

ciently and then find the solution faster [6].

As formalizing the belief space planning as a graph search problem, we adopt the re-

cent graph construction technique into belief space. State-Lattice with Controllers (SLC)
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(a) Belief tree constructed without local
controllers.

(b) Belief graph constructed with local
controllers.

Figure 1.3: Illustration of belief tree and graph obtained from forward simulation [8].

extends state-lattice based graph construction by incorporating controller-based motion

primitives [7]. In other words, it gradually grows the graph by repeatedly adding suc-

cessor states obtained from forward simulation of the local controls to the graph.

In belief space, this technique allows us to construct a belief graph instead of a belief

tree. As depicted in Fig. 1.3, forward simulation under uncertainty in (continuous) be-

lief space results in a belief tree where almost no belief states coincide with each other.

However, a local feedback-controller being used in forward simulation can play a role as

a belief funnel that merges nearby beliefs into a single belief, which effectively produces

a belief graph.

Note that a belief tree directly suffers from the curse of history that causes exponential

complexity with the search depth. On the other hand, a belief graph can have at best

linear complexity with the search depth by breaking the dependency on the history.

Another benefit of using local controllers is that we can pre-process or reuse policies as

we can revisit the funnel nodes again.

1.3 Contributions

We summarize the contributions of this work. The proposed belief space planning

framework is featured as follows.

• Guidance by multiple heuristics: We introduce how to make use of multiple

4



heuristics to guide the forward search in belief space. Multiple heuristics allow us

to hedge our bets; we do not need to depend on a single heuristic nor struggle to

design a heuristic that can capture all the complexities of the problem. Note that

this framework can accommodate any domain-specific heuristics including ones

that are used in point-based POMDP solvers. This is particularly effective when

solving Goal POMDPs in complex environments with infinite horizons.

• Belief graph construction with controllers: The controller-based graph construc-

tion scheme is adopted into belief space. Given a generative simulation model, a

belief graph is constructed from repeated forward simulations under the local con-

trollers. There are two main benefits in this approach. First, the constructed graph

represents the physically feasible world model. Second, the local controllers be-

have as funnels in belief space that can alleviate the exponential complexity with

the search depth.

• Scalable online-offline combination: We provide a scalable online-offline

POMDP solver framework. The near-optimal POMDP solvers including the pro-

posed belief planner still have limited scalability due to POMDP’s intrinsic com-

plexity. We show the advantages of combining them with long-range approximate

POMDP solvers such as Feedback-based Information RoadMap (FIRM) [9]. In this

framework, a long-range approximate planner generates a sparse but global pol-

icy in offline, and a short-range near-optimal planner interleaves replanning and

execution of a local policy that is connected to the offline global policy. The re-

sults show that this online-offline combination can provide better scalability while

preserving the near-optimal solution quality.

• Real-world application: We aim at applying the proposed belief space planner to

a real-world mobile manipulation problem with high complexity. More precisely,

we are working on a package unloading task. The packages have different dimen-

sions and weights that are unknown to the robot, and of course, the sensing and

motion in the real world are under uncertainty. The mobile manipulator robot has

more than 20 joints, and the number of packages to be unloaded can be more than

several thousands. To solve this large and highly complex problem, we devised

5



a hierarchical belief space planning framework which consists of a low-level de-

terministic motion planner, a mid-level macro action instantiator, and a high-level

belief space planner. The belief space planner generates plans over the macro ac-

tion space, and the corresponding macro action is adaptively instantiated by the

mid-level action instantiator based on the current observation.

6



Chapter 2

Background

In this chapter, we provide background information about search-based motion plan-

ning and Partially Observable Markov Decision Process (POMDP) and define belief

space motion planning problems.

2.1 Search-based Motion Planning

Search-based motion planning is one of the core algorithms for robot motion planning

in deterministic environments. Graph search algorithms are for solve graph traversal

problems, i.e., the process of visiting nodes along their edges in a graph. They are used

in many areas, including motion planning, where a problem can be formulated as a

graph.

In the case of motion planning, a configuration state that uniquely specifies the entire

system including robot joint positions, object poses, etc. is represented as a node in a

graph. Transition relationship from a configuration state to another configuration state

is represented by an edge in the graph. An action that invokes transition of a config-

uration state to another takes an action cost which is encoded in the graph as an edge

weight. Then for a given start and goal configuration states and a graph representing

the problem, a graph search algorithm can find a solution that minimizes the total cost

from the start to the goal.

7



In the following subsection, we review more detail information about graph search al-

gorithms.

2.1.1 Graph Search Algorithms

A* Search

One of the most popular graph search algorithms is A* search [10]. A* algorithm finds

a minimum cost path from a start state sstart ∈ S to a goal state sgoal ∈ S in a directed

graph G(S,E). S is the set of nodes in the graph and E is the set of edges that connect

the nodes. Note here that A* only works for deterministic graphs where each edge e ∈ E

connects a single node s to another single node s′. An edge cost function c : S×S → R
+

maps a pair of states, i.e., each edge e(s, s′), to a positive scalar-valued cost. If s and s′

are not connect in the graph, c(s, s′) =∞.

In A* algorithm, each state is associated with three values. The g-value g(s) is the mini-

mum path cost accumulated over the edges on the best path from sstart to s. The h-value

h(s) is a heuristically estimated minimum path cost accumulated over the edges on the

best path fro s to sgoal. The f -value f(s) = g(s) + h(s) is an estimated minimum path

cost from sstart to sgoal that passes through s and is also referred to as priority of state s.

Algorithm 1 shows the A* algorithm. OPEN represents a priority queue called OPEN

list that contains all the states that have been discovered but not yet expanded. Starting

with OPEN containing sstart only, A* repeatedly expands the state in OPEN with the

minimum f -value, i.e., with the highest priority. The state expansion process, Expand-

State(), consists of two operations. One is to find or generate a successor of the expanded

state for each action. Then the g-value of the successor is updated by the best path cost

found so far. When sgoal is to be expanded, i.e., sgoal has the highest priority in OPEN,

the search process terminates and return the best path found.

Several theoretic properties of A* search depends on the heuristic function h(s). If the

heuristic is consistent, i.e., it satisfies the triangle inequality h(s) 6 h(s′) + c(s, s′), ∀s, s′ ∈

S and h(sgoal) = 0, then A* is guaranteed not to expand a state more than once. If the

8



Algorithm 1 A* Search

1: procedure ExpandState(s)
2: remove s from OPEN
3: for all s′ ∈ GetSuccessors(s) do
4: if s′ was not visited before then
5: g(s′)←∞

6: if g(s′) > g(s) + c(s, s′) then
7: g(s′)← g(s) + c(s, s′)
8: insert/update s′ in OPEN with priority f(s′) = g(s′) + h(s′)

9: procedure A*(sstart, sgoal)
10: OPEN← ∅
11: g(sstart)← 0
12: f(sstart)← h(sstart)
13: insert sstart in OPEN with priority f(sstart)
14: while sgoal is not expanded do
15: if OPEN is empty then return null

16: remove s with the smallest f -value from OPEN
17: ExpandState(s)

18: return ReconstructPath()

heuristic is admissible, i.e., it never over-estimates the best path cost from s to sgoal for

∀s ∈ S, then A* is guaranteed to find the optimal (minimum cost) path. Note that if a

heuristic is consistent, it is also admissible, but not vice versa.

Variants of A* Search

There are many variants of A* search. Weighted A* inflates the heuristic function, so

that the search is more goal-directed [11]. This inflation leads to suboptimality of the

returned solution, but it is proven that the suboptimality is bounded by the factor of in-

flation. Anytime Repairing A* finds an initial solution quickly with high inflation of the

heuristic and then improves the solution quality over time by decreasing the inflation

factor and replan [12]. Multi-Heuristic A* leverages multiple and possibly inadmissible

heuristics to guide the search in a sophisticated manner [5]. By limiting the use of in-

admissible heuristics based on admissible heuristic evaluation, it preserves the theoretic

guarantees on the suboptimality bounds.

9



2.2 Partially Observable Markov Decision Process

2.2.1 POMDP Formulation

In this section we briefly describe our problem formulation assuming the reader is

familiar with MDPs and POMDPs. For a general introduction to the subject, see

e.g., [13, 14, 15]

Let S,A, and Z denote the state, action, and observation spaces, respectively. We denote

the motion model T (s, a, s′) = P (s′ | s, a), which defines the probability of being at state

s′ after taking an action a in state s. The observation model Z(s, a, o) = P (o | s, a) is the

probability of receiving observation o after taking action a in state s.

A belief b(s) is a posterior distribution over all possible states given the past actions and

observations, i.e., bk(s) = P (s | a0:k−1, o1:k) where the subscript k denotes the time step.

Note that a POMDP problem can be formulated as a Belief MDP by taking b(s) as an

MDP state, also referred to as a belief state b ∈ B, where B is referred to as belief space.

Given ak−1, ok, and bk−1(s), the updated belief bk(s) can be computed by Bayesian filter-

ing, which can be divided into two sub-steps as follows.

bk−1(s; ak−1) =
∑

s′∈S

T (s, ak−1, s
′)bk−1(s), (2.1)

bk(s; ak−1, ok) = ηZ(s, ak−1, ok)bk−1(s; ak−1), (2.2)

where η is a normalizing constant. For notational convenience, let us denote bk−1(s; a) =

bak−1 and bk(s; a, o) = bk = baok−1 hereafter.

A policy π : B → A maps each belief state b to a desirable action a. The expected cost

of an action for the true state can be represented as a cost function in a belief space,

c(b, a) ∈ R
+. Given a policy π and a belief b ∈ B, we can compute the value function,

V (b; π) = E

[

∞
∑

k=0

γkc(bk, π(bk))

]

, (2.3)
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where b0 is the initial belief state and γ ∈ (0, 1] is a discount factor that reduces the effect

of later costs.

We can rewrite Eq. 2.3 in a recursive form, which is called the Bellman equation.

V (b; π) = c(bi, π(b)) + γ
∑

b′∈B

τ(b, π(b), b′)V (b′; π), (2.4)

where τ(b, π(b), b′) =
∑

o∈Z P (b′|b, π(b), o)P (o|b, π(b)) is the transition probability from b

to b′ under π, which can be derived from Eq. 2.1 and 2.2. For further details, see [16]. It

is often convenient to define the so-called Q-value function for an intermediate belief-

action pair, (b, a) or simply ba, as follows.

Q(ba; π) = c(b, a) + γ
∑

b′∈B

τ(b, a, b′)V (b′; π). (2.5)

Then (2.4) can be written as follows.

V (b; π) = min
a∈A

Q(b, a; π) (2.6)

We now restate our POMDP problem as an optimization problem.

π∗(b) = argmin
Π0:∞

E

[

∞
∑

k=0

γkc(bk, πk(bk))

]

= argmin
Π0:∞

V (bk; πk). (2.7)

Note that in this work we consider Goal POMDPs without cost discounting, i.e., γ = 1,

and thus, the value function V (b; π) corresponds to the expected cost-to-goal from belief

state b under policy π.

For notational brevity in the algorithm description, let us denote V (b; π) and Q(b; π) that

are being learned/updated during the belief space planning by v(b) and q(b), respec-

tively.
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2.2.2 Discounted POMDP vs. Goal POMDP

The POMDP problems can be categorized into two classes: Discounted POMDP and Goal

POMDP. We discuss each class of POMDP problems in this subsection.

Discounted POMDP

Some POMDP problems have specific terminal conditions and others do not. In the case

there is no terminal condition or the size of the problem is too large, it is often to dis-

count the cost or reward far from the current belief, which effectively limits the (possibly

infinite) planning horizon to a finite one [17]. We refer to this class of POMDP problems

as Discounted POMDPs. Many of the POMDP solvers aim at this class of problems in-

cluding the point-based methods that will be reviewed in section 3.1.1.

Discounted POMDP formulation is well suited for dynamic environments or adversarial

settings. In those cases, the effect of actions that will happen far later is under high

uncertainty, and thus, it is not much worth to deliberately compute their effects on the

total cost or reward of the current belief.

Goal POMDP

The POMDP problems with terminal conditions and without cost/reward discount is

referred to as Goal POMDPs. It can be understood as a stochastic shortest path problem

(with the minimum cost) for the given start and goal under motion and sensing uncer-

tainty. As it equally takes into account the actions that will happen later as the immedi-

ate actions, Goal POMDP formulation is suitable for static environment or safety-critical

systems.

It should be noted that, however, any types of Discounted POMDPs can be transformed

into Goal POMDPs by adding a terminal node and encoding the discount factor in the

transition probabilities [18]. This means that POMDP problems for dynamic environ-

ments or adversarial settings can also be properly represented by Goal POMDPs, thanks

to the richer expressiveness of Goal POMDPs.

12



2.2.3 Belief Space Planning

There are two kinds of belief space planning [19]. We briefly review them in this sub-

section.

Conformant Planning

Conformant planning refers to planning with incomplete information but with no sensor

feedback [20]. It is also called conditional planning in some literature [21]. It considers a

problem under motion uncertainty where state transition by an action can be modeled

as either a non-deterministic function or a probability distribution.

Conformant planning can be conveniently formulated as deterministic planning in belief

space. It means that the non-deterministic or probabilistic transition can be encoded

in the belief state and then the transition between belief states by an action becomes

deterministic. Although the belief state is still dependent on the history of the applied

action sequence, this problem can be solved by deterministic planning algorithms such

as A* search.

Contingent Planning

Contingent planning refers to planning with incomplete information with sensor feedback

[22]. It considers a problem under motion and sensing uncertainty where both action

and observation are non-deterministic or probabilistic. Especially when action and ob-

servation are modeled as probabilistic distributions, it can be formulated as a POMDP.

Since observations cannot be predicted or selected like actions, it is not possible to trans-

form contingent planning into deterministic planning. When formulating this problem

as a graph, it will be an AND-OR graph, not a deterministic graph. Therefore determinis-

tic search algorithms cannot solve this problem but, rather, dynamic programming such

as value iteration should be used.
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Chapter 3

Related Work

In this chapter, we review previous work in three primary areas: motion planning in de-

terministic environments, belief space planning algorithms, and applications of motion

planning under uncertainty. Works on belief space planning are not limited to motion

planning, so we will cover general algorithms in several categories based on their ap-

proaches. At last, interesting applications related to motion planning under uncertainty

are reviewed.

3.1 Belief Space Planning

In belief space planning, we categorized the previous work into four. We review each

of categories and address its key ideas to tackle POMDP problems. Note that assum-

ing the belief space planning problems we consider here are formulated in probabilistic

representation, the terms, a belief space planner and a POMDP solver, will be used inter-

changeably.

3.1.1 Point-based Methods

Point-based methods have been one of the major approaches to solve larger POMDP

problems. They are named as point-based POMDP solvers because they in common

15



represent the value function by a vector set of sampled points and its piece-wise linear

combination [23, 24]. This representation enables them to improve the lower bound (and

the upper bound in some algorithms) of the value function (in the reward setting) by

sampling a new belief state. The process of updating the value function based on a new

sample is called backup. By iterative sampling and backup, it is proven to converge to the

optimal solution.

Another important idea in this approach is to restrict the search space only that is reach-

able from the given initial belief state. By starting from the initial belief and following a

certain heuristic strategy for the next sampling, the search space grows that is reachable

from the initial belief, where the final solution would reside. There are many different

heuristic strategies how to guide the sampling, and this has been the main contributions

of the variants of this approach. Note that a heuristic in point-based methods does not

necessarily mean consistent and admissible heuristic as in search-based methods.

One thing to notice here is that this approach maintains a value function for explicit

probability distribution models and updates the value function by considering all possi-

ble actions in a full-width planning manner. This helps to generalize the value function

for the neighbor belief states of the sampled ones, but induces higher complexity and

poor scalability to larger problems.

Pineau et al. have first established this point-based method called Point-Based Value It-

eration (PBVI) with lower bound of the value function [24, 25]. They introduced the idea

of searching for the reachable space only and address the benefit of maintaining a set of

vectors as a representation of the lower bound of the value function. This representation

is possible because the optimal value function is always piece-wise linear and convex in

the belief space [23]. They also pointed out the curse of history in POMDP problems.

Smith and Simmons proposed Heuristic Search Value Iteration (HSVI) with a heuristic

strategy that guides the search where the gap between the upper and lower bounds of

the value function is large [26, 27]. More precisely, they select an action with the greatest

upper bound and an observation with the largest contribution of the bound gap at the

initial belief. The basic idea behind it is that exploring a region with high uncertainty

helps to converge to the optimal faster. Unlike the lower bound, the upper bound of the
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value function cannot be represented by a vector set. Thus, they represent the upper

bound by a point set and its convex hull that should be solved by linear programming.

The initial values of the upper bound is computed by assuming full observability and

solving the MDP version of the problem [28]. Other approaches to initialize the upper

and lower bounds can be found in [16, 29].

The state-of-the-art point-based POMDP solver (in offline) is considered to be SARSOP

(Successive Approximations of the Reachable Space under Optimal Policies) presented

by Kurniawati et al. [30]. This algorithm follows the same ideas of other point-based

approaches. It constructs a belief tree by full-width expansion through forward search

while maintaining the upper and lower bounds of the value function. The novelty of

this algorithm lies in that it tries to expand optimally reachable space unlike PBVI or

HSVI. It carefully keeps a balance in the termination condition of forward search, i.e.,

it tries to make the sampling path as shallow as possible but as deep enough to reduce

bound gap at the initial belief and reach a high expected reward. This is accomplished by

terminating the forward search if the lower bound of the sample node no longer increases

and the upper bound of the sample node provides a sufficiently small gap at the root with

discounting. It also utilizes pruning of the optimally reachable belief tree for the sake of

backup efficiency.

Point-based methods can be extended to anytime online versions. Anytime Error Mini-

mization Search (AEMS) by Ross et al. is one of the early successful online planner [31],

which guides the forward search where the expected error between the lower and upper

bounds can be minimized. More online point-based methods can be found in [16].

3.1.2 Heuristic Search-based Methods

Another major approach to belief space planning is a search-based method using con-

sistent and admissible heuristics. The key idea of this approach is to utilize available

domain-specific knowledge to guide the search and find the optimal solution faster. Un-

like dynamic programming such as value iteration, heuristic search methods searches

from the start to the goal and do not need to evaluate the entire belief space. Notice
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that this is a similar idea in point-based methods to restrict the search space to that is

reachable.

As its name suggests, heuristic search-based approach is derived from graph search al-

gorithms in deterministic environments. Under motion and sensing uncertainty in a

POMDP setting, the tree or graph is no longer deterministic, in other words, probabilis-

tic transition along an edge should be considered. To cope with this stochastic graph

structure, several methods have been developed. Note that in heuristic search-based

methods, the value function is usually in the cost setting (the lower the better) unlike in

the reward setting (the higher the better) in point-based methods.

LAO*, which represents AO* algorithm for MDPs or belief MDPs with Loops, was pro-

posed by Hansen and Zilberstein [32, 33, 34]. AO* algorithm is an extension of A* search

algorithm that can solve problems formalized as an acyclic AND-OR graph (i.e., with-

out loops). In deterministic graphs an edge connect one node to another single node,

but in AND-OR graphs an edge, sometimes called hyperarc or k-connector can connect a

node to multiple nodes. The chance of transition from one node to each successor node

is represented by a transition probability distribution. AO* algorithm repeats forward ex-

pansion of the best node in the current belief tree and backward induction from the leaf

node back to its predecessors. Forward expansion is guided by an admissible heuristic,

which helps to explore a region where the optimal solution is likely to reside. LAO*

generalizes the backward induction process to value iteration or policy iteration. Thus,

it requires more computation compared to AO* but can handle AND-OR graphs with

loops. Once it reaches the goal node for the first time, then it returns the solution, and

it is proven to converge to the optimal solution. One thing to note is that the order of

value iteration may heavily affect the efficiency of this algorithm.

Washington suggested Bounded, Incremental Search for Partially Observable Markov

Decision Processes (BI-POMDP) [35]. It is also an extension of AO* algorithm for MDPs

or belief MDPs. By running AO* in an incremental fashion, it could achieve better mem-

ory efficiency. Additional feature of this method is that it keeps track of the upper

bounds of costs (i.e., lower bounds of rewards) as well as the lower bounds of costs.

The initial lower and upper bound values (in the cost setting) are computed by solving

18



offline MDP optimally and in the worst-case, respectively. Then the forward expansion

is biased to nodes with larger gaps between the upper and lower bounds, which is also

adopted in the point-based methods such as HSVI [26, 27].

RTDP-Bel presented by Bonet and Geffner is another heuristic search-based algorithm

but from a different perspective [19, 36, 37, 38]. While LAO* or BI-POMDP updates the

values for the whole belief tree (or within a finite horizon in BI-POMDP) after every sin-

gle forward expansion, RTDP-Bel runs forward simulation along a single branch from

the start to the goal and updates the values only for the nodes on the branch. RTDP-Bel

is originated from LRTA* [39] for deterministic environments and RTDP [40] for MDP

problems under motion uncertainty. The forward simulation along a branch is called a

trial, and these algorithms keep updating the value function (heuristic function in LRTA*

case) over iterative trials. As heuristic search-based methods, RTDP-Bel initializes the

value function by an admissible heuristic and converges to the optimal value function

(up to belief discretization resolution) through repeated trials. The admissible heuristics

for initialization can be computed by solving MDP with full observability assumption

[28]. In each expansion during forward search, it follows the greedy policy (by fully

expanding the node for all possible actions and selecting the best action) and gets the

probabilistic outcomes (successors). The value update is done immediately after select-

ing the next action in an asynchronous dynamic programming fashion [40].

There are other several variants of RTDP that can be applied to MDPs or belief MDPs.

One is Labeled RTDP by Bonet and Geffner [41] that labels states with converged values

as solved, so that the value function can converge faster within a bounded number of

trials. The other is Bounded RTDP by McMahan et al. [42] which maintains the upper

bound of the value function (in the cost setting) as well as the lower bound and guide

the search toward less-well-understood states with larger gaps between the bounds.

One remarkable paper for heuristic search-based methods is the comparison of RTDP-

Bel and point-based methods [18]. In this work, they converted a Discounted POMDP

problem into an equivalent Goal POMDP problem and compared RTDP-Bel and other

point-based methods. In general, heuristic search-based methods aim at Goal POMDPs

in the cost setting that have some specific terminal states or conditions without cost
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discounting, while many point-based methods are for Discounted POMDPs in the re-

ward setting where there is discounting but not necessarily terminal conditions. With

equivalence-preserving transformation of the problem, many different benchmark tests

showed that RTDP-Bel is competitive and often superior to point-based algorithms that

utilizes Sondik’s vector representation of the value function [23].

3.1.3 Monte Carlo-based Methods

Monte Carlo-based methods for POMDPs are initiated by Silver and Veness who pro-

posed Partially Observable Monte Carlo Planning (POMCP) [43]. Monte Carlo Tree

Search (MCTS) has been successful in solving MDPs [44, 45], and they extended this

approach to belief space planning. Two important features in this work are the use of

UCT (Upper Confidence Bound applied to Trees) algorithm for guiding the tree search

and the belief state representation as a set of particles. UCT algorithm helps to balance

between the exploration and exploitation, and it is proven that UCT algorithm converges

to the optimal in the fully observable MDP setting (as its bias toward exploration disap-

pears as the number of visits to a state goes to infinite). In order to convert a POMDP

to a MDP, they represent a belief state as a set of particles, which implicitly means that

they sample the belief state (alleviating the curse of dimensionality) and sample the be-

lief transitions (alleviating the curse of history). Additionally, it is an online POMDP

solver, which means it interleaves planning and plan execution so that it can improve

the solution quality during execution. POMCP, with particle representation instead of

explicit probabilistic models and without any upper/lower bound updates, is shown to

be working surprisingly well in larger problems, and inspired many other variants.

DESPOT (Deteminized Sparse Partially Observable Tree) suggested by Somani et al. is

one of the successful variants [46]. POMCP is sometimes too much greedy and thus leads

to a bad worst-case performance. DESPOT tries to improve the worst-case performance

by considering a small number of challenging scenarios and improving the optimality

within the sparse tree.

ABT (Adaptive Belief Tree) by Kurniawati and Yadav is also based on POMCP [47]. It

20



reuses and improves the existing solution and update the solution as needed whenever

the POMDP model changes. It has an extension to continuous action space called GPS-

ABT (General Pattern Search - Adaptive Belief Tree) [48].

POMCPOW (Partially Observable Monte Carlo Planning with Observation Widening)

is proposed by Sunberg and Kochenderfer to extend POMCP to continuous action and

observation space [49]. As POMCP depends on UCT algorithm for tree search, which

forces to expand an unvisited node if exists, it is only able to expand a single-depth

layer of belief tree in continuous action or observation space. To remedy this limitation,

POMCPOW limits the number of child nodes based on Progressive Widening technique

both for action and observation space, and then it can construct a deeper belief tree.

3.1.4 Feedback Controller-based Methods

There is another camp in belief space planning that utilizes local feedback controllers.

Agha-mohammadi et al. proposed Feedback-based Information RoadMap (FIRM) that

adopted a probabilistic roadmap scheme in belief space [9, 50]. In continuous space un-

der motion and sensing uncertainty there is a only rare chance for a belief to evolve to

the same belief state that has been visited before, which results in exponential complex-

ity with the planning horizon, i.e., the curse of history. However, FIRM leverages local

feedback controllers to make the current belief to converge to an existing belief, which

is called a FIRM node, in the roadmap. Convergence to a FIRM node implies that any

histories, i.e., previous action and observation sequences, that have brought a belief to

this FIRM node are no longer needed to be considered. The belief states in the roadmap

are obtained from random sampling and connected to their neighbor beliefs. The edges

between FIRM nodes are denoted by FIRM edges. Then the constructed roadmap rep-

resents a belief MDP, which can be solved efficiently. For the given start and goal belief

states, FIRM can quickly return a solution that bring the belief to a nearby FIRM node

and guide it along the FIRM edges.

FIRM-Rollout is an extension of FIRM with online replanning [8]. On top of offline FIRM

policy, it interleaves online replanning and execution in order to improve the solution
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quality as well as to adapt to dynamic changes in the environment.

On the other hand, van den Berg et al. presented a belief space variant of iterative Lin-

ear Quadratic Gaussian control (BS-iLQG) [51]. It assumes a belief state to be a Gaus-

sian distribution and utilizes LQG controllers for iterative local optimization. In more

detail, it computes an initial solution, for example, through Rapidly-growing Random

Tree (RRT) algorithm [52] in a deterministic setting, then it performs forward simulation

and backward recursion to improve the solution quality over iterations. By iterative lo-

cal optimization it can converge to a local minimum, but its convergence to the global

minimum is subject to the initial solution.

3.2 Applications of Motion Planning under Uncertainty

In this section, we review some of interesting applications using motion planning under

uncertainty, specifically, for two areas of interest: ground vehicle navigation and mobile

manipulation.

3.2.1 Ground Vehicle Navigation

In the real world, ground vehicle navigation undergoes a lot of uncertainty. For example,

the controlled motion is not as the same as desired due to many noises, such as uneven

terrain or slippery surface, that cannot be modeled precisely. The perception for the

vehicle is not perfect as well, which can increase the risk of collision with obstacles.

For robust navigation, there are two conditions that should be pursued. One is collision

avoidance. The vehicle should not collide with obstacles for safety reasons, and this is

a strict condition that should be satisfied. The other is accurate localization both for

obstacles and vehicle itself. While GPS (Global Positioning System) is one of the most

source for localization in outdoors, visual sensor data is also important sensor data for

localizing the vehicle on the map and static/dynamic obstacles around the vehicle. For

better vision-based localization, it is crucial to obtain feature-rich observations.
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Gonzalez and Stentz have addressed this ground navigation problems while considering

both of collision avoidance and accurate localization [53, 54]. They modeled the belief

state as a Gaussian distribution to formulate the problem as a belief MDP and used clas-

sical graph search algorithms in belief MDPs. The results showed that this approach

could find a path with the minimal cost that ensures the vehicle has a very little chance

of collision with obstacles by approaching to feature-rich landmarks as necessary.

Other related work also assumes Gaussian belief space for the sake of its compact be-

lief representation. Prentice and Roy constructed a Gaussian belief roadmap that can

approximate the continuous space into a finite graph structure [55]. (Note that this ap-

proach does not utilize feedback controllers to stabilize a belief to the graph node beliefs

and break the curse of history as in FIRM.) Bry and Roy extended RRT to Gaussian be-

lief space so that they can incrementally construct a belief tree and find a path to the

goal with a small chance of collision [56]. Lenz et al. used heuristic search algorithms

for a Gaussian belief MDP while considering non-holonomic constraints of the ground

vehicle [57].

3.2.2 Mobile Manipulation

There are many applications in manipulation that considers motion and sensing uncer-

tainty. Manipulation involves a lot of interaction with the environment which is a main

source of uncertainty, and thus, many previous work tried to reduce such uncertainty

for more robust manipulation.

Some earlier work in this context targeted robust part feeding by utilizing contact be-

tween the parts and the environment to align its pose [58, 59]. Basically, these approaches

tried to reduce uncertainty in object orientation on a plane by a sequence of actions. They

required rigorous analysis of the configuration space that particularly depends on the

shape of the object, which is usually possible in 2D space only.

More recent works inheriting this scheme can be found in [60, 61]. In these works, the

robot exploits contact with the environment or other objects for robust grasping or in-

hand manipulation. (It is called extrinsic dexterity in [60].) They rely on the idea of using
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contact to reduce uncertainty and successfully demonstrate its effectiveness. However,

there was no general motion planner and the motion sequences are hand-scripted.

Zhou et al. proposed a belief space planning algorithm for 2D object pose identification

[62]. This work uses particle filter representation for a belief state and open-loop search

over a finite number of actions to construct a belief tree in offline. From this process, it

generates a policy that can be used to determine a sequence of actions for object pose

identification.

Narayanan and Likhachev presented a work for motion planning under environment

model uncertainty [63]. Assuming uncertainty in the articulated object models, such as

doors or drawers, but not in the robot state and object poses, it constructs a belief MDP

with a probability distribution of the articulated object model. They solved this belief

MDP using LAO* algorithm and showed that a robot can identify the articulation type

of the given object by a sequence of actions from the planner.

Haustein et al. and Koval et al. proposed belief space planners for 2D object pushing

under uncertainty [64, 65]. They utilize a simulator for physical reasoning and RRT or

A* variant search algorithms for motion planning. Especially in [65], they decomposed

the policy into pre- and post-contact stages to reduce the complexity. The post-contact

policy that involves interaction with the planar object under uncertainty is solved offline

on a discretized belief space using SARSOP, while the pre-contact policy is modeled as

an open-loop trajectory assuming no observations and belief updates until the contact.

There are abundant recent works on manipulation based on reinforcement learning ap-

proach [66, 67]. They used a reinforcement learning technique called Guided Policy Search

for convolutional neural networks for different parts assembly tasks. They trained the

deep network in the MDP setting using visual sensor data and joint positions as inputs

and joint torques as outputs, and showed that the robot can perform a robust manipu-

lation task using a global policy that is generated from several hours of training for that

specific task.
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Chapter 4

Planning under Motion Uncertainty

with Multiple Heuristics

4.1 Introduction

In this chapter, we consider a conformant planning problem under motion uncertainty.

As a concrete example, parts assembly task is being presented here [68].

Parts assembly, in a broad sense, is to make multiple objects to be in specific relative

poses in contact with each other. One of the major reasons that make it difficult is un-

certainty. Because parts assembly involves physical contact between objects, it requires

higher precision than other manipulation tasks like collision avoidance. The key idea of

this work is to use simulation-aided physical reasoning while planning with the goal of

finding a robust motion plan for parts assembly. Specifically, in the proposed approach,

a) uncertainty between object poses is represented as a distribution of particles, b) the

motion planner estimates the transition of particles for unit actions (motion primitives)

through physics-based simulation, and c) the performance of the planner is sped up us-

ing Multi-Heuristic A* (MHA*) search that utilizes multiple inadmissible heuristics that

lead to fast uncertainty reduction. To demonstrate the benefits of our framework, motion

planning and physical robot experiments for several parts assembly tasks are provided.
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Parts assembly is happening not only in factories but also in most of our living spaces.

It is an operation of arranging, stacking, or combining objects. Many physical manip-

ulation tasks that are to set relative poses between multiple objects in contact can be

considered as parts assembly in a broad sense.

The challenge, however, is that contact involves complex physical phenomena such as

friction and force interaction in addition to kinematics and dynamics of objects. These

phenomena are hard to estimate or approximate well. Moreover, parts assembly usually

requires higher precision in motion because it is a practice of placing objects to fit in, not

separating them apart.

Therefore, it is important to reason about the underlying physics and to execute manip-

ulation plans that are robust to uncertainty during assembly. In this work, we propose

a framework to utilize a physics-based simulator for physical reasoning and use graph

search algorithms to find a robust motion plan in belief space.

The rationale behind selecting a simulator for physical reasoning is that modeling com-

plex manipulation actions to sufficient degree of fidelity is infeasible. Instead, we should

exploit state-of-the-art in physics-based simulation while planning.

By sampling uncertainty distribution and running physics-based simulation of actions,

the planner constructs a belief space. The planner then runs a heuristic search to find a

plan while reducing the uncertainty for a higher chance of success.

4.2 Belief Space Representation

4.2.1 Belief State

Since we assume there is uncertainty in the state of robot and objects, we need to en-

code uncertainty into the state of the graph. In this work, we represent a state of a

graph s as a belief state which is a set of particle sub-states P = {P0, P1, ..., Pm} (see

Fig. 4.3). Each particle Pj consists of the pose information of the robot and objects

{(pr, Rr), (po1, Ro1), ..., (pon, Ron)}.
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(a) 2D (x, y) (b) 3D (x, y, z) (c) 3D (y, z, R)

Figure 4.1: An example of belief state representation: particles of cross-polytopes (hyperoctahedron) in
different search spaces.

For parts assembly tasks, we accept Gaussian distribution as the initial uncertainty of a

given task, but note that any distributions can be used as long as the number of particles

are sufficient to represent the distribution.

The typical way to draw particles from a given Gaussian distribution is random sam-

pling. However, we cannot employ plenty of random samples to properly represent the

original distribution because the simulation for each particle is computationally expen-

sive. Alternatively, we use vertices of a uniform polytope as the particles since it can be

seen as an approximation of cp-sigma ellipsoid where cp is a constant which is set to 2

in this work. Amongst uniform polytopes, we used a cross-polytope which is a higher

dimensional octahedron for particle generation as shown in Fig. 4.1.

4.2.2 Cost Function in Belief Space

Before getting into the details for belief space search, we describe the special structure

of the configuration space under uncertainty.

First, let us take an example. As shown in Fig. 4.2(a), the robot gripper is holding a box

and wants to place it at the position of the blue box accurately. (This task will be called

box-on-table hereafter.) However, there is uncertainty in the initial pose of the gripper and

the box (depicted in a green color). How can we represent the amount of uncertainty of

27



(a) A given planning problem. (b) (x, y, u)-configuration space.

Figure 4.2: Illustration of 2D box-on-table task. (a) The green box is the start pose, and the blue box is the
goal pose. (b) The red boxes are the contact and goal attractors for inadmissible heuristics. Uncertainty u
in the configuration space is visualized in z-axis. The green box on the upper level has high uncertainty

and needs to get contact with the walls to reduce pose uncertainty and get down to the lower level of
uncertainty where the goal state exists.

each belief state?

Let us define a particle-aggregated belief state vector X which describes the distribution

of particles.

X =









x

ω

u









=









Ej[p
tool
j ]

Ej[ω
tool
j ]

u









(4.1)

where j is the index for particles. p is a position vector, and ω = θω̂ is an orientation vec-

tor that can be obtained from angle-axis representation where θ and ω̂ are the rotation

angle and rotation axis, respectively. Basically it is composed of mean vectors of posi-

tion and orientation of the tool frame in addition to a scalar-valued uncertainty measure.

(The tool frame is a local frame attached the object held by the gripper and, in this ex-

ample, is at the center of the bottom of the box.) Note that position and orientation are

with respect to the local frame of the table which is the target object.

In this work, uncertainty is defined as a weighted sum of traces of sample covariance
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matrices for position and orientation as follows:

u = wpTr
(

Ej

[

(

ptoolj − Ej

[

ptoolj

]) (

ptoolj − Ej

[

ptoolj

])T
])

+ woTr
(

Ej

[

(

ωtool
j − Ej

[

ωtool
j

]) (

ωtool
j − Ej

[

ωtool
j

])T
])

(4.2)

where wp and wo are weights for position and orientation, respectively. Note that the

trace of covariance matrix is used instead of the determinant due to its numerical unsta-

bility.

Now notice that we have a uncertainty measure coordinate in addition to pose coordi-

nates in the belief state vector. It means that we have (d+1)-dimensional configuration

space for d-dimensional planning problem under uncertainty. Figure 4.2(b) illustrates

the (x, y, u)-configuration space for a planning problem in (x, y)-space.

One important physical fact to note is that the uncertainty of the relative pose between

objects cannot be reduced without getting in contact with each other, provided that all

the executable actions are to move around in the space. In the box-on-table example, a

belief state on a high uncertainty level (the green box in Fig. 4.2(b)) cannot get down to the

lower level of uncertainty without contact with the walls. In a word, this phenomenon

leads to foliation of the configuration space.

4.3 Belief Graph Construction by State-Lattice with Con-

trollers

In order to formulate motion planning as a graph search problem, we need to represent

the search space as a graph. One can discretize the world into n-dimensional grid and

take each cell as a node on a graph, but in this work, we adopt a graph construct called

State Lattice with Controllers (SLC) [7].

SLC is composed of a set of states S and their connecting edges E. It adds more states

and edges to the graph by computing the successor function Succ(s) for s ∈ S that is

already in the graph. In Succ(s), the original State Lattice construct uses pre-computed
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Figure 4.3: Belief space representation in a graph and its expansion scheme. belief i denotes a belief state
si = P

i, and particlej denotes a particle sub-state Pj . Each particle in a predecessor belief state is
simulated for each motion primitive to get a successor belief state.
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Figure 4.4: Integration of a motion planner and a physics-based simulator. The simulator has all the
information about the robot and objects, including geometric shapes, inertial properties, and controller
characteristics. Simulation of a motion primitive is terminated if one of the trigger events is detected.

metric motion primitives only, but SLC allows us to use controller-based motion primi-

tives as well. This means that motion primitives can be simulated in a realistic controller

and trigger setting to generate more plausible successor states. (A trigger is an event,

such as detecting a marker or reaching the target position, that is used to terminate the

simulation and return the result.) Based on this scheme, a more physically reasonable

graph can be constructed for the given robot and the environment.
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4.3.1 Physically Feasible Graph from Physics-based Simulation

In order to get physically reasonable Succ(s) for a predecessor belief state, we exploit a

physics-based simulator. More specifically, we use V-REP (Virtual Robot Experimenta-

tion Platform) simulator that supports Vortex Dynamics Engine [69], and integrated it

with the motion planner as shown in Fig. 4.4.

As shown in Fig. 4.3, every particle sub-state in the predecessor belief state is simulated

for each motion primitive, and the results constitute the successor belief states. Note

that all the motion primitives being used are controller-based ones in the context of SLC,

which means that a motion primitive is terminated by a trigger event in the simulation.

Another note is that each motion primitive is to assign incremental displacement to the

gripper, not the absolute pose in the global frame.

A motion primitive is triggered when 1) the control command is finished, 2) any change

of the collision state is detected, or 3) the simulation time exceeded the limit. The first

trigger is usually detected when the robot gripper remains in a free space without any

collision until reaching the target pose. The second trigger is detected when the colli-

sion (or contact) states between any objects is switched from NonContact to Contact, or

Contact to NonContact. The third trigger is for exception handling for the case that the

simulator gets stuck.

4.4 MHA* for Deterministic Belief MDP

4.4.1 Algorithm

For the motion planning in the above-mentioned foliated belief space, Multi-Heuristic

A* (MHA*) search algorithm [5, 70] is used. Refer to the pseudo code of the algorithm

in Alg. 2.

MHA* has one consistent heuristic, which is called an anchor heuristic, and N arbitrary

inadmissible heuristics of any necessity. This algorithm cycles through each inadmissi-
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ble heuristics in a round-robin fashion, and determines whether to use the inadmissible

heuristic or the anchor heuristic based on the condition in line 37 in Alg. 2. In such a

way, it can control the suboptimality of the solution by a factor of w1 ∗ w2 where w1 and

w2 are the weights for weighted A* search (in line 22) and anchor suboptimality (in line

37).

To adopt MHA* for our problem, two major revisions are made: particle genera-

tion/transition and attractor-based heurisitics. As a belief space search problem, we

need to generate a set of particles and obtain reasonable transition of them, which are

explained in section 4.3. For the foliated belief space, we need to find good (inadmis-

sible) heuristics that can help the search to go through the narrow passages fast, which

can be in the form of (4.3) in section 4.4.2.

The heuristic function in (4.3) needs two input parameters, scont and sgoal, and they are

being searched in AttractorSearch(sseed) as shown in line 8 in Alg. 2. It is a quite simple

operation that checks the amount of uncertainty reduction after applying motion prim-

itives. It can apply a single long motion primitive or a sequence of them, and it can start

from sstart or sgoal. As of now it is a naive process, but can possibly be developed as a

sophisticated one.

4.4.2 Foliated Heuristic Function

As discussed in the previous section, the search configuration space is foliated, which

means that transition between states with different uncertainty measures is mostly

blocked by (virtual) obstacles except a few narrow passages, such as the walls in the

box-on-table example.

In order to tackle this narrow-passage problem, we introduce a foliated inadmissible

heuristic function as follows:

h(s) = h (dc(s), dg(s), u(s))

=







wddc(s) + wuu(s) (u(s) > utol)

wddg(s) + wuu(s) (u(s) ≤ utol)
(4.3)
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Algorithm 2 Multi-Heuristic A* Search in a Foliated Belief Space

input: The start state sstart and the goal state sgoal, suboptimality bound factor w1, w2 (both ≥ 1), and one
consistent heuristic h0.

output: A path from sstart to sgoal whose cost is within w1 ∗ w2 ∗ g
∗(sgoal).

1: procedure CrossPolytopeParticles(µ, Σ)
2: create a nominal particle P0 from µ
3: P← ∅
4: for d ∈ SearchSpaceCoordinates do
5: P← P ∪ {P0 + cp ∗ Σ(d,d)êd} ⊲ {êd}: orthonormal basis of SearchSpace
6: P← P ∪ {P0 − cp ∗ Σ(d,d)êd}

7: return P

8: procedure AttractorSearch(sseed)
9: Sattractor ← ∅

10: for mk ∈ LongMotionPrimitives do
11: s′ ← Succ(sseed,mk)
12: if s′.Uncert() < cu ∗ sseed.Uncert() then
13: Sattractor ← Sattractor ∪ {s

′}

14: return Sattractor

15: procedure NewInadmissHeuristic(sattractor, sgoal)
16: create a new instance of a heuristic class, h′

17: h′.attractor← sattractor
18: h′.goal← sgoal
19: return h′

20: procedure Key(s, v)
21: hv ← H.Get(v)
22: return g(s) + w1 ∗ hv(s)

23: procedure Main()
24: sstart ← CrossPolytopeParticles(µstart, Σstart)
25: H← ∅, N ← 0
26: H.Add(h0)
27: for sattractor in AttractorSearch(sstart) do
28: H.Add(NewInadmissHeuristic(sattractor, sgoal))
29: N ← N + 1
30: g(sstart)← 0, g(sgoal)←∞
31: for v = 0, 1, ..., N do
32: OPENv ← ∅
33: insert sstart in OPENv with Key(sstart, v)

34: CLOSEDanchor ← ∅, CLOSEDinad← ∅
35: while OPEN0.Minkey() <∞ do
36: for v = 1, 2, ..., N do
37: if OPENv .Minkey() ≤ w2 * OPEN0.Minkey() then
38: if g(sgoal) ≤ OPENv .Minkey() then
39: if g(sgoal) <∞ then
40: terminate and return a solution path

41: else
42: s← OPENv .Top()
43: ExpandState(s)
44: insert s in CLOSEDinad

45: else
46: if g(sgoal) ≤ OPEN0.Minkey() then
47: if g(sgoal) ≤ ∞ then
48: terminate and return a solution path

49: else
50: s← OPEN0.Top()
51: ExpandState(s)
52: insert s in CLOSEDanchor
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where wd and wu are weights for distance and uncertainty, respectively. dc and dg are

Euclidean distances to the contact attractor state and the goal attractor state that are

given parameters to the heuristic function. u is the uncertainty measure defined in (4.2),

and utol is the goal tolerance for u. dc and dg are defined as follows:

dc(s) = d(s, scont)

=
1

m

m
∑

j=1

(

wp

√

(xs − xc)T (xs − xc) + wo∆θ(s, scont)
)

(4.4)

dg(s) = d(s, sgoal)

=
1

m

m
∑

j=1

(

wp

√

(xs − xg)T (xs − xg) + wo∆θ(s, sgoal)

)

(4.5)

where scont is the contact attractor state, and sgoal is the goal state. x is the position vector

of a belief state defined in (4.1), and subscripts s, c and g stand for the current, contact

attractor, and the goal attractor states, respectively. ∆θ(s, xgoal) is the rotation angle from

the current state s to the goal state sgoal, which can be computed in angle-axis represen-

tation. wp and wo are weights for position and orientation, respectively.

As a high-level explanation, this foliated heuristic function is to lead the graph to expand

toward the contact attractor state in high uncertainty region and toward the goal attractor

state in low uncertainty region. For example, if all the states in OPEN of this heuristic are

on the same high uncertainty level and have the same g-value, then the state nearest to

the contact attractor will have the minimum h-value and f -value, and it will be selected

as the predecessor for expansion.

Also note that wd and wu on the right hand side of (4.3) should be chosen carefully, so

that the second term for the uncertainty is signficantly larger than the first term for the

distance. It is because the transition in uncertainty coordinate is more difficult due to

the foliation of the search space.

We define a consistent anchor heuristic function (to adopt MHA* framework which will
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be introduced in section 4.4.1) and an edge cost function as follows:

h0(s
i) = h0(s

i, sgoal) = wdd(s
i, sgoal) + wuu(s

i) (4.6)

g(si−1, si) = wdd(s
i−1, si) + wuu(s

i−1) (4.7)

where superscript i is the index to represent predecessor-successor relationship in the

graph. d(si−1, si) means the Euclidean distance between si−1 and s. Then, we can define

f0(s
i) for the anchor heuristic as follows:

f0(s
i) =

i
∑

t=1

g(st−1, st) + h0(s
i, sgoal)

=
i
∑

t=1

(

wdd(s
t−1, st) + wuu(s

t−1)
)

+ wdd(s
i, sgoal) + wuu(s

i)

=wd

(

i
∑

t=1

d(st−1, st) + d(si, sgoal)

)

+ wu

(

i
∑

t=1

u(st−1) + u(si)

)

(4.8)

where s0 is equivalent to sstart. Note that the term for uncertainty u in (4.7) is not the

difference between predecessor and the successor states, but the remaining uncertainty

of the parent state. This is because, in the former case, the second term in (4.8) will be

the same for all paths that connect sstart and sgoal. On the other hand, the latter case can

effectively penalize a path that remains in high uncertainty region for a long time.

4.4.3 Toy Example

Let us take a look at a 1-dimensional toy example to see how MHA* works in a foliated

belief space. As shown in Fig. 4.5(a), the initial belief state at S has high uncertainty in

x-position. From the belief state vector representation, we can construct a 2-dimensional

configuration space with additional u-coordinate as shown in Fig. 4.5(b). There are two

inadmissible heuristics, hα and hβ , that have their contact attractors on the left and right
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Figure 4.5: Illustration of a 1-dimensional toy example.

walls, respectively, and the goal attractors at the goal state position.

As presented in Table 4.1, MHA* algorithm starts to cycle each inadmissible heuristic for

graph expansion. For the first iteration, hα takes the turn but couldn’t satisfy the condi-

tion of line 37 in Alg. 2. So, OPEN0 of h0 is used to select the state for expansion, and

then S0 is expanded. For the second run, hβ takes the turn and satisfied the condition,

and S1′ is expanded. In the fourth run, S2′ is expanded by applying motion primitives,

m and m′, and the successor S4′ gets contact with the wall. Its particles are gathered at

one place, so its uncertainty measure reduces to near zero. For the states with low un-

certainty, the goal attractor is being used, and after two more expansions, the algorithm

Table 4.1: MHA* Search Process for a Toy Example

Index
Turn for

Round-Robin
Satisfied
Line 37?

Selector
Heuristic

Selected
Parent

Child
States

1 α No h0 S0 = S S1, S1′

2 β Yes hβ S1′ S2′

3 α Yes hα S1 S3

4 β Yes hβ S2′ S4′

5 α Yes hg S4′ S5

6 β Yes hg S5 S6 = G
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Figure 4.6: Planning results for 2D box-on-table tasks with 12 different start poses. The green and blue
markers are the start and final poses of robot gripper particles, respectively, and an RGB-colored frame

marker is the goal pose for the object held by the robot.

successfully finds a path to the goal with reduced uncertainty.

4.5 Experimental Results

4.5.1 Parts Assembly

Motion Planning

Box-on-Table (2D):

This task is to place a box held by the robot gripper to a specified pose on the table

(Fig. 4.2). For analysis purposes, 12 different start poses are used for the motion plan-

ning, and the results are shown in Fig. 6 and Table 2. It can be seen that the planned

motion utilizes contact with the walls close to the start and goal poses to reduce uncer-
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Table 4.2: Planning Results for 2D Box-on-Table Tasks
(The step size for translational motion primitives is 0.10 m, and the initial offset from the nominal start

pose of each particle is 0.06 m.)

Task ID Time [s] Cost
Node # in Path
/ Expansion #

Pos. Error
Mean [m]

Pos. Error
Std Dev [m]

1 367 42032 9/10 0.0165 0.0085
2 482 46544 12/12 0.0143 0.0072
3 364 35812 8/10 0.0163 0.0067
4 484 45172 10/11 0.0158 0.0055
5 502 47644 13/13 0.0439 0.0066
6 396 47847 11/11 0.0273 0.0290
7 488 42900 13/14 0.0146 0.0059
8 685 48839 14/16 0.0296 0.0059
9 638 45951 12/16 0.0171 0.0063
10 463 41891 9/13 0.0382 0.0203
11 711 42198 16/19 0.0370 0.0099
12 637 47356 13/16 0.0162 0.0089

Mean 518.1 44515.5 11.6/13.4 0.0239 0.0101
Std Dev 121.2 3705.5 2.3/2.8 0.0108 0.0072

Figure 4.7: Comparison of planning results of 2D (left) and 3D (right) box-on-table tasks.

tainty.

The contact attractors were at the walls, not at the corners (as in Fig. 4.2(b)), but many

motion plans got to the corner. It can be interpreted that contact attractors don’t intro-

duce significant artifacts to the solution path.

Box-on-Table (3D):

Planning results for box-on-table task in 3D space are presented in Fig. 7 and Table 3. It

is compared to the 2D planning case that only differs in the initial z-position. As can be

seen in planning time and number of expansions, the 3D planning case obviously suffers
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Table 4.3: Comparison of Planning Results of 2D and 3D Box-on-Table Tasks
(The motion step sizes and initial particle offsets are the same, but the numbers of particles are 4 for 2D

case and 6 for 3D case, respectively, and the nominal pose in 3D case is 0.13 m higher than the goal pose.)

Task ID Time [s] Cost
Node # in Path
/ Expansion #

Pos. Error
Mean [m]

Pos. Error
Std Dev [m]

6 (2D) 396 47847 11/11 0.0273 0.0290
6’ (3D) 1322 42958 11/17 0.0611 0.0009

(a) Models of a peg

and a hole.

(b) A given problem.

Figure 4.8: Illustration of 2D peg-in-hole task. (b) The green peg is the start pose, and the blue peg is the
goal pose. The red peg is a goal attractor for an inadmissible heuristic.

Figure 4.9: Planning results for 2D peg-in-hole tasks with 3 different start poses.

from the curse of dimensionality. This is somewhat expected because the number of

simulations per expansion equals to the number of particles times the number of motion

primitives, which should be (4×4) and (6×6) for 2D and 3D, respectively.

Peg-in-Hole (2D):
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Table 4.4: Planning Results for 2D Peg-in-Hole Tasks
(The step size for translational motion primitives is 0.10 m, and the

initial offset from the nominal start pose of each particle is 0.04 m.)

Task ID Time [s] Cost
Node # in Path
/ Expansion #

Pos. Error
Mean [m]

Pos. Error
Std Dev [m]

1 706 12164 16/21 0.0032 0.0009
2 604 12474 16/19 0.0029 0.0018
3 830 15311 22/25 0.0035 0.0011

Mean 713.1 13316.3 18.0/21.6 0.0032 0.0013
Std Dev 113.2 1734.4 3.1/3.5 0.0003 0.0005

This task is to insert the peg into the hole. One interesting point of planning task is that,

by backward attractor search from the goal, an attractor state was found at the entrance

of the hole and set as a goal attractor, not a contact attractor in a high uncertainty region.

This is reasonable because the state at the entrance should have low uncertainty as the

goal state. The results for three different cases are shown in Fig. 9 and Table 4. The first

and third cases reduce uncertainty by contact with the top and the left side of the box,

but the second case does that by contact with the top and the inner side of the hole.

Motion Execution

Box-on-Table (2D):

Physical robot experiments were conducted for a 2D box-on-table task (Fig. 10). 10 dif-

ferent runs used the same motion plan searched for the given (nominal) start and goal

poses, but the actual start pose for each run was perturbed by Gaussian noise with 0.05

m standard deviation. As shown in Fig. 11, the standard deviation of the final pose re-

duced to tenth of the initial one. However, there were remaining errors from the goal

due to relatively large motion primitive displacements.

Peg-in-Hole (2D):

Robot experiment results for peg-in-hole tasks are presented in Fig. 4.12 and Fig. 4.13. As

in the box-on-table case, 10 different runs used the same planned motion computed by

the planner for the given start and (nominal) goal poses. The right gripper of the robot

held the box with a hole (see Fig. 4.12), but it was just used to provide a perturbed goal
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Figure 4.10: Snapshots of a robot experiment for a 2D box-on-table task. The motion was planned for a
nominal start position (upper square in the picture) and a goal position (lower square in the picture).

The actual start position deviated from the nominal start position by 6 cm, but the goal could be
accomplished.
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Figure 4.11: Plot of robot experiments for 2D box-on-table tasks. (This plot is rotated by 90 degrees, so
that it can be depicted as the PR2 views the table.) The green filled circle is the nominal start position,

and the blue filled circle is the goal position. Green and blue squares are the initial and the final
positions of 10 individual test runs, and the pairs are connected by black solid lines. The red filled circle

is the attractor used for planning, and the yellows bars represent the walls of the table. The standard
deviation of start position was set to 0.05 m, and the perturbed start position of each test is randomly

drawn from the corresponding Gaussian distribution. The step size of translational motion primitives is
0.10 m. The mean and standard deviation of position errors to the goal are (0.0175, 0.0053) and (0.0189,

-0.0061) in meter, respectively.
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Figure 4.12: Snapshots of a robot experiment for a 2D peg-in-hole task.

pose for each run. The motion plan from our proposed planner was able to successfully

insert the peg into the perturbed hole in all 10 runs.

In order to demonstrate the significance of the proposed approach, two baselines are

compared for these tasks. One is a single-particle planner which considers only one parti-

cle without the notion of uncertainty. The other is a contact-greedy planner, an extension of

the single-particle planner, which tries to get to the nearest contact point as soon as pos-

sible, exploiting the uncertainty reduction effect of contact. In both planners, physics-

based simulation was necessary to construct physically feasible graphs.

As shown in Fig. 4.13, the motion plan from the single-particle planner was very frag-

ile under uncertainty so that it succeeded only in one case which has the almost same

height with the nominal goal pose. The contact-greedy planner was more robust than

the single-particle planner, but as it also considers only one particle, its motion plan

failed in more than the half of the runs.

4.6 Summary and Discussion

We proposed a motion planning framework for parts assembly under uncertainty. This

problem is formalized as a graph search problem in a foliated belief space where uncer-
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Figure 4.13: Plot of robot experiments for 2D peg-in-hole tasks. The red filled circle is the nominal goal
position (the true mean of the Gaussian distribution of the goal position) that is used for planning, and
the blue circles or crosses are the actual goal poisitions for 10 test runs that are drawn from Gaussian
distribution with a standard deviation of 0.01 m. The step size of translational motion primitives was

0.04 m. Note that in these experiments the peg held by the left gripper is set to be at the same start
position for all the test runs, but the box with a hole held by the right gripper which serves as an

environment under uncertainty (without any sensor feedback) is set to be at a perturbed goal position. A
circle marker represents that a peg-in-hole task for the corresponding goal position was successfully

completed, i.e., the peg was inserted into the hole, by the planned motion of a specific planner, while a
cross marker represents that the corresponding peg-in-hole task was not successful.

tainty reduction is only possible in narrow passages of contact. Physics-based simulation

is used to construct a physically reasonable graph, and foliated heuristic functions with

contact and goal attractors are adopted in Multi-Heuristic A* search framework to accel-

erate the search. The planning and experimental results for box-on-table and peg-in-hole

tasks demonstrated the effectiveness of our approach.

As a future work, it would be interesting to study how sampling-based methods can help

finding good attractor states for inadmissible heuristics and be combined with combi-

natorial search algorithms. Based on the fact that simulation-based reasoning is highly

expensive, we would like to incorporate Experience Graph (E-Graph) into our frame-

work, so that we can reuse the previous planning results for other similar tasks [71].
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Chapter 5

Planning under Motion and Sensing

Uncertainty with Multiple Heuristics

5.1 Introduction

Motion planning is a well-studied problem in robotics with applications in diverse do-

mains [72, 73]. A key challenge for motion-planning algorithms is accounting for uncer-

tainty, especially in real-world applications.

Consider, for example, the problem of unloading boxes from truck trailers in a ware-

house environment (Fig. 7.1), which motivates this work. Here, we are required to

plan robust actions for a custom-build truck unloading robot equipped with two end

effectors–a manipulator-like tool with suction-grippers as well as a scooper-like tool.

The planning algorithm needs to account for uncertainty as the end effectors interacts

with unstructured, unknown and stochastic environments.

Planning such robust motions under uncertainty, also known as belief space planning, is a

crucial capability for any robot to properly function in the real world. This problem can

be formulated in a principled form by a Partially Observable Markov Decision Process

(POMDP) [1, 2]. However, solving a POMDP is often intractable due to the curse of dimen-

sionality [1] and the curse of history [24] which correspond to an exponential complexity
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(a) A truck unloader robot is picking up boxes using suction
grippers at its arm end-effector.

(b) A simulated truck unloader robot is pulling up boxes using
conveyor belts on its scooper end-effector.

Figure 5.1: Truck unloader robot.

with the number of states and the planning horizon, respectively.

One approach to solve POMDPs is using heuristic-search such as RTDP-Bel [18, 38].

Given informative domain knowledge, it exhibits high sample-efficiency, which is espe-

cially beneficial in robotic applications. However, it is often not easy to design a single

heuristic from the domain knowledge that captures all the complexities of the problem

and effectively guides the search toward the goal. Moreover, a heuristic may not be con-

sistent and admissible, which is required to guarantee theoretical bounds on the solution

quality.
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Another approach that proved to be very effective in solving complex domains is using

point-based solvers that utilize vector set representation of the value function and restrict

its computation to a subset of the belief space. This, in turn, corresponds to performing

only local value updates for this subset. However, both these approaches require access

to an explicit model of the POMDP probability distributions.

Returning to our motivating example of truck unloading this assumption is clearly

unrealistic—in our case we only have access to a noisy generative model or simulator.

Given a state and an action, this simulator provides a sample of a successor state, ob-

servation and reward. Monte-Carlo based methods such as POMCP [43] can be applied

to such settings. Their favorable traits can be attributed, in part, to representing each be-

lief state using a set of particles and performing a Monte-Carlo tree search on these set of

particles. Such planners are typically more suited to the Discounted POMDP problems

where immediate actions (e.g., evasion from adversaries) are more heavily rewarded

than future ones (e.g., the agent’s location at the end of execution).

However, in many robotic applications, robots are assigned for specific tasks to accom-

plish (e.g., navigate to a target location, or unload all boxes from a truck). For these

problems, future actions are as important as immediate ones, and the objective is to

achieve the prescribed goals. It means the planning horizon is unbounded, and effective

guidance to the goals is important. Such of POMDPs are called Goal POMDPs, and they

are what we tackle to solve in this work.

Our key insight is to incorporate recent advances in heuristic search together with a par-

ticle representation. Specifically, we make use of multiple heuristics to systematically

guide our search algorithm in belief space for highly-efficient planning under uncer-

tainty. Utilizing a particle representation of a belief state, our algorithm can be applied

to domains where only a generative model is available. We demonstrate the efficacy of

our approach on our truck unloading application, computing high-quality plans that

removes boxes from a trailer in a time-efficient and risk-averse manner.
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5.2 Algorithmic Background

5.2.1 Real-Time Dynamic Programming in Belief Space (RTDP-Bel)

In this section we briefly review Real-Time Dynamic Programming in Belief Space

(RTDP-Bel) [38] which is an extension of RTDP for MDP [40] to belief space planning.

RTDP-Bel, described in Alg. 3 performs a series of searches until it converges to the op-

timal policy (see Eq. 2.7). Each iteration (Lines 2-12) is a greedy search starting from the

initial belief b0 and terminating at a goal belief1. Every iteration of the search consists of

sampling a state within our belief (Line 3), evaluating the effect of every action on the

sampled state (Line 5), selecting the best action (Line 6) and updating the value function

accordingly. We then sample the next state and observation (Lines 8-9) to compute the

new belief (line 10).

There are several important details to note here: (i) each iteration is a path computed

greedily from b0, (ii) to ensure convergence to the optimal policy we require that the

heuristic function h(·) (Line 5) is admissible and that (iii) an explicit transition model is

used (Lines 5,8,9).

5.2.2 Multi-Heuristic A* (MHA*)

Heuristic functions may have a dramatic effect on the performance of heuristic search-

based planners such as A*. However, in many applications, it is difficult to engineer one

heuristic function that can guide the search throughout the entire environment. Further-

more, this heuristic function is required to be admissible2 in order to guarantee bounds

on solution quality and completeness.

One approach to address these challenges is by simultaneously using multiple heuristic

1Here, for ease of description, we assume that there is always a path to the goal state. In practice, this
may not be the case and an iteration may be terminated early when the greedy search to the goal has no
available action.

2A heuristic function is said to be admissible if it never over-estimates the optimal cost of reaching the
goal.

48



Algorithm 3 RTDP-Bel

Inputs: Initial belief b0, admissible heuristic h,
explicit motion/observation models T, Z

1: repeat
2: b← b0 ⊲ start iteration with initial belief
3: Sample state s with probability b(s)
4: repeat
5: Evaluate q(ba) for each action a using Eq. 2.5

⊲ initialize v(bao) to h(bao) if not initialized
6: Select best action a ⊲ a minimizes q(ba)
7: Update v(b) to q(ba)
8: Sample next state s′ ⊲ uses motion model T
9: Sample observation o

⊲ uses observation model Z
10: compute bao and set b← bao, s← s′

11: until bao is the goal belief
12: until Converged()

functions. One algorithm that uses this idea is Multi-Heuristic A* (MHA*) [5], which

takes in a single admissible heuristic called the anchor heuristic, as well as multiple (pos-

sibly) inadmissible heuristics. For each heuristic, it runs an A*-like search, and the ex-

panded nodes of each search are shared among all searches. This allows to automatically

combine the guiding powers of the different heuristics in different stages of the search

(for different applications of MHA*, see, e.g., [74, 75, 76]).

MHA* uses the so-called anchor test to evaluate the heuristic value of a state s. Specifically,

given some ε > 1, admissible and inadmissible heuristics hanchor and hinad, respectively,

the algorithm uses hinad for a state s only if g(s)+hinad(s) 6 g(s)+ ε ·hanchor(s). Here g(s)

represents the cost to reach state s from the initial state (also known as the cost-from-

start). It can be shown that using the anchor test, the cost of solutions obtained by MHA*

are no more than ε the cost of the optimal solution.
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5.3 Partially Observable Multi-Heuristic Dynamic Pro-

gramming (POMHDP)

5.3.1 Key Ideas

Our algorithm can be seen as an adaptation of RTDP-Bel. The first set of modification,

which is the key contribution of this work, is concerned with how the heuristic function is

used (Alg. 3, Line 5). The second set of modification, which we consider a (non-trivial)

implementation detail is concerned with relaxing the algorithm’s requirement to use

explicit transition models (Alg. 3, Lines 5,8,9) and using a particle representation of belief

states. We omit further details and refer the reader to the appendix for detailed pseudo-

code describing the complete algorithm using a generative model.

The first set of modifications makes use of the following key ideas:

I1. Inflation of heuristic value.

I2. Incorporating one inadmissible heuristic with one admissible heuristic.

I3. Incorporating several inadmissible heuristic with one admissible heuristic.

As we will see shortly, ideas I1 and I2 are used to heuristically improve how fast the path

constructed by the algorithm in each iteration reaches the goal belief. These improve-

ments come at the price of convergence to a policy that is within a given bound of the

optimal policy.

Idea I3 is motivated by the insight that a single heuristic may drive the search into a

region of the belief space where it may be very hard to reach the goal belief. Roughly

speaking, this is because the heuristic value is in stagnation (see, e.g., [76, 77])—namely, it

is uninformative. In this case we would like to use an alternative heuristic. The best state

to expand chosen by the alternative heuristic will generally not be the state considered

by the current heuristic. This means that each iteration will now be a tree in belief space

rooted at the initial belief and the search will end when one state of the tree reaches the

goal belief. For visualization of the approach, see Fig. 5.2.
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Figure 5.2: Illustration of forward search with a single (a, b) and multiple (c) heuristics. (a) Forward
search with single heuristic reaches the goal, (b) Forward search with single heuristic gets stuck at local

minima. (c) Forward search with multiple heuristics can switch from one heuristic to another until
reaching the goal. Yellow and green regions represent the reachable belief space from the start and the

explored belief space by the forward search, respectively.

5.3.2 Using an Inadmissible Heuristic (I1 & I2)

Let hanchor and hinad be admissible and inadmissible heuristics, respectively and let

ε1, ε2 > 1 be some constants.

Instead of using only the admissible heuristic for value function initialization as in

RTDP-Bel (Alg. 3, Line 5), we inflate the admissible heuristic by ε1 (Idea I1). Instead

of choosing the best action according to the admissible heuristic as in RTDP-Bel (Alg. 3,

Line 6), we perform the anchor test (Idea I2).

This requires (i) storing for each state two Q-values (one for the admissible heuristic and

one for the inadmissible one) and performing the anchor test. For pseudocode depicting

how line 6 in Alg. 3 is now implemented, see Alg. 4.

Roughly speaking, Idea I1 is analogous to the way weighted A* [78] uses an inflated

heuristic and Idea I2 follows the way MHA* ensures bounded sub-optimality (see

Sec. 5.2.2).

5.3.3 Using Multiple Inadmissible Heuristics (I3)

To make use of multiple (inadmissible) heuristics we need (i) a principled way to stop

using one (inadmissible) heuristic and start using another (inadmissible) heuristic and
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Algorithm 4 Select Best Action

Inputs: current belief b, admissible heuristic hanchor,
inadmissible heuristic hinad, approx. factor ε2

1: ainad = argmina∈A qinad(b
a) ⊲ ba = Succ(b, a)

2: aanchor = argmina∈A qanchor(b
a) ⊲ ba = Succ(b, a)

3: if qinad(b
ainad) 6 ε2 · qinad(b

aanchor) then
4: return bainad

5: return baanchor

Algorithm 5 Is In Stagnation

Inputs: previous state v-value vpred,
inadmissible heuristic hinad, previous diff. ∆v

1: qsucc = mina∈A qih(b
a) where ba = Succ(b, a)

2: ∆v ← η∆v + (qsucc − vpred)
3: if ∆v > 0 then
4: return true

5: return false

(ii) a principled way to choose which state do we want to sample from once we switch

to a new (inadmissible) heuristic.

We choose to stop using one (inadmissible) heuristic when we detect that it is no longer

informative, or in stagnation. There are many ways to define heuristic stagnation (see

e.g., [76]). Here, we adopted the concept of momentum in stochastic gradient de-

scent [79]. For pseudo code, see Alg. 5.

To choose which state to sample from once we switch to a new (inadmissible) heuristic,

we maintain a priority queue, OPENi, of belief-action pairs for each heuristic hi
3. Belief-

action pairs in OPENi are ordered according to the sum of the cost-from-start and cost-

to-goal for i-th heuristic, i.e., Key(ba, i) = g(ba) + qi(b
a).

When we switch to a new (inadmissible) heuristic hi, we find the belief-action pair with

the minimal key in OPENi. To ensure that the iterative forward search yields bounded

suboptimal solutions, we apply the anchor test between this belief-action pair and the

one with the minimal key in OPEN0. Furthermore, to guarantee that the algorithm con-

3In addition to OPENi, we also maintain two lists, denoted by CLOSEDanchor and CLOSEDinad, for the
anchor heuristic and the inadmissible heuristics, respectively to detect duplicates. We omit discussing
these lists for clarity of exposition and refer the reader to the description of MHA* [5] for further details.
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Figure 5.3: Illustration of the anytime behavior of POMHDP. After the first iteration of forward search
(Fig. 5.2c), we gradually relax the search space bounds (Alg 6, Line 18) and run another forward search

to improve the solution.

verges to optimal solution, we decrease the approximation factors, ε1 and ε2, between

iterations. For visualization, see Fig. 5.3.

A high-level description of the algorithm is provided in Alg. 6. Lines where the algo-

rithm differs from RTDP-Bel (Alg. 3) are marked in magenta.

5.3.4 POMHDP—Theoretical Properties

In this section we highlight the theoretical properties of POMHDP and provide sketches

of proofs for these properties.

Recall that RTDP, which performs asynchronous dynamic programming on an MDP,

provides asymptotic convergence to the optimal policy given an admissible heuris-

tic [40]. RTDP-Bel, which approximates a POMDP problem as a belief MDP through

belief discretization, similarly provides asymptotic convergence to a resolution-optimal

policy [18]. For the following theoretical analysis, we consider the optimality in belief

MDP as an alternative to the resolution-optimality in POMDP (approximated by belief

discretization or particle representation). Note that the resolution-optimal policy con-

verges to the optimal POMDP policy as the discretization decreases or the number of

particles for belief state respresentation increases [43].

1. RTDP-Bel using Idea I1 asymptotically converges to ε1-suboptimal policy. In

belief MDPs, a cost-to-goal for each belief state can be decomposed as v(b) =

53



Algorithm 6 POMHDP-explicit

Inputs: Initial belief b0, admissible anchor heuristic h0,
nh − 1 additional heuristics h1, . . . hnh

approx. factors ε1, ε2 decaying const. α
explicit motion/observation models T, Z

1: repeat
2: b← b0 ⊲ start iteration with initial belief
3: ∀i,OPENi ← ∅;

⊲ start iteration with empty queues
4: curr← 1 ⊲ index of inadmissible heuristic
5: Sample state s with probability b(s)
6: repeat
7: Evaluate q0(b

a), qcurr(b
a) for each action a

⊲ initialize vi(b
ao) to ε1 · hi(b

ao) if not initialized
⊲ updates OPEN0 and OPENcurr

8: if Is In Stagnation then ⊲ Uses Alg. 5
9: Switch Heuristic ⊲ updates curr

10: Select Best Action a
⊲ runs anchor test OPENcurr’s and OPEN0’s head

11: else
12: Select Best Action a ⊲ Uses Alg. 4

13: Update v0(b) to q0(b
a) and , vcurr(b) to qcurr(b

a)
14: Sample next state s′ ⊲ uses motion model T
15: Sample observation o

⊲ uses observation model Z
16: compute bao and set b← bao, s← s′

17: until bao is the goal belief
18: ε1 ← ε1e

−α; ε2 ← ε2e
−α

⊲ decrease approx. factors
19: until Converged()

vg(b) + ε1 · vh(b), where vg(b) and vh(b) are initialized to zero and an admissi-

ble heuristic value h(b), respectively [33, 80]. Eq. (2.4) can also decomposed into

vg(b) = c(bi, a) +
∑

b′∈B τ(b, a, b
′)vg(b

′) and vh(b) =
∑

b′∈B τ(b, a, b
′)vh(b

′). Through

iterative forward search, vg(bg) = vh(bb) = 0 for the goal belief is back-propagated

to the predecessors, and once converged, v(b) = vg(b) and vh(b) = 0 are satisfied

for each belief. Due to the greedy action selection scheme and inflated heuristic

initialization, the forward search is biased to the heuristic guidance, and vg(b) can

be suboptimal but bounded by a factor of ε1.
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2. RTDP-Bel using Idea I2 asymptotically converges to ε2-suboptimal policy. An

inadmissible heuristic cannot provide any theoretic guarantees by itself, but with

the anchor test (Alg. 4, Line 3) it can be incorporated in the forward search guid-

ance without loss of theoretic guarantees. The anchor test allows the inadmissible

heuristic to be used for action selection only if its cost-to-goal estimate is not ε2-

times larger than that of the admissible heuristic. This action selection scheme

provides suboptimality bounds by a factor of ε2, locally, i.e., from the current be-

lief to the goal belief. By backward induction from the goal belief with the true

v(bg) = 0, the iterative forward search can be shown to provide ε2-suboptimality

in the global sense.

3. POMHDP asymptotically converges to the optimal policy. POMHDP leverages

both of ε1-inflation of heuristics (Idea I1) and ε2-factored anchor test (Idea I2).

In addition, it makes use of stagnation detection and rebranching over multiple

heuristics (Idea I3). Note that rebranching helps to avoid stagnation during the

forward search and effectively reach the goal, and does not affect the theoretical

suboptimality bounds since it has no distinction with the usual evaluation and

update step in terms of asynchronous dynamic programming. As a result, POMHDP

converges to ε1 · ε2-suboptimal solution for constant ε1 and ε2. With the step de-

creasing ε1 and ε2 (Alg. 6, Line 18), POMHDP converges to the optimal solution.

5.4 Illustrative Example

Fig. 5.4 illustrates how POMHDP works on a simplified truck unloading problem. In this

toy example, there is a stack of boxes in a truck, and the goal is to remove all the boxes

from the truck. Box masses are unknown and unobservable— according to the prior

belief, the boxes are heavy with a 60 % chance and light with a 40 % chance.

There are three available actions for the truck unloader robot; pickup high (a1),

pickup low (a2), and scoop (a3). The first two actions are to pick up boxes using its

arm and release them onto the conveyor belt to remove them from the truck, where

pickup high and pickup low try to pick up boxes from the 4th row and 2nd row, respec-
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Figure 5.4: A toy example for truck unloading. POMHDP conducted a forward search using one
admissible heuristic and two inadmissible heuristics in the following order:

b0→b2→ (heuristic switch; rebranch)→b1→b11→bg . Heuristic switch and rebranching of the forward
search helped to get out of the stagnation quickly and reach the goal. (The optimal cost-to-goal values in

red color are presented just for reference.)

tively. The third action is to use its scooper to lift boxes from the floor and pull back using

the conveyor belts. The cost of each action is two, two, and three, respectively (here, a

scoop action costs more than a pick action as it requires moving the base of the robot

which takes more time than only moving the end effector).

Due to the unobservable box masses, transition between belief states is stochastic. If the

boxes are light (ol), pickup high or pickup low can lift four boxes in each column of the
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stack, but if they are heavy (oh), only two boxes in each column can be lifted. Regardless

of the box masses (ohl), scoop is not successful if the number of boxes in each column

is larger than two (scooping more than two boxes causes them to fall to the sides of the

robot, which in turn, requires manual intervention).

For this truck unloading problem, we have one admissible heuristic, h0(b), and two in-

admissible heuristics, h1(b) and h2(b) as follows.

h0(b) =







3 (∀b ∈ B\{bg})

0 (b = bg)
(5.1)

h1(b) = E[(# of all boxes left)] (5.2)

h2(b) = E[3·max(# of boxes in each column)] (5.3)

where hi(b) =∞ for ∀i if there is any box fallen out of the robot. h0(b) refers to a trivially

admissible heuristic which assumes a one-time scoop action can unload the all boxes.

h1(b) and h2(b) are simple heuristic functions that depend on the configuration of re-

maining boxes and take average of them over the sampled states in the belief.

As shown in Fig. 5.4, the first forward search starts from the initial belief, b0, with the

heuristic reference index, ih = 1. Let us assume ε1 = 1, ε2 = 5, and η = 0. After eval-

uating the successor belief-action pairs, ba20 with q1 = 6.8 seems to be the best among

the successors. Note here that vi(b) is initialized by ε1 ·hi(b). When sampling a succes-

sor belief from ba20 , b2 is selected for the next evaluation. However, it turns out that all

the successor belief-action pairs of b2 have higher q1-values than ba20 , which means the

forward search is in stagnation.

Thus, the forward search rebranches from the best belief-action pair in OPEN2, which

is ba10 , after switching ih to 2. After the evaluation, ba21 with q2 = 5 is chosen for the next

iteration. When b11 is sampled and evaluated, the successor of ba311 , i.e., b16, reaches the

goal, and then the first forward search terminates. Note that in Fig. 5.4 the updated vi(b)

and qi(b
a) are not visualized due to the space limit, and the optimal v∗(b) and q∗(ba) are

added for the reference.

In this simple example, the solution policy has converged to the optimal after the first
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forward search (with the expected cost-to-goal of 7), thanks to the heuristic switch and

rebranching. Without rebranching, it would need at least two iterations (more specifi-

cally, until ε2 decreases enough to expand ba10 based on the admissible heuristic).

5.5 Simulation Results

In this section, we present simulation results in the truck unloader domain to demon-

strate the efficacy of the proposed framework. Note that the results in other robotic

applications are not included in this paper due to the space limit.

5.5.1 Problem Description

The truck unloader problem—a robot needs to remove boxes from a truck, where there is

only limited prior information about the box dimensions and masses—is a highly com-

plex, real-world domain. It is in continuous action/observation space with high stochas-

ticity especially when handling the boxes.

We formulated this problem as a Goal POMDP. A state s = (Tr, q
1:16
r , {Tb, lb, mb}1:Nb

) ∈

S is a tuple of the robot base pose, Tr, and joint configuration, q1:16r , and the pose, Tb,

dimensions, lb, and mass, mb, of Nb boxes. Note that the box mass is unknown and

unobservable. Then a belief state b = {s}1:Npart ∈ B is presented by a set of sampled

states, i.e., particles. The goal condition is satisfied when all the boxes are out of the

truck in all (or almost by a certain threshold) particles.

The action space is discretized into 12 macro actions, such as pickup high left,

pickup low right, or scoop, considering the frequent motions during the truck unload-

ing operations. The observation space is also discretized into 18 cases based on the box

poses, such as box pile midhigh left, box pile low, or box pile none, taking account

of the macro action’s capability. In the presented simulation results, we assume that

we have access to the exact box poses instead of estimating them from simulated visual

sensor data and a virtual perception module. Note that even with this assumption, the
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unobservable box mass and the added noise to the dynamics simulator make the action

execution to be still very stochastic.

We defined a cost function and multiple heuristic functions in a similar way with the toy

example presented above. The pickup actions have a cost of 2, and the scoop action has

a cost of 3. The admissible and inadmissible heuristic functions used in the evaluation

are the same as in Eq. 5.1-5.3.

5.5.2 Experiment Setup

For evaluation of the proposed work, we first created a simulation model of the truck

unloader system in V-REP simulator from Coppelia Robotics GmbH (Fig. 7.1). Recall

that a dynamics simulator serves as the generative model in our framework. To provide

feasible solutions for the real-world system, high-fidelity simulation is a strong require-

ment, while it induces very expensive computational costs. (The real-time factor of this

simulation model is approximately 0.3.)

As the baseline algorithms, POMCP and a variant of RTDP-Bel were used. POMCP is

considered to be one of the state-of-the-art online POMDP solvers. It intrinsically ac-

cepts generative POMDP models and allows us to initialize the value function using

any (single) heuristic function. Unlike POMHDP, however, it does not bootstrap with

the initialized values during the rollout phase and usually uses a random policy in fa-

vor of unbiased exploration. RTDP-Bel is a heuristic search-based algorithm with a single

heuristic and shown to be competitive to point-based algorithms [18]. However, it cannot

accommodate generative POMDP models, so we used a modified version by our own,

namely RTDP-Part, that uses particle representation of a belief state. In addition to the

admissible heuristic as in Eq. 5.1, we also present the results of RTDP-Part with one of

the inadmissible heuristics in Eq. 5.2-5.3, denoted by RTDP-Part(hi).

Table 5.1: Average time for the first forward search iteration

Algorithm POMCP
RTDP-Part

(h0) (h1) (h2)
POMHDP

Time [min] > 60 1.86 4.83 3.86 6.18
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Figure 5.5: Snapshots of truck unloading task execution based on the solution policy of POMHDP.

5.5.3 Results

As shown in Table 5.1, POMCP took significantly longer time than the other algorithms,

and thus, sufficient data for further statistical analysis could not be collected. This is

because in the initial forward search iteration only the random rollout policy is being

used to select the next action, and thus, it can easily lead to an suboptimal region. Once

it enters a dead-end state, e.g., when a box fell into the side of the robot, there is no action

that the robot can take to recover from it and achieve the goal. Then the forward search

indefinitely keeps expanding in dead-end region.

Fig. 5.6 shows the number of evaluations per each forward simulation iteration, which

can be considered as the effectiveness of guiding the search toward the goal. At the

earlier iterations, POMHDP needs slightly more evaluations because of rebranching be-

havior when falling into stagnation. However, considering the small variance of its eval-

uation numbers over the iterations, the rebranching is shown to provide effectiveness to

guide the search in many different scenarios. Note that RTDP-Part with a single heuris-

tic (especially h0 and h1) suffers from stagnation and requires many evaluations to reach

the goal.

In Fig. 5.7, the number of boxes in different states after executing a solution policy is pre-

sented, where the anytime performance of each algorithm can be inferred from. Com-

pared to RTDP-Part(h0), RTDP-Part(h1) is relatively conservative (many boxes are not

unloaded), so that the solution would not lead to a dead-end. RTDP-Part(h2) is rather
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Figure 5.6: Number of evaluations over the forward search iterations by RTDP-Part with an individual
heuristic, and POMHDP with multiple heuristics, respectively.

aggressive to achieve the goal (more boxes unloaded), but may fall into a dead-end.

POMHDP automatically takes advantage of multiple heuristics and achieves higher num-

ber of unloaded boxes, while reducing the chance of failures.

5.6 Summary and Discussion

In this paper, we proposed a novel belief space planning framework that leverages mul-

tiple inadmissible heuristics to solve Goal POMDPs with an infinite horizon. Multiple

heuristics can provide effective guidance of the forward search even in the case that

the heuristics are possibly uninformative and suffer from search stagnation. From the

condition check with an admissible heuristic, it can still guarantee the asymptotic con-

vergence of the suboptimality bounds of the solution. It is an anytime algorithm which

can improve the solution quality as time permits by relaxing the search space bounds.

The simulation results showed that this approach is also empirically meaningful and

can outperform the state-of-the-art methods in robotic problems that can be modeled as

Goal POMDPs.
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Figure 5.7: Number of boxes in different states (unloaded, not unloaded, or dead-ended) after executing
a solution policy obtained from each number (on the x-axis) of the forward search iterations.

An interesting extension of this work is the online planning version that interleaves re-

planning and execution. Online POMDP solvers usually have a finite but receding hori-

zon, so they are subject to the local minima problem. Thus, multiple heuristics can be

more beneficial to alleviate that problem and achieve better performance.

Another promising revenue of future research is to incorporate the heuristics suggested

in the point-based approaches. For example, a heuristic that guides the forward search

to the region with a larger gap between the upper and lower bounds can be used as

one of inadmissible heuristics in our framework. It would be interesting to investigate

the synergetic effects when different approaches in belief space planning are combined

together.
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5.A Appendix: Detailed Pseudocode

We present a detailed description of POMHDP, including how we use a particle represen-

tation of beleif states. The pseudocode of POMHDP is presented in Alg. 7 and detailed

in Alg. 8-14. To incorporate multiple heuristics, we maintain the value function and the

Q-value function for each heuristic, denoted by vi(b) and qi(b) for i = 0, ..., nh, respec-

tively. Note that we have access to one admissible heuristic (with index i = 0) and nh

inadmissible heuristics.

After the initialization, POMHDP iterates the forward search (line 6-23) until the conver-

gence or timeout. Starting from the given initial belief b0, the forward search 1) evaluates

the successor beliefs, 2) backs up (update) the value function, and 3) choose the next be-

lief state to repeat these steps until reaching the goal belief. Once each forward search

terminates, i.e., reaches the goal, ε1 and ε2 values are reduced exponentially (line 24).

During the evaluation step, successor belief states are generated using a generative

model (a black box simulator) if not yet done (line 3-20 in Alg. 10). Then qi(b
a) for the

current belief b and possible action a pair is updated as in (2.5) (line 26 in Alg. 10). The

minimal qi(b
a) over ∀a ∈ A is used to set vi(b) in the backup step (Alg. 11).

At the end of the evaluation step, the algorithm inserts or updates the intermediate

belief-action pair ba ∈ B
A in OPEN0 and/or OPENi for i = 1, ..., nh if some conditions are

met (line 30-35 in Alg. 10). OPENi here denotes a priority queue for each heuristic sorted

by key values defined as in line 2 in Alg. 10. Notice that POMHDP maintains multiple

priority queues for the heuristics, while RTDP-Bel with a single heuristic does not have

any.

This is for rebranching when the forward search falls into stagnation. When choosing the

next belief to evaluate and back up, the algorithm first checks for stagnation which implies

that the cost-to-goal along the forward search is not decreasing (Alg. 8). In such a case,

it switches the heuristic reference index ih to another in a round-robin fashion (Alg. 9),

and then invokes OPENih to choose the belief with the minimal key value (Alg. 12). This

is referred to as rebranching since the forward search stops growing the current belief
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Algorithm 7 POMHDP::Main

1: procedure Main()

2: g(b0) = 0; g(bg) =∞ ⊲ cost-from-start
3: for i = 0, ..., nh do
4: vi(b0) = hi(b0); vi(bg) = 0 ⊲ cost-to-goal

5: repeat
6: for i = 0, ..., nh do
7: OPENi ← ∅

8: CLOSEDanchor ← ∅; CLOSEDinad ← ∅
9: b← b0; ih ← 1; ∆v ← ∆v0

10: while ¬ReachedGoal(b, bg) do
11: vpred ← vih(b)
12: Evaluate(b)
13: Backup(b)
14: if OPEN0 = ∅ then
15: break
16: if CheckStagnation(vpred, ih) or
17: GetSuccs(b) = ∅ then
18: ih ← SwitchHeuristic(ih)
19: ba

∗

← NextBelActFromOPEN(ih)
20: ∆v ← ∆v0
21: else
22: ba

∗

← NextBelActFromSuccs(b,ih)

23: b← SampleBeliefFromBelAct(ba
∗

)

24: ε1 ← ε1e
−α; ε2 ← ε2e

−α

25: until Converged() or Timeout()

Algorithm 8 POMHDP::CheckStagnation

1: procedure CheckStagnation(vpred, b, ih)
2: qsucc = mina∈A qih(b

a) where ba = Succ(b, a)
3: ∆v ← η∆v + (qsucc − vpred)
4: if ∆v > 0 then
5: return true

6: else
7: return false

Algorithm 9 POMHDP::SwitchHeuristic

1: procedure SwitchHeuristic(ih)
2: ih ← mod(ih, nh) + 1 ⊲ round-robin
3: return ih
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tree branch and restarts in the middle of the existing branch(es). On the other hand, if

the forward search is not in stagnation and has more than one valid successor belief-

action pairs, the algorithm selects the best one with the minimal cost-to-goal among the

successors (Alg. 13), which results in growing the current branch.

When choosing the belief-action pair with the minimal key value or cost-to-goal value,

we have a certain condition called anchor check (line 2 in Alg. 12 and line 5 in Alg. 13,

respectively). It basically compares the best candidates according to the admissible and

inadmissible heuristic and decides which one to use. If the key value or cost-to-goal of

the inadmissible’s candidate is not larger (i.e., worse) than that of the admissible’s one

multiplied by ε2, the inadmissible’s candidate is used. Otherwise, admissible’s one is

used. In fact, Alg. 12 and 13 are mostly equivalent except that the former considers the

whole belief tree from the start, while the latter considers only the partial tree rooted at

the current belief. The myopic action selection scheme in Alg. 13 may not lead to the

optimal solution at first but is still effective for asymptotic convergence to the optimal

over the iterative forward search. The action selection in Alg. 12 is non-myopic and may

find a better path from the start to a certain belief, but rebranching at every time does not

provide a good convergence rate in practice because it takes more time to reach the goal

which is the only belief with the true cost-to-goal (trivially, V ∗(bg) = 0) at the beginning.

Once a belief-action pair ba ∈ B
A is selected, POMHDP samples an observation and gets a

corresponding successor belief b ∈ B for the next evaluation/backup iteration (Alg. 14).
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Algorithm 10 POMHDP::Evaluate

1: procedure Key(ba, i)
2: return g(ba) + qi(b

a)

3: procedure Expand(b)
4: for all a ∈ A do
5: for all o ∈ O do
6: bao ← ∅
7: for Npart times do
8: s ∼ b
9: (s′, o′) ∼ G(s, a) ⊲ G: generative model

10: for all o ∈ O do
11: if o = o′ then
12: bao ← bao ∪ {s′}

13: for all o ∈ O do
14: Succ(ba, o) = bao

15: τ(b, a, bao) = |bao|
|b|

⊲ transition probability

16: g(bao) =∞
17: for i = 0, ..., nh do
18: vi(b

ao) = ε1 ·hi(b
ao)

19: Succ(b, a) = ba

20: g(ba) = g(b)

21: procedure Evaluate(b)
22: if b was never expanded then
23: Expand(b)

24: for all a ∈ A do
25: for i = 0, ..., nh do
26: qi(b

a) = c(b, a) +
∑

o∈O τ(b, a, bao) vi(b
ao)

⊲ cost-to-goal when taking action a
where ba = Succ(b, a) and bao = Succ(ba, o)

27: for all o ∈ O do
28: if g(bao) > g(b) + c(b, a) then
29: g(bao) = g(b) + c(b, a)

30: if ba /∈ CLOSEDanchor then
31: Insert/update ba in OPEN0 with Key(ba, 0)
32: if ba /∈ CLOSEDinad then
33: for i = 1, ..., nh do
34: if Key(ba, i) 6 ε2 ·Key(ba, 0) then
35: Insert/update ba in OPENi with

Key(ba, i)
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Algorithm 11 POMHDP::Backup

1: procedure Backup(b)
2: for i = 0, ..., nh do
3: q

i
= mina∈A qi(b

a) where ba = Succ(b, a)
4: vi(b) = q

i

Algorithm 12 POMHDP::NextBelActFromOPEN

1: procedure NextBelActFromOPEN(ih)
2: if OPENih.MinKey() 6 ε2 ·OPEN0.MinKey() then
3: ba ← OPENih.Top()

4: Insert ba in CLOSEDinad

5: else
6: ba ← OPEN0.Top()

7: Insert ba in CLOSEDanchor

8: Remove ba from OPENi for ∀i = 0, ..., nh

9: return ba

Algorithm 13 POMHDP::NextBelActFromSuccs

1: procedure NextBelActFromSuccs(b, ih)
2: ainad = argmina∈A qih(b

a) where ba = Succ(b, a)
3: aanchor = argmina∈A q0(b

a) where ba = Succ(b, a)
4: q

inad
= qih(b

ainad); q
anchor

= q0(b
aanchor)

5: if q
inad

6 ε2 ·qanchor
then

6: return bainad

7: else
8: return baanchor

Algorithm 14 POMHDP::SampleBeliefFromBelAct

1: procedure SampleBeliefFromBelAct(ba)
2: o ∈ O ∼ τ(b, a, baooo)
3: bao ← Succ(ba, o)
4: return bao

67



68



Chapter 6

Extension: Online-Offline Combination

for Scalability

6.1 Motivation

Consider a scenario where an autonomous mobile robot (e.g., a rover or flying drone)

needs to navigate through an obstacle-laden environment under both motion and sens-

ing uncertainty. In spite of these uncertainties, the robot needs to guarantee safety and

reduce the risk of collision with obstacles at all times. This, in particular, is a challenge

for safety-critical systems and fast moving robots as the vehicle traverses long distances

in a short time horizon. Hence, ensuring system’s safety requires risk prediction over

long horizons.

The above-mentioned problem is an instance of general problem of decision-making

under uncertainty in the presence of risk and constraints, which has applications in dif-

ferent mobile robot navigation scenarios. In particular, in this work, we focus on a chal-

lenging class of POMDPs, here referred to as RAL-POMDPs (Risk-Averse, Long-range

POMDPs). A RAL-POMDP reflects some of challenges encountered in physical robot

navigation problems, and is characterized with the following features:

1. Long planning horizons (beyond 104 steps) without cost discounting, i.e., safety is
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Figure 6.1: Illustration of bi-directional value learning. For a given belief space, the first thread expands
forward value space from the start as its belief tree grows. This provides a near-optimal local policy. The
second thread constructs backward value space connected to the goal by solving belief MDP in a sampled

subspace. This returns an approximate global policy which can be used to guide the forward search.

equally critical throughout the plan. In RAL-POMDP, the termination of the plan-

ning problem is dictated by reaching the goal (terminal) state rather than reaching

a finite planning horizon.

2. RAL-POMDP is defined via high-fidelity continuous state, action, and observation

models.

3. RAL-POMDP incorporates computationally expensive costs and constraints such

as collision checking.

4. RAL-POMDP requires quick policy updates to cope with local changes in the risk

regions during execution.

In recent years, value learning in partially observable settings has seen impressive ad-

vances in terms of the complexity and size of solved problems. There are two ma-

jor classes of POMDP solvers (see Fig. 6.1). The first class is forward search methods

[24, 30, 43, 81]. Methods in this class (offline and online variants) typically rely on for-

ward simulations to search the reachable belief space from a given starting belief and

learn the value function. Partially Observable Monte Carlo Planning (POMCP) [43],

DESPOT [46], and ABT [82] are a few examples of recent methods in this class that can

efficiently learn and update the policy while executing a plan using Monte Carlo simu-

lation. The second class is approximate long-range solvers [9, 83]. These methods typi-

cally address continuous POMDPs but under Gaussian assumption. They typically rely
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on sampling-based graph construction and feedback controllers to solve larger prob-

lems. Through offline planning, they can learn an approximate value function on the

representative (sampled) graph.

The features of RAL-POMDP problems make them a challenging class of POMDPs for

above-mentioned solvers. Forward search-based methods typically require cost dis-

counting and a limited horizon (shorter than 100 steps) to be able to handle the plan-

ning problem. Also, they typically require at least one of the state, action, or observation

space to be discrete. Continuous approximate long-range methods suffer from subop-

timality since actions are generated based on a finite number of local controllers due to

the underlying sparse sampling-based structure.

This work tackles the RAL-POMDP problem induced by fast-moving robot navigation

in safety-critical scenarios. Several seconds of operation can translate to thousands of

decision making steps in these systems. The main objective of this work is to provide

probabilistic safety guarantees for the long-horizon decision making process (beyond

thousands of steps). The second objective of this work is to generate solutions for the

RAL-POMDP that are closer to the globally optimal solution compared to the state-of-

the-art methods. In parallel to these objectives, we intend to satisfy other requirements of

the RAL-POMDP such as incorporating high-fidelity continuous dynamics and sensor

models into the planning.

In this work, we propose Bi-directional Value Learning (BVL) method, a POMDP solver

that searches the belief space and learns the value function in a bi-directional. In the one

thread (can be performed offline) we learn a risk-aware approximate value function back-

wards from the goal state toward the starting point. In the second thread (performed on-

line), we expand a forward search tree from the start toward the goal. BVL significantly

improves the performance (optimality) of the backward search methods by locally up-

dating the policy through rapid online forward search during the actual execution. BVL

also enhances the probabilistic guarantees on system’s safety by performing computa-

tionally intensive processes, such as collision checking, over long planning horizons in

the offline phase.
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6.2 Risk-Averse, Long-Range POMDPs

In this work, we focus on a Risk-Averse, Long-Range POMDP (RAL-POMDP) as a special

case of the above-mentioned POMDP problem. Formally, in a RAL-POMDP, X, U, and Z

are continuous spaces, and f and h represent locally differentiable nonlinear mappings.

There exists a goal termination set Bgoal ⊂ B such that J(bg) = 0 for ∀bg ∈ Bgoal. There

also exists a failure termination setF ⊂ Bwhich represents the risk region (e.g., obstacles

in robot motion planning) such that J(bf ) → ∞ for ∀bf ∈ F . As the risk is critical

throughout the plan, a RAL-POMDP does not allow cost discounting, i.e., γ = 1.

In our risk metric discussion, we follow definitions in [84, 85]. Accordingly, our risk

metric falls in the category of risk for sequential decision making with deterministic

policies, satisfying time-consistency (see [84, 85] for details). Specifically, we formalize

the risk by compounding the failure probability, p(F |b, π(b)) =
∑

bf∈F
p(bf |b, π(b)), of

each action along the sequence. Accordingly, the risk metric of a policy given a belief b0

is measured as follows.

ρ(b0; π) = 1− E

[

∞
∏

k=0

(1− p(F |bk, π(bk))

]

(6.1)

The second term on the right-hand side is the expected probability to reach the goal

without hitting the risk region. Note that ρ(bg; π) = 0 for ∀bg ∈ Bgoal and ρ(bf ; π) = 1 for

∀bf ∈ F for ∀π ∈ Π. It can be rewritten in a recursive form:

ρ(b; π) = 1−
∑

b′∈B

p(b′|b, π(b))(1− ρ(b′; π))

=
∑

b′∈B

p(b′|b, π(b))ρ(b′; π) (6.2)

Now we show that in RAL-POMDPs where J(bf ) = JF → ∞ for ∀bf ∈ F , the optimal

policy π∗ in Eq. (2.7) also minimizes ρ(b; π∗) in Eq. (6.2) for ∀b ∈ B.
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Lemma 6.1. In RAL-POMDPs where JF →∞ and γ = 1, the following is satisfied for ∀b ∈ B.

ρ(b; π) = lim
JF→∞

J(b; π)

JF
(6.3)

Proof. We prove this by backward induction.

Consider the terminal beliefs first. Trivially, from Eq. (2.3) and Eq. (6.1), ρ(bg; π) =

limJF→∞
J(bg ;π)

JF = 0 for ∀bg ∈ Bgoal, and ρ(bf ; π) = limJF→∞
J(bf ;π)

JF = 1 for ∀bf ∈ F . Thus,

Eq. (6.3) is satisfied for terminal beliefs.

Next, consider a belief such that its every successor is either bg ∈ Bgoal or bf ∈ F , i.e.,
∑

bg∈Bgoal p(bg|b, π(b)) +
∑

bf∈F
p(bf |b, π(b)) = 1. Then from Eq. (6.2),

ρ(b; π) =
∑

bf∈F

p(bf |b, π(b)) · 1 (6.4)

and from Eq. (2.4) with γ = 1 we have:

lim
JF→∞

J(bf ; π)

JF
= lim

JF→∞

∑

bf∈F
p(bf |b, π(b)) · J

F

JF
(6.5)

Thus, all such belief b satisfies Eq. (6.3).

Now we consider a belief b such that its all successors {b′|b, π(b)} satisfy Eq. (6.3). By

injecting Eq. (6.3) for the successors into Eq. (6.2),

ρ(b; π) =
∑

b′∈B

lim
JF→∞

p(b′|b, π(b))
J(b′; π)

JF
(6.6)

By dividing Eq. (2.4) by JF ,

lim
JF→∞

J(b; π)

JF
= lim

JF→∞

1

JF

∑

b′∈B

p(b′|b, π(b))J(b′; π) (6.7)

Thus, it satisfies Eq. (6.3).

Finally, by backward induction, Eq. (6.3) is satisfied for ∀b ∈ B in RAL-POMDPs.
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Theorem 6.1. In RAL-POMDPs where JF → ∞ and γ = 1, the optimal policy π∗ that mini-

mizes J(b; π∗) also minimizes ρ(b; π∗) for ∀b ∈ B.

Proof. First, we can rewrite Eq. (2.7) as follows for RAL-POMDPs where JF →∞.

π∗(b) = argmin
π∈Π

lim
JF→∞

J(b; π), ∀b ∈ B (6.8)

By dividing the objective function in Eq. (2.7) by a constant JF , we have:

π∗(b) = argmin
π∈Π

lim
JF→∞

J(b; π)

JF
, ∀b ∈ B (6.9)

Then by Lemma 6.1, we prove the theorem.

π∗(b) = argmin
π∈Π

ρ(b; π), ∀b ∈ B (6.10)

6.3 Bi-directional Value Learning (BVL)

6.3.1 Algorithm

6.3.2 Structure of Bi-directional Value Learning

Figure 6.2 conceptually shows how the combination of forward short-range and back-

ward long-range planners works. When merging these two classes of methods the over-

all cost-to-go (or value) consists of three terms: 1) cost learned by the short-range plan-

ner Csr, 2) cost learned by the long-range planner C lr, and 3) cost learned by the bridge

planner that connects the short-range policy to the long-range policy Cbr.

π(·) = argmin
Π

E [Csr(bsr; π(·))

+ Cbr(bbr, π(·)) + C lr(blr, π(·))
]

(6.11)
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In the following section, we formally develop the above combined policy with a concrete

instance of bi-directional long-short-range POMDP solvers.

6.3.3 FIRM: Approximate Long-Range Planner

FIRM is an approximate long-range planner which utilizes sampling-based roadmap in

belief space and feedback controllers as funnels in belief space [9]. It has the following

characteristics.

1. It assumes a Gaussian belief model to alleviate the curse of dimensionality by its

parametric representation.

2. It creates a graph in belief space where a belief state can stabilize to its nodes by

local feedback controllers, so that it can break the curse of history.

3. A global policy to the goal is obtained by concatenating the local policies between

the nodes on the graph.

Now we formally describe FIRM’s components and its global policy. We define the i-

th FIRM node Bi as a set of belief states near a center belief bic ≡ (vi, P i
c), where vi is a

sampled point in state space and P i
c is the node covariance. Nearby belief states can be

steered to this node by a local controller.

Bi = {b : ||b− bic|| 6 ǫ} (6.12)

where ǫ decides the node size. Vg = {Bi} is the set of all FIRM nodes.

For each FIRM node Bj , a node controller (stabilizer) µj
s can be designed by a Stationary

LQR controller. For each FIRM edge between two FIRM nodes Bi and Bj , an edge con-

troller µ̄ij can be designed by time-varying LQR controllers. Then, by concatenating µ̄ij

and µj
s, we can construct a local controller µij that can steer the belief from Bi to Bj . For-

mally, controller µij is a mapping from the belief space to the action space µij : B → U.

We denote the set of all local controllers as Mg = {µij} and the set of all local controllers

originated from Bi as M(i) ⊂M, respectively.
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A FIRM edge cost is computed by running Monte Carlo simulations from the center

belief state of a FIRM node, bic, to the vicinity of another FIRM node, Bj , using the local

controller, µij .

C̃g(Bi, µij) =
Kij
∑

k=0

c(bk, µ
ij(bk)) (6.13)

where b0 = bic. Kij is the number of time steps controlled by µij until bk reaches Bj by

satisfying (6.12).

A FIRM graph policy is a mapping from FIRM nodes to FIRM edges, π̃g : Vg →M
g, while

a general POMDP policy is a mapping from a belief state to a control input, π : B→ U.

For a FIRM graph policy, an approximate cost-to-go can be computed as follows.

J̃g(Bi; π̃g) = E

[

∞
∑

k=0

C̃g(Bk, π̃
g(Bk))

]

(6.14)

where B0 = Bi. We denote by N(Bi) the set of neighbor FIRM nodes of Bi. Note that

this approximate cost-to-go are computed by concatenating FIRM edge costs that are

separately computed without considering the actual history from the start. Equation

(6.14) can also be rewritten in a recursive form as follows.

J̃g(Bi; π̃g) = C̃g(Bi, π̃g(Bi))

+
∑

Bj∈N(Bi)

P
g(Bj|Bi, π̃g(Bi))J̃g(Bj; π̃g) (6.15)

where P
g(Bj|Bi, π̃g(Bi)) is the transition probability from Bi to Bj under µij = π̃g(Bi).

Then FIRM solves the following optimization problem by value iteration.

π̃g+

(·) = argmin
Π̃g

J̃g(Bk; π̃
g) (6.16)
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(a) Local policy by
a short-range planner
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(b) Global policy by
a long-range planner

Figure 6.2: Illustration of policies (thin arrows) and action selections (thick red arrows) by a forward
short-range planner, a backward long-range planner, and a combined bi-directional long-short-range

planner.

6.3.4 POMCP: Near-optimal Short-Range Planner

POMCP is an online POMDP solver that uses Monte Carlo Tree Search (MCTS) in belief

space and particle representation for belief states [43]. The followings are the POMCP’s

characteristics.

1. It represents a belief state by a set of particles. This state sampling helps to amelio-

rate the curse of dimensionality.

2. It uses MCTS with UCT (Upper Confidence Bound applied to Trees) algorithm to

control the exploration-exploitation trade-off. This history sampling tempers the

curse of history.

3. It can efficiently explore the forward value space considering the actual history due

to its forward simulation strategy and balancing between exploration-exploitation.

POMCP’s action selection during forward simulation is governed by two policies: a tree

policy within the constructed belief tree, and a rollout policy out of the tree but up to

the finite discount horizon.
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Algorithm 15 GlobalSetup()

parameters:
Nmc: the number of Monte Carlo simulations
Ksr: short-range planner’s fixed horizon
Kbr

max: bridge planner’s maximum horizon limit
ηq : constant for exploration bonus in a tree policy
ηw: constant for exploration bonus in a rollout policy

global variables:
V

g = {Bj}: a set of FIRM nodes

J̃g(Bj): cost-to-go of Bj ∈ V
g

T = {b}: a set of belief states on POMCP tree
J(b): cost-to-go of b ∈ T

N(b): visitation count of b ∈ T

Q(b, u): Q-value for b ∈ T and u ∈ U

N(b, u): visitation count for b ∈ T and u ∈ U

M(b) = {µ·j}: a set of local controllers for b ∈ T

The tree policy selects an action based on PO-UCT algorithm as follows.

Q⊖(b, u) = Q(b, u)− ηq

√

log(N(b))

N(b, u)
(6.17)

u∗ = argmin
u∈U

Q⊖(b, u) (6.18)

where Q(b, u) is defined in (2.5), and N(b) and N(b, u) are the visitation counts for a

belief node and an intermediate belief state-action node, respectively. ηq is a constant for

exploration bonus in the tree policy. As ηq gets larger, PO-UCT will be more explorative

in action selection.

The rollout policy can be a random policy if there is no domain knowledge available.

Otherwise, it can choose an action from a preferred action set which is pre-defined

heuristically but without any sense of the global policy. A balanced setup of tree pol-

icy and rollout policy helps POMCP to efficiently explore the belief space and learn the

values.

After each Monte Carlo simulation, Q(b, u) is updated by the following rule.

Q′(b, u) = Q(b, u) +
R−Q(b, u)

N(b, u)
(6.19)

where Q′(b, u) denotes the updated Q(b, u) value.
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Algorithm 16 OfflinePlanning()

input:
Xfree: free space map
bgoal: a goal belief state

output:
V

g : a set of FIRM nodes
J̃g(Bj): cost-to-go of a FIRM node, Bj ∈ V

g

Bgoal: a goal FIRM node
1: procedure OfflinePlanning()
2: Sample PRM nodes V = {vj} s.t. vj ∈ Xfree

3: vgoal ← m̂goal, where bgoal = (m̂goal, P̂ goal)
4: V ← V ∪ {vgoal}
5: Construct PRM edges E = {eij}, where eij is an edge from vi to vj ∈ N(vi)
6: for all vi ∈ V do
7: Design a node controller µi

s for vi

8: Construct a FIRM node Bi and its node center bic
9: if vi is vgoal then

10: Bgoal ← Bi

11: for all eij ∈ E do
12: Design an edge controller µ̄ij along eij

13: Sample belief paths from bic to Bj using a local controller µij , i.e., µ̄ij followed by µj
s

14: Compute transition cost C̃g(Bi, µij) and transition probability P
g(Bj |Bi, µij)

15: V
g ← {Bj}

16: Compute cost-to-go J̃g(Bj) and FIRM feedback policy π̃g(Bj)
for Bj ∈ V

g by value iteration
17: return Bgoal

6.3.5 BVL: POMCP on top of FIRM

BVL is a locally-optimal long-range POMDP solver that leverages backward search of

FIRM as well as the forward search of POMCP. Formally, as a concrete instantiation of

(6.11), we can write down the optimization problem for BVL as follows.

π(·) = argminE

[

Ksr−1
∑

k=0

c(bk, πk(bk)) (6.20)

+
Ksr+Kbr−1
∑

k=Ksr

c(bk, π(Ksr−1)(bk)) + J̃g(Bj+ ; π̃g+

)





where Ksr is a fixed horizon for the short-range planner and Kbr is a variable horizon of

the bridge planner such that b(Ksr+Kbr) ∈ Bj+ for Bj+ ∈ N(b(Ksr−1)). The first two terms

are handled by POMCP modified for the long-range planner framework, and the third

term is computed by FIRM during the offline phase.
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Algorithm 17 OnlinePlanningAndExecution()

input:
b0: an initial belief state
Bgoal: a goal FIRM node

output:
R: total execution cost

1: procedure OnlinePlanningAndExecution(b0, B
goal)

2: b ← b0
3: R← 0
4: while b /∈ Bgoal do
5: u∗ ← Search(b)
6: z′ ← ExecuteAndObserve(u∗)
7: b′ ← EvolvedBeliefState(b, u∗, z′)
8: c′ ← ComputeExpectedCost(b, b′)
9: R← R+ c′

10: b ← b′

11: return R

Algorithm 18 Search()

1: procedure Search(b)
2: for i = 1, 2, ..., Nmc do
3: x ∼ b ⊲ draw a sample from belief b
4: Simulate(x, b, 0, nil)

5: b← GetMatchingBeliefNode(T, b)
6: µ∗ ← argminµ·j∈M(b) Q(b, µ·j(b))

7: u∗ ← µ∗(b)
8: return u∗

In the rest of this section, we discuss several aspects of the proposed framework and

contrast them with the original POMCP framework. For the complete details, see Algo-

rithm 15–20.

Bridging POMCP to FIRM: The shortcomings of POMCP in RAL-POMDP problems

mainly come from lack of proper guidance beyond its horizon. In contrast, BVL boot-

straps FIRM’s global policy to guide the forward search and improve the safety guaran-

tees and optimality. There are two places where FIRM’s cost-to-go information is being

used.

1) When we add a new belief node b to the BVL forward search tree, it is initialized using

the cost-to-go from the underlying FIRM graph.

Qinit(b, u
j) = C (b, Bj) + J̃g(Bj) (6.21)

Jinit(b) = min
uj∈U(b)

Qinit(b, u
j) (6.22)
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Algorithm 19 Simulate()

1: procedure Simulate(x, b, k, µ−)
2: if k > Ksr then
3: return Rollout(x, b, k, µ−)

4: b← GetMatchingBeliefNode(T, b)
5: if b is nil then
6: T← AddNewBeliefNodeToTree(T, b)
7: b← b
8: M(b)← {}
9: N(b)← GetNearestNeighbors(b)

10: for all j s.t. Bj ∈ N(b) do
11: µ·j ← GetLocalController(b, Bj∗)
12: M(b)←M(b) ∪ {µ·j}
13: C j ← HeuristicEdgeCost(b, Bj)

14: Q(b, µ·j(b))← C j + J̃g(Bj)

15: J(b)← minµ·j∈M(b) Q(b, µ·j(b))
16: N(b)← 0
17: return Rollout(x, b, k, µ−)
18: else
19: b← UpdateBeliefNode(b, b)

20: µ∗ ← argminµ·j∈M(b) Q(b, µ·j(b))− ηq

√

logN(b)
N(b, µ·j(b))

21: u∗ ← µ∗(b)
22: (x′, z′, c′)← GenerativeModel(x, u∗)
23: b′ ← EvolvedBeliefState(b, u∗, z′)
24: R← c′ + Simulate(x′, b′, k+1, µ∗)

25: N(b, u∗)← N(b, u∗) + 1
26: N(b)← N(b) + 1

27: Q(b, u∗)← Q(b, u∗) + R−Q(b, u∗)
N(b, u∗)

28: J(b)← minµ·j∈M(b) Q(b, µ·j(b))
29: return J(b)

where U(b) = {µ·j(b) |µ·j∈M(b)} and M(b) is a set of local controllers steers a belief from

b to its neighbor FIRM node Bj ∈ N(b). C (b, Bj) is a heuristically estimated edge cost

from b to Bj , and J̃g(Bj) is the cost-to-go computed by FIRM in the offline phase. The

visitation counts are initialized to zeros, i.e., Ninit(b, u
j) = 0 and Ninit(b) = 0. Note that

the action space U(b) is only a subset of the continuous action space which is based on

local controllers toward neighbor FIRM nodes.

2) The rollout policy selects an action by random sampling from a probability mass func-

tion which is based on FIRM’s cost-to-go, rather than a uniform distribution. In more

detail, for each Bj ∈ N(b), the weight wj is computed as

wj = (C (b, Bj) + J̃g(Bj))−1 + ηw (6.23)
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Algorithm 20 Rollout()

1: procedure Rollout(x, b, k, µ−)
2: if k > Ksr then
3: Bj−

← GetTargetFIRMNode(µ−)

4: if b ∈ Bj−

then
5: return J̃g(Bj−

)
6: else
7: µ∗ ← µ−

8: u∗ ← µ∗(b)

9: else
10: N(b)← GetNearestNeighbors(b)
11: for all j s.t. Bj ∈ N(b) do
12: C j ← HeuristicEdgeCost(b, Bj)
13: wj ← 1

C j+J̃g(Bj)
+ ηw

14: j∗ ∼ wj

∑
j′

wj′

15: µ∗ ← GetLocalController(b, Bj∗)
16: u∗ ← µ∗(b)

17: (x′, z′, c′)← GenerativeModel(x, u∗)
18: b′ ← EvolvedBeliefState(b, u∗, z′)
19: return c′ + Rollout(x′, b′, k+1, µ∗)

where b denotes the sampled belief state in the current Monte Carlo simulation. ηw is

a constant for the exploration bonus in the rollout policy. As ηw gets larger, the rollout

policy will be more explorative. ηw = ∞ will lead to pure exploration, i.e., random

sampling from uniform distribution.

Based on the computed weight wj , the rollout policy selects an action by random sam-

pling u∗ ∼ p(uj; b) from the following probability mass function.

p(uj; b) =
wj

∑

j′ w
j′

for ∀uj ∈ U(b) (6.24)

Backup/update of cost-to-go: In the original POMCP, J(b) = minu∈U(b) Q(b, u) in (2.6)

is not backed up or updated due to its preference to unbiasedness. This is reasonable in

dynamic or adversarial environments, such as Go, which are the target scenarios of the

original POMCP [43, 81]. However, lack of J backup leads to higher variance and slower

convergence of Q(b, u).

This problem gets more significant in RAL-POMDP problems with longer horizon with-

out discounting and computationally expensive forward simulation. For example, con-
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sider a scenario where there is a safety risk near to the goal but far from the current state

and the optimal path is to avoid this risk only after the robot gets closer to it. Without

discounting, this delayed risk will percolate to all the values along its forward simulation

path, and then POMCP without J(b) backup will spend a lot of time to simulate many

other paths branched off near the current state. Further, robot simulation and safety

evaluation are orders of magnitude computationally more expensive than the game eval-

uation. Thus, overall, performing many runs and slow convergence is not an option for

applications to complex physical systems.

To remedy this, in BVL, we backup J(b) as described in (2.6) in addition to N(b), N(b, u),

and Q(b, u). As can be seen in line 28 of Algorithm 19, J(b) is updated at every iteration

when Q(b, u) for ∀u ∈ U is updated.

6.4 Experimental Results

In this section, we first define a representative RAL-POMDP problem and a set of met-

rics to evaluate the performance of different planners. Next, we describe three baseline

methods that are compared with the proposed algorithm in terms of safety, scalability,

and optimality under different scenarios.

6.4.1 Rover Navigation Problem

As a representative RAL-POMDP problem, we consider the real-world problem of the

Mars rover navigation under motion and sensing uncertainty. In the Rover Navigation

Problem (RNP) introduced here, the objective is to navigate a Mars rover from a starting

point to a goal location while avoiding risk regions such as steep slopes, large rocks, etc.

The rover is provided a map of the environment which is created by a Mars orbiter satel-

lite [86] and a Mars helicopter [87] flying ahead of the rover. This global map contains

the location of landmarks, which serve as information sources that the rover can use to

localize itself on the global map. The map also contains the location of risk regions that

the rover needs to avoid and regions of science targets which needs to be visited by the
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rover to collect data or samples.

Many robotic navigation problems, in particular Mars rover missions, fall into the cate-

gory of safety-critical missions which induce RAL-POMDP problems. Hence, the plan-

ner should ensure the safety of the rover throughout its execution under motion and

sensing uncertainty.

Motion model: The motion of the rover is noisy due to factors like wheel slippage, un-

known terrain parameters, etc. In the RNP introduced here, we assume a nonlinear

motion model (but still a holonomic one to provide a simple benchmark). Specifically,

we use the model in [88], where the state x = [gx, gy, gθ]T ∈ R
3 represents the 2D po-

sition and heading angle of the rover in the global world frame. Control input u ∈ R
3

represents the velocity of each robot wheel. Using [88], we obtain the discrete motion

model as follows:

xk = f(xk−1, uk−1, wk−1) (6.25)

where w is motion noise drawn from a Gaussian distribution with zero mean.

Observation model: In the RNP, we assume the rover can measure the range and bearing

to each landmark. Denoting the displacement vector to a landmark Li by di = [dix, d
i
y]

T ≡

Li− p, where p = [gx, gy]T is the position of the robot, the observation model is given by:

zi = hi(x, vi) =
[

||di||, tan
−1

(diy/d
i
x)−

gθ
]T

+ vi (6.26)

Ri = diag
(

(ξr||d
i||+ σr

b )
2, (ξθ||d

i||+ σθ
b )

2
)

(6.27)

where vi ∼ N (0, Ri). The measurement quality decreases as the distance of the robot

from the landmark increases, and the weights ξr and ξθ control this dependency. σr
b and

σθ
b are the bias standard deviations.

Cost and risk metrics: In the RNP, we consider the localization accuracy as well as the

mission completion time as the main elements of the cost function. Localization accu-

racy depends on the distribution of landmarks in the global map and their locations

relative to the rover. Risk in RNP denotes the probability of the collision with obstacles,
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which is modeled as a soft constraint. We use the following cost function the reflects the

localization accuracy of the rover:

c(bk, uk) = tr(Pk), J = E

[

∞
∑

k=0

γkc(bk, πk(bk))

]

(6.28)

where ξp = 100, ξu = 0, ξT = 1, and ξc = 109 for the experiments. Note that the total

execution cost of a mission is J(b0, π(·)) =
∑∞

k=0 c(bk, πk(bk)).

RNP scalability: To test different algorithms under different RNP complexities, we pa-

rameterize the Rover Navigation Problem as RNPs(e, o), where e represents the size of

the environment, o represents the size/density of obstacles, and s represents different

environment types. We compare three key attributes (safety, scalability, and optimality)

of each algorithm in three different environments (RNPInformationTrap, RNPObstaclesWall,

and RNPRockForest). A detailed description of these scenarios is given in the following

subsections.

6.4.2 Baseline Methods

As baseline methods, we consider three algorithms. From the class of forward search

methods, we consider the POMCP method [43]. From the approximate long-range meth-

ods, we consider the FIRM [9] and its variant [89] which is referred to as online graph-

based rollout (OGR) here.

FIRM: FIRM is an execution of closed-loop controls returned by FIRM offline planning

algorithm. FIRM relies on belief-stabilizing local controllers at each FIRM node to ame-

liorate the curse of history. Hence, it can solve larger problems, but it is usually subop-

timal compared to optimal online planners.

OGR: OGR is an online POMDP solver that improves the optimality of a base graph-

based method (particularly, FIRM in our implementation). At every iteration, an OGR

planner selects the next action by simulating all different possible actions and picking

the best one. Compared to BVL, OGR expands the belief tree in a full-width but only

for one-step lookahead. While it can improve the performance of its base graph-based
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planner, it is prone to local minima due to the suboptimality in base planner’s cost-to-go

and OGR’s myopic greedy policy. Additionally, OGR discards the performed forward

simulation results in the next iteration, while BVL leverages them at each step to enrich

the underlying tree structure.

URM-POMCP: POMCP lacks in the capability of working in a larger and continuous

space because it has a finite discount horizon and requires a finite action set. To assist

POMCP to solve large and continuous space problems like RAL-POMDP, we extend it to

be able to estimate the cost-to-go beyond the horizon and to discretize the action space

into a finite action set. This extended version is referred to as URM-POMCP (Uniform

RoadMap POMCP).

Firstly, URM-POMCP uses a heuristic cost-to-go function to cope with POMCP’s finite

horizon limitation. Each Monte Carlo simulation in POMCP should be episodic, which

means that each forward simulation should reach either the discounted horizon or ter-

minal states. In RAL-POMDP problems with infinite horizon and a goal state, it is al-

most impossible to satisfy this condition unless it is close to the terminal states. Instead

of computing a cost-to-go by actual forward simulation, URM-POMCP uses a heuristic

function to estimate a cost-to-go from the end of the tree to the goal state. In this work, the

heuristic cost-to-go function J̃(b, x) is implemented as J̃(b, x) ≈ d(b,bg)

∆ẋmax
(ξptr(Pc) + ξT∆t),

where d(b, bg) is the distance from the current belief state to the goal state, ∆ẋmax is the

(estimated) maximum velocity of the rover, and Pc is the stationary covariance for m ∈ X

of the current belief b = (m,P ). This heuristic optimistically assumes that the belief can

reach the goal by following the direct path at the maximum velocity without collision

with the obstacles. It needs to be optimistic, otherwise it will make the planner to prefer

conservative actions such as staying around the landmarks forever rather than moving

toward the goal.

Additionally, URM-POMCP utilizes a uniformly distributed roadmap in belief space to

construct a finite set of actions for POMCP. Each points in the uniformly distributed

roadmap serves as the target point of a time-varying LQG controller, so that the con-

troller can generate control inputs for a belief to move toward the point. This enables

POMCP to utilize the Gaussian belief model in generating a control input and updating
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(a)RNPInformationTrap(20, 10) for
URM-POMCP

(b)RNPInformationTrap(20, 10) for BVL

Figure 6.3: Execution trajectories of URM-POMCP (left) and BVL (right). The orange line is the trajectory
of the true state, and the green line and ellipses are the trajectory and covariances of the belief state,

respectively.

the current belief from an observation. To prevent the robot from getting stuck in a state

due to local minima, we also penalize the actions for staying at the same state.

6.4.3 Safety

Reducing risk and ensuring system’s safety is the most important goal of the proposed

framework. We compare the risk aversion capability of our planner with the baseline

methods using RNPInformationTrap(e, o) problem as shown in Fig. 6.3, where e is the

length of the environment and o is the length of the obstacle.

In the RNPInformationTrap problem the rover needs to reach the goal by passing through

the narrow passage without colliding with any obstacles. As shown in Fig. 6.3, BVL

reduces risk of collision by executing a longer trajectory that goes close to the landmarks

(yellow diamonds) and reduces the localization uncertainty before entering the narrow

passage. Since the URM-POMCP algorithm plans in a shorter horizon and depends on

a heuristic cost-to-go estimation beyond the horizon, it takes a greedy approach to go

towards the goal thus taking a higher risk of colliding with the obstacles. This can also

be seen in Fig. 6.4 that shows the probability of collision of the rover as the length of the

obstacle increases. The probability of collision here was estimated by running 20 Monte

Carlo simulations of rover executing policies by different planners.
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Figure 6.4: Plots of the probability of collision and the total cost over different obstacle lengths. They are
evaluated by running 20 Monte Carlo simulations of rover executing policies generated by the planners.

Note that total cost mean and standard deviation are computed using the successful (collision-free)
executions only, which means that algorithms with higher collision probability will have much higher

expected total cost when considering the collision penalty.

6.4.4 Scalability in Planning Horizon

Bi-directional learning of the value function enables the proposed planner to scale to

infinite planning horizons. To compare this scalability with the baseline methods, we

consider the RNPObstacleWall(e, o) problem shown in Fig. 6.5, where e is the length of the

environment and o is the length of the obstacle shown in the figure.

Notice that in Fig. 6.6, as the obstacle gets larger, the local minimum gets deeper and the

performance of URM-POMCP becomes worse. The number of time steps to get to the

goal grows exponentially for URM-POMCP, while it grows linearly for BVL and others.

This shows the effectiveness of guidance by long-range solver’s global policy in larger

problems as opposed to a naive heuristic guidance in URM-POMCP.

6.4.5 Optimality

The fundamental contribution of this method is to achieve policies that are closer to

the globally optimal policies while reducing the risk of collisions over long horizons.

To compare the optimality of the planners, we consider the RNPRockForest(e, o) problem

shown in Fig. 6.7, where e represents the length of the environment and o represents the
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(a) RNPObstacleWall(20, 10) (b) RNPObstacleWall(20, 16)

Figure 6.5: Execution trajectories of URM-POMCP (pink), FIRM (blue), OGR (green), and BVL (red). The
start and the goal states are on the left and the right of the wall, respectively.
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Figure 6.6: Plot for scalability tests. A longer wall and more landmarks induce deeper local minima for
URM-POMCP due to its heuristic cost-to-go estimation. URM-POMCP performs worse as having more

local minima, but other methods with FIRM’s approximate cost-to-go are less affected.

number of obstacles. We vary the density of the underlying belief graph to demonstrate

its effect on the proposed method.

As can be seen in Fig. 6.7 and Fig. 6.8, as the density of the underlying graph gets higher,

the performance of the FIRM solution increases. However, it will reach a maximum sub-

optimal bound due to its sampling-based nature (i.e., it requires stabilization of the belief

to the stationary covariance of the graph nodes before leaving them). In this complex

environment, OGR with myopic online replanning frequently gets stuck at local minima,

while it sometimes outperforms FIRM. Its performance is brittle and subject to the cov-

erage of the underlying belief graph. In contrast, BVL performs well even with a smaller
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(a) RNPRockForest(20, 81)
with 350 FIRM nodes

(b) RNPRockForest(20, 81)
with 800 FIRM nodes

Figure 6.7: Execution trajectories for URM-POMCP (pink), FIRM (blue), OGR (green), and BVL (red).
The start and the goal states are on the left bottom and the right top of the map, respectively. While both
OGR and BVL take shortcuts instead of following FIRM’s offline policy, OGR suffers from local minima

near the start state.

number of nodes in the underlying graph.

While actions of the BVL are selected from local controllers connecting to the nodes of

the underlying belief graph, online belief tree search process fundamentally improves its

behavior such that it is much less dependent on the density and coverage of the under-

lying graph. BVL not only generates trajectories that are much closer to global optimum

but also reduces the risk of collision over an infinite horizon.

6.5 Summary and Discussion

In this work, we proposed BVL, a novel bi-directional value learning algorithm

that incorporates locally near-optimal forward search methods and globally safety-

guaranteeing approximate long-range methods to solve challenging RAL-POMDP prob-

lems. As shown in Fig. 6.9, BVL provides better probabilistic safety guarantees than

forward search methods (URM-POMCP) and is closer to the optimal performance than

approximate long-range methods (FIRM). It also shows more consistency in different

environments compared to online graph-based rollout methods (OGR).

In future work, we will study the theoretical properties of this algorithm more rigorously

and extend this work to more general and challenging robotic applications, such as ma-
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Figure 6.8: Plots for number of time steps, sum of traces of covariances, and total costs over different
number of FIRM nodes. BVL performs the best and is least affected by the FIRM node density.
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nipulation. It is also interesting to investigate bi-directionaly value learning methods for

dynamic environments or in adversarial setting.
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Chapter 7

Extension: Application to Real-world

Mobile Manipulation

7.1 Introduction

We consider the problem of planning and execution of robot motions to complete com-

plex tasks in real-world application. Specifically, we consider the problem of unloading

boxes from truck trailers in a warehouse environment onto a conveyor belt (Fig. 7.1).

Here, we are required to plan robust actions for a custom-built truck-unloading robot

equipped with two end-effectors—a manipulator-like tool with suction grippers as well

as a scooper-like tool.

The planning module needs to continuously decide to choose which end-effector to use

(manipulator or scooper) and how to use the chosen end-effector (where to pick, how fast

to scoop). This needs to be done with partial information (imperfect perception module,

unknown box masses, etc.) and for a wide range of environments. While there is a wide

range of environments that need to be handled, the same high-level choices can be used

in many similar environments. For example, for neatly-stacked walls of boxes, the robot

should use the manipulator to unload several rows of boxes (from top to bottom) until the

remaining boxes can be scooped. On the other hand, unordered piles of boxes should

be scooped slowly to avoid jamming the system. However, even for similar scenarios
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Figure 7.1: Truck unloader robot.

that share the same sequence of high-level choices or actions, the system is required to

plan the robot’s motion for each action in each individual scenario—environments may

slightly differ and a collision-free path for one environment may be in-collision with the

obstacles in a similar environment.

Thus, we suggest to pre-compute high-level plans using a simulator in an offline stage

for recurring settings. These pre-computed high-level plans which we term strategies are

stored in a library of learned strategies. During execution, the system needs to pick the

most appropriate precomputed strategy to execute, given the current state of the system.

Once such a strategy is picked, motion plans for individual actions need to be planned

and executed.

While the approach described is general and we anticipate that it can be applied to many

systems, in this work we focus on the success of the architecture for our specific truck-

unloading application (Sec. 7.2). We detail the different modules described (Sec. 7.3) and

demonstrate its efficacy both in simulation and in unloading real trucks (Sec. 7.5). We

conclude with a discussion highlighting open research questions that emerge from our

proposed planning, learning and reasoning architecture (Sec. 7.6).
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(a) (b)

(c) (d)

Figure 7.2: Examples of different trailers that need to be unloaded by our system.

7.2 Problem Description

In many warehouse applications, boxes need to be unloaded from incoming trailers and

on to conveyor belts where they will be singulated, scanned and sorted. Currently, these

trailers are both loaded and unloaded by human workers—a labor-intensive and time-

consuming step. The system we consider in this work is aimed at automating the unload-

ing step by a custom-designed mobile robot that can autonomously enter truck trailers,

pick boxes using its end-effectors (manipulator-like and scooper-like tools) and place

them onto conveyor belts that are located on the robot. These conveyor belts are at-

tached to an extendable conveyor belt which, in turn, is attached to a static conveyor belt

where boxes need to be placed (these are the belts where human workers currently have
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to unload the boxes to).

Truck trailers come from different vendors and contain boxes in a variety of shapes,

sizes, and weights. Furthermore, they are loaded manually by different workers and

tend to shift and move when transported. Thus, there are a wide range of environments

that need to be considered and a large uncertainty regarding the specific environment

encountered when a new truck arrives. For a depiction of different trailers encountered

by the system, see Fig. 7.2.

The objective of the system is to unload boxes as quickly and efficiently as possible. How-

ever, boxes should not be damaged in this process (e.g., by causing them to fall from large

heights). Furthermore, the scooper-like end-effector is wider than the rear conveyor in

order to maximize the range of boxes that can be unloaded. Thus, unloading boxes too

aggressively may cause system jams where the conveyors become narrower. This, in

turn, may require human intervention—a costly operation in terms of time as the sys-

tem needs to be shut down.

Finally, the system is equipped with a wide suite of sensors that allow it to avoid collision

with the trailer, estimate box poses, and detect jams.

We assume that the system has access to a simulator Sim that estimates the outcome of

an action.

7.3 System Architecture

The planning, learning and reasoning (PLR) component of our system, which is the focus

of this work, is tasked with planning the collision-free motions of the robot (end-effectors

as well as base) that will maximize the system’s throughput (rate of boxes unloaded)

while minimizing damage to boxes.

It receives as an input, an estimated system state s̃ provided by the perception module

and outputs a trajectory to be executed. Executing actions such as moving the robot’s

base or picking objects with the end-effectors typically take time that is in the order of

several seconds. We assume that the perception module updates s̃ at a high frequency
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Figure 7.3: System architecture.

allowing PLR to constantly reason what is the next action to be taken.

Before we detail the system’s modules, we introduce a key notion that drives the sug-

gested architecture—strategies.

7.3.1 Representation of Robust Motion Plans

We represent a robust motion plan as a decision tree of sequential actions and observa-

tions which is referred to as a strategy hereinafter. More technically, a strategy is a partial

mapping that describes what action to take given a system’s state (see Fig. 7.4). Note

that the system does not have access to the true state s but to the estimated state s̃, which

can be inferred from the initial belief (probability distribution over states) and the history

(the sequence of past actions and observations. Instead of explicitly representing the

estimated states, a strategy encodes them in a decision tree where the root is the initial

belief and the branches represent the possible histories.

For example, strategies can be simplistic such as “move forward at a constant speed while

scooping; if no boxes are left, terminate; otherwise try another scooping” or more com-

plex such as “try to pick up boxes from low-left section of the truck by selecting a target

pick point and finding a collision-free motion to it; if the boxes were successfully picked

up, try to pick up boxes from low-right section; else if the suction grippers lost contact

with the boxes while pulling them back, try to pick up boxes from high-left section; else
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Figure 7.4: Graphical illustration of a belief tree that can be constructed over all possible actions (u1, u2,
u3, and u4) and observations (z1 and z2) along the sequence given the initial belief b0, and a decision tree,

i.e., a strategy, that specifies the best action (red arrows) for each belief state (node) reachable from the
initial belief.

if no valid pick point was found, move the robot base back and take another observation;

. . . ”

It is possible that a human expert manually designs a decision tree that provides de-

cent performance in general. We refer such a decision tree as a hardcoded strategy. Due

to the high stochasticity in the domain of interest, a hardcoded strategy should be quite

complex, which makes it highly non-trivial to be developed, maintained, or updated. As

unforeseen scenarios are encountered or unintended results of certain actions are discov-

ered, the designer of the hardcoded strategy is required to assess how new changes affect

the system. If a new vendor is known to typically ship small but fragile products and

asks for more careful handling of the packages, then a significant amount of the hard-

coded strategy may need to be amended and its performance should be re-evaluated.

To this end, we suggest to automatically generate a set of strategies in an offline phase us-

ing the simulator Sim. When the system is deployed, at any given time, it chooses the most

appropriate strategy and executes the actions defined by this strategy. As we will see,

this framework allows the system to generate near-optimal strategies for sampled envi-

ronments and also effectively generalize them to adapt to the stochastic environments at

run time.
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7.3.2 System Overview

As mentioned previously, PLR uses an offline phase to design strategies which are then

used in the online, truck-unloading phase. Several of the system modules are used only

in one of the two phases while others are used by both phases. For a system diagram,

see Fig. 7.3.

• Motion Planner, used in both phases, receives as an input an estimated state s̃ as

well as a goal and plans a collision-free trajectory to reach the goal. The goal can

be either a specific configuration, a set of configurations, or a specific position for

one or more of the robot’s end-effector’s positions.

• Strategy Executor, used in both phases, receives as an input a specific strategy S and

an estimated state s̃. It is tasked with executing it by instantiating the high-level

strategy into motion-planning queries and assessing which queries are collision-

free (using the motion planner). Once a collision-free trajectory is computed, the

strategy executor sends it to the robot’s controllers or to the simulator Sim.

• Strategy Generator, used in the offline phase, generates a library L of strategies, each

tailored for a different given environment. It uses the strategy executor as well as

the motion planner and the simulator to simulate the outcome of different actions

in order to plan the optimal strategy for the given environment.

• Strategy Chooser, used in the online phase, is to decide which strategy to execute

given the current state. Effectively, it is a mapping from a specific state to a strategy.

This module is required as the strategies planned by the strategy generator were

done for specific environments. It is unclear upfront, which strategy to use given a

new, unforeseen environment. To learn a generalized mapping from a finite num-

ber of (environment, strategy) pairs in the library, supervised learning techniques,

such as k-Nearest Neighbor algorithm, can be employed.
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7.4 Robust Motion Planning in Belief Space

In this section, we detail how the strategies are generated by belief space planning. First,

we describe the components that are involved in the offline strategy generation pro-

cess, i.e., the motion planner, the strategy executor, and the strategy generator. Next,

we present the problem formulation for the belief space planning algorithm to generate

the strategy library.

7.4.1 Detailed System Description

Motion Planner The motion planner module is tasked with planning collision-free mo-

tions for the robot. The motion planner must be able to handle a large variety of task-

specific path and goal constraints. For example, a given planning query might be for the

manipulator-like end-effector to reach a particular pose by moving either the base, the

arm or both, without move the scooping tool. For another query, we may want to relax

checking for collisions between the manipulator-like end-effector and the boxes, if our

intention is to pick them. Yet another query might be to find a goal pose from which

another pose is reachable, in the event that we will subsequently attempt to pick at that

pose.

In our system, minimizing execution time is of utmost important to unload a large vol-

ume of boxes efficiently. Additionally, short planning times are desired to enable the

strategy executor to rapidly evaluate many potential motions, when determining the

best way to accomplish a high-level action.

Finally, planning times should be consistent. Namely, similar queries should roughly

take the same amount of planning time. Unfortunately, sampling-based planners such

as RRT [90] and its many variants often have a large variance in their planning times due

to the stochastic nature of the algorithm.

To this end, we choose to use ARA* [91] as our planner. ARA* is an anytime heuristic

search-based planner which tunes its performance bound based on available search time.

Specifically, it computes an initial plan quickly and refines its quality as time permits.

100



Our search space consists of a uniformly discretized state lattice with motion primi-

tives [92], where each motion primitive is a short, atomic motion executable by the robot.

To produce efficient-to-execute paths, we provide a cost function that approximates the

time to perform each motion primitive using a fixed value, related to the length of the

motion in the configuration space.

Strategy Executor The strategy executor module is tasked with efficiently executing

a high-level strategy. This is done by continually evaluating the current state of the

world as received from the robot’s sensors and translating high-level actions into spe-

cific motion-planning queries which are then executed by the robot. This is done until

the strategy is completed or an alternative one is provided.

Consider the following example strategy: “If there are any boxes that can be picked by

the manipulator-like end-effector, attempt to pick them, otherwise scoop the first layer

of boxes. Repeat until the truck is unloaded”.

To execute this simple strategy, there are several sub-tasks to determine what motions

the robot should make to accomplish its goal. How do we evaluate whether any boxes

are able to be picked? If there are boxes that can be picked, where should the tool be

placed and how should the whole robot move to reach the boxes? If there are no boxes

that can be picked, how aggressively should we scoop the boxes?

Each one of these sub-tasks can be accomplished in a number of ways, with previous de-

cisions affecting future decisions. For example, the decision of where to pick may affect

the number of picks that need to be made in the future before the remaining boxes can

be scooped. The strategy executor can leverage having the full definition of the current

strategy to intelligently make these decisions.

Strategy Generator The strategy generator module is tasked with precomputing a set of

robust and efficient strategiesL for a small set of given environments (e.g., environments

depicted in Fig. 7.2) that contains uncertainty. In generating strategies, we assume that

the planner only has access to a perceived environment. A common example of data that

is unknown to the planner is box masses which affect the system’s dynamics.

This problem can be modeled as the problem of planning robust motions under uncer-
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tainty, also known as belief space planning, which can be formulated in a principled

form as a Partially Observable Markov Decision Process (POMDP) [93, 94]. In contrast

to the assumption used in many POMDP solvers, we do not have access to an explicit

model of the POMDP probability distributions but to a generative model, the simulator

Sim. Given a state and an action, Sim provides a sample of a successor state, observa-

tion, and cost. Monte-Carlo based methods such as POMCP [95] can be applied to such

settings. Their favorable traits can be attributed, in part, to representing each belief state

using a set of particles and performing a Monte-Carlo tree search on these set of particles.

However, such planners are not well suited to a Goal POMDP where the objective is to

achieve a specific goal (e.g., unloading the boxes from the truck in our setting). They

typically lack in effective guidance toward the goal, and thus, require a large number of

simulations to converge.

To this end, we incorporate recent advances in heuristic search together with a particle

representation. Specifically, we employ POMHDP algorithm that uses multiple heuristics

to effectively guide the search toward the goal, and improve the solution quality through

repeated searches over time. The heuristics are used to estimate the cost needed to reach

the goal from the current state, and in our application, it can be a function of the number

of the remaining boxes or the maximum height of the stacks of boxes. For additional

details, see [96].

7.4.2 Belief Space Planning Formulation

Consider POMHDP algorithm for the belief space planning to generate a strategy for

a given environment. We assume that we have access to a simulation model Sim and

have a prior probability distribution of the initial states of the environments, such as box

masses, dimensions, and poses.

From the aspect of the belief space planning, a strategy can be formally defined as a

mapping from a history to an action for the given initial belief state, i.e., π : B×H→ A

or π(b0, h) = a. A belief state b ∈ B (to be detailed below) encodes the probability distri-

bution over states and can be approximately represented by a set of sampled states, i.e.,
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a set of particles. A history h ∈ H implies a sequence of past actions and observations,

{a0, o1, a1, o2, ..., at−1, ot}. Given an initial belief state b0 ∈ B, h effectively represents b ∈ B

at time step t which can be inferred from Bayesian filtering. At a high level, a strategy is

in the form of a decision tree that specifies which action to take at a decision node after

following a sequence of decision nodes and chance nodes from the root of the tree.

Then we define the components of this belief space planning problem as follows:

• State space: A state describes the configuration of the robot base and joints, and

the masses, dimensions, and poses of all Nb boxes in the environment, i.e., s ∈ S =

(Tr, q
1:16
o , {mi

o, l
i
o, T

i
o}). T , q, m stand for the pose in 3D space, robot joint positions,

and object mass, respectively. The subscript r and o denote the robot and the object,

respectively, and the superscript i = 1, ..., Nb represents the index of each box in

the environment.

• Belief space: A belief state is a probability distribution over states that essentially

encodes the estimated true state. Note that the box masses are unknown and unob-

servable, so it is not possible to access the true state. Here, a belief state is approx-

imated by a set of sampled states, i.e., a set of particles b = {s1, s2, ..., sNpart
} ∈ B

where Npart is the total number of particles.

• Action space: Within the hierarchical system architecture described in Section 7.3,

the action space for the belief space planner is a finite set of macro actions

that are supported by the strategy executor. For example, pickup high left,

pickup low right, or scoop mid (see Fig. 7.5). In the current system, there are 10

macro actions available for the belief space planner. Each macro action is instanti-

ated by the strategy executor either in the simulation or in the real robot by taking

account of the latest observation.

• Observation space: The observation space is also discretized into 18 cases

based on the poses of the boxes that are visible from the robot. For example,

box pile high left, box pile low, or box pile none. In the offline phase we can

extract the visible box poses from the simulator’s ground truth, while in the on-

line phase we will get such information from the perception module using the real
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(a) Pick actions: (height, side). (b) Scoop actions: (height).

Figure 7.5: Macro action parameters for pick and scoop actions. Each macro action is instantiated by the
strategy executor based on the corresponding parameters and the latest observation.

sensors on the robot.

• Cost function: We defined a cost function for an individual action as the sum of

the time to execute that action and the estimated time for human intervention as

needed. The human operator intervention is needed when any boxes make the

robot gets stuck, for example, when some boxes fall into the side of the robot so

that they can be damaged by any further robot operation.

Note that there persists motion and sensing uncertainty in the described problem. The

motion uncertainty comes from the stochastic motion of each box when interacting with

the robot or with other boxes. The sensing is also imperfect in terms of the box pose

estimation as well as in the fact that the box mass and some of the box dimensions are

not observable.

In general, this problem is very challenging and cannot be solved by a single belief space

planning query. Unloading a full truck with hundreds or thousands of boxes requires

tens or hundreds of macro actions, and to evaluate a single macro action takes about 5

minutes due to the slow speed of the high-fidelity robot simulation.

Considering the exponential complexity with the depth of planning horizon in

POMDPs, it is practically intractable to solve this as a single infinite-horizon planning

problem. Even with POMHDP that alleviates this complexity, the time complexity of the

strategy generation is O(TsimNpartNactionNdepthNiter/Nsim), where Tsim is the time to ex-

ecute an action in simulation, Npart is the number of particles, Naction is the number of
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possible actions, Ndepth is the depth of planning horizon, Niter is the number of iterations

until convergence or timeout, and Nsim is the number of simulators running in parallel.

In the current setting of Tsim = 5 min, Npart = 5, Naction = 10, and Nsim = 25, it roughly

becomes (10 ·Ndepth ·Niter) min. Note that Niter may still grow exponentially with Ndepth

in the worst case (according to the quality of the heuristics and the complexity of the

problem). If the number of actions required to unload the full truck is 100, one would

need Ndepth = 100 and Niter = 100, which results in more than 1600 hours for planning.

Instead, we incorporate receding horizon control scheme into our framework. Given the

initial state, we plan for a finite-horizon strategy (with Ndepth = 6 and Niter = 5). After

following the most-likely path when executing the finite-horizon strategy, we repeat this

planning process again. All the finite-horizon strategies obtained from the beginning

until the end of sequential planning episodes are saved in the strategy library. We repeat

this process for other initial environments sampled from the prior, and construct a large

set of (environment, strategy) pairs in the library, so that the strategy chooser can find the

best strategy for the current environment at run time.

This still may cause suboptimality in the global sense, but greatly reduces the problem

complexity, making this approach tractable. In the presented PLR framework, this ap-

proach particularly makes more sense. In PLR, there is the online strategy chooser who

constantly monitors the strategy execution and re-assigns another strategy to execute

whenever necessary. Thanks to its adaptive behavior, the short-horizon plans can still

be effective strategies at run time. Moreover, the truck unloading task is locally repet-

itive, i.e., the front box configurations at the early stage and the late stage look similar.

So, for example of a simple case, a strategy with six sequential actions can unload boxes

of the first layer, and then the same strategy can be re-used to unload the second layer.

The implementation of the belief space planner for strategy generation is as described in

Chapter 5 but with the planning horizon limited.
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(a) Environment-A with 329 boxes in total.

(b) Environment-B1 with 491 boxes in total.

(c) Environment-B2 with 529 boxes in total.

Figure 7.6: Different environments in simulation for experimental validation.
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(a) Environment-A.

(b) Environment-B1.

Figure 7.7: The numbers of unloaded boxes in simulation for different methods. The red dashed line
shows the total number of boxes in each environment. The online strategy chooser for each environment

had access to the offline strategies for the corresponding environment.

7.5 Experimental Results

In this section, we show results of the proposed PLR framework for full-truck unloading

tasks in different environments. We collected the data from 10 runs of each method in

each environment. Each run terminates if there is no more box in front of the robot or

10 consecutive macro actions fail (i.e., could not unload any boxes).

Some of environments are presented in Fig. 7.6. Environment-A contains nicely stacked

329 boxes with similar box shapes and masses that are easier to be picked up by the
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(a) Environment-B2.

(b) Environment-B2–B6.

Figure 7.8: The number of unloaded boxes in simulation for different methods over five variant
environments of Environment-B1. The red dashed line shows the total number of boxes over the variant

environments. Note that the online strategy chooser had access to the offline strategies for
Environment-B1 but not for its variant environments.

robot’s suction pads. Environment-B1 contains complexly stacked 491 heterogeneous

boxes with different sets of box shapes and masses, which makes the problem harder.

Environment-B2 is a variation of Environment-B1 that contains 529 boxes in a different

configuration. We used four more variation environments of Environment-B1 in the

experiments.

The strategy generator used 5 particles (Npart = 5), a planning horizon of 6 (Ndepth = 6),

and the maximum number of iterations of 5 (Niter = 5) in the experiments. The offline
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Figure 7.9: Screenshots of full truck unloading for Environment-B2.
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strategies are generated for Environment-A and Environment-B1 and used by the online

strategy chooser in Environment-A, B1, B2–6.

As for the baseline method, we used a hardcoded strategy that is designed, imple-

mented, and validated by a human expert in the same simulation setting. It is fine tuned

to provide sufficiently good performance in general, but due to the nature of hardcoding,

it may perform poorly in a different set of environments.

The results of four approaches are presented here: the execution results of the hardcoded

strategy, the expected performance of the offline strategies, the open-loop execution re-

sults of the offline strategies, and the execution results of the online strategy chooser

with the offline strategies. 1) The hardcoded strategy is the above-mentioned decision

tree that is manually written by a human expert. Its performance is measured by re-

currently executing it (by sending it the strategy executor) until the termination condi-

tion is met (the robot reaches the end of the truck or falls into indefinite local minima).

2) The expected performance of the offline strategies can be understood the mostly-likely

execution results of the offline strategies but with sporadic full state observations (i.e.,

removal of all state uncertainty) since the strategy generation is done by finite-horizon

belief space planning. 3) The open-loop execution results of the offline strategies are

obtained by blindly choosing (i.e., sending to the strategy executor) the offline strate-

gies generated for the respective environments in the sequential order of generation.

4) The online strategy chooser is who has access to the offline strategy library and selects

the best-fit strategy to execute at run time given the current observation. The selected

strategy (decision tree) is being executed by the strategy executor to the end of its finite

horizon, and then the strategy chooser is asked to select another strategy to be executed.

Fig. 7.7 shows the number of unloaded boxes over time in each environment where the

offline strategies are generated. In Environment-A, both the expected offline strategies

and the online strategy chooser outperformed the hardcoded strategy. The hardcoded

strategy frequently executed ineffective actions by just following the hardcoded decision

making scheme. Its performance can be good in some environments and can be very bad

in other environments because it may fall into local minima and get stuck indefinitely.

Also note that the open-loop execution of the offline strategies are not as effective as the
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expected offline strategies or the online strategy chooser. This demonstrates two things:

1) the full-truck unloading process is highly stochastic, so that the actual execution of

the offline strategies does not follow the most-likely execution sequence, and thus, 2) it

is advantageous to have the online strategy chooser that adapts to the stochastic outcome

of the strategy execution in strategy selection at run time.

In Environment-B1, the open-loop execution terminates earlier than in Environment-A.

This implies that strategy execution in Environment-B1 experiences higher stochastic-

ity than in Environment-A. The hardcoded strategy is tuned to perform fairly well in

Environment-B1, but the online strategy chooser still outperforms it. Compared to the

expected (ideal) results of the offline strategies, the online strategy chooser could not

achieve as good performance as the expected offline strategies. It would be because of

the limited number of offline strategies in the strategy library as well as the incorrect

selection of a strategy for the given the observations at run time. For these experiments

the strategy chooser used k-Nearest Neighbor algorithm with depth map-based feature

representation of the environment. In other words, it did not make use of the informa-

tion of the box edges or dimensions. These results suggest the future research directions

how to improve the generalization quality of the online strategy chooser.

In Fig. 7.8, we present the full-truck unloading results in variant environments for which

no offline strategy is generated. The online strategy chooser has access only to the offline

strategies for Environment-B1 in this case. While the variant environments have different

numbers of boxes in different configurations from Environment-B1, the online strategy

chooser could outperform the hardcoded strategy. This demonstrates the benefit of our

PLR framework with the offline strategy generator and online strategy chooser in terms

of generalization.

The overall procedure of full-truck unloading is presented in Fig. 7.9.

7.6 Summary and Discussion

We presented a hierarchical planning, learning and reasoning system architecture that

automatically generate robust motion plans, so-called strategies, and incorporate them
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with online adaption power at run time. Especially for strategy generation, we proposed

receding horizon control scheme for belief space planning over macro action space. That

makes the strategy generalization to be much less complicated and its execution to be

more robust. The validation in simulation showed promising results of this approach

and also suggested future research topics. We summarize the interesting and important

directions for the further work.

Simulator speed A key bottleneck in the offline phase is simulating the outcome of dif-

ferent actions. The larger the number of simulation steps Sim can make per time unit,

the more robust the strategies will be as the belief-space planner will be able to explore

larger portions of the belief space for the same amount of planning times.

In our implementation, we used a state-of-the-art simulator (V-REP [97]) and initial plan-

ning times for strategy generation were in the order of days. This is mainly due to the

fact that the simulator is required to run a physics engine testing interactions between

all objects in a scene. A possible approach to speed up simulation times is to incorporate

domain knowledge that allows to adaptively manage which interactions need to be sim-

ulated. For example, when using the scooper-like tool, there is no need to simulate the

suction cups on the manipulator-like tool if they are not interacting with the environ-

ment. Similarly, interactions between boxes at the end of the trailer which are far from

the robot can be set to be static.

Planning with adaptive simulation accuracy Another approach we suggest to handle

the long planning times that the simulation introduces is by varying its accuracy in the

planning algorithm. Planning with adaptive dimensionality has proven an effective tool

to tackle complex high-dimensional planning problems (see, e.g., [98, 99, 100]. Here,

we suggest to initial plan using the simulator configured to be fast but possibly inaccu-

rate. Only for promising plans should the simulator be invoked with an accurate, yet

slow configuration. This is similar to lazy path planning [101, 102, 103] where easy-to-

compute estimates of edge weights are used to guide the search algorithm in cases where

evaluating true edge weights is computationally expensive.

Active querying The crucial limitation of the strategy generalizer is the requirement

to obtain large amounts of supervised data. With a high fidelity simulator, testing
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each planned strategy in the library over a wide range of environments will take a

prohibitively large amount of time. Also, while using the mapping trained in simu-

lation on the real robot, we expect to encounter environments where further training is

needed to predict the correct strategy. In such cases, resetting the environment in the

real world (e.g., arranging boxes back to their previous positions) is extremely labor-

intensive. Hence, there is a need for the system to query for optimal strategies only on a

small number of environments where supervision is extremely useful (e.g., a completely

new environment that was never seen before). This problem is commonly referred to as

active learning in the literature. However, traditional active learning methods cannot be

readily applied as the distribution of environments experienced by the system online is

non-stationary and changes as the mapping is retrained.

Meta-algorithm for an ensemble of heuristics Given an ensemble of heuristics, there

arise very interesting questions for the strategy generator; which heuristic to use to guide

the search toward a goal, how much each heuristic should contribute when generating

the solution strategy, etc.

When guiding the search, one can switch the reference heuristic in a round-robin fashion

as in [96], but also can devise a meta-algorithm that determines in a smarter way which

heuristic to use. Dynamic Thompson Sampling (DTS) and Meta-A* were suggested for

deterministic planning problems [104, 105] and can possibly be extended to belief space

planning for stochastic environments.

At the time the solution policy is to be generated, different heuristics may have differ-

ent opinion on the best action. Then as in Weighted Majority algorithm [106], a weight

for each heuristic can be computed based on its effectiveness in guidance and used to

decide the best action for each state. Beyond these examples, there is ample opportu-

nity to incorporate meta-learning techniques with belief space planners using multiple

heuristics.
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Chapter 8

Conclusion

8.1 Summary of Contributions

In this thesis, we presented a novel belief space planning framework, POMHDP, and its

extensions that finds robust motion plans under motion and sensing uncertainty.

POMHDP takes advantage of the strong points of these three approaches: RTDP-Bel for

belief space planning with domain knowledge, MHA* for systematic usage of multiple

heuristics, and Monte Carlo methods for belief state/history approximation. In other

words, POMHDP extends these approaches so that it exhibits better characteristics than

them as follows:

1. RTDP-Bel vs. POMHDP: Generative model support, multi-heuristic guidance

RTDP-Bel requires the access to explicit mathematical models, which restricts its

practical usage in the real-world systems. POMHDP can works for both explicit

and generative models, which allows it to be applied to real-world or complex sys-

tems. In terms of guidance of the forward search, RTDP-Bel depends on only one

heuristic, so it may suffer from local minima where the search gets stuck. (Recall

that it is often challenging to find a heuristic that captures all the complexity of the

environment.) On the other hand, POMHDP makes use of multiple heuristics, so

its guidance is more versatile when encountered local minima, and thus, provides
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more effective guidance to reach the goal.

2. MHA* vs. POMHDP: Motion and sensing uncertainty

MHA* is a planning algorithm for deterministic environments. It assumes that the

outcome after executing an action is deterministic and the true state is always fully

observable, which is not in the real-world systems. POMHDP extends MHA* to

belief space planning for stochasitic environments, where the action and observa-

tion are not deterministic, so that it can accommodate more realistic problems in

structured environments.

3. Monte Carlo methods vs. POMHDP: Sample-efficiency

Monte Carlo methods use a set of sampled particles to represent a belief state, and

operates particle filtering to sample a history, i.e., an action and observation se-

quence. Monte Carlo-based belief space planners, such as POMCP, do not boot-

strap with the domain knowledge, and thus, require a large number of simulations

until convergence to the optimal. POMHDP is a Dynamic Programming-based ap-

proach that bootstraps with the domain knowledge in the form of heuristics. Given

(at least partly) informative multiple heuristics, POMHDP can find a solution with

a fewer number of simulations, which is important especially for complex robotic

systems with computationally expensive simulation models.

8.2 Future Directions

8.2.1 Finite horizon planning with sub-goal heuristics

For large problems that are not feasible to be solved as a whole, we have to conduct

local finite-horizon planning to get approximate partial solutions, which will results in

additional suboptimality in the global sense.

There can be several ways to improve the global solution quality. One is to get access to

better heuristic estimates for the leaf nodes on the finite-horizon belief tree. This is the

basic idea of online-offline combination approach in Section 6, but note that the approx-
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imate global solver using local feedback controllers is only applicable to problems with

controllable state space.

The other is to exploit the domain knowledge of sub-goals for the given task, where a

sub-goal implies a condition that the final goal must satisfy at any case. For example of

truck unloading, the final goal is to unload all boxes. Then, one can define a sub-goal

such as unloading all boxes within 3 m in depth from the end of the truck. The main

benefit of having sub-goals is that it will improve the quality of the local solution and

the local solution is guaranteed to be a necessity condition to satisfy the final goal.

Since POMHDP can incorporate multiple heuristics, one can set up each heuristic to

guide to each sub-goal without any change to the algorithm. The only change needed is

to define the termination condition that takes into account these multiple sub-goals.

8.2.2 Learning observation space representation

Most of the Monte Carlo-based belief space planners, including POMHDP, require the

discrete action and observation spaces. Disretized action space will lead to subopti-

mality in terms of the accumulated action costs to reach the goal, but will not hurt the

robustness of execution at run time.

However, observation space discretization is how we interpret the outcome from the

environment which is not under our control. Incorrect observation space discretization

can lead to meaningless branching of the belief tree, which leads to suboptimal action

selection during planning as well as at run time.

One approach to tackle this issue is to incorporate machine learning techniques. Once

we get a large set of observations, we can cluster the observations into a finite discrete

set of clusters, and then use them to define the discrete observation space.

8.2.3 Meta algorithm for multiple heuristics

Given an ensemble of heuristics, there arise very interesting questions for the strategy

generator; which heuristic to use to guide the search toward a goal, how much each

117



heuristic should contribute when generating the solution strategy, etc.

When guiding the search, one can switch the reference heuristic in a round-robin fashion

as in [96], but also can devise a meta-algorithm that determines in a smarter way which

heuristic to use. Dynamic Thompson Sampling (DTS) and Meta-A* were suggested for

deterministic planning problems [104, 105] and can possibly be extended to belief space

planning for stochastic environments.

At the time the solution policy is to be generated, different heuristics may have differ-

ent opinion on the best action. Then as in Weighted Majority algorithm [106], a weight

for each heuristic can be computed based on its effectiveness in guidance and used to

decide the best action for each state. Beyond these examples, there is ample opportu-

nity to incorporate meta-learning techniques with belief space planners using multiple

heuristics.
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[38] Héctor Geffner and Blai Bonet. Solving large POMDPs using Real-Time Dynamic

Programming. In AAAI Fall Symposium on POMDPs. Citeseer, 1998.

[39] Richard E Korf. Real-time heuristic search. Artificial intelligence, 42(2-3):189–211,

1990.

[40] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using

real-time dynamic programming. Artificial intelligence, 72(1-2):81–138, 1995.

[41] Blai Bonet and Hector Geffner. Labeled RTDP: Improving the convergence of Real-

Time Dynamic Programming. In International Conference on Automated Planning and

Scheduling (ICAPS), volume 3, pages 12–21, 2003.

[42] H Brendan McMahan, Maxim Likhachev, and Geoffrey J Gordon. Bounded Real-

Time Dynamic Programming: RTDP with monotone upper bounds and perfor-

122



mance guarantees. In International Conference on Machine Learning (ICML), pages

569–576. ACM, 2005.

[43] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances

in neural information processing systems, pages 2164–2172, 2010.
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