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Abstract
Persistent surveillance of a target space using multiple robots has numerous ap-

plications. The continuous operation in these applications is challenged by limited
onboard battery capacity of the persistent robots. We consider the problem for re-
plenishing persistent robots using mobile depots, where mobile depots collectively
compute a set of tours to drop off batteries for replenishing all persistent robots with
the minimum total cost. Compared to other works, persistent robots are not required
to detour for recharging or battery swapping. We formulate this problem as general-
ized multiple depots traveling salesman problem (GMDTSP) on a complete graph.
An efficient centralized heuristic-based algorithm Multiple Depots Random Select
(MDRS) is proposed, which has been proved to have an analytical constant upper
bound in the worst case scenario. To provide scalability and robustness, a fully de-
centralized asynchronous MDRS (dec-MDRS) is proposed, with the analysis of its
correctness and efficiency. We also propose a post-processing heuristic (MDRS-IM)
to improve the solution quality. We demonstrate the efficiency and effectiveness of
our algorithm via benchmark on multiple instances from TSPLIB and GTSPLIB.
The simulation results show that the complexity of dec-MDRS grows linearly as the
number of robots increases. The simulation also shows that MDRS and MDRS-IM
perform significantly faster than the state of the art heuristic solver LKH with only a
loss of about 10% of solution quality.
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Chapter 1

Introduction

1.1 Motivation

Persistent surveillance of a target space using multiple robots has numerous applications such
as geographical surveys, air quality monitoring, and security monitoring [14, 16, 18]. Limited
onboard battery capacity is one of the challenges for persistent robots to execute persistent tasks
continuously. To address the long term operation for persistent surveillance tasks, route planning
for periodic recharging or battery swapping becomes one of the popular research questions.

There is an extensive literature on replenishing persistent robots by placing static depots,
where the persistent robots need to detour for replenishment [2, 10, 15]. These literature discuss
the optimal quantity and placement for the static depots which lead to a minimum cost for the
persistent robots to recharge. However, persistent robots need to be removed from the tasks for
replenishment, which becomes a challenge for safety-critical missions. Moreover, due to the
dynamics for the environment, the optimal placement always changes to time and is relevant to
the persistent missions.

In this paper, multiple mobile depots are deployed to replenish persistent robots so that they
are not required to detour for replenishment. Fig. 1.1 shows an example for our formulation,
where there are two types of robots, persistent robots and mobile depots. Persistent robots, with
limited onboard battery capacity, move on a pre-planned fixed route to monitor their prescribed
areas. Before persistent robots run out of battery, they determine a set of potential preferred
battery swapping locations. Mobile depots, which assumed to carry unlimited batteries, move
among persistent robots to drop off batteries at some battery swapping locations. To minimize
detour for persistent robots, we assume all potential preferred battery swapping locations are on
its pre-planned route. Once persistent robots travel to the places where the battery is dropped
off, they swap the battery to replenish itself. The persistent robots only accept to swap battery
at one of their preferred locations. The problem we need to solve is to find tours for the mobile
depots to replenish all persistent robots within their preferred battery swapping locations with
the minimum total cost. We formulate this problem as Generalized Multiple Depots Traveling
Salesman Problem (GMDTSP), which turns out to be an NP-hard problem. The challenge for this
problem is 1) how to assign persistent robots to different mobile depots; 2) what is the optimal
order to visit the persistent robots; 3) what is the optimal location to drop off batteries given each
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persistent robot has multiple preferred locations.

Figure 1.1: Example for the multiple mobile depots route planning problem, with 2 mobile depots
and 4 persistent robots. The red asterisks are the preferred battery swapping locations. The green
paths are the pre-planned routes for persistent robots.

This paper presents three main contributions. First, a heuristic-based algorithm Multiple
Depots Random Select (MDRS) is proposed to efficiently solve the route planning problem for
multiple mobile depots for replenishing persistent surveillance robots. The problem is modeled
as a GMDTSP on a complete graph. The MDRS has proved to have an analytical constant
upper bound in the worst case scenario. Second, a fully decentralized asynchronous MDRS
(dec-MDRS) is proposed to provide scalability and robustness. Simulations show that the com-
putation time and the number of messages of dec-MDRS grows linearly as the number of robots
increases. Third, a post-processing heuristic (MDRS-IM) is proposed to improve the solution
quality further. The simulation results show that MDRS and MDRS-IM perform significantly
faster than the state of the art heuristic solver LKH [6] with only a loss of about 10% of solution
quality.

1.2 Organization
As is introduced in Section 1.1, this thesis focuses on introducing a decentralized framework for
the multiple mobile depots route planning in the application of replenishing persistent surveil-
lance robots. The rest of this thesis is organized as follows.

Chapter 2 discusses several existing approaches to multiple depots route planning problem.
Three categories of existing methods are mainly discussed. Optimization-based solutions utilize
the mixed integer linear programming, and use varies techniques such as branch and cut to obtain
the optimal tours. The disadvantage of optimization-based solutions is that it cannot scale well
when the robot number increases given the combinatorial problem. The second category is the
heuristic-based algorithm. Although these algorithms obtain the results efficiently, most of them
do not have suboptimality guarantees. There exist some worst cases which lead to bad perfor-
mance. The third category is the transformation-based algorithms. These solutions transfer the
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multiple depots problem into an asymmetrical traveling salesman problem, where many existing
solutions could be used to solve the transformed problem. However, dummy vertices and edges
need to be added to the transformed graph, which is computationally expensive.

Chapter 4 presents the skeleton of our centralized strategy to plan the mobile depots. To make
it easier to understand, we first present the single mobile depot scenario in Section 4.1, followed
by the generalization to the multiple depots scenario in Section 4.2. For these two scenarios, We
prove the upper bound for the worst-case scenario. In Section 4.3, we propose a post-processing
heuristic which improve the quality of the tours.

In Chapter 5, we present a decentralized framework as a generalization from Chapter 4.
We divide our strategy into several sub-problems discussed in Chapter 4, and develop an asyn-
chronous decentralized algorithm for two sub-components in the framework. We show the cor-
rectness of the decentralized algorithms.

Chapter 6 shows the simulation results of the proposed heuristics. Section 6.2 shows an illus-
trative example, followed by quantitative analysis. We also benchmark our proposed heuristics
with the state of the art heuristic LKH. Section 6.3 discusses computational time and number of
messages as the robot number increases.

In Chapter 7, we present conclusions and future work.
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Chapter 2

Related Work

Recharging or swapping batteries for persistent robots using mobile depots has different formu-
lations in the literature. Different than route planning for multiple mobile depots, [1, 8] formulate
the problem as a single mobile depot planning a route for recharge the UAVs. The single mobile
depot problem could be solved by the transformation method, mixed integer programming (MIP)
or heuristic-based algorithm. In [11, 20, 21], a battery swapping system has been modeled, with
the assumption that the swap could happen instantly without the charging duration. However, the
battery swapping needs to have fully charged battery in stock which may significantly increase
the operation cost.

A recent work [9] has a similar formulation, where a heuristic-based solution performs effi-
ciently, but the effectiveness is only shown based on empirical simulation results instead of an
analytical analysis. Also, the algorithm did not admit the periodic structure. Similar to this work,
[13] discretize the state space for periodic recharges and cast this problem as a generalized trav-
eling salesman problem (GTSP) on a partitioned directed acyclic graph. However, in our work,
the problem is formulated as a GMDTSP on a complete graph. Moreover, the work [13] use the
modified noon-bean transformation [17] to transform the problem to a traditional TSP problem,
which increases the size of the vertex set.

We formulate the problem as a GMDTSP, where an exact MIP formulation exists [19]. How-
ever, the computation time is not acceptable for the real-time application. An efficient and effec-
tive heuristic-based algorithm is needed for solving this problem.

5
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Chapter 3

Problem Formulation

Consider n persistent ground robots moving in R2, following their pre-planned routes to con-
tinuously monitor their prescribed areas. To address the long term operation for the persistent
surveillance tasks, the persistent robots need to swap battery at some locations before running
out of battery due to the limited onboard battery capacity. Assume that each persistent robots
i ∈ {1, 2, · · · , n} can figure out a set of potential preferred battery swapping locations Ci based
on their knowledge, which consists of a set of discretized vertices on its pre-planned route. The
persistent robot i only accept to swap battery at one of its own preferred locations in Ci since no
detour is allowed. Consider k holonomic mobile depots D = ∪Di, ∀i ∈ {1, 2, · · · , k} carrying
unlimited batteries. The mobile depots collectively plan a set of tours to replenish all persistent
robots with the minimum total cost. The mobile depots drop off a battery at each stop of the tour
so that the persistent robot could swap battery once it travels to this preferred location.

Fig. 1.1 shows an example for the multiple mobile depots route planning problem, with two
mobile depots (k = 2) and four persistent robots (n = 4). The red asterisks are the preferred
battery swapping locations, i.e., for a valid battery swap, the mobile depots should only drop off
batteries at these red asterisks.

The multiple mobile depots route planning problem could be formulated on a complete undi-
rected graph G = (V,E, c) with vertex set V = C ∪ D. The cost of an edge e(p, q) ∈ E is
assigned to be the Euclidean distance between vertices p, q ∈ V . The mobile depots collectively
compute a set of at most k tours TOURi, i ∈ {1, 2, · · · , k}. The tour is defined as a simple circle
on G where each mobile depot ends at its starting location, i.e., TOURend

i = TOURstart
i . At least

one vertex from each vertex set Ci, ∀i ∈ {1, 2, · · · , n} is visited by at least one mobile depot.
The formal formulation for this problem then becomes,

minimize
k∑

i=1

c(TOURi),

subject to TOURend
i = TOURstart

i , i = 1, · · · , k,
| ∪k

i=1 TOURi ∩ Cj| ≥ 1, j = 1, · · · , n.

Note that this problem formulation falls into the category of GMDTSP. When the vertex set
Ci,∀i ∈ {1, 2, · · · , n} only contains a single vertex, then this problem degenerate to a MDTSP.
When k = 1, then this problem degenerate to a GTSP.
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Remark 1. The graph G is a symmetric graph, where c(p, q) = c(q, p) for all vertices p, q ∈
V . For non-holonomic mobile depot, the edge cost may not be symmetric due to the dynamic
constraints. In our problem formulation, all mobile depots are holonomic.
Remark 2. The complete graph G satisfies the triangle inequality since the edge cost is defined
by Euclidean distance between vertices. Based on the problem formulation, it is valid that multi-
ple mobile depots drop off batteries to the same persistent robot. However, in fact, to minimized
to total cost for all k tours, each persistent robot will only be served by one and only one mobile
depot due to the triangular inequality [3].
Remark 3. The current cost only reflect the Euclidean distance between vertices, some other
factors such as travel time and battery swapping time could also be associated with the cost as
long as the new cost satisfy the triangle inequality.
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Chapter 4

Methodology

4.1 Single Mobile Depot Scenario
As discussed in Chapter 3, a single mobile depot (k = 1) degenerates the problem from a
GMDTSP into a GTSP. The simplified version will shed light on a more complicated multiple
depots scenario. We will first discuss the intuition of the proposed Random Select (RS) heuris-
tics, and then we will describe the steps of RS, and finally a proof of bound will be provided for
this heuristics.

The underlying nature for RS is that every vertex in the vertex set Ci,∀i ∈ {1, 2, · · · , n}
has correlation with others, given every vertices are the potential charging location for the same
persistent robot. This implies if we randomly choose one vertex from the vertex set, the selected
vertex could represent the group of vertices. With one vertex in each of the vertex set, the
GTSP problem degenerate to a classic symmetric TSP, where many polynomial time approximate
solutions exists.

Based on this assumption, Algorithm 1 describe the procedures to executes RS.
Theorem 1. For any existed TSP heuristic HEUR bounded by constant B, RS(G) is the cost of
the route constructed by RS using HEUR on G, and OPT(G) be the cost of the optimal route.
Then,

RS(G)

OPT (G)
≤ B(1 + 2d/ρ)

where d := maxni=1{maxp,q∈Ci
dist(p, q)} is the maximum diameter inter-vertex set, and

ρ := min dist(p, q), where p ∈ Ci, q ∈ Cj, i 6= j is the minimum distance intra-vertex sets.

Proof. Given the problem formulation, G = (V,E, c) is a complete undirected graph. Define
another complete undirected graph G′ = (P,E ′, c′), which is a subgraph of G. Note that the
GTSP problem on G is degenerate to a TSP problem on G′.

Since G′ is one of the selected subgraph for G, which means using the same TSP heuristic
HEUR, RS(G) ≤ HEUR(G′). Assume OPT(G′) is the cost of the optimal route on G′. For any
existed TSP heuristic HEUR bounded byB, the cost for HEUR(G′) is no greater thanB·OPT(G′).
Therefore, combine these two inequalities, we have

RS(G) ≤ B ·OPT (G′) (4.1)
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Algorithm 1: Random Select (RS) heuristics
1 Randomly select a single vertex from each of the disjoint vertex set Ci, ∀i ∈ {1, 2, · · · , n}

to form a subset P ⊆ V , and |P | = k.
2 Use any existed polynomial time TSP heuristic HEUR to solve the tour T on the selected

subset P . Return T as an approximation for the problem.

The obtained optimal TSP sequence on G′ is some permutation on vertex set P , and define
this optimal sequence as S. Define S ′ as another sequence on P , which uses the vertex set
visitation sequence on OPT(G). We could imply that OPT (G′) = cost(S) ≤ cost(S ′). Since S ′

is the optimal group visitation sequence on set P , using the triangular inequality, we could have
cost(S ′) ≤ OPT (G)+2n ·d. Based on the definition on ρ, we have OPT (G) ≥ n ·ρ. Combine
these inequalities, we have

OPT (G′) ≤ (1 + 2d/ρ)OPT (G) (4.2)

The theorem is proved by combining the inequality (4.1) and (4.2).

Theorem 2. If the TSP heuristic obtained a worst case route with its upper bound B, then there
exist a worst case scenario that

RS(G)

OPT (G)
= B(1 + 2d/ρ)

Proof. This could be shown by constructing an example. Assume four vertices are co-aligned
on a line with equal distance l separate apart. Separate the four vertices in the middle to two
vertex sets, with two vertices each. In this setting, d = ρ = 2l. We could verify the optimal
cost OPT (G) = l. Choose the points at the ends for both sets. Given the chosen TSP heuristic
obtained a worst case route, RS(G) = B ·6l. Thus, RS(G)/OPT (G) has the upper bound equal
to B(1 + 2d/ρ).

Remark 4. d = 0 is a special case, where the vertices in each vertex set degenerate to a single
point. This implies the GTSP degenerates to a TSP. The derived bound could be justified since
the bound becomes B for the chosen TSP heuristic HEUR.
Remark 5. The proposed algorithm could be run in O(n2) time, where n is the number of
persistent robots. Note that this is independent to |C|, the number of potential charging locations.
Remark 6. The upper bound for RHS does not depend on a specific TSP polynomial algorithm.
Some popular heuristics includes Christofides algorithm with B = 1.5, nearest neighbor heuris-
tics with B = 2 etc.

4.2 Multiple Depot Random Select and Analysis
We present a heuristic-based Multiple Depot Random Select (MDRS) in Algorithm 2. Before
dive deep into the technical details, the design philosophies are two-fold. First, the multiple
mobile depots could reduce to a single depot scenario by assigning battery drop off tasks to each
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mobile depot so that the total route cost is minimized. Second, a single vertex could be randomly
selected to represent this group of vertices to reduce complexity. The underlying nature is that
every vertex in the vertex set Ci,∀i ∈ {1, 2, · · · , n} correlates with others, given every vertex
are the preferred battery swapping locations for the same persistent robot.

With the two design philosophies in mind, algorithm 2 first randomly select a single vertex
from each disjoint vertex set Ci, ∀i ∈ {1, 2, · · · , n} to form a subset P ⊆ C on line 1 to 2,
and |P | = n. Inspired by the well-known minimum spanning tree (MST) heuristic in TSP and
multiple TSP (mTSP), line 3 build a weighted undirected graph on vertex set P , D and a dummy
node vdummy, where line 10 to 14 describes how we define the edges with cost. Prim’s algorithm
is used to find the minimum spanning tree (MST) on the newly built graph. The MST has a total
of |P | + |D| + 1 nodes if we includes the dummy node vdummy. For all k depot nodes di ∈ D,
line 6 break the MST into k subtrees Ti rooted at di. A depth first search is executed on each
subtree Ti, starting from the corresponding root di. The visitation sequence S is recorded. Line
8 bypass the duplicated vertices in sequence S, and TOURi is returned.

Algorithm 2: Multiple depot random select (MDRS) heuristics
Inputs : C := ∪Ci,∀i ∈ {1, 2, · · · , n}, D
Outputs: k tours TOURi for i = 1, · · · , k

1 Randomly select a vertex vi ∈ Ci,∀i ∈ {1, 2, · · · , n}
2 P := ∪vi,∀i ∈ {1, 2, · · · , n}
3 G’ = buildGraph(P , D)
4 M = mst(G’)
5 for i = 1 : k do
6 Break M into subtree Ti rooted at di ∈ D
7 S = traverse(Ti) using depth first search
8 TOURi = bypass(S) by eliminating previously occurred vertices
9 end

Function buildGraph(P,D)
10 Set V = P ∪D ∪ vdummy

11 Add e(vdummy, i) to E with c = 0, ∀i ∈ D
12 Add e(i, j) to E with c = dist(i, j), ∀i, j ∈ P
13 Add e(i, j) to E with c = dist(i, j), ∀i ∈ D, j ∈ P
14 return undirected graph G = (V,E, c)

Theorem 3. MDRS(G) is the cost of the route constructed by MDRS on G, and OPT(G) is the
cost of the optimal route. Then,

MDRS(G)
OPT(G)

≤ 2(1 + 2d/ρ)

where d := maxni=1{maxp,q∈Ci
dist(p, q)} is the maximum inter-vertex set distance, and ρ :=

min dist(p, q), where p ∈ Ci, q ∈ Cj, i 6= j is the minimum intra-vertex distance.

Proof. In the multiple depots scenario, the minimum spanning tree heuristic is used, where B =
2. The rest of the proof is similar to Theorem 1.
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Theorem 4. MDRS returns a feasible set of tours satisfying the problem formulation. In other
words, edges e(vdummy, i) for all i ∈ D are edges for the MST on G′ rooted at the dummy
node vdummy. Mobile depot i has a sub-tree Ti, i ∈ {1, 2, · · · , k}, where |Ti ∩ Tj| = ∅, and
|Ti ∪ Tj| = C, where i, j ∈ {1, 2, · · · , k}, i 6= j.

Proof. If we apply the Prim’s greedy algorithm, then all mobile depots will be connected to the
dummy node vdummy since the edge cost between them is the smallest, zero. With the connection
between the dummy node and all mobile depots, any vertex in C will not connect to dummy
node since the edge cost between them is infinite. This implies |Ti ∪ Tj| = C. Also, the sub-tree
rooted at the mobile depots will not intersect with each other. Otherwise, a circle will be formed
which contradict with the concept of tree. This implies |Ti ∩ Tj| = ∅.

4.3 Improvement Heuristics on Tours
In this section, a centralized improvement heuristics (MDRS-IM) is proposed to increase solution
quality. MDRS randomly select a vertex from each of the vertex set to represent the whole set,
the constructed tours could be used as an near-optimal vertex set visitation sequence to further
optimize and improve the tour.

MDRS generates a set of tours for each mobile depots, where each mobile depot knows a set
of persistent robots need to be served with a visitation sequence. Define a mapM := R3 → R,
which maps the randomly selected vertex vi ∈ Ci to the corresponding vertex set index i ∈
{1, 2, · · · , n}. Given a tour T , define T (j) as the jth vertex in T . Define two tour T1 and T2 are
equal if and only if 1) |T1| = |T2|, and 2) T1(j) = T2(j) for all j = {1, 2, · · · , |T1|}. Otherwise,
T1 6= T2. Define TSP (T ) as a tour obtained on tour T using TSP algorithm.

Algorithm 3 describes the MDRS-IM procedure to improve the solution quality. The input
Tdi is the tour generated by MDRS for mobile depot di. The output is the improved tour TIM
with a better quality for this mobile depot. The algorithm build a graph GIM = (VIM , EIM , cIM)
from Line 5 to Line 20 based on the input group visitation sequence. Vertices in neighbor groups
are fully connected, and all vertices in the first and last group are connected to the dummy vertex
s and t. The shortest path search such as A* return the optimal tour given the current group visit
sequence. Line 4 is for continuous improvement based on the previous post-processing result
until the improved heuristics get the local minimum.
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Algorithm 3: Improvement Heuristics on MDRS (MDRS-IM) for mobile depot di
Inputs : The original tour Tdi from MDRS
Outputs: The improved tour TIM

1 Initialize GIM = (VIM , EIM , cIM) with VIM = V ,
2 TIM = ∅
3 L := |Tdi |
4 while TIM == ∅ OR TSP (TIM) 6= TIM do
5 for j = 0, 1, · · · , L− 1 do
6 if j = 0 then
7 Insert dummy node s, VIM = VIM ∪ s
8 Connect EIM(s, v), ∀v ∈ CM(T (1))

9 Set cIM(s, v) = 0, ∀v ∈ CM(T (1))

10 end
11 else if j = L− 1 then
12 Insert dummy node t, VIM = VIM ∪ t
13 Connect EIM(v, t), ∀v ∈ CM(T (L))

14 Set cIM(v, t) = 0, ∀v ∈ CM(T (L))

15 end
16 else
17 Connect EIM(u, v) for all u ∈ CM(T (j)), v ∈ CM(T (j+1))

18 Set cIM(u, v) = dist(EIM(u, v))

19 end
20 end
21 TIM ← shortest path from dummy node s to t
22 end

13
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Chapter 5

A Decentralized Framework

In this section, we will introduce a decentralized framework to implement our approach which
provides scalability and robustness. Our proposed MDRS consists of several sub-components,
including construction of the minimum spanning tree, traversal of the tree using depth first search
and by-pass the repeated vertices to form a tour. The goal for the fully decentralized MDRS
(dec-MDRS) heuristic is to obtain the solution by asynchronously passing messages among all
persistent robots and mobile depots.

The dec-MDRS works as follows. 1) Each persistent robot will randomly select a battery
swapping location from its preferred locations set. 2) GHS algorithm [4], a well known asyn-
chronous distributed algorithm, will be used to construct minimum spanning tree. The graph G’
is the same as in the centralized version. Each robot knows the adjacency list with weights for
itself. Assume the graph G′ has n nodes and m edges, GHS algorithm runs in O(n log2 n) time
and using at most O(m + n log2 n) messages. The output for this step is a minimum spanning
tree, which is represented as the adjacency list of vertices adjMST stored in each robot. 3) With
the MST built, the last step is to traverse the tree and bypass the repeated vertices to form a tour.
We present the last step in Algorithm 4.

Algorithm 4 describes the traversal and bypassing for robot ri, where the robot could be both
mobile depots and persistent robots. Before this algorithm starts, ri knows its adjacency list
of vertices adjMST , which is a list of its neighbor vertices on the built MST. Note that adjMST

could be unsorted. Also, if the robot is a mobile depot, then it knows the Boolean first is true,
meaning mobile depots are the robots that kick off the algorithm. The output is the next vertex
next on the constructed TOUR. Each robot ri has three internal variables to keep track its own
status, count, started and visited. count is an integer variable which points the position of
the adjMST , which is initialized to be 1, meaning the first element in adjMST has been pointed.
Boolean visited means whether it has been visited before, which is initialized to be false. An-
other Boolean started means whether this robot has been woken up, which is initialized to be
false. The messages has the same protocol, where msg = 〈type, src, [optional]other〉. Robots
asynchronously send and receive three message types to each other with the known protocol to
construct the tour. When a robot is been visited for the first time, it marks itself as visited.
Line 13 to 17 find the its parent in adjMST and move it to the last position in the list. Once the
counter hit the end of adjMST , the robot traces back to its parent as in the depth first search. The
robot then increases the counter and do the same traversal to the next vertex in adjMST . If the
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robot is visited before, this means the robot needs to be bypassed. This is achieved by sending
messages to the two related bypass neighbors. Assume that (rj, ri) and (ri, rk) is edges on the
built MST, and robot ri is bypassed. ri will send message to rj telling rk is next vertex next on
the constructed tour, and send another similar message to rk with the vertex rj . The algorithm is
terminated once the counter count points out of adjMST .

Algorithm 4: Distributed Traverse and Bypass Algorithm, for robot ri
Inputs : Adjacency vertex list adjMST , Boolean first
Outputs: Next vertex next on TOURi

1 Initialize count = 1, visited = false, started = false
When receiving no message:

2 if started = false then
3 started = true
4 if first = true then proceed(-1)
5 end

When receiving message 〈A, src〉:
6 if count > |adjMST | then Terminate
7 if visited = false then proceed(src)
8 else bypass(src)

When receiving message 〈B, src, vertex〉:
9 next = vertex

When receiving message 〈C, src, vertex〉:
10 if count > |adjMST | then Terminate
11 if visited = false then proceed(src)
12 else bypass(vertex)

Function proceed(src)
13 visited = true
14 if src 6= −1 then
15 Delete adjMST (adjMST == src)
16 Insert src to the end of adjMST

17 end
18 count = count+ 1
19 next = adjMST (count)
20 sendmsg(〈A, ri〉, adjMST (count))

Function bypass(rj)
21 rk = adjMST (count)
22 sendmsg(〈B, ri, rk〉, rj)
23 sendmsg(〈C, ri, rj〉, rk)
24 count = count+ 1

Function sendmsg(msg, dst)
25 Send message msg to destination dst

Theorem 5. Algorithm 4 eventually terminates and construct the correct set of tours.
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Proof. Algorithm 4 traverses the undirected edge at most twice in adjMST , which means finite
number of edges will eventually leads to termination. In other words, since the counter count
always increases while the length of adjMST is unchanged, the counter will eventually meet the
termination condition.

In terms of correctness, Algorithm 4 starts on the set of mobile depots. Once the robot is
been visited for the first time, the robot marks itself as visited and remains the status. The robot
will also mark its parent during the first visit. This ensures the robot can trace back once all other
neighbors has been visited. All later visitation on those robots who has already been visited will
be bypassed.
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Chapter 6

Simulation Results

6.1 Simulation Setup

The proposed algorithms are implemented in C++ with an open source template graph library
LEMON1. The library provides efficient implementations of common data structures and graph
algorithms. Simulation results were computed on a laptop running a 64 bit Ubuntu 16.04 operat-
ing system with an Intelr CoreTMi7-8550U CPU @1.80GHz x 8 and 16GB of RAM.

6.2 Centralized Heuristics

Fig. 6.1 illustrates an example of the multiple mobile depots route planning problem. Here we
have k = 2 mobile depots shown in black diamonds. n = 9 persistent robots with their pre-
planned paths are shown in green dotted lines, with |C| = 70 total potential charging locations
shown in red asterisks on the green path. MDRS-IM is used to construct the set of tours, with the
solution shown in the blue solid line, where mobile depots end the tour at their initial positions.
It could be verified that the obtained solution is global optimal in terms of minimizing the total
costs. The problem is solved in less than 0.1s by using MDRS-IM.

Fig. 6.2 investigates the relation between the solution quality ratio versus d/ρ. The solution
quality ratio is defined as the cost obtained by MDRS-IM versus the known optimal cost. The
optimal cost is calculated using the MIP optimization formulation proposed by [19]. The MIP is
solved by IBM CPLEXr. We run 200 instances in total to compile Fig. 6.2, which shows the
mean, standard deviation and the extremes for various d/ρ. The instances are created as follows.
First, select 20 instances in TSPLIB2. Then, for each point on the TSP instance, we use 2D
Gaussian distribution to generate 20 points to form a corresponding vertex set. Each vertex set is
treated as the set of preferred charging locations for a persistent robot. We randomly distribute
k = 2 depots on the constructed graph. We could obtain various d/ρ by controlling the µ and
covariance matrix for the Gaussian distribution. Fig. 6.2 shows that the mean of cost ratio will

1Open source library LEMON, https://lemon.cs.elte.hu/trac/lemon.
2TSPLIB instances collected by Gerhard Reinelt, https://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/tsp/.

19

https://lemon.cs.elte.hu/trac/lemon
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/


Figure 6.1: An illustrative example showing the constructed tours (blue solid line) using MDRS-
IM. Black diamonds are mobile depots, green dotted lines are the pre-planned routes for per-
sistent robots. Red asterisks are the preferred battery swapping locations. It could be verified
that this path is optimal in terms of minimizing the total costs. It could also be verified that
dec-MDRS also produce the same tour set.

gradually increase with the increment of d/ρ. In most cases, the algorithm obtains a cost ratio
within 1.2.

Figure 6.2: Relation between the solution quality ratio versus d/ρ.

Fig. 6.3 show how the increment of persistent robot number will affect the simulation time
for centralized algorithms. The simulation benchmarks with 1) optimization method [19], which
solve the exact solution based on branch and cut, 2) transformation methods [12, 13] which
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transform the problem to a classic TSP problem, and then use the state of the art LKH heuristic to
solve the approximate solution. In this simulation, each persistent robot has 10 preferred battery
swapping locations, which means each vertex set has size of 10. We randomly put k = 5 mobile
depots in this problem. The simulation results show the optimization method grow exponentially
with the increment of robot number. It also illustrates that MDRS-IM algorithm reduces the
simulation time significantly, which is about 10 times less than the LKH method, and 150 times
less than the optimization method.

Figure 6.3: Comparison of computation time between three methods: optimization, LKH and
MDRS-IM.

Table 6.1 shows the time and solution quality comparison between LKH with MDRS and
MDRS-IM on GTSPLIB3[5] instances. The Value and Time for LKH method are directed bench-
marked using GLKH version 1.0 from [7]. For simplicity, all instances are route planning for
single mobile depot. Both MDRS and MDRS-IM computes significantly faster than the LKH
solver for these very large instances with little solution quality loss.

3GTSP Instances Library collected by Daniel Karapetyan, http://www.cs.nott.ac.uk/˜dxk/gtsp.
html.
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6.3 Decentralized Heuristics
Fig. 6.4 shows our proposed dec-MDRS approach has good scalability. As the number of robots
increases, the messages exchanged and the compulation time grows linearly. The correctness of
dec-MDRS could also be verified in the example in Fig. 6.1, where the decentralized algorithm
return the same set of tours as the centralized algorithm.

Figure 6.4: Results from our proposed dec-MDRS approach. Left figure shows number of mes-
sages exchanged to construct tours using dec-MDRS. The error bar shows the maximum and
minimum number of messages exchanged. Right figure shows computation time of constructing
dec-MDRS.
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Chapter 7

Conclusion and Future Work

In this paper, we consider the problem for replenishing persistent robots using mobile depots. We
formulate this problem as a GMDTSP on a complete graph. An efficient centralized heuristic-
based algorithm MDRS is proposed. MDRS captures the nature for GMDTSP, where the vertices
in the same vertex set have a close correlation, and thus a single vertex has a good representation
for the whole vertex set. This nature dramatically reduces the problem complexity and computa-
tion time. dec-MDRS is then proposed to provide scalability and robustness for the centralized
version of the algorithm. We also propose a post-processing heuristic (MDRS-IM) to improve
the solution quality further.

In the future, we may incorporate temporal planning in the multiple mobile depots route
planning problem formulation. In the current formulation, no temporal information is consid-
ered, and the persistent robots might need to wait on its preferred battery swapping location until
the mobile depot deliver the battery. If the temporal information is considered, we could min-
imize the waiting time for persistent robots to swap the battery. We could also assign different
replenishment priority for for different persistent robots. The other future work is to explore the
optimal number and placement for mobile depots when initialization.
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