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Abstract
This thesis is a study of 2D manipulation without sensing and planning, by ex-

ploring the effects of unplanned randomized action sequences on 2D object pose
uncertainty. Our approach uses sensorless reorienting of an object to achieve a de-
termined pose, regardless of the initial pose. Without using sensors and models of the
object’s properties, this work shows that under some circumstances, a long enough
sequence of random actions will also converge toward a determined final pose of the
object. This is verified through several simulation and real robot experiments where
randomized action sequences are shown to reduce entropy of the object pose distri-
bution. The effects of varying object shapes, action sequences, and surface friction
properties are also explored.
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Chapter 1

Introduction

Robots are envisioned to manipulate and interact with objects in unstructured environments and

accomplish a diverse set of tasks. Towards this, reducing object pose uncertainty is often neces-

sary for successful task execution. There are natural ways to reduce pose uncertainty including

the addition of physical constraints, relative positioning to a known object’s pose, and actively

sensing the desired object’s pose. In this paper, we explore a novel pose uncertainty reduction

technique based on executing randomized sequence of actions. We evaluate our proposed pose

uncertainty reduction technique on parts orienting, an industrial automation task.

Reducing task state uncertainty in parts orienting systems is an important part of factory

automation, especially product assembly. The problem is to take parts in a disorganized jumble

of multiple objects and to present them one at a time in a predictable pose. Most industrial

solutions involve a part-specific mechanical design. One goal of parts-orienting research is to

avoid part-specific mechanical designs, reducing the time required to develop the automation for

a new or redesigned product.

Tray-tilting is one kind of part-agnostic object reorientation system. The original tray-tilting

work was an early entry in a research approach termed “minimalism”. Minimalism refers to “the

art of doing X without Y”, or “finding the minimal configuration of resources to solve a task”

[5]. The purpose of the approach is not just to conserve resources, but to yield insights into the
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Figure 1.1: Experimental setup (top). An industrial robot tilts an allen key, with April Tag attached, in an aluminum

tray. The overhead camera records the pose of the allen key after each tilt. Each trial (1), (2), . . . (500) performs the

same random sequence of actions with a different initial position. The pose before the sequence, mid-sequence after

25 tilts, and after the sequence of 50 tilts are shown per trial, as well as the entropy of object pose distribution over

500 total repeated trials (bottom).
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structure of tasks, the nature of perception, planning, and action, and robustness in simplicity.

The role of sensing in the sense-plan-act structure was examined by the tray-tilting work of

Erdmann and Mason [10], which eliminated all uncertainty in the task state without sensing.

Rather than sensing, the discrete set of feasible task states could sometimes be reduced to a

singleton through a judicious choice of actions. Thus, in some tasks, task state uncertainty can

be eliminated without sensing even with the noisy mechanics of frictional contact.

While the original paper by Erdmann and Mason [10] examined the role of sensing, this

paper is an extension exploring similar minimalism in planning. We replace Erdmann and Ma-

son’s [10] planned sequence of actions with a randomized sequence of actions and evaluate the

reduction in object pose uncertainty. Using tray-tilting random actions, instead of planning, can

provide simple part-agnostic designs in factory automation. Our experiments stay close to the

original work to focus on the role of planning. We test the limits of minimalism with respect to

system complexity and hope to pursue its practical applications in future work. For this reason,

we adopt the same task domain: planar sliding of a laminar object in a rectangular tray. The robot

can tilt the tray as desired, and the goal is to move the object to a single final pose, irrespective

of its initial pose. If independent actions do not scramble the task state by introducing too much

disorder, then occasionally some action maps two initial task states to the same final task state.

Furthermore, we expect the set of feasible task states to approach a singleton, for sufficiently

long sequences, as seen in Figure 1.1. The phenomenon, while also reminiscent of contraction

mapping, is similar to an interesting card trick called the Kruskal Count [1], so we have dubbed

the phenomenon as the “Kruskal effect”.

The goal of this paper is two-fold. The ultimate practical goal is online autonomous man-

agement of uncertainty in task state, in place of offline human engineering of the task domain.

The immediate scientific goal is to better understand the stochastic nature of manipulation tasks.

In particular, studying the evolution of entropy under a random sequence of actions is a previ-

ously unexplored approach that reveals something of the intrinsic nature of the task. Our results
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have immediate implications for machine learning approaches, specifically for the problem of

searching for an effective plan, or estimating the stochastic behavior of a given plan. To explore

the Kruskal effect, we conduct an experiment under ideal conditions to explore what behavior

we expect. Then, we discuss the results from simulation experiments using different random

sequences, various triangular object shapes, and varied friction floor noise levels to test the toler-

ance of our system. Finally, we show the experimental results from running a random sequence

of actions on a robotic arm. For objects similar to allen keys, relatively low tray friction noise,

and a long enough sequence of random actions, we show that the Kruskal effect applies. We

also observe that it does not apply as well to cases with high tray friction noise, and exploration

into more cases is left for future work. The insights we gain from our exploration of the limits

of Kruskal effect can lay the foundations for compartmentalized tray-tilting of a kit of parts in

factory automation or 3D pose determination in future work.

1.1 Thesis Outline

First, Chapter 3 will discuss how we reduce object pose uncertainty and calculate the amount

of pose uncertainty after every action in a sequence using entropy. A proof of concept example

in Chapter 4 illustrates what we expect from randomized action sequences with respect to pose

uncertainty. Experimental setup and results are presented in Chapter 5. Finally, we discuss our

observations in Chapter 6 and conclude with directions for future research in Chapters 7 and 8.
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Chapter 2

Previous Work

The problem of presenting a single object from disorganization has interested robotics researchers

as far back as Grossman and Blasgen’s work in 1975 [12]. Grossman and Blasgen introduced

a fixed tilted tray that used vibration to eliminate the effects of friction. An irregular part in the

tray would settle into one of a small number of stable poses, and the robot used a touch probe to

disambiguate the pose. Várkonyi [19] includes additional details on approaches to the problem

by using simulation to systematically evaluate various pose estimators.

Erdmann and Mason [10] substituted a fixed tray with an active tilting tray, and showed that

for some parts, a sequence of tilts would reduce the possible poses to a singleton, completely

orienting the part without a touch probe or any other sensor.

While the tray is not part-specific, the Erdmann and Mason [10] approach uses part-specific

motions. In this paper, we substitute the motions with a random sequence of tilts, which is not

part-specific. If we can identify an interesting class of parts that are oriented by a random se-

quence, then we have what is sometimes termed a “universal” parts orienting system. Böhringer

et al. [5] includes an overview of universal parts orienting research, detailing the design and

implementation of planar force vector fields that will orient asymmetric laminar parts.

Sanderson [18] introduced parts entropy in the context of automated manufacturing. We use

probability density functions in the configuration space, SE(2) for planar motion of rigid parts,
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and we use entropy to measure and compare distributions. Our calculation of entropy is based

on Chirikjian’s work on computing the discrete entropy of histograms [7].

Previously, pose uncertainty has been addressed using mechanical constraints, rather than

sensing, in manipulation. Brost [6] uses squeeze-grasp actions to intrinsically reduce uncertainty

of the object’s position. Goldberg [11] planned sequences of pushes and squeezes to orient

planar polygons up to symmetry. Zhou et al. [20] plans similar sequences based on an efficient

simulation of planar pushing. Berretty et al. [3] proposed an approach of executing pulling

actions using overhead fingers for object reorientation. Akella and Mason [2] applied a similar

approach to parts with uncertain shape. Unlike these previous works, we use a random sequence

of actions to reduce the uncertainty associated with the pose of an object. A random sequence

of actions is a part-agnostic plan that minimizes software complexity and hardware changes for

new parts.

Furthermore, we can exploit mechanical constraints in the environment. Our randomized

sequence of actions uses mechanical constraints to manipulate the task state. Similarly, external

contacts can be exploited to reach a final task state using prehensile pushing and in-hand object

reorientation [9, 16].
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Chapter 3

Reducing Pose Uncertainty

Before, during, and after a manipulation task, it is important to have an estimate of where the

object to manipulate is located. When a manipulation attempt fails, or the object is not where it

was supposed to be, we can employ certain strategies to decrease the pose uncertainty.

Some of these strategies were detailed in Chapter 2, including vibration, squeeze-grasps,

pushing, and pulling. One way to measure uncertainty in object pose is to compute entropy

using the probability distribution of objects’ poses at a given step over repetitions of the task.

For example, we can throw a key on a table one hundred times and check the distribution of the

key poses over the repeated trials. The amount of order or disorder in the object poses (position

and orientation) shows us the object pose uncertainty after an action, such as throwing.

As an example, let’s look at pushing actions on a small disk. In Figure 3.1, there are two

possible actions, pushing two walls in horizontally or vertically. The small disk, starting in any

random initial position, moves respectively with the pushing force. Since the set of actions only

consists of two actions, any random sequence of non-redundant actions would reorient the small

disk to the same final (non-predetermined) pose in Figure 3.1.

In our experiments, we put an object in a tray and tilt the tray in random directions to reorient

the object to a final determined pose with no prior knowledge of the initial object pose or object

model. The random actions are used to decrease object pose uncertainty.
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Figure 3.1: The effect of orthogonal actions on object pose. Long blocks represent a manipulator’s two fingers with

which we can execute horizontal and vertical squeeze grasps. Translucent disks indicate possible initial poses, and

opaque disks indicate the resulting final poses after executing the action.

Measuring Entropy

Parts entropy describes the probability distribution of an object’s pose over repeated tasks [18].

We measure object pose uncertainty using parts entropy throughout our randomized action se-

quences over many trials. Using parts entropy from Sanderson [18] and notation from Lee et

al. [14], we define an object’s pose in a tray of size a × b with the tuple (x, y, θ) where each

coordinate is discretized with uniform spacing such that

x ∈ {xj : j = 1, . . . , α} on [0, a] (3.1)

y ∈ {yk : k = 1, . . . , β} on [0, b] (3.2)

θ ∈ {θm : m = 1, . . . , γ} on [0, 2π] (3.3)

The number of discretized intervals are

α =
a

εp
, β =

b

εp
, γ =

2π

εr
(3.4)

where εp and εr are the positional and rotational resolutions, respectively. We selected resolutions

εp and εr such that α, β, and γ are integers. Object poses can only change through a set of tray
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tilting actions A. Tilting directions were chosen to make a sequence S composed of N actions.

S = {a1, a2, ..., aN}, ai ∈ A

whereA is the set of tilting actions in the cardinal directions. We execute a sequence S consisting

ofN random samples fromAwith replacement, and track the resulting sequence of object poses.

We repeat the same sequence M times to obtain an estimated pose probability distribution after

each action ai,

f i(x, y, θ) =
1

M
V i
x,y,θ (3.5)

where V i
x,y,θ is the number of object poses that occupy the 3-dimensional voxel, (x, y, θ) after

executing action ai.

Given the pose probability distributions, we can compute the system entropy H i following

action ai.

H i = −
∑
x∈X

∑
y∈Y

∑
θ∈Θ

f i(x, y, θ) log2 f
i(x, y, θ) (3.6)

H can be interpreted as the number of additional information bits required to specify the object

pose. If the pose distribution is uniform prior to the first tilt, then the entropy would be close to

the logarithm of the number of voxels, H0 = log2(α × β × γ). Ideally, the sequence converges

to a fully determined pose, and the entropy drops to zero, HN = 0. In terms of object pose

uncertainty, high entropy corresponds to more uncertainty while low entropy corresponds to low

uncertainty.

The main experimental challenge is the number of experiments required to reliably estimate

the probability distribution of the poses. Lane [13] suggests that the number of trials M should

satisfy

α× β × γ = 2M1/3 (3.7)

where α × β × γ is the number of voxels. The implication is that a large number of trials is

required for even a very modest number of voxels. For our physical experiments (Section 5.3)
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we selected a 3 × 3 × 3 grid, which requires M = 2460 trials for a high-quality estimate of the

probability distribution of the object poses. We used an action sequence consisting of N = 50

tilts, resulting in a total of M ×N = 123, 000 tilts.

Unfortunately, the object and tray wear down after hundreds of tilts, changing the frictional

properties of the system over time. We therefore settle with M = 500 trials and a total of

25, 000 tilts. As discussed in Chapter 6 and shown in Figure 6.1, the number of occupied voxels

significantly decreases after the first few actions. After the first tilt, we do not occupy more

than 10 voxels. According to Equation 3.7, we would need 125 trials for a maximum of 10

voxels to have reliable entropy calculations for all subsequent tilts. In effect, we have a much

smaller number of occupied voxels, which leads us to believe that the smaller number of trials

are sufficient for our experiments. To conduct experiments on a large scale without the real world

challenges such as wear and tear, we look towards simulation.

For analyzing simulation data, we selected a 4×4×4 grid, which would requireM ≈ 32, 000

trials for high quality estimates of the probability distribution of the poses, according to Equation

3.7. Our three simulation experiments in Sections 5.2.1, 5.2.2, and 5.2.3 tested a total of 78

sequences (M = 10, 000 trials per entropy trend for the first two experiments and M = 1, 000

trials for the third). This results in almost 78 × 32, 000 ≈ 2, 500, 000 trials in total if we were

to occupy all 4 × 4 × 4 = 64 voxels across the tested action sequences. Instead, we conducted

600, 000 trials with sequences consisting of 50 actions resulting in 30, 000, 000 tilts in simulation

data.

Please note that the effect of our choice of voxel size is reduced by focusing on the change in

entropy, rather than the absolute entropy [7].
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Chapter 4

Proof of Concept

For proof of concept, let’s discuss the reduction in object pose uncertainty to a single pose under

ideal conditions. We explore this idea with a proof of concept experiment. Naturally, real exper-

iments will change the results with the effects of Coulomb friction, gravity, material interactions,

and wear and tear.

The experiment reorients an L-shaped object in a tray through tilting the tray in random

directions (up, down, left, right, and diagonals). We empirically define the transition states

assuming deterministic actions and stable poses after each random action. This was achieved

through manual tray-tilting and observations of the resulting object poses. There are only 40

Figure 4.1: Possible states given ideal conditions of tray-tiling L-shaped object.
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Figure 4.2: Entropy trend of object pose uncertainty over 1000 trials with ideal conditions. Randomized action

sequences were 50 actions long and each line represents a newly randomized action sequence repeated 1000 times

with different initial object orientations.

possible states with the object stably aligned to one or two walls as seen in Figure 4.1. The two

stable orientations are illustrated in red and blue and there are twenty stable poses (aligned to a

wall). Initialization requires the object to begin in one of these states and transition to any of the

forty states as dictated by the transition matrix given the current state and action. We also assume

that the effect of all actions is deterministic. This ensures that once an action causes two poses

to converge to one pose, the object poses will never diverge throughout the rest of the action

sequence.

After choosing a randomized sequence of actions, we can compute one entropy trend (line) of

how the amount of object pose uncertainty changes over repetitions of that same sequence with

different initial object poses. In Figure 4.2, many entropy trends are shown, each with a distinct

random sequence. The entropy is monotonically decreasing because of the deterministic effects

of our actions in this ideal experiment. We show that all random sequences reduce pose uncer-

tainty, but at varying speeds. Thus, there is no way to determine if a sequence is long enough

for zero object pose uncertainty because each random sequence will have different convergence

rates. We use this proof of concept to show that we expect a decrease in object pose uncertainty

using randomized sequences. Chapter 5 uses real-world dynamics (or approximations of them)
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to show how we can use mechanical constraints to reduce object pose uncertainty in real world

situations.
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Chapter 5

Experiments

5.1 Experiment Setup

In order to measure the effects of randomized action sequences on objects, we start with a similar

setup to Mason and Erdmann’s sensorless manipulation experiment [10]. We tilt a tray in random

directions instead of the original planned actions to reorient an allen key (also referred to as allen

wrench or hex key). An allen key is used to test model-free sensorless manipulation since we

know it has worked in planned object reorientation experiments [10]. The tray is attached to a

commercial robot arm, and for our purposes we are using ABB IRB 120. It is important to note

that a 6-DOF arm is not necessary to apply random actions to the tray-tilting setup as picking a

direction of steepest descent only requires two degrees of freedom. An overhead camera records

the pose of the allen key as it moves (shown in Figure 5.6). In simulation, we model the allen key

as a two rectangular prisms connected by a sphere to make an ‘L’ shape with the same dimensions

as the physical allen key. The set of actions are defined as

A = {N, NE, E, SE, S, SW, W, NW }

such that each action specifies the titling direction. If action ‘N’ is executed, the tray’s direction

of steepest descent is north. Hence, the azimuth or direction of steepest ascent is south. A
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vigorous vibration is used to randomly initialize the object pose before each sequence of actions.

We have ensured that the distribution of initial poses covers the occupiable voxels uniformly. All

sequences S are of length N = 50 actions, where there are only 8 possible actions. Thus, we

have a total of 850 ≈ 1.43× 1045 possible sequences.

We want to ensure that there is not just one random sequence that reorients an object. Addi-

tionally, we want to explore what sort of friction levels and object shapes the system can handle

until we can no longer expect random actions to result in object reorientation.

5.2 Simulation Experiments

Executing the experiment first in simulation enables us to generate the necessary number of trials

required to estimate the object pose distribution with a sufficient pose resolution, across varied

randomized action sequences, object shapes, and friction noise levels. For a realistic simulation

we used the multibody contact friction model library in MATLAB Simscape. The tray used in

the tray-tilting experiments was modeled as a box with no lid. The actions were 30-degree tray

tilts in any of the eight cardinal directions. We started with an L-shaped object, mimicking the

allen key used by Erdmann and Mason [10]. In the rest of the paper, we will use the terms actions

and tilts interchangeably.

We simulate the contact model as a linear spring damped normal force with parameters se-

lected to match experimentally observed metal-on-metal interactions. In Section 5.2.2, we used

a few other polygonal shapes, as shown in Figure 5.1. All object interactions were modeled simi-

larly, even for varied object shapes. The friction model is stick-slip with a velocity threshold [15].

To simulate noise during sliding for the tray friction noise in Section 5.2.3, the coeffecient of

friction is varied spatially with an amplitude that we can vary to explore the effect of different

friction noise levels.

The initial object pose in each trial was sampled from a uniform distribution in the object’s

configuration space (CSpace). Samples where the object was in collision with the wall were
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rejected. To compute entropy throughout the sequence of actions as described in Section 3, we

discretized the CSpace (x, y, θ) into 4× 4× 4 = 64 (x, y, θ) voxels.

Figure 5.1: Randomly generated object shapes used in simulation experiments. Density of objects set to be the same

as that of the simulated L-shape allen key.

We conducted three sets of experiments in simulation. Section 5.2.1 tests whether the Kruskal

effect could be observed for the L-shaped object. Section 5.2.2 tested other triangular shapes

to confirm that the effect is not specific to L-shaped objects. Finally, Section 5.2.3 introduced

friction noise in our simulation, to observe its effect on convergence rate. Each set of experiments

is described below.

5.2.1 Varying Random Action Sequences

The first set of simulation experiments used a single object, the L-shaped model of the allen key.

We generated 43 distinct random action sequences S, each of length N = 50. Each sequence

was repeated M = 10, 000 times, starting from initial poses uniformly sampled from the CSpace

as described above.

Figure 5.2 shows the entropy for each sequence, the mean across all sequences, and the in-

terquartile range. In this instance, the Kruskal effect is readily observed. While the entropy is

not monotonically decreasing, there is a clear trend. Of the 43 sequences tested, 29 converged

17



Figure 5.2: Kruskal effect for the allen key: M = 10, 000 trials of N = 50 actions were repeated across 43 distinct

random sequences. The mean (bold red line that converges by the 20th tilt) is bounded by the interquartile range (in

blue shaded region). The thin black lines show individual sequences’ entropy trends, some of which approach zero

by 50 actions. The shortest converging sequence is shown in green reaching zero entropy by the 8th tilt.

to zero entropy, with all poses landing in a single voxel. The majority of data (25–75% or the

interquartile range) is within the blue shaded region in Figure 5.2. On average, the entropy con-

verges to a value close to zero by the 20th tilt. The best randomly generated sequence converges

in eight actions (shown as the green line in Figure 5.2), whereas the Erdmann and Mason plan,

{ S, SW, SE, NE, SE }, converges in five. While not conclusive, the results suggest that

converging plans are common, but optimal plans are rare. This is expected since the actions were

randomly chosen instead of being planned.

5.2.2 Varying the Object Shape

During the second set of experiments, we tested the effect of varying object shape. We used 15

different triangular object shapes (see Figure 5.1) and applied the fastest converging sequence

we found for the allen key (shown as the green line in Figure 5.2). We conducted M = 10, 000

repetitions for each object, starting at a randomly sampled initial object configuration.

The results are shown in Figure 5.3. Of the 15 objects tested, 10 converged to zero entropy.
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The majority of the data shown by the interquartile range (blue shaded region in Figure 5.3)

oriented the test object into a single final determined pose. On average, the entropy converges to

a value close to zero by the 27th tilt.

Figure 5.3: Varying the object shape: M = 10, 000 trials of N = 50 actions were repeated using the same random

sequence (green line from Figure 5.2) across 15 various object shapes. The mean (bold red line) is bounded by

the interquartile range (in blue shaded region). The thin black lines represent distinct object poses, most of which

converge by 50 actions.

The best sequence generated for the allen key does not perform as well on the other shapes,

although it still tends to converge in most cases. One interpretation is that some objects are harder

to orient than others, which is not surprising. In the context of pushing, this has already been

proven [4]. Objects that are symmetrical or much larger in one dimension are harder to bring

to zero entropy within 50 tilts (objects e, j, k, o, n in Figure 5.1). It is also likely that we have

used a part-specific plan, by generating several part-agnostic plans and then selecting the best

for the L-shaped object. We have only restricted to triangular shapes as an initial exploratory

experiment, and studying other convex and concave object shapes is left for future work.
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5.2.3 Varying the Friction Noise

The third set of experiments explored the effect of friction noise with the same 30-degree tray

tilts and L-shaped object randomly initialized in the CSpace. We apply a simple noise model in

which we let the coefficient of friction vary randomly with respect to position within the tray as

our real experiments exhibited spatially varying friction due to wear. Figure 5.4 shows the low,

medium, and high amplitudes of variation. We randomly generated 20 distinct friction maps,

which were grouped by their mean friction to generate 13 low-noise maps, 3 medium-noise

maps, and 4 high-noise maps. We used the allen key, and the best-performing action sequence

found for the allen key in the first set of experiments, which is shown as the green line in Figure

5.2. The chosen action sequence that converges by eight tilts allows for observable medium and

high friction noise convergence behavior, as low friction noise should converge close to eight

tilts. We performed M = 1, 000 repetitions for each friction map, which is sufficient to observe

the effect on the probability distribution of pose between maps.
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Figure 5.4: Spatially varying floor friction with low (left), medium (middle), and high (right) variation

The results are shown in Figure 5.5. For the low noise maps, 10 of the 13 entropy trends

converged to zero entropy. On average, entropy converges to a value close to zero by the 9th tilt.

Figure 5.5 also shows the results for medium and high noise. None of the medium- or high-

noise maps converged to zero entropy. In both cases, the Kruskal effect is observable in that the

general trend of entropy is decreasing, although they tend to not converge to zero entropy within

50 actions. These results show that lower friction noise positively affects the probability distri-
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bution of object poses towards convergence. It is also likely that better-performing sequences

exist for higher friction noise levels. Longer sequences are necessary to draw conclusions as to

whether entropy for medium and high friction noise will level off or converge after more than 50

tilts.

Figure 5.5: Varying the friction noise: M = 1, 000 trials of N = 50 actions repeated using the same random

sequence (green line from Figure 5.2) with 20 distinct floor friction noise amplitudes. The mean (bold red line) is

bounded by the interquartile range for each category of friction floor noise illustrated in Figure 5.4—low, medium

and high.

5.3 Physical Experiments

The simulation results suggests that the Kruskal effect can be observed for 2D objects, with

significant entropy reduction for a variety of triangular objects and friction noise levels. However,

physical rigid body interactions can be complex to simulate accurately. The goal of the physical

experiments is to test the validity of the simulations. We tested one of the randomly generated

sequences consisting of 50 actions. We used a 6-DOF ABB IRB 120 robotic arm tilting a 200

mm square aluminum tray. The object is a 77.5×27.5 mm allen key with an April Tag [17] to

track the object with an overhead camera, as pictured in Figure 5.6. The tilting actions were
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30-degree tilts in each of the eight cardinal directions. We ran M=500 trials which is less than

the number of trials suggested by Equation 3.7, but due to wearing down of the tray from metal-

metal interactions we restrict ourselves to fewer trials and thus lower resolution (3× 3× 3 grid).

This inevitably leads to a less accurate estimate of the entropy, but we still expect to see the

downward trend if the Kruskal effect is observed.

Figure 5.6: Experimental setup. An industrial robot tilts an allen key, with April Tag attached, in an aluminum tray.

The overhead camera records the pose of the allen key after each tilt.

It is important that each trial be independent of the preceding trial, and that the initial poses

approximate a uniform sampling of the CSpace. To that end, the robot shook the tray vigorously

prior to the start of every sequence. The success of that approach is easily assessed by checking

the initial entropy H0. A uniform distribution over 27 voxels would yield an entropy of about

4.75. However, finite sampling from a uniform distribution is not likely to yield a uniform dis-

tribution. Numerical experiments for a dataset of 500 samples drawn into 27 bins suggested an

expected initial entropy of approximately 4.72. The measured entropy of our initial distribution

is around 3.9, for a difference of just under one bit. We attribute the difference to the fact that

some of our CSpace volume X × Y × Θ is infeasible due to collisions with walls, and to small

limitations in our vigorous shaking motion.

Entropy is calculated in the same way as Section 5.2, discretizing the tray volume into 3 ×
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Figure 5.7: Robot Entropy Data: M = 500 trials of N = 50 actions repeated on the robot using the same sequence

that was used in simulation experiments 5.2.2 and 5.2.3.

3 × 3 = 27 (x, y, θ) voxels. Corresponding results are shown in Figure 5.7, where the lowest

entropy of 0.0376 is achieved after the 43rd tilt which is comparable to the final entropy achieved

from executing the 5 optimal actions planned by Erdmann and Mason repeated over 500 trials

as shown in Figure 5.8 [10]. The entropy line is quite noisy which makes it difficult to draw

confident conclusions, but the general trend is downwards and indicative of the Kruskal effect.

In future work, real world issues, such as wear and tear, should be addressed to obtain more trials

and finer resolution for more concrete inferences.
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Figure 5.8: Robot Entropy with Planned Action Sequence: M = 500 trials of the optimal 5 actions to reorient an

allen key repeated on the robot setup.
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Chapter 6

Discussion

In this section, we will discuss the results presented in Sections 5.2 and 5.3, draw conclusions

and discuss insights for future exploration.

From the planner proposed by Erdmann and Mason [10], we know that planned actions can

orient an allen key to a final determined pose. Although their proposed sequence efficiently

oriented the object, we wanted to explore how random sequences would perform at the same

task. Towards this end, Section 5.2.1 tests various random sequences on the same test object.

Almost all sufficiently long sequences significantly reduce the entropy, and most sequences result

in zero entropy. We show that the Kruskal effect applies for any random sequence to mostly or

completely reduce object pose uncertainty.

Given an object, it would be possible to produce an object-specific plan by searching random

sequences and selecting the best. However, we consider action sequences that are not object-

specific which is beneficial when introducing new objects. We show this in Section 5.2.2, where

we selected the best allen key sequence, and repeated it for other triangular shapes. Figure

5.3 shows that the sequence reduced entropy to a few poses within 30 tilts. On average, the

sequence succeeds at decreasing entropy for all tested objects, perhaps because the objects are all

somewhat similar to the L-shaped object. Even a part-specific sequence serves as part-agnostic

sequence, although a less efficient one. While we empirically only observed our results for square
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trays and triangle shaped objects, the setup can be replicated with a freely-moving straight edge

to push an object from any direction. The method of using randomized action sequences to

reduce pose uncertainty is versatile. A possible extension of this work is to identify various

objects and environments that are highly conducive to the Kruskal effect.

In Section 5.2.3, we explore the significance of non-deterministic actions, by introducing a

noise model. While the entropy did generally decrease over the tilting sequence regardless of

noise, the higher the noise, the slower the object poses seemed to converge. The Kruskal effect

can be observed in less than ideal conditions such as high noise, but lower friction noises are

more efficient at lowering pose uncertainty. Future work might extend the sequences to see if

the entropy levels off at some value depending on the friction noise level or determine whether

different sequences perform better at different noise levels.

In Section 5.3, we show that our theory can be applied to the real world. Even with the

noise arising from variations in setup and execution, the object poses still converge to a relatively

low entropy. In the future we are interested in further exploring the limits of tray tilting actions

reducing object pose uncertainty in the real world and the effects of wear on physical systems

through exploitation of material interactions.

Simulation provided large amounts of data and easily varied parameters to confirm the de-

crease in entropy provided by randomized action sequences. The largest entropy decrease among

simulation and robot experiments was after the first move. At first, random initialization causes

the object to be anywhere in the tray and after the first tile, the object rests only along the edges

of the tray. Testing across different triangular object shapes demonstrated some of the generality

in shapes that the system can tolerate. Simulation using different noise parameters showed that

entropy reduction works under stochastic conditions.

In some of our sequences, the object pose did not converge completely to zero after 50 it-

erations. We think this is because for some objects, a certain mini-sequence of actions must

be executed consecutively for distinct poses to converge to one pose. When randomly select-
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ing actions, it may sometimes require a very long sequence for this mini-sequence to appear.

This presents an opportunity to learn strategies that can predict these mini-sequences. Learned

strategies can achieve high precision over a specific set of objects, and orthogonally our approach

strives to achieve almost full convergence on a general set of objects. The majority of the entropy

reduction occurs in the first 5 tilts. Figure 6.1 shows that the number of voxels occupied from

there on continues to oscillate between 2 and 6 voxels. We can use learning to converge to a

single pose more efficiently after the Kruskal effect achieves clusters or bi-modal states. This

allows for less training data and higher accuracy in object pose. In essence, we can learn to find

a mini-sequence of actions that efficiently reduces pose uncertainty.
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Figure 6.1: Robot Occupied Voxels Data: M = 500 trials of N = 50 actions repeated on the robot using sequence

that was used in Section 5.3.

Additionally, for our experiments, small increases in entropy occur due to small changes

between similar poses that map to distinct voxels. Later, these poses will converge again but may

take some time to find the right actions to realign.

Informally, it is possible to make a few observations about the tray tilting process. The main

order-producing phenomenon is when we drive the object pose to the boundary of the CSpace,

i.e. a contact between object and tray wall. Ideally, this is a projection of the feasible poses to

the boundary, and reduces the dimension of the feasible CSpace. For example, if each dimension
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of SE(2) is quantized into N bins, then at the beginning the pose is spread across N3 bins, and

after one action it has been projected to a surface spanned by N2 bins.

In the simplest case, shown in Figure 3.1 using squeezing actions of a disk, this projection

would be a normal projection onto a line. These actions would be analogous to tilting a tray back

and forth. For a second action to combine most effectively with the first, the second line would

be orthogonal to the first, and the final disk position would then be uniquely determined. As seen

in Figure 3.1, starting from random initial poses of the disk, the pose uncertainty in (x,y) goes to

zero if the squeeze grasps are orthogonal.

In general, the CSpace surfaces that correspond to kinematic constraints cannot be modeled

as linear, nor are the projections linear, but still the toy example may provide some useful insights.

The more closely two actions can be modeled as orthogonal projections, the better.

The main disorder-producing phenomenon might be sliding across the tray floor, where minor

variations in friction can cause rotation of the object. The vagaries of sliding friction can also

make it impossible to say whether an object will stick or slide along a tray wall.

There are also disorder-amplifying phenomena. For example, if the part strikes the wall

sharply it will rebound, and the small variations in initial pose will be amplified over time to

produce large variations. It is this effect we relied upon to randomize the object pose prior to

testing a sequence of actions in our physical experiments.

The effectiveness of a sequence depends on how common and how effective the order-

producing actions are, how frequently combinations occur, and how effectively they combine,

versus the frequency and degree of disorder produced by the other actions. One goal of future

work will be to explore this underlying structure more precisely, as a way of characterizing tasks.
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Chapter 7

Conclusion

Examining the traditional approach of sense-plan-act, we observe the effects of an alternative

approach of executing random sequences of actions without sensing. We show that a sufficiently

long random sequence of actions can move an object from an unknown initial pose to a deter-

mined final pose, regardless of initial pose of the object, varying object shapes, and stochasticity

in the environment. This effect is explored in greater detail through simulation using millions of

tilts and observing the entropy trends over action sequences. We learned how some parameters

affect our system: longer sequences lower object uncertainty more, and stochasticity in the en-

vironment as well as some variation in triangular object shapes does not disturb the system. We

also illustrated the same effect on a real robot and saw a decreasing trend in entropy. However,

the final entropy is not as low as suggested by simulation results, due to real world challenges

and complications such as wear and tear.

This is a different paradigm than the sense-plan-act approach where the final pose and the

action sequence to achieve that pose are planned; exploring this alternative paradigm and its

limitations could be fruitful. We offer insights into the idea of randomized action sequences

instead of planning. The advantage in our setup is that random tray-tilting actions are not part-

specific and reduce system complexity for new objects. The Kruskal effect can be useful for

orienting kit of parts, a difficult planning problem often encountered in industrial applications.
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Kit of parts reorienting involves placing similarly shaped objects in a compartmentalized tray

where each compartment holds one of these objects. A naive planning approach for reorienting

would require us to do joint planning for all the objects in the tray whose complexity would scale

with the number of objects. Using the proposed approach, we can orient many objects without

scaling complexity by the number of objects. More specifically, we can execute the proposed

approach on such a compartmentalized tray and by the end of a random sequence, we expect

most objects to be in a determined pose. The manipulator can retrieve each object from the fixed

pose and continue to the next task. If the object was not successfully grasped, it can benefit

from more tilts as the rest of the compartments are refilled and the sequence of random actions

continues. The more tilts an object undergoes, the more certain its final position will be. Thus,

many similarly shaped objects can be simultaneously oriented for a subsequent task.

Finally, the proposed approach is not limited to tray tilting. A randomized sequence of actions

can come in the form of any set of actions performed by a manipulator. For our purposes, this

was a tray attached to the end of an industrial arm. An example of an alternative application of

this work can be to replace the tray with a freely mobile wall, where the set of possible actions is

pushing an object from any angle. In such a robotic system, we would expect the object to reach

a determined pose after a random sequence of actions as well, exhibiting the Kruskal effect.
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Chapter 8

Future Work

Extensions of this work to various polygons or approximations of non-convex objects and tray-

tilting alternatives, such as pushing, would further explore the effects of randomized action se-

quences. The sustainability of our approach can be tested through longer sequences in simulation

and on physical systems, as well as more trials for higher quality estimates of entropy. We are

also interested in ways to capture the order of the system in a data-efficient way. A future goal is

to move towards a tray with a lid that can offer a 3D exploration of part-agnostic tray-tilting to

determine 3D object pose.

To identify action sequences that are efficient at orienting a given object, we could learn a

policy, such as that by Christiansen et al. [8], but with finer discretized tray regions for more

accurate object poses. Another future direction would be to explore potential applications of the

proposed approach in simplifying a pose estimation problem for a manipulation task.
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