
3D Shape Completion and
Canonical Pose Estimation with

Structured Neural Networks

Wentao Yuan
May, 2019

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Martial Hebert

David Held
Brian Okorn

CMU-RI-TR-19-22

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright c© 2019 Wentao Yuan. All rights reserved.

To my parents.

iv

Abstract

3D point cloud is an efficient and flexible representation of 3D structures
and the raw output of many 3D sensors. The ability to learn useful repre-
sentations from 3D point cloud data is thus of great value to autonomous
agents that perceive and interact with the surrounding 3D environment.
Recently, neural networks operating on point clouds have shown superior
performance on various 3D understanding tasks, thanks to their power to
extract task-specific semantic features directly from points. In this thesis,
we study how to incorporate geometric and algorithmic structures into the
design of neural networks in order to achieve more effective and efficient
learning from raw point clouds.

In particular, we investigate two problems – 3D shape completion and
canonical pose estimation – that address two essential characteristics of
3D data in the wild: incompleteness and misalignment. We show that the
structured neural networks we propose outperform alternative approaches
that do not incorporate structural priors on synthetic benchmarks and
demonstrate the potential of our networks to operate on challenging real
world data such as LiDAR scans collected from an autonomous vehicle.

v

vi

Acknowledgments

My two years at CMU are invaluable. Two years ago, I could not imagine
that I would be sharing my original research with researchers from around
the world or writing up a sixty-page thesis. All of these would not be
possible without the help of many fabulous people I met at CMU.

I am very fortunate to have Prof. Martial Hebert as my advisor, who
opened my eyes to the emerging field of 3D computer vision. His experience
and insights are my source of inspiration and his conscientious attitude
towards research has deeply influenced me and encouraged me to tackle
to frontiers of human knowledge.

I am grateful to Tejas Khot for being an amazing labmate. The countless
late-night discussions we had in the lab has made the lonely journey of
research much more enjoyable.

I would also like to thank Christoph Mertz for graciously providing his
labspace and funding to support my research, and David Held, Leonid
Keselman, Chen-Hsuan Lin, Brian Okorn, Chaoyang Wang, Rui Zhu for
helpful discussions and suggestions.

Now, let the new journey begin.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of Contributions . 2
1.3 Thesis Outline . 3

2 3D Shape Completion 5
2.1 Motivation . 5
2.2 Problem Statement . 8
2.3 Point Completion Network . 8

2.3.1 Point Feature Encoding . 9
2.3.2 Multistage Point Generation 10
2.3.3 Local Folding Operation . 11
2.3.4 Loss Function . 12

2.4 Experimental Evaluation . 13
2.4.1 Data Generation and Model Training 13
2.4.2 Completion Results on ShapeNet 14
2.4.3 Completion Results on KITTI 22
2.4.4 Point Cloud Registration with Completion 25

2.5 Related Work . 26
2.6 Discussion . 28

3 Canonical Pose Estimation 31
3.1 Motivation . 31
3.2 Iterative Transformer Network . 34

3.2.1 Rigid Transformation Prediction 35
3.2.2 Iterative Alignment . 36
3.2.3 Implementation Details . 37

3.3 Dataset . 38
3.4 Experimental Evaluation . 39

3.4.1 Pose Estimation . 40
3.4.2 3D Shape Classification . 44
3.4.3 Object Part Segmentation . 49

3.5 Related Work . 51
3.6 Summary . 52

ix

4 Conclusion and Open Problems 53

Bibliography 55

x

Chapter 1

Introduction

1.1 Motivation

3D point cloud is the raw output of many 3D sensors and a widely used representation

for 3D structures in 3D reconstruction [2], tracking [27] and localization [35]. Due to

its efficiency and flexibility, there is a growing interest in using point clouds directly for

high level understanding tasks, skipping the need for meshing or other post-processing.

These tasks require an understanding of the semantic concept represented by the

points. On other modalities like images, deep neural networks [28] have proven

to be a powerful model for extracting semantic information from raw sensor data,

and have gradually replaced hand-crafted features. A similar trend is happening on

point clouds. With the introduction of deep learning architectures that operate on

point clouds [38], it is possible to train powerful feature extractors that outperform

traditional geometric descriptors on tasks such as shape classification and object part

segmentation.

However, existing benchmark datasets [11, 55] that are used to evaluate perfor-

mance on these tasks make two simplifying assumptions: first, the 3D shapes are

sampled from CAD models with complete geometry; second, the shapes are aligned

in a canonical coordinate system defined by human modelers. These assumptions are

rarely met in real world scenarios. First, due to occlusions and limitations of sensors,

real world 3D scans often contain missing regions. Second, real world 3D data are

often obtained in the sensors coordinates, which do not align with the canonical

1

1. Introduction

coordinates of object models. In other words, real 3D point cloud data are partial

and misaligned.

This thesis provides a step towards learning from partial, misaligned 3D data by

proposing two structured neural networks models that operate on raw point clouds:

Point Completion Network (PCN) and Iterative Transformer Networks (IT-Net). We

will show how these networks address the problems of 3D shape completion and

canonical pose estimation and how they exploit structural priors that lead to more

effective learning.

1.2 Overview of Contributions

This thesis offers the following contributions to the research community:

1. A learning-based shape completion method that operates directly on 3D point

clouds without intermediate voxelization and is end-to-end trainable on pairs of

partial and complete shapes without additional annotations;

2. A novel multistage encoder-decoder architecture that generates a dense point

cloud in a coarse-to-fine fashion, drawing upon patch-based representation of

3D surfaces;

3. A demonstration of how shape completion can aid downstream tasks such as

point cloud registration;

4. A new 3D transformer network estimates rigid transformations from point

clouds in an iterative fashion;

5. An anytime1 pose estimator that can also be trained jointly with point-based

shape classification and segmentation networks to improve their performance;

6. A dataset for pose estimation, shape classification and part segmentation

consisting of partial, unaligned point clouds.

1The result of an anytime predictor can be gradually refined until the test-time computational
budget is depleted.

2

1. Introduction

1.3 Thesis Outline

This thesis will be organized as follows. In Chapter 2, we introduce Point Completion

Network [63], a learning-based shape completion method on 3D point clouds, and show

improved completion results over existing completion methods, robustness against

noise and sparsity and generalization to real-world data. In Chapter 3, we propose

Iterative Transformer Network [62], a differentiable network module that predicts

rigid transformations from point clouds, and demonstrate its efficacy on canonical

pose estimation, shape classification and part segmentation. In Chapter 4, we provide

concluding remarks and highlight some important open problems for future work.

3

1. Introduction

4

Chapter 2

3D Shape Completion

Shape completion, the problem of estimating the complete geometry of objects from

partial observations, lies at the core of many vision and robotics applications. In

this chapter, we introduce Point Completion Network (PCN), a novel learning-based

approach for shape completion. PCN takes a partial point cloud as input and generates

a dense, complete point cloud in a single forward pass with a structured multi-stage

decoder. Unlike existing learning-based shape completion methods, PCN directly

operates on raw point clouds without any discretization. Our experiments show that

PCN produces dense, complete point clouds with realistic structures in the missing

regions in a fraction of a second. In addition, trained on pairs of partial and complete

point clouds from a synthetic dataset, our model is able to generalize to challenging

real world 3D data such as car point clouds extracted from sparse LiDAR scans in

the KITTI dataset [17].

2.1 Motivation

With the rapid development of 3D sensors such as depth cameras and LiDARs, the

availability of 3D data has increased significantly over the years. However, due to

occlusion, limited sensor resolution and sensor failures, real-world 3D scans are often

contain large missing regions, causing loss in geometric and semantic information.

For example, the cars in the LiDAR scan shown in Figure 2.1 are hardly recognizable

due to the sparsity of data points and missing regions caused by occlusion.

5

2. 3D Shape Completion

Figure 2.1: (Top) Raw LiDAR scan from KITTI [17]. Note how the cars are
barely recognizable due to incompleteness of the data. (Bottom) Completed scan
generated by PCN on individual car point clouds segmented from the scene.

6

2. 3D Shape Completion

Psychological experiments [18, 40] show that completion of occluded structures

is performed frequently by humans, where we leverage prior experience to infer

unobserved parts of objects. Recently, several large-scale 3D shape repositories [11, 55]

containing CAD models of common objects have been constructed. Taking inspiration

from human vision, a number of recent works [14, 46] utilize these repositories to

train deep neural networks that encode implicit shape priors. Once trained, these

networks are able to use the learned shape prior to predict complete geometry from

partial views in an extremely efficient fashion, mimicking human vision.

However, in order to leverage the power of convolutional networks, existing

learning-based shape completion methods voxelize the 3D data into occupancy grids

or distance fields, which leads to several disadvantages. First, the cubically growing

memory cost of 3D voxel grids limits the output resolution. Second, detailed geometry

of the shapes is often lost in the process of discretization.

To address these shortcomings, we propose a learning-based shape completion

method that use point clouds as the representation for 3D geometry. The point cloud

representation prevents the high memory cost and loss of geometric details caused by

voxelization and allows our method to generate higher quality completions.

The key to our approach is the design of a neural network that consumes and

generates 3D point clouds, which involves a number of challenges. First, a point

cloud is an unordered set, which means permutations of the points do not change the

geometry they represent. This necessitates the design of a feature extractor and a

loss function that are permutation invariant. Second, there is no clear definition of

local neighbourhoods in point clouds, making it difficult to apply any convolutional

operation. Lastly, existing point cloud generation networks only generate a small

set of points, which is not sufficient to capture enough detail in the output shape.

Our proposed model tackles these challenges by combining a permutation invariant,

non-convolutional feature extractor and a coarse-to-fine point set generator in a single

network that is trained end-to-end.

The rest of this chapter will be organized as follows. In Section 2.2, we describe our

formulation of the shape completion problem. In Section 2.3, we illustrate details of

our proposed encoder-decoder network. In Section 2.4, we show extensive experiment

results including improved completion quality over strong baselines, robustness against

noise and sparsity, generalization to real-world data and application of completion to

7

2. 3D Shape Completion

downstream tasks. In Section 2.5, we cover previous works related to our approach.

In Section 2.6, we discuss failure modes of our method and possible avenues for

improvement.

2.2 Problem Statement

Let X be a set of 3D points lying on the observed surfaces of an object obtained by a

single observation or a sequence of observations from a 3D sensor. Let Y be a dense

set of 3D points uniformly sampled from the observed and unobserved surfaces of the

object. We define the shape completion problem as predicting Y given X. Note that

under this formulation, X is not necessarily a subset of Y and there is no explicit

correspondence between points in X and points in Y , because they are independently

sampled from the underlying object surfaces.

We tackle this problem using supervised learning. Leveraging a large-scale syn-

thetic dataset where samples of X and Y can be easily acquired, we train a neural

network to predict Y directly from X. The network is generic across multiple object

categories and does not assume anything about the structure of underlying objects

such as symmetry or planarity.

2.3 Point Completion Network

In this section, we describe the architecture of our proposed model, the Point Com-

pletion Network (PCN). As shown in Figure 2.2, PCN is an encoder-decoder network.

The encoder takes the input point cloud X and outputs a k-dimensional feature vector.

The decoder takes this feature vector and produces a coarse output point cloud Ycoarse

and a detailed output point cloud Ydetail. The loss function L is computed between

the ground truth point cloud Ygt and the outputs of the decoder, which is used to

train the entire network through backpropagation.

Note that, unlike an auto-encoder, we do not explicitly enforce the network to

retain the input points in its output. Instead, it learns a projection from the space of

partial observations to the space of complete shapes. In what follows, we describe

the specific design of the encoder, decoder and the loss function used.

8

2. 3D Shape Completion

Figure 2.2: PCN Architecture. The encoder abstracts the input point cloud X
as a feature vector v. The decoder uses v to first generate a coarse output Ycoarse
followed by a detailed output Ydetail. Each colored rectangle denotes a matrix row.
Same color indicates same content.

2.3.1 Point Feature Encoding

The encoder is in charge of summarizing the geometric information in the input

point cloud as a feature vector v ∈ Rk where k = 1024. Specifically, the encoder

consists of two stacked PointNet (PN) layers. The first layer consumes m input

points represented as an m × 3 matrix P where each row is the 3D coordinate of

a point pi = (x, y, z) (note that out network can handle input of various sizes).

A shared multi-layer perceptron (MLP) consisting of two linear layers with ReLU

activation is used to transform each pi into a point feature vector fi. This gives us a

feature matrix F whose rows are the learned point features fi. Then, a point-wise

maxpooling is performed on F to obtain a k-dimensional global feature g, where

gj = maxi=1,...,m{Fij} for j = 1, . . . , k. The second PN layer takes F and g as input.

It first concatenates g to each fi to obtain an augmented point feature matrix F̃

whose rows are the concatenated feature vectors [fi g]. Then, F̃ is passed through

another shared MLP and point-wise max pooling similar to the ones in the first layer,

which gives the final feature vector v.

9

2. 3D Shape Completion

There are three key properties of our proposed encoder. First, it is invariant to

permutations of the input points. This follows from the fact that every operation in

our proposed encoder is either executed in parallel with respect to each point (e.g.

the shared MLP) or a symmetric operation (e.g. max pooling). This property is

essential in learning useful features from point clouds because changing the order of

points in a point cloud does not change the underlying surfaces the points are sampled

from. Second, our encoder is tolerant to noise in the input data. As proven in [38],

small disturbances of the input points will not affect the learned global feature vector.

This is especially important for our model to generalize to real-world data which can

be noisy. Third, our encoder is able to combine local and global geometry via the

chaining of PN layers. With a single PN layer, the point feature vector fi produced

by the shared MLP depends solely on the point coordinates, which implies that all fi

lie on a manifold with only 3 degrees of freedom. By passing the concatenated global

feature and point feature through another PN layer which blends the local and global

information, the network can learn much more complex point features. We found

that this helps the network achieve better performance in practice.

2.3.2 Multistage Point Generation

The decoder is responsible for generating the output point cloud from the feature

vector v. Our proposed decoder combines the advantages of the fully-connected

decoder [1] and the folding-based decoder [59] in a multistage point generation

pipeline. In our experiments, we show that our decoder outperforms either the

fully-connected or the folding-based decoder on its own.

Our key observation is that the fully-connected decoder is good at predicting a

sparse set of points which represents the global geometry of a shape. Meanwhile, the

folding-based decoder is good at approximating a smooth surface which represents the

local geometry of a shape. Thus, we divide the generation of the output point cloud

into two stages. In the first stage, a coarse output Ycoarse of s points is generated by

passing v through a fully-connected network with 3s output units and reshaping the

output into a s× 3 matrix. In the second stage, for each point qi in Ycoarse, a patch

of t = u2 points is generated in the local coordinates centered at qi via the local

folding operation (see Section 2.3.3), and transformed into the global coordinates by

10

2. 3D Shape Completion

adding qi to the output. Combining all s patches gives the detailed output Ydetail

consisting of n = st points. This multistage process allows our network to generate a

dense output point cloud with fewer parameters than fully-connected decoder (see

Table 2.1) and more flexibility than folding-based decoder.

2.3.3 Local Folding Operation

As shown in Figure 2.3, the local folding operation takes a point qi in the coarse

output Ycoarse and the k-dimensional global feature v as inputs, and generates a patch

of t = u2 points in local coordinates centered at qi by deforming a u× u grid. It first

takes points on a zero-centered u × u grid with side length r (r controls the scale

of the output patch) and organize their coordinates into a t × 2 matrix G. Then,

it concatenates each row of G with the coordinates of the center point qi and the

global feature vector v, and passes the resulting matrix through a shared MLP that

generates a t × 3 matrix Q, i.e. the local patch centered at qi. This shared MLP

can be interpreted as a non-linear transformation that deforms the 2D grid into a

smooth 2D manifold in 3D space. Note that the same MLP is used in the local patch

generation for each qi so the number of parameters in the local folding operation

does not grow with the output size.

Figure 2.3: The local folding operation

11

2. 3D Shape Completion

2.3.4 Loss Function

The loss function measures the difference between the output point cloud and the

ground truth point cloud. Since both point clouds are unordered, the loss needs to

be invariant to permutations of the points. Two candidates of permutation invariant

functions are introduced by [16] – Chamfer Distance (CD) and Earth Mover’s Distance

(EMD).

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2 +
1

|S2|
∑
y∈S2

min
x∈S1

‖y − x‖2 (2.1)

CD (2.1) calculates the average closest point distance between the output point

cloud S1 and the ground truth point cloud S2. We use the symmetric version of CD

where the first term forces output points to lie close to ground truth points and the

second term ensures the ground truth point cloud is covered by the output point

cloud. Note that S1 and S2 need not be the same size to calculate CD.

EMD(S1, S2) = min
φ:S1→S2

1

|S1|
∑
x∈S1

‖x− φ(x)‖2 (2.2)

EMD (2.2) finds a bijection φ : S1 → S2 which minimizes the average distance

between corresponding points. In practice, finding the optimal φ is too expensive, so

we use an iterative (1 + ε) approximation scheme [6]. Unlike CD, EMD requires S1

and S2 to be the same size.

L(Ycoarse, Ydetail, Ygt) = d1(Ycoarse, Ỹgt) + α d2(Ydetail, Ygt) (2.3)

Our proposed loss function (2.3) consists of two terms, d1 and d2, weighted by

hyperparameter α. The first term is the distance between the coarse output Ycoarse

and the subsampled ground truth Ỹgt which has the same size as Ycoarse. The second

term is the distance between the detailed output Ydetail and the full ground truth Ygt.

In our experiments, we use both CD and EMD for d1 but only CD for d2. This

is because the O(n2) complexity of the EMD approximation scheme makes it too

expensive to compute during training when n is large, while CD can be computed

with O(n log n) complexity using efficient data structure for nearest neighbour search

such as KDTree.

12

2. 3D Shape Completion

2.4 Experimental Evaluation

In this section, we present experimental results of our point-based shape completion

method on synthetic as well as real-world data. First, we describe how we generate

a large-scale, multi-category dataset to train our model in Section 2.4.1. Next, we

provide detailed ablation studies and show superior performance of our method on

synthetic point clouds from ShapeNet [11] in Section 2.4.2. Then, we demonstrate

completion results on real-world point clouds from LiDAR scans in the KITTI dataset

[17] in Section 2.4.3. Finally, we show how our completion results can help downstream

tasks such as point cloud registration in Section 2.4.4.

2.4.1 Data Generation and Model Training

To train our completion model, we created a large-scale, multi-category dataset

containing pairs of partial and complete point clouds (X, Y) from synthetic CAD

models in ShapeNet [11]. Specifically, we take 30,974 models from 8 categories:

airplane, cabinet, car, chair, lamp, sofa, table, vessel. The complete point clouds are

created by sampling 16384 points uniformly on the mesh surfaces and the partial

point clouds are generated by back-projecting 2.5D depth images into 3D. We use

back-projected depth images for partial inputs instead of subsets of the complete

point cloud in order to bring the input distribution closer to real-world sensor data.

For each model, 8 partial point clouds are generated from 8 randomly distributed

viewpoints. Note that the partial point clouds can have different sizes.

We choose to use a synthetic dataset to generate training data because it contains

complete, detailed 3D models of objects that are not available in real-world datasets.

Despite the fact that recent datasets such as ScanNet [13] or S3DIS [3] have very

high quality 3D reconstructions, these reconstructions have missing regions due to

the limitations of the scanner’s view, and thus are not good enough to use as ground

truth for our model.

We reserve 100 models for validation and 150 models for testing. The rest is used

for training. All our models are trained using the Adam [26] optimizer with an initial

learning rate of 0.0001 for 50 epochs and a batch size of 32. The learning rate is

decayed by 0.7 every 50K iterations.

13

2. 3D Shape Completion

2.4.2 Completion Results on ShapeNet

In this section, we compare our method against several strong baselines, including a

representative volumetric network and modified versions of our model, on synthetic

point clouds from ShapeNet [11]. We also test the generalizability of these methods

to novel shapes and the robustness of our model against occlusion and noise.

Baselines Previous point-based completion methods either assume more complete

inputs than we have [23] or prior knowledge of the shape such as semantic class,

symmetry and part segmentation [50], and thus are not directly comparable to

our method. Here, we compare our model against four strong baselines which,

like our method, work on objects from multiple categories with different levels of

incompleteness.

1) 3D-EPN [14]: This is a representative of the class of volumetric completion

methods that is also trained end-to-end on large synthetic dataset. To compare the

distance field outputs of 3D-EPN with the point cloud outputs of PCN, we convert

the distance fields into point clouds by extracting the isosurface at a small value d and

uniformly sampling 16384 points on the resulting mesh. To ensure fair comparison,

we also convert the point cloud outputs of PCN into distance fields by calculating

the distance from grid centers to the closest point in the output.

2) FC: This is a network that uses the same encoder as PCN but the decoder is

a 3-layer fully-connected network which directly outputs the coordinates of 16384

points.

3) Folding: This is a network that also uses the same encoder as PCN but the

decoder is purely folding-based [59], which deforms a 128-by-128 2D grid into a 3D

point cloud.

4) PN2: This is a network that uses the same decoder as our proposed model

but the encoder is PointNet++ [39].

We provide two versions of our model for comparison, PCN-CD and PCN-EMD.

The number of points in the coarse and detailed outputs are s = 1024 and n = 16384

respectively. For the loss on coarse output, PCN-CD uses CD and PCN-EMD uses

EMD. Note that both models use CD for the loss on detailed output due to the

computational complexity of EMD.

14

2. 3D Shape Completion

(a) Results on trained categories

(b) Results on novel categories

Figure 2.4: Quantitative comparison on ShapeNet. (a) shows results for test
instances from the same categories used in training. (b) shows results for test instances
from categories not included in training, which are divided into similar (bus, bed,
bookshelf, bench) and dissimilar (guitar, motorbike, skateboard, pistol). For both
CD (top) and EMD (below), lower is better.

Test Set We created two test sets: one consists of 150 reserved shapes from the 8

object categories on which the models are trained; the other consists of 150 models

from 8 novel categories that are not in the training set. We divide the novel categories

into two groups: one that is visually similar to the training categories – bed, bench,

bookshelf and bus, and another that is visually dissimilar to the training categories –

guitar, motorbike, pistol and skateboard. The quantitative comparisons are shown in

Figure 2.4 and some qualitative examples are shown in Figure 2.5.

15

2. 3D Shape Completion

Figure 2.5: Qualitative completion results on ShapeNet. Top four rows are
results on categories used during training. Bottom four rows are results on categories
not seen during training.

16

2. 3D Shape Completion

Figure 2.6: Illustration of CD (left) and EMD (right). The top row shows the
output of our model and the bottom row shows the ground truth. The points on the
left are colored by their distance to the closest point in the other point cloud (nearest
neighbor (NN) distance). The points on the right are colored by their distance to the
corresponding point under the optimal bijection (match distance). Average CD is
the mean of the NN distances and average EMD is the mean of the match distances.

Metrics The metrics we use on point clouds are CD and EMD between the output

and ground truth point clouds, as defined in 2.3.4. An illustration of the difference

between the two metrics is shown in Figure 2.6. We can see that CD is high where the

global structure is different, e.g. around the corners of the chair back. On the other

hand, EMD is more evenly distributed, as it penalizes density difference between

the two point clouds. Note that on average, EMD is much higher than CD. This is

because EMD requires one-to-one correspondences between the points, whereas the

point correspondences used by CD can be one-to-many.

The metric we use on distance fields is the L1 distance between the output and

ground truth distance fields, same as in [13]. To have comparable numbers across

different dimensions, we convert the error from the voxel distance to distance in the

model’s metric space.

17

2. 3D Shape Completion

(a) Chamfer Distance (CD) (b) Earth Mover’s Distance (EMD)

(c) L1 distance

Figure 2.7: Comparison between PCN-EMD and 3D-EPN. (a) and (b) shows
comparison of point cloud outputs. The x-axis represents different object instances.
The height of the blue bar indicates the amount of improvement of PCN-EMD over
3D-EPN. The red curve is the error of 3D-EPN and the difference between the red
curve and the blue bar is the error of PCN-EMD. PCN-EMD improves on the majority
of instances. (c) shows comparison of distance field outputs. On the y-axis is the
average L1 distance on occluded voxels between output and ground truth distance
fields. PCN-EMD achieves lower L1 distance on higher resolutions.

Comparison to Volumetric Method It can be seen that our method outperforms

3D-EPN by a large margin on both CD and EMD. To better interpret the numbers,

in Figures 2.7a, 2.7b, we show the amount of improvement of our completion results

over that of 3D-EPN on CD and EMD for each instance in the test set. The results

of our method improve on the majority of instances. Further, they improve the

most on examples where the error of 3D-EPN is high, indicating its ability to handle

challenging cases where previous methods fail.

18

2. 3D Shape Completion

In Figure 2.7c, we show that our method achieves lower L1 distance when its

outputs are converted to a distance field. Moreover, the improvement of our method

over 3D-EPN is more significant at higher resolutions.

Decoder Comparison The results in Figure 2.4 show how our proposed decoder

compares with existing decoder designs. Our multistage design which combines the

advantages of fully-connected and folding-based decoders outperforms either design

on its own. From the qualitative results, we observe that the fully-connected decoder

does not have any constraints on the local density of the output points, and thus the

output points are often over-concentrated in areas such as table top, which results in

high EMD. On the other hand, the folding-based decoder often produces points that

are floating in space and not consistent with the global geometry of the ground truth

shape, which results in high CD. This is because the shapes in our dataset contain

many concavities and sharp edges, which makes globally folding a 2D plane into a

3D shape very challenging. FoldingNet [59] addresses this by chaining two folding

operations. However, by only doing the folding operation locally, our decoder is able

to achieve better performance with only one folding operation.

Encoder Comparison Another pair of comparison shown in Figure 2.4 is between

the stacked PN and PN2 [39] as the encoder. PN2 is a representative of the class

of hierarchical feature extraction networks that aggregate local information before

global pooling. Our results show that it is outperformed by our stacked PN encoder

which uses only global pooling. We believe this is because local pooling is less stable

than global pooling due to suboptimality in the selection of local neighbourhoods for

the partial data we are dealing with. Thus, we argue that stacking PN layers instead

of doing local pooling is a better way of mixing local and global information.

Generalizability to Novel Objects As shown in Figure 2.4b, our method out-

performs all baselines on object from novel categories. More importantly, our model’s

performance is not significantly affected even on visually dissimilar categories (e.g.

the pistol in Figure 2.5). This shows that the shape prior learned by our model is

general across various object categories.

19

2. 3D Shape Completion

Figure 2.8: Qualitative (top) and quantitative (bottom) results on noisy inputs with
different level of visibility.

Robustness to occlusion and noise To test the robustness of our method to

sensor noise and large occlusions, we perturbed the depth map with Gaussian noise

whose standard deviation is 0.01 times the scale of the depth measurements, and

occluded it with a mask that covers p percent of points, where p ranges from 0% to

80%. Additionally, we randomly set 1% of the measurements to dmax = 1.6.

As we can see from Figure 2.8, the errors (CD and EMD) increase only gradually

as more and more regions are occluded. Note that our model is not trained with

these occluded and noisy examples, but it is still robust to them. The strong shape

prior that the model has learned helps it to ignore the noisy points and predict

reasonable outputs under occlusions. This in part explains its strong generalizability

to real-world data, as we will show in the following section.

Number of Parameters As shown in Table 2.1, our model has an order of

magnitude fewer parameters than 3D-EPN and FC while achieving significantly

better performance.

20

2. 3D Shape Completion

Table 2.1: Number of trainable model parameters

Method 3D-EPN FC Folding PN2 Ours

Params 52.4M 53.2M 2.40M 6.79M 6.85M

(a) Test error vs. number of PN layers (b) Test error vs. bottleneck sizes

Figure 2.9: Analysis of variations in the model architecture. For both CD and EMD,
lower is better.

Effect of stacked PN layers We evaluated variants of PCN-CD with different

number of stacked PN layers in the encoder. The mean CD and EMD on the ShapeNet

test set are shown in Figure 2.9a. It can be seen that the advantage of using 2 stacked

PN layers over 1 is quite apparent, whereas the benefit of using more stacked PN

layers is almost negligible. This shows that 2 stacked PN layers are sufficient for

mixing the local and global geometry information in the input. Thus, we keep the

number of stacked PN layers as 2 in our experiments, even though PCN’s performance

can be further improved by using more stacked PN layers.

Effect of bottleneck size We also tested variants of PCN-EMD with different

bottleneck size, i.e. the length of the global feature vector v. The mean CD and

EMD on the ShapeNet test set are shown in Figure 2.9b. It can be seen that PCN’s

performance improves as the bottleneck size increases. In our experiments, we choose

the bottleneck size to be 1024 because a larger bottleneck of size 2048 cannot fit into

the memory of a single GPU. This implies that if multiple GPUs are used for training,

PCN’s performance can further improve with a larger bottleneck.

21

2. 3D Shape Completion

2.4.3 Completion Results on KITTI

In this section, we test our completion method on partial point clouds from real-world

LiDAR scans. Specifically, we take a sequence of Velodyne scans from the KITTI

dataset [17]. For each frame, we extract points within the object bounding boxes

labeled as cars, which results in 2483 partial point clouds. Each point cloud is then

transformed to the box’s coordinates, completed with a PCN trained on cars from

ShapeNet, and transformed back to the world frame. The process is illustrated

in Figure 2.1 and several scans with cars completed by our model are shown in

Figure 2.11. We use a model trained specifically on cars here to incorporate prior

knowledge of the object class. Having such prior knowledge is not necessary for our

method but will help the model achieve better performance.

We do not have the complete ground truth point clouds for KITTI. Thus, we

propose three alternative metrics to evaluate the performance of our model:

1. Fidelity is the average distance from each point in the input to its nearest

neighbour in the output. This measures how well the input is preserved. Note

that since the input can be corrupted by noise, output with 0 fidelity error may

not be actually desirable;

2. Minimal Matching Distance (MMD) is the Chamfer Distance (CD) be-

tween the output and the car point cloud from ShapeNet that is closest to

the output point cloud in terms of CD. This measures how much the output

resembles a typical car;

3. Consistency is the average CD between the completion outputs of the same

instance in consecutive frames. This measures how consistent the network’s

outputs are against variations in the inputs. We also compute the average CD

between the inputs in consecutive frames, denoted as Consistency (input).

These metrics are reported in Table 2.2. We observe that in most cases, our

model produces a valid car shape that matches the input while being different from

the matched model in ShapeNet, as the one shown in the top row of Figure 2.10.

However, we also observe some failure cases, e.g. the one shown in the bottom row

of Figure 2.10, caused by extra points from the ground or nearby objects that are

within the car’s bounding box. This problem can potentially be resolved by adding a

segmentation step before passing the partial point cloud to PCN.

22

2. 3D Shape Completion

Table 2.2: Quantitative results on KITTI.

Fidelity MMD Consistency Consistency (input)

0.02800 0.01850 0.01163 0.05121

Figure 2.10: Completion (middle) and matched model (right) for cars in
KITTI (left). The matched model is the car point cloud from ShapeNet that is
closest to the completion output in Chamfer Distance. Top row shows a successful
completion and bottom row shows a failure case caused by incorrect segmentation.

Unlike point clouds back-projected from 2.5D images, point clouds from LiDAR

scans are very sparse. The 2483 partial point clouds here contain 440 points on

average, with some having fewer than 10 points. In contrast, point clouds from

2.5D images used in training usually contain more than 1000 points. In spite of this,

our model is able to transfer easily between the two distributions without any fine

tuning, producing consistent completions from extremely partial inputs. This can be

attributed to the use of point-based representation, which is less sensitive to input

density than volumetric representations. In addition, each prediction with our model

takes only 0.0012s on a Nvidia GeForce 1080Ti GPU and 2s on a 3.60GHz Intel Core

i7-7700 CPU, making it suitable for real-time applications.

23

2. 3D Shape Completion

Figure 2.11: Qualitative completion results on KITTI

24

2. 3D Shape Completion

(a) Rotation error (b) Translation error

(c) Qualitative example

Figure 2.12: Improvements on point cloud registration. In (a) and (b), the
x-axis represents different registration instances. The red curve is the registration
error with partial point clouds and the blue bar indicates the amount of improvement
resulting from doing registration with complete point clouds produced by PCN. In
(c), registered partial point clouds are shown on the left and registered complete point
clouds of the same instances are shown on the right.

2.4.4 Point Cloud Registration with Completion

Many common tasks on point clouds can benefit from a more complete and denser

input. Here, as an example of such applications, we show that the output of our

network can improve the results of point cloud registration. Specifically, we take

the same Velodyne sequence from Section 2.4.3, we extract the car point clouds and

perform registration between cars from neighboring frames, which results in 2396

registration instances. We use a simple point-to-point ICP [7] algorithm implemented

25

2. 3D Shape Completion

in PCL [42] for registration. We provide two kinds of inputs to the registration

algorithm – one is partial point clouds from the original scans, another is completed

point clouds by a PCN trained on cars from ShapeNet. We compare the rotational

and translational error on the registration results with partial and complete inputs.

The rotational error is computed as 2 cos−1(2〈q1, q2〉2 − 1), where q1 and q2 are the

quaternion representations of the ground truth rotation and the rotation computed by

ICP. This measures the angle between q1 and q2. The translational error is computed

as ‖t1 − t2‖2, where t1 is the ground truth translation and t2 is the translation

computed by ICP.

As shown in Figure 2.12a and 2.12b, both rotation and translation estimations are

more accurate with complete point clouds produced by PCN, and the improvement is

most significant when the error with partial point clouds is large. Figure 2.12c shows

some qualitative examples. We can see that the point clouds from LiDAR scans are

very sparse and there is little overlap between the points even in neighbouring frames,

which makes the registration very challenging. On the other hand, the completed

point clouds from our network are much denser and contain large overlaps, which

significantly simplifies the registration problem. Note that the improvement brought

by our completion results is not specific to ICP, but can be applied to any registration

algorithm. Since inference of our network is fast, it can potentially benefit many real

time vision and robotic applications which requires point cloud registration.

2.5 Related Work

3D Shape Completion Existing methods for 3D shape completion can be roughly

categorized into geometry-based, alignment-based and learning-based approaches.

Geometry-based approaches complete shapes using geometric cues from the partial

input without any external data. For example, surface reconstruction methods

[15, 23, 65] generate smooth interpolations to fill holes in locally incomplete scans.

Symmetry-driven methods [34, 50, 52] identify symmetry axes and repeating regular

structures in the partial input in order to copy parts from observed regions to

unobserved regions. These approaches assume moderately complete inputs where the

geometry of the missing regions can be inferred directly from the observed regions.

This assumption does not hold on most incomplete data from the real world.

26

2. 3D Shape Completion

Alignment-based approaches complete shapes by matching the partial input with

template models from a large shape database. Some [29, 36, 37] retrieve the complete

shape directly while some [22, 25, 45] retrieve object parts and then assemble them to

obtain the complete shape. Other works [19, 32, 41, 61] deform the retrieved model

to synthesize shapes that are more consistent with the input. There are also works

[12, 44] that use geometric primitives such as planes and quadrics in place of a shape

database. These methods require expensive optimization during inference, making

them impractical for online applications. They are also sensitive to noise.

Learning-based approaches complete shapes with a parameterized model (often

a deep neural network) that directly maps the partial input to a complete shape,

which offers fast inference and better generalization. Our method falls into this

category. While most existing learning-based methods [14, 47, 53, 57] represents

shapes using voxels, which are convenient for convolutional neural networks, our

method uses point clouds, which preserve complete geometric information about the

shapes while being memory efficient. One recent work [32] also explores deformable

meshes as the shape representation. However, their method assumes all the shapes

are in correspondence with a common reference shape, which limits its applicability

to certain shape categories such as humans or faces.

Deep Learning on Point Clouds Our method is built upon several recent ad-

vances in deep neural networks that operates on point clouds. PointNet and its

extension [38, 39] is the pioneer in this area and the state-of-the-art while this work

was developed. It combines pointwise multi-layer perceptrons with a symmetric

aggregation function that achieves invariance to permutation and robustness to per-

turbation, which are essential for effective feature learning on point clouds. Several

alternatives [30, 48, 51, 54] have been proposed since then. Any of these can be

incorporated into our proposed model as the encoder.

There are relatively fewer works on decoder networks which generates point sets

from learned features. [1] uses a simple fully-connected decoder, while [16] proposes a

multi-branch decoder combining fully-connected and deconvolution layers. Recently,

[59] introduces an interesting decoder design which mimics the deformation of a 2D

plane into a 3D surface. Our model combines the advantages of these designs to

generate higher resolution outputs in an efficient manner.

27

2. 3D Shape Completion

2.6 Discussion

We have presented a new approach to shape completion using point clouds without

any voxelization. To this end, we have designed a deep learning architecture which

combines advantages from existing architectures to generate a dense point cloud

in a coarse-to-fine fashion, enabling high resolution completion with much fewer

parameters than voxel-based models. Our method is effective across multiple object

categories and works with inputs from different sensors. In addition, it shows strong

generalization performance on unseen objects and real-world data. Our point-based

completion method is more scalable and robust than voxel-based methods, which

makes it a better candidate for completion of more complex data such as scenes.

Figure 2.13: Failure modes: thin structures (top) and disconnected parts (bottom).

Although our method produces high-quality completion results in most cases, we

have identified two prominent failure modes of our model. First, there are some object

instances consisting of multiple disconnected parts. Our model fails to recognize this

and incorrectly connects the parts. This is likely a result of the strong priors learned

from the training dataset where almost all objects are connected. Second, some

objects contain very thin structures such as wires. Our model is occasionally unable

to recover these structures. There are two possible reasons. First, the points from

28

2. 3D Shape Completion

these structures are often sparse since they have small surface areas, which makes the

3D feature extraction more difficult. Second, unlike most object surfaces the local

geometry of thin structures does not resemble the 2D grid, making it challenging for

our model to deform a 2D grid into these thin structures. Some visualizations of

these failures are shown in Figure 2.13.

29

2. 3D Shape Completion

30

Chapter 3

Canonical Pose Estimation

Estimating the canonical pose of an object from partial views is a longstanding

challenge in computer vision and robotics. A key challenge in canonical pose estimation

is how to learn features that are equivariant with respect to geometric transformations.

To address this challenge, we propose the Iterative Transformer Network (IT-Net), a

network module that canonicalizes the pose of an input object point cloud with a

series of 3D rigid transformations predicted in an iterative fashion. We demonstrate

the efficacy of IT-Net as an anytime pose estimator that predicts 6DoF poses from

partial point clouds without knowledge of complete object models. In addition, we

show that IT-Net can be trained end-to-end with point-based shape classification and

part segmentation networks to improve their performance.

3.1 Motivation

Evidences from cognitive psychology [20] show that in human perception system,

shapes are internally represented by description relative to a perceptual reference

frame, which we will call the canonical frame. In this chapter, we are concerned

with the problem of estimating this canonical frame from partial observations of an

object represented as a point cloud. This problem is equivalent to estimating the

transformation from the canonical frame and to the sensor’s coordinate frame where

the observations are taken. We will call this transformation the canonical pose of an

object. Estimating the canonical pose can help us obtain a viewpoint-independent

31

3. Canonical Pose Estimation

description the object, which can be beneficial to various downstream tasks such as

object recognition and part segmentation. In practice, we can define the canonical

frame either explicitly or implicitly as any coordinate frame that makes subsequent

tasks easier.

We take a learning-based approach to the pose estimation problem, i.e. we would

like to learn the mapping from observations to the canonical pose from data using a

parametrized model such as a neural network. The learning-based approach allows

us to utilize existing large-scale shape repositories to train a generic pose estimator

that is efficient during inference.

A key challenge in learning canonical poses from data is to extract features that

are equivariant with respect to input transformations, that is, we want the features

to vary accordingly if a transformation is applied to the input. Spatial Transformer

Networks (STN) [21] provide a way to learn equivariant features from images by

predicting a transformation that is applied to the input before feature extraction for

subsequent tasks. Inspired by the idea of STN, we propose a transformer network

that operates on 3D point clouds, named Iterative Transformer Network (IT-Net).

(a) Input (b) Transformed input

Figure 3.1: T-Net [38] scales and distorts the input shape (a vase). Note the different
scales on the plots.

IT-Net has two major features that distinguish it from existing 3D transformer

networks such as T-Net [38]. First, IT-Net outputs a rigid transformation instead

of an affine transformation, which prevents undesirable deformation of the inputs

(see Figure 3.1) and allows the outputs to be used directly as estimates for object

32

3. Canonical Pose Estimation

poses. Second, instead of predicting the transformation in a single step, IT-Net takes

advantage of an iterative refinement scheme which decomposes a large transformation

into smaller ones that are easier to predict. The iterative refinement scheme not only

increases accuracy of the predicted transformation, but also allows anytime prediction,

where the prediction result can be gradually refined until the test-time computational

budget is depleted.

Figure 3.2: Iterative Transformer Network (IT-Net) predicts rigid transformations
from partial point clouds in an iterative fashion. It can be used independently as a
pose estimator or jointly with classification and segmentation networks.

We evaluate IT-Net on three point cloud learning tasks – pose estimation, shape

classification and part segmentation (Figure 3.2) – with partial, unaligned inputs from

synthetic as well as real world 3D data. We demonstrate that IT-Net can be used

as an anytime object pose estimator and show that IT-Net outperforms existing 3D

transformer networks when trained jointly with various state-of-the-art classification

33

3. Canonical Pose Estimation

or segmentation networks. We also contribute a dataset consisting of partial point

clouds generated from virtual scans of CAD models in ModelNet [55] and ShapeNet

[11] as well as real world scans from ScanNet [13]. Our dataset contains challenging

inputs with arbitrary 3D rotation, translation and realistic self-occlusion patterns.

The rest of this chapter will be organized as follows. In Section 3.2, we illustrate

the architecture of the iterative transformer network. In Section 3.3, we describe

how we construct a dataset of partial, misaligned object point clouds. In Section

3.4, we evaluate IT-Net on various point cloud learning tasks and demonstrate its

advantage over existing 3D transformer networks. In Section 3.5, we cover previous

works related to our approach. In Section 3.6, we provide concluding remarks for the

chapter.

3.2 Iterative Transformer Network

Iterative Transformer Network (IT-Net) (Figure 3.3 takes a 3D point cloud and

produces a transformation that can be used directly as a pose estimate or applied to

the input before feature extraction for subsequent tasks. In what follows, we introduce

two features that differentiate IT-Net from existing 3D transformer networks: the

rigid transformation prediction and the iterative refinement scheme.

Figure 3.3: Illustration of the iterative scheme employed by IT-Net. At each iteration,
the output of the pose regression network is used to transform the input for the next
iteration. The parameters of the pose regression network shown in blue arrows are
shared across iterations. The final output is a composition of the transformations
predicted at each iteration. Arrows colored in red indicate places where the gradient
flow is stopped to decorrelate the inputs at different iterations (see Section 3.2.3).

34

3. Canonical Pose Estimation

3.2.1 Rigid Transformation Prediction

A single iteration of IT-Net is a pose regression network that takes a point cloud and

outputs a 3D rigid transformation T , consisting of a rotation R and translation t

where R is a 3 × 3 matrix satisfying RRT = I, det(R) = 1 and t is a 3 × 1 vector.

Due to the constraints on R, it is inconvenient to represent the rotation as a 3× 3

matrix during optimization. As a result, many classical [7] as well as modern deep

learning methods [24] parametrize 3D rotations with unit quaternions, which allows

us to map an arbitrary 4D vector to a valid 3D rotation.

Therefore, we let the pose regression network output 7 numbers parametrizing the

3D rigid transformation. The first 4 numbers are normalized into a unit quaternion q

and the last 3 are treated as a 3D translation vector t. Then, q and t are assembled

into a 4× 4 matrix T =

[
R(q) t

0 1

]
where R(q) is the rotation matrix corresponding

to q. The matrix representation turns the composition of two rigid transformations

into a matrix multiplication, which is convenient for composing the outputs from

multiple iterations. In our experiments, we use PointNet [38] as the regression network

for its simplicity, but other point cloud-based networks can be used as well.

In contrast to the affine transformation produced by T-Net [38], the rigid trans-

formation predicted by IT-Net can be directly interpreted as a 6D pose, making it

possible to use IT-Net independently for pose estimation. More importantly, rigid

transformations preserve scales and angles. As a result, the appearance of a point

cloud will not vary drastically if it is transformed by the output of IT-Net. This

makes it possible to apply the same network iteratively to obtain a more accurate

estimation of the transformation.

We note that it is possible to add a regularization term ‖AAT − I‖ that forces

an affine matrix A to be orthogonal in order to achieve similar effects of predicting

a rigid transformation1. However, the constraint, no matter how close to satisfied,

cannot produce a truly rigid transformation that prevents the deformation of inputs.

As shown in Section 3.4.2, the results of the regularized network are not as good as

the network that directly outputs rigid transformations.

1In [38], this regularization is added to the feature transformation, but not to the input transfor-
mation.

35

3. Canonical Pose Estimation

3.2.2 Iterative Alignment

The idea of using an iterative scheme for predicting geometric transformations goes

back to the classical Lucas-Kanade (LK) algorithm [33] for estimating dense alignment

between images. The key insight of LK is that the complex non-linear mapping

from image appearance to geometric transformations can be estimated iteratively

using simple linear predictors. Specifically, at each iteration, a warp transformation

∆p is predicted with a linear function that takes a source and a target image as

inputs. Then, the source image is warped by ∆p and the process is repeated. The

final transformation is a composition of ∆p at each step. Later, [5] shows that the

parameters used to predict ∆p can remain constant across iterations while achieving

the same effect as non-constant predictors.

The same idea is employed in the Iterative Closest Point (ICP) algorithm [7]

for the alignment of 3D point clouds. At each iteration of ICP, a corresponding set

is identified and a rigid transformation ∆T is produced to align the corresponding

points. Then, the source point cloud is transformed by ∆T and the process is repeated.

Again, the final output is a composition of ∆T at each step. The effectiveness of ICP

shows that the iterative refinement framework applies not only to images, but also to

3D point clouds.

The multi-iteration IT-Net can be viewed as an instantiation of this iterative

framework. Specifically, the forward pass of IT-Net is unfolded into multiple iterations.

At the i-th iteration, a rigid transformation ∆Ti is predicted as described in Section

3.2.1. Then, the input is transformed by ∆Ti and the process is repeated. The final

output after n iterations is a composition of the transformations predicted at each

iteration, which can be written as a simple matrix product Tn =
∏n

i=1 ∆Ti.

We use a fixed predictor (i.e. share the network’s parameters) across iterations

following [5]. In addition to reduction in the number of parameters, the fixed predictor

allows us to use different numbers of unfolded iterations in training and testing. As

will be shown in Section 3.4.1, once trained, IT-Net can be used as an anytime

predictor where increasingly accurate pose estimates can be obtained as the network

is applied for more iterations.

The iterative scheme can be interpreted as a way to automatically generate a

curriculum, which breaks down the original task into a set of simpler pieces. In

36

3. Canonical Pose Estimation

earlier iterations, the network learns to predict large transformations that bring

the input near its canonical pose. In later iterations, the network learns to predict

small transformations that adjusts the estimate from previous iterations. Note that

the curriculum is not manually defined but rather generated by the network itself

to optimize the end goal. It will be empirically shown in Section 3.4.1 that this

curriculum emerges from the training of IT-Net.

3.2.3 Implementation Details

In addition to the key ingredients above, there are a couple of details that are

important for the training of IT-Net. First, we initialize the network to predict the

identity transformation q = [1 0 0 0], t = [0 0 0]. In this way, the default behavior of

each iteration is to preserve the transformation predicted by previous iterations. This

identity initialization helps prevent the network from producing large transformations

which cancel each other. Second, we stop the gradients propagating through input

transformations (red arrows in Figure 3.3) and let the gradients propagate through

the output composition only (black arrows in Figure 3.3). This removes dependency

among inputs at different iterations which leads to gradient explosion. Empirical

evaluations for these design choices can be found in Section 3.4.1.

Partial
ModelNet40

ShapeNet
Part

ShapeNet
Pose

ScanNet
Objects

Source ModelNet40 ShapeNet ShapeNet ScanNet
classes 40 16 2 33
train 78,744 13,937 22,000 8,098
test 2,468 2,874 2,000 1,024

Annotation Category Object part Canonical pose Category
Synthetic/Real Synthetic Synthetic Synthetic Real

scans 1-4 1 1 -
Scan size 64× 64 50× 50 128× 128 -

Focal length 57 ∞ 64 -

Distance to
object center

2-4 ∞ 1-2 -

Table 3.1: Statistics and generation parameters of our partial point cloud dataset for
shape classification, part segmentation and canonical pose estimation.

37

3. Canonical Pose Estimation

Figure 3.4: Complete point clouds aligned in a canonical frame from ShapeNet [11]
(top row) versus partial, unaligned point clouds from our dataset (bottom row).

3.3 Dataset

To evaluate the performance of point cloud learning tasks under a more realistic

setting, we build a dataset of object point clouds which captures the incomplete

and misaligned nature of real world 3D data. The dataset consists of four parts:

ShapeNet Pose, ShapeNet Part, Partial ModelNet40 and ScanNet Objects. The first

three parts are generated from virtual depth scans of synthetic objects and the last

part is created from real world RGB-D scans. A summary of the dataset statistics is

shown in Table 3.1 and a comparison between point clouds in our dataset and the

uniformly sampled point clouds used in prior works [38, 39, 54] are shown in Figure

3.4. It can be seen that our dataset contains much more challenging inputs with

various poses, densities and levels of incompleteness. Details on the generation of

each part will be covered below.

In Partial ModelNet40, each point cloud is generated by fusing a sequence

of depth scans of CAD models from the ModelNet40 dataset [55] (the models are

normalized into the unit sphere following [38]). Specifically, we create a trajectory

with up to 4 cameras. The initial camera’s orientation is uniformly random and the

distance between the camera center and the object center is varied between 2 and 4

units to create point clouds with different density. The subsequent camera positions

are generated by rotating the camera around the object center for an angle of up

38

3. Canonical Pose Estimation

to 30 degrees. Then, we use Blender [8] to render 64× 64 depth scans of the model

and back-project them into point clouds. At last, we combine the point clouds by

transforming them into the initial camera’s coordinates and concatenating the points.

We generate 8 partial point clouds for each model in the training split and 1 for each

model in the test split of the ModelNet40 dataset [55].

The point clouds in ShapeNet Pose are generated in a similar way, except that

the CAD models come from the chair and car category in ShapeNet [11] and each

point cloud is labeled with the transformation between the camera’s coordinates and

the model’s coordinates. In order to maintain uniqueness of the annotation, we only

use 1 scan per instance. Note that the test set and the training set are created from

different object models.

Each point cloud in ShapeNet Part is labeled with 2-6 parts using the labels

provided by [60]. Since the provided part labels are on sampled point clouds instead

of the mesh models, we use an approximate rendering procedure that mimics an

orthographic depth camera to create the partial point clouds. Specifically, we randomly

rotate the complete point cloud and project the points onto a virtual image with

pixel size 0.02 in the xy-plane. For each pixel of the virtual image, we keep the point

with the smallest z value and discard all other points that project onto the same

pixel as they are considered as occluded by the selected point. This procedure creates

partial point clouds that look much like those generated from depth scans rendered

by Blender.

The point clouds in ScanNet Objects are created from 1,512 real world RGB-D

scans of indoor scenes in ScanNet [13]. In total, we collect 9,122 object points clouds

by cropping the room scans with labeled bounding boxes, where realistic sensor noise

and background clutter in the original scans are kept in the resulting point clouds.

We then normalize the point clouds into the unit sphere.

3.4 Experimental Evaluation

In this section, we demonstrate the ability of IT-Net to estimate the canonical pose

of an object from partial views (Section 3.4.1), and show how this ability leads to

performance gains in various point cloud learning tasks, including shape classification

(Section 3.4.2) and object part segmentation (Section 3.4.3).

39

3. Canonical Pose Estimation

3.4.1 Pose Estimation

In this section, we investigate the efficacy of the iterative refinement scheme on

the task of estimating the canonical pose of an object from a partial observation.

Specifically, we use IT-Net to predict the transformation that aligns the input shape

to a canonical frame defined across all models in the same category (see the top row

in Figure 3.4). Unlike most existing works on pose estimation, we do not assume

knowledge of the complete object model and we train a single network that generalizes

to different objects in the same category.

Architecture and training The architecture of IT-Net is described in Section 3.2

where the pose regression network is a PointNet [38]. The pose regression network

shown in Figure 3.5 consists of three parts. The first part is a multi-layer perceptron

(MLP) that is applied to each point independently, which takes the N × 3 coordinate

matrix and produces a N × 1024 feature matrix. The second part is a max-pooling

function which aggregates the features in to a 1× 1024 global feature vector. The

third part is another MLP that regresses M = 7 pose parameters from the global

feature vector.

Figure 3.5: Architecture of the pose regression network. Numbers in the parenthesis
indicate the number of neurons in each MLP layer.

An explicit loss is applied to the output transformation. For the loss function,

we use a variant of PLoss proposed in [56], which measures the average distance

between the same set of points under the estimated pose and the ground truth pose.

Compared to the L2 loss used in earlier works [24], this loss has the advantage of

automatically handling the tradeoff between small rotations and small translations.

40

3. Canonical Pose Estimation

The loss can be written as

L((R, t), (R̃, t̃)) =
1

|X|
∑
x∈X

‖(Rx + t)− (R̃x + t̃)‖22, (3.1)

where R, t are the ground truth pose and R̃, t̃ are the estimated pose and X is the

set of input points.

We trained IT-Nets under different settings and evaluated their performance on

the car point clouds in ShapeNet Pose. In what follows, we provide detailed analysis

of the results.

Number of unfolded iterations The number of unfolded iterations during train-

ing can be treated as a hyperparameter that controls the iteration at which the loss is

applied. We trained IT-Net with different number of unfolded iterations and, as shown

in Table 3.2, IT-Net trained with 5 unfolded iterations gives the best performance.

In Figure 3.6a, we visualized the distribution of input poses at different iterations

during training by measuring errors with respect to the canonical pose. It can be

observed that the distribution of poses skews towards the canonical pose in later

iterations. This is evidence that the network generates a curriculum as mentioned in

Section 3.2.2. We observe that with too few unfolded iterations, the network does not

see enough examples with small errors and thus fails to predict accurate refinements

when the shape is near its canonical pose. With too many unfolded iterations, the

network sees too many examples with small errors and becomes overly conservative

in its prediction. Empirically, 5 iterations turns out to strike a good balance and

generate an appropriate distribution of examples in the curriculum which leads to

good performance.

Ablation studies We conducted ablation studies to validate our design choices

described in Section 3.2.3, i.e. initializing the network’s prediction with the identity

transformation and stopping the gradient flow through input transformations. The

results are summarized in Table 3.2. It can be seen that the performance degrades

significantly without either identity initialization or gradient stopping, which indicates

that both are crucial for the iterative refinement scheme to achieve desired behavior.

41

3. Canonical Pose Estimation

Unfolded
iterations

1 2 3 4 5 6 7

no init 17.1 0.5 18.4 7.3 6.2 41.1 13.1
no stop 36.0 5.0 0.0 0.0 4.1 4.1 0.0

ours 36.9 41.7 47.7 61.1 67.6 62.6 48.2

Table 3.2: Pose accuracy (%) with error threshold 10◦, 0.1 of IT-Nets with different
number of unfolded iterations during training. No init means the output is not
initialized as the identity transformation. No stop means the gradient is not stopped
during input transformations.

Iteration 0 Iteration 3 Iteration 6

(a) Distribution of rotation and translation errors at different iterations

Iteration 0 Iteration 3 Iteration 6 Ground

truth

Iteration 0 Iteration 3 Iteration 6 Ground

truth

(b) Qualitative examples

Figure 3.6: (a) The distribution (PDF) of rotation and translation error of 2,400 test
instances at different iterations. Note how the error distribution skews towards 0 in
later iterations. The peak at 180 degrees for rotation error is caused by symmetries
in the car models. (b) Qualitative results at corresponding iterations.

42

3. Canonical Pose Estimation

Figure 3.7: Pose accuracy (%) against the number of iterations applied during
inference. The dotted line corresponds to the number of unfolded iterations in
training. Note how pose accuracy keeps improving with more testing iterations.

Figure 3.8: Comparison with non-learning baselines on point cloud alignment. The
two plots on the left show the CDF of rotation and translation errors over 1000 test
instances. The plot on the right shows the average running time per instance.

43

3. Canonical Pose Estimation

Anytime pose estimation As noted in Section 3.2.2, sharing weights across

iterations allows us to use IT-Net as an anytime pose estimator. Figure 3.7 shows the

pose accuracy of an IT-Net against the number of iterations applied during inference.

It can be seen that the performance keeps increasing as the number of iteration

increases. As a result, during inference, we can keep applying the trained IT-Net

to obtain increasingly accurate pose estimates until the time budget runs out (each

iteration takes about 0.025s on a 3.60GHz Intel Core i7 CPU).

Comparison with non-learning baselines We applied our pose estimation net-

work to the problem of point cloud alignment and compared the results with classical

baselines that is not learning-based. Specifically, for each pair of shapes in the test

set, we computed their relative transformation using the poses predicted by IT-Net.

The results are compared against two state-of-the-art, non-learning-based alignment

methods, GOICP [58] and GOGMA [9]. Unlike classical ICP which only works with

good initialization, these baseline methods can estimate alignment from arbitrary

initialization. The results are shown in Figure 3.8. Note that IT-Net not only produces

more accurate alignment, but is also several orders of magnitude faster on average.

The running times are measured on a 3.60GHz Intel Core i7 CPU.

3.4.2 3D Shape Classification

In this section, we demonstrate the ability of IT-Net to improve the performance of

point-based classification networks by aligning the inputs into a canonical frame.

Specifically, we trained IT-Net with two state-of-the-art shape classification net-

works, PointNet [38] and Dynamic Graph CNN (DGCNN) [54]. The classifier takes

the point cloud transformed by the output of IT-Net and outputs a score for each

class. The entire network is trained with cross-entropy loss on the class scores and

no explicit supervision is applied on the predicted transformation. and tested their

performance on two datasets, Partial ModelNet40 and ScanNet Objects.

We compared IT-Net with two baselines, T-Net and regularized T-Net (T-Net reg),

which share the same architecture as IT-Net except for the last output layer of the

pose regression network. While IT-Net outputs 7 numbers for rotation (quaternion)

and translation, T-Net and T-Net reg outputs 9 numbers to form a 3 × 3 affine

44

3. Canonical Pose Estimation

transformation matrix A. For T-Net reg, a regularization term ‖AAT − I‖ is added

to the loss with weight 0.001. We compared the performance of different transformer-

classifier combinations on two datasets, Partial ModelNet40 and ScanNet Objects,

and summarize the results in Table 3.3 and Table 3.4 respectively.

Classifier PointNet

Transformer None T-Net T-Net reg IT-Net (ours)

Iterations 0 1 2 1 2 1 2 3 4

Accuracy 59.97 66.04 35.13 65.84 67.06 68.72 69.94 69.61 68.35

Classifier DGCNN

Transformer None T-Net T-Net reg IT-Net (ours)

Iterations 0 1 2 1 2 1 2 3 4

Accuracy 65.60 70.38 16.61 71.15 72.69 72.57 74.15 73.46 72.85

Table 3.3: Classification accuracy on Partial ModelNet40.

Classifier PointNet

Transformer None T-Net T-Net reg IT-Net (ours)

Iterations 0 1 2 1 2 1 2

Accuracy 62.11 63.09 30.86 62.99 61.82 63.67 66.02

Classifier DGCNN

Transformer None T-Net T-Net reg IT-Net (ours)

Iterations 0 1 2 1 2 1 2

Accuracy 66.02 72.75 18.55 74.12 70.80 76.36 76.66

Table 3.4: Classification accuracy on ScanNet Objects.

Unlike T-Net, IT-Net preserves the shape of the input without introducing any

scaling or shearing. Figure 3.9 shows that the output of T-Net is on a very different

scale than the original input. This explains why the performance of T-Net drops

significantly if we try to apply the same iterative scheme directly: as the network sees

inputs on vastly different scales from different iterations, the training fails to converge.

The regularized T-Net resolves this issue to some extent, but its performance is still

not as good as IT-Net.

45

3. Canonical Pose Estimation

Input
IT-Net

Iteration 1
IT-Net

Iteration 2
T-Net

(scaled by 0.1)

Figure 3.9: Inputs transformed by IT-Net and T-Net trained jointly with DGCNN.
Note that T-Net’s outputs are on a much different scale (10 times bigger) than the
original inputs.

It can be seen that IT-Net consistently outperforms baseline transformers when

trained with different classifiers. This is evidence that the advantage of IT-Net is

agnostic to the classifier architecture. Further, the advantage of IT-Net over baselines

on real data matches that on synthetic data. This demonstrates IT-Net’s ability to

process point clouds with realistic sensor noise and clutter and its potential to be

incorporated in detection/pose estimation pipelines in the wild.

We observe that without explicit supervision, IT-Net learns to transform the

inputs into a set of canonical poses which we call “pose clusters”. The learned

transformations removes pose variations among the inputs, which simplifies the

classification problem. We note that transforming the inputs into one of the pose

clusters so that they can be recognized by the classifiers is a simpler task than

producing precise alignments as in Section 3.4.1. Therefore, the performance gain

diminishes as the number of unfolded iterations becomes larger than 2 (see Table

3.3).

46

3. Canonical Pose Estimation

Input (Iteration 0) Iteration 1 Iteration 2

(a) Distribution of orientations at different iterations. (b) Reflection

symmetry of

guitars.

(c) Examples of original inputs (Iteration 0). (d) Examples of transformed inputs (Iteration 2).

Figure 3.10: Pose cluster visualization for guitars. (a) Distribution of axis-angle
representation of orientations of all test examples at different iterations. Note how
clusters emerge from uniformly distributed poses. Correctly classified examples are
shown in blue and incorrectly classified examples are shown in red. (b) The reflection
symmetry present in most guitars. (c) Examples of original inputs at iteration 0. The
object orientations are uniformly distributed. (d) Examples of transformed inputs
at iteration 2. Note that these are the inputs received by the classifier. The object
orientations are grouped into 4 clusters, but visually there seems to be only 2 major
orientations due to the reflection symmetry shown in (b). A failure case caused by
heavy occlusion is shown in the red box.

47

3. Canonical Pose Estimation

Input (Iteration 0) Iteration 1 Iteration 2

(a) Distribution of orientations at different iterations. (b) Rotational

symmetry of

bottles.

(c) Examples of original inputs (Iteration 0). (d) Examples of transformed inputs (Iteration 2).

Figure 3.11: Pose cluster visualization for bottles. (a) Distribution of axis-angle
representation of orientations of all test examples at different iterations. Note how
clusters emerge from uniformly distributed poses. Correctly classified examples are
shown in blue and incorrectly classified examples are shown in red. (b) The rotational
symmetry present in most bottles. (c) Examples of original inputs at iteration 0.
The object orientations are uniformly distributed. (d) Examples of transformed
inputs at iteration 2. Note that these are the inputs received by the classifier. The
object orientations after transformation are grouped into 2 clusters. The clusters have
semicircle shapes since any orientation in these semicircles are in fact indistinguishable
due to the rotational symmetry shown in (b). A failure case is shown in the red box.
In this case the model misclassifies the bottle as a vase.

48

3. Canonical Pose Estimation

In Figure 3.10 and Figure 3.11, we visualize the “pose clusters” learned by a

2-iteration IT-Net on the the guitar and bottle category of Partial ModelNet40

respectively. To visualize the pose clusters, we calculate the difference between the

canonical orientation of the input shape and the orientation of the transformed input

at different iterations. Then, we convert the orientation difference into axis-angle

representation, which is a 3D vector, and plot these vectors for all test examples in a

particular category.

We observe that although the object poses are uniformly distributed initially,

clusters of poses emerge after applying the transformations predicted by IT-Net

(Figure 3.10a, 3.11a). This is evidence that IT-Net discover a canonical space to

align the inputs with no explicit supervision. Interestingly, there are usually more

than one cluster and the shapes of the clusters are related to the symmetries of the

object (Figure 3.10b, 3.11b). Further, we note that sometimes even objects across

different categories are aligned after being transformed by IT-Net (Figure 3.10d,

3.11d). Nevertheless, the pose clusters are less apparent for certain categories where

the shapes are nearly spherical, e.g. flower pots.

3.4.3 Object Part Segmentation

In this section, we show that the advantage resulting from the canonical frame learned

by IT-Net is not specific to the classification task. More specifically, we replaced the

classification network in Sec. 3.4.2 with a segmentation network and evaluated the

part segmentation performance on ShapeNet Part. We treat part segmentation as a

per-point classification problem and train the network with a per-point cross entropy

loss. Similar to Section 3.4.2, no explicit supervision is applied on the transformations.

Table 3.5 summarizes the quantitative result and Figure 3.12 shows some qualita-

tive examples. As in the case of classification, IT-Net reduces pose variations in the

inputs, which leads to performance gains over the base model without transformer as

well as models trained with alternative 3D transformers. Note that the architecture

of IT-Net here is identical to the ones in Section 3.4.2, which demonstrates the

potential of IT-Net as a plug-in module without task-specific adjustments to the

model architecture.

49

3. Canonical Pose Estimation

mean table chair air
plane

lamp car guitar laptop knife

shapes 5271 3758 2690 1547 898 787 451 392
parts 3 4 4 4 4 3 2 2

None 67.9 71.6 75.2 68.8 56.9 48.2 82.4 58.0 68.5
T-Net 71.1 73.7 77.5 73.6 60.2 53.0 85.8 63.2 73.6

IT-Net-1 72.3 74.5 78.7 75.9 60.6 57.7 85.1 58.3 78.6
IT-Net-2 72.6 75.1 78.3 76.3 62.1 56.3 86.8 58.9 74.5

pistol motor
cycle

mug skate
board

bag ear
phone

rocket cap

shapes 283 202 184 152 76 68 66 55
parts 3 6 2 3 2 3 3 2

None 61.7 39.0 65.6 49.6 41.9 43.5 28.1 50.9
T-Net 65.4 48.5 70.3 57.7 15.9 41.8 41.7 48.5

IT-Net-1 67.9 51.5 70.3 61.6 31.6 53.9 35.2 45.3
IT-Net-2 68.6 46.4 70.6 65.9 43.5 51.6 42.6 45.9

(a) Results where the base segmentation model is PointNet [38]

mean table chair air
plane

lamp car guitar laptop knife

shapes 5271 3758 2690 1547 898 787 451 392
parts 3 4 4 4 4 3 2 2

None 76.9 78.8 82.6 77.3 71.3 52.3 90.1 76.8 80.0
T-Net 77.1 79.2 82.5 78.0 70.1 55.7 89.1 73.1 81.5

IT-Net-1 78.2 79.9 84.3 78.2 72.9 54.9 91.0 78.7 78.1
IT-Net-2 79.1 80.2 84.7 79.9 72.1 62.6 91.1 76.4 82.8

pistol motor
cycle

mug skate
board

bag ear
phone

rocket cap

shapes 283 202 184 152 76 68 66 55
parts 3 6 2 3 2 3 3 2

None 70.1 40.4 86.1 67.6 71.0 66.7 53.1 76.9
T-Net 73.0 39.1 81.1 69.1 74.1 71.1 51.4 74.6

IT-Net-1 71.8 44.6 84.8 66.6 71.2 72.7 55.0 77.9
IT-Net-2 76.9 44.0 84.4 71.8 68.1 66.8 54.2 80.4

(b) Results where the base segmentation model is DGCNN [54]

Table 3.5: Part segmentation results on ShapeNet Part. The number appending
IT-Net indicates the number of iterations. The metric is mIoU(%) on points. The
mean is calculated as the average of per-category mIoUs weighted by the number of
shapes. We order the categories by number of shapes since the performance is more
unstable for categories with fewer shapes.

50

3. Canonical Pose Estimation

Original Transformed Original Transformed

Figure 3.12: Inputs transformed by IT-Net trained with DGCNN [54] on part
segmentation. The colors indicate predictions of the segmentation network.

3.5 Related Work

Feature Learning on Point Clouds Traditional point feature descriptors [4, 43,

49] rely on geometric properties of points such as curvatures. They do not encode

semantic information and it is non-trivial to find the combination of features that is

optimal for specific tasks.

PointNet [38] introduces a way to extract semantic and task-specific features

from point clouds using a neural network, which outperforms competing methods on

several shape analysis tasks like shape classification. Subsequent works [30, 39, 54]

further improves the performance of point cloud-based networks by accounting for

interactions among local neighborhoods of points.

Most datasets [55, 60] used to evaluate feature learning on point clouds consist of

complete point clouds. A few works [38, 63] have investigated feature learning from

partial point clouds. However, these works assume that the inputs are aligned in a

canonical coordinate system. In this work, we show how to remove this assumption

using a transformer network.

Spatial Transformer Network Spatial Transformer Network (STN) [21] is a

network module that performs explicit geometric transformations on the input image

in a differentiable way, which introduces invariance to geometric transformations

and can be trained jointly with various task-specific networks to improve their

performance. STN can be thought of as a geometry predictor which models the com-

51

3. Canonical Pose Estimation

plicated non-linear relationship between the appearance of the image and geometric

transformations.

IC-STN [31] is an extension of STN that makes use of an iterative scheme inspired

by the Lucas-Kanade algorithm [33]. Our network utilizes a similar iterative scheme

to predict accurate geometric transformations.

Iterative Error Feedback The idea of using iterative error feedback (IEF) in

neural networks have been studied in the context of 2D human pose estimation

[10] and taxonomic prediction [64]. Under the IEF framework, instead of trying to

directly predict the target in a feed-forward fashion, the network predicts the error

in the current estimate and corrects it iteratively. While our proposed network falls

under this general framework, unlike previous works, it does not use intermediate

supervision or separate stages of training. Rather, the loss is applied at a certain

iteration during training and the gradient is propagated through the composition of

outputs from previous iterations.

3.6 Summary

We propose a new transformer network on 3D point clouds named Iterative Trans-

former Network (IT-Net). In an iterative fashion, IT-Net outputs a rigid transforma-

tion that can be used to estimate object pose or transform the input for subsequent

tasks. The effectiveness of IT-Net in various tasks shows that the classical idea of

iterative refinement still applies in the context of deep learning.

IT-Net can be easily integrated with existing deep learning architectures for shape

classification and segmentation, and improve the performance on these tasks with

partial, unaligned inputs by introducing invariance to geometric transformations.

This opens up many avenues for future research on using neural networks to extract

semantic information from real world point cloud data.

52

Chapter 4

Conclusion and Open Problems

In this thesis, we have introduced two approaches to incorporate prior knowledge into

the design of neural networks that operate on 3D point clouds and demonstrated

their efficacy on two important 3D understanding tasks – 3D shape completion and

canonical pose estimation. First, we show that leveraging the geometric structure of

3D surfaces as collections of embedded 2D patches, we can design a point generation

network that has fewer parameters but better representational power, which is

useful for completing unobserved regions of partial scans. Next, we illustrate that

algorithmic structures such as iterative refinement can help us build networks that

estimate quantities like object poses more accurately without increasing the network

capacity, and that possess desired properties such as anytime prediction.

While these works are important steps towards developing autonomous systems

that understand 3D environments from point cloud data, there are still many problems

that remain open. We will highlight a number of these problems below.

1. Most of existing works on point cloud understanding assumes the inputs are

isolated objects. While these inputs can be obtained from instance segmentation

methods, instance segmentation of point clouds is itself an open problem.

Moreover, in tasks such as shape completion, it is often desirable to ground the

objects in context. Thus, moving towards holistic scene understanding is an

important direction, which requires models that can process large-scale point

clouds more efficiently.

2. Not all points carry an equal amount of information. For example, dropping a

53

4. Conclusion and Open Problems

point on a planar region on a wall is probably not as important as dropping a

point on a sharp corner of a table. Although point cloud is very memory-efficient

compared to voxels, it is still desirable to have some hierarchical model that

allows us to put more capacity in regions with more interesting structures.

3. Another assumption that is often made in existing 3D understanding research is

that the 3D scene is static, but in fact, we can acquire much richer information

if we look at the dynamics of a scene. For instance, given a video with

associated depth information, we can easily segment a moving object from a

static background. How to incorporate the time dimension and extract semantics

from dynamic 3D data is an exciting and largely unexplored area of research.

54

Bibliography

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas.
Learning representations and generative models for 3d point clouds. arXiv
preprint arXiv:1707.02392, 2017. 2.3.2, 2.5

[2] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz, and Richard Szeliski.
Building rome in a day. In 2009 IEEE 12th international conference on computer
vision, pages 72–79. IEEE, 2009. 1.1

[3] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2d-3d-semantic
data for indoor scene understanding. arXiv preprint arXiv:1702.01105, 2017.
2.4.1

[4] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel
signature: A quantum mechanical approach to shape analysis. In Computer
Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on,
pages 1626–1633. IEEE, 2011. 3.5

[5] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying frame-
work. International journal of computer vision, 56(3):221–255, 2004. 3.2.2

[6] Dimitri P Bertsekas. A distributed asynchronous relaxation algorithm for the
assignment problem. In Decision and Control, 1985 24th IEEE Conference on,
pages 1703–1704. IEEE, 1985. 2.3.4

[7] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor
Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–607.
International Society for Optics and Photonics, 1992. 2.4.4, 3.2.1, 3.2.2

[8] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam, 2018. URL http://www.

blender.org. 3.3

[9] Dylan Campbell and Lars Petersson. Gogma: Globally-optimal gaussian mixture
alignment. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5685–5694, 2016. 3.4.1

[10] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik. Human

55

http://www.blender.org
http://www.blender.org

Bibliography

pose estimation with iterative error feedback. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4733–4742, 2016.
3.5

[11] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 1.1, 2.1, 2.4, 2.4.1, 2.4.2, 3.1, 3.4, 3.3

[12] Anne-Laure Chauve, Patrick Labatut, and Jean-Philippe Pons. Robust piecewise-
planar 3d reconstruction and completion from large-scale unstructured point data.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 1261–1268. IEEE, 2010. 2.5

[13] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), volume 1, 2017. 2.4.1, 2.4.2, 3.1, 3.3

[14] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion
using 3d-encoder-predictor cnns and shape synthesis. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), volume 3, 2017. 2.1, 2.4.2,
2.5

[15] James Davis, Stephen R Marschner, Matt Garr, and Marc Levoy. Filling holes in
complex surfaces using volumetric diffusion. In 3D Data Processing Visualization
and Transmission, 2002. Proceedings. First International Symposium on, pages
428–441. IEEE, 2002. 2.5

[16] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation network
for 3d object reconstruction from a single image. In Conference on Computer
Vision and Pattern Recognition (CVPR), volume 38, 2017. 2.3.4, 2.5

[17] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research, 32
(11):1231–1237, 2013. 2, 2.1, 2.4, 2.4.3

[18] Walter Gerbino and D Salmaso. The effect of amodal completion on visual
matching. Acta psychologica, 65(1):25–46, 1987. 2.1

[19] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Aligning
3d models to rgb-d images of cluttered scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4731–4740, 2015.
2.5

[20] Glyn W Humphreys. Reference frames and shape perception. Cognitive Psychol-
ogy, 15(2):151–196, 1983. 3.1

56

Bibliography

[21] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in neural information processing systems, pages 2017–2025,
2015. 3.1, 3.5

[22] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen
Koltun. A probabilistic model for component-based shape synthesis. ACM
Transactions on Graphics (TOG), 31(4):55, 2012. 2.5

[23] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface recon-
struction. In Proceedings of the fourth Eurographics symposium on Geometry
processing, volume 7, 2006. 2.4.2, 2.5

[24] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of the IEEE
international conference on computer vision, pages 2938–2946, 2015. 3.2.1, 3.4.1

[25] Vladimir G Kim, Wilmot Li, Niloy J Mitra, Siddhartha Chaudhuri, Stephen
DiVerdi, and Thomas Funkhouser. Learning part-based templates from large
collections of 3d shapes. ACM Transactions on Graphics (TOG), 32(4):70, 2013.
2.5

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 2.4.1

[27] Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In Proceedings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, pages 1–10. IEEE Computer
Society, 2007. 1.1

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012. 1.1

[29] Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner. Database-
assisted object retrieval for real-time 3d reconstruction. In Computer Graphics
Forum, volume 34, pages 435–446. Wiley Online Library, 2015. 2.5

[30] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
Pointcnn: Convolution on x-transformed points. In Advances in Neural Informa-
tion Processing Systems, pages 820–830, 2018. 2.5, 3.5

[31] Chen-Hsuan Lin and Simon Lucey. Inverse compositional spatial transformer
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2568–2576, 2017. 3.5

[32] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. De-
formable shape completion with graph convolutional autoencoders. arXiv preprint
arXiv:1712.00268, 2017. 2.5

57

Bibliography

[33] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique
with an application to stereo vision. 1981. 3.2.2, 3.5

[34] Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. Partial and approximate
symmetry detection for 3d geometry. ACM Transactions on Graphics (TOG),
25(3):560–568, 2006. 2.5

[35] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015. 1.1

[36] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for
cluttered indoor scene understanding. ACM Transactions on Graphics (TOG),
31(6):137, 2012. 2.5

[37] Mark Pauly, Niloy J Mitra, Joachim Giesen, Markus H Gross, and Leonidas J
Guibas. Example-based 3d scan completion. In Symposium on Geometry
Processing, number EPFL-CONF-149337, pages 23–32, 2005. 2.5

[38] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
652–660, 2017. 1.1, 2.3.1, 2.5, 3.1, 3.2.1, 1, 3.3, 3.4.1, 3.4.2, 3.5a, 3.5

[39] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Advances
in Neural Information Processing Systems, pages 5105–5114, 2017. 2.4.2, 2.4.2,
2.5, 3.3, 3.5

[40] Ronald A Rensink and James T Enns. Early completion of occluded objects.
Vision research, 38(15-16):2489–2505, 1998. 2.1

[41] Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung Gwak, Daeyun Shin, and
Derek Hoiem. Completing 3d object shape from one depth image. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2484–2493, 2015. 2.5

[42] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).
In Robotics and automation (ICRA), 2011 IEEE International Conference on,
pages 1–4. IEEE, 2011. 2.4.4

[43] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature
histograms (fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, pages 3212–3217, 2009. 3.5

[44] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Completion and recon-
struction with primitive shapes. In Computer Graphics Forum, volume 28, pages
503–512. Wiley Online Library, 2009. 2.5

58

Bibliography

[45] Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. Structure recovery
by part assembly. ACM Transactions on Graphics (TOG), 31(6):180, 2012. 2.5

[46] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and
Thomas Funkhouser. Semantic scene completion from a single depth image. In
Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,
pages 190–198. IEEE, 2017. 2.1

[47] David Stutz and Andreas Geiger. Learning 3d shape completion from laser scan
data with weak supervision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1955–1964, 2018. 2.5

[48] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis,
Ming-Hsuan Yang, and Jan Kautz. Splatnet: Sparse lattice networks for point
cloud processing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2530–2539, 2018. 2.5

[49] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably
informative multi-scale signature based on heat diffusion. In Computer graphics
forum, volume 28, pages 1383–1392. Wiley Online Library, 2009. 3.5

[50] Minhyuk Sung, Vladimir G Kim, Roland Angst, and Leonidas Guibas. Data-
driven structural priors for shape completion. ACM Transactions on Graphics
(TOG), 34(6):175, 2015. 2.4.2, 2.5

[51] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent
convolutions for dense prediction in 3d. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3887–3896, 2018. 2.5

[52] Sebastian Thrun and Ben Wegbreit. Shape from symmetry. In Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, volume 2, pages
1824–1831. IEEE, 2005. 2.5

[53] Jacob Varley, Chad DeChant, Adam Richardson, Joaqúın Ruales, and Peter
Allen. Shape completion enabled robotic grasping. In Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on, pages 2442–2447.
IEEE, 2017. 2.5

[54] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. Dynamic graph cnn for learning on point clouds. arXiv
preprint arXiv:1801.07829, 2018. 2.5, 3.3, 3.4.2, 3.5b, 3.12, 3.5

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1912–1920, 2015. 1.1, 2.1, 3.1, 3.3, 3.5

[56] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:

59

Bibliography

A convolutional neural network for 6d object pose estimation in cluttered scenes.
arXiv preprint arXiv:1711.00199, 2017. 3.4.1

[57] Bo Yang, Stefano Rosa, Andrew Markham, Niki Trigoni, and Hongkai Wen.
3d object dense reconstruction from a single depth view. arXiv preprint
arXiv:1802.00411, 2018. 2.5

[58] Jiaolong Yang, Hongdong Li, and Yunde Jia. Go-icp: Solving 3d registration
efficiently and globally optimally. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1457–1464, 2013. 3.4.1

[59] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 206–215, 2018. 2.3.2, 2.4.2,
2.4.2, 2.5

[60] Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, Cewu Lu,
Qixing Huang, Alla Sheffer, Leonidas Guibas, et al. A scalable active framework
for region annotation in 3d shape collections. ACM Transactions on Graphics
(TOG), 35(6):210, 2016. 3.3, 3.5

[61] Kangxue Yin, Hui Huang, Hao Zhang, Minglun Gong, Daniel Cohen-Or, and
Baoquan Chen. Morfit: interactive surface reconstruction from incomplete point
clouds with curve-driven topology and geometry control. ACM Trans. Graph.,
33(6):202–1, 2014. 2.5

[62] Wentao Yuan, David Held, Christoph Mertz, and Martial Hebert. Iterative
transformer network for 3d point cloud. arXiv preprint arXiv:1811.11209, 2018.
1.3

[63] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert.
Pcn: Point completion network. In 2018 International Conference on 3D Vision
(3DV), pages 728–737. IEEE, 2018. 1.3, 3.5

[64] Amir R Zamir, Te-Lin Wu, Lin Sun, William B Shen, Bertram E Shi, Jitendra
Malik, and Silvio Savarese. Feedback networks. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 1808–1817. IEEE, 2017.
3.5

[65] Wei Zhao, Shuming Gao, and Hongwei Lin. A robust hole-filling algorithm for
triangular mesh. The Visual Computer, 23(12):987–997, 2007. 2.5

60

	1 Introduction
	1.1 Motivation
	1.2 Overview of Contributions
	1.3 Thesis Outline

	2 3D Shape Completion
	2.1 Motivation
	2.2 Problem Statement
	2.3 Point Completion Network
	2.3.1 Point Feature Encoding
	2.3.2 Multistage Point Generation
	2.3.3 Local Folding Operation
	2.3.4 Loss Function

	2.4 Experimental Evaluation
	2.4.1 Data Generation and Model Training
	2.4.2 Completion Results on ShapeNet
	2.4.3 Completion Results on KITTI
	2.4.4 Point Cloud Registration with Completion

	2.5 Related Work
	2.6 Discussion

	3 Canonical Pose Estimation
	3.1 Motivation
	3.2 Iterative Transformer Network
	3.2.1 Rigid Transformation Prediction
	3.2.2 Iterative Alignment
	3.2.3 Implementation Details

	3.3 Dataset
	3.4 Experimental Evaluation
	3.4.1 Pose Estimation
	3.4.2 3D Shape Classification
	3.4.3 Object Part Segmentation

	3.5 Related Work
	3.6 Summary

	4 Conclusion and Open Problems
	Bibliography

