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Abstract

This work presents a methodology to infer the complete texture of an articu-
lated 3D model of a person from a single image. We use a rich and compact mesh
representation as the basis of our articulated human model and detail it with the
predicted texture – a UV texture map. We propose a two-stream approach that
decouples geometry and texture inference, and combines the outputs of the two
streams using a differentiable renderer, which enables end-to-end self-supervised
learning. In order to predict a consistent texture that captures the nuances of the
input image, we propose two key innovations – 1) a generative model that outputs
complete UV texture map from partial observations; and 2) multi-view curriculum
training that enables our model to be applied on a wide range of images. We show
through our experiments that our model is able to predict a complete texture of
the human model that captures the regularities in appearance such as symmetry in
clothing, facial features, etc. To highlight some important differences compared to
prior work on geometric and texture inference from a single image, we also show
how our parameterization of texture and human pose can easily be extended to
generate animations based on learned humanoid control policies.
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Chapter 1

Introduction

Figure 1.1: We present a methodology to create textured human mesh models from a
single monocular image. As an application of our approach, we animate our models
using control policies learned from motion clips, making the person in the input
image come alive.

Endowing AI systems with the ability to formulate a three-dimensional under-
standing of human appearance from a single RGB image is an important component
technology for applications such as person re-identification, biometrics, virtual real-
ity and augmented reality. In the context of virtual reality or gaming, a method that
can generate the complete texture of a subject from a single RGB image can provide a
simple way for content creators to create virtual 3D human avatars, without the need
for expensive imaging equipment. However, jointly inferring the texture map and
3D human model from a single image is challenging because: (1) scale ambiguity,
clothing and occlusion make it hard to obtain the 3D model of a person from a
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single monocular image; and (2) a complete texture map needs to be inferred for
each part of the body, such as skin tone, clothing and facial details, even if parts
are occluded or are not visible in the image. With these challenges in mind, we
introduce a methodology to generate the complete texture of a 3D model of a human
from a single image. In particular, we use a model-based approach for estimating the
body-shape and pose of the 3D mesh model [26] and concurrently utilize it towards
a data-driven approach for estimating the UV texture map of the body (e.g., shirt,
pants, skin tone, face).

In this thesis we introduce an approach to estimates 3D shape, pose and texture
that utilizes a two-stream computational architecture that decouples geometric (body
shape and pose) reasoning and texture (clothing, skin tone, face layout) reasoning,
and merges the two streams using a differentiable graphics renderer to ensure that
the 2D projection of the estimated 3D model is consistent with the input image.

For the geometric stream, we use a deep neural network, referred to as the
geometry decoder, to estimate the shape and pose parameters of a 3D mesh model.
This portion of the network estimates the parameters of the Skinned Multi-Person
Linear [26] (SMPL) model – a parameterized 3D mesh model for the human body.
SMPL uses a pose prior – 3D joint angles and a shape prior – low dimensional shape
space to model realistic humans.

For the texture stream, we use a cascaded refinement networks type [5] architec-
ture, referred to as the texture decoder, to estimate the texture in the UV space [14].
We propose two crucial techniques to help the texture decoder complete the UV
texture map. (1) We generate an incomplete texture map by first projecting the visible
vertices of the predicted 3D mesh model onto the input image and then writing
the color at those points at their corresponding UV coordinates. We then condition
our texture decoder on the acquired incomplete texture map as well as the input
image. This provides the initial context to our network as each pixel on the UV
texture map as a fixed semantic meaning (e.g., head, arms, torso). (2) We propose a
novel multiview curriculum learning (MCL) approach to make the network gradually
render images from viewing angles moving away from the original image. We
constrain these synthetically rendered images with an adversarial loss which forces
the network to hallucinate appropriate textures for non-visible body parts. We show
that combining both of these techniques allows for single-shot generation of texture
of the entire mesh model with fine visual details. Finally, the use of a differentiable
renderer [20] allows us to penalize variation between the final rendered image and
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the input image, which not only allows for self-supervision and end-to-end training,
but also alleviates the needs for labelled data.

To the best of our knowledge ours is the first end-to-end methodology that infers
the complete texture of a 3D human mesh model from a single image in a completely
unsupervised manner (i.e., without relying on additional inputs) by utilizing a
parametric 3D human mesh model. The main technical innovations of our work
lies within the texture decoder which is able to (1) infer a complete UV through a
sequence of refinement steps; and (2) perform multi-view curriculum learning to
gradually learn a view invariant texture inference model. In contrast to prior works
such as [29, 39] we infer the complete texture of the 3D mesh model by utilizing
the UV parameterization and hence can synthetically render the subject’s image
from any view and in any desired pose. We also show how our parameterization of
texture and human pose are widely applicable and can easily be extended to generate
animations based on learned humanoid control policies in Figure 1.1. Furthermore,
they are compatible with existing graphics engines such as Blender, Unity and Unreal
Engine and hence can be utilized by animators and content creators for a wide range
of applications.
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Chapter 2

Related Work

2.1 2D Generation of Human Body

A large body of recent work has focused on using deep generative models [9, 22] for
various tasks like image-to-image translation [16], image super-resolution [24] and
generating photo-realistic images of objects and human faces [19, 34]. Most of these
generative approaches however do not deal with articulated-object generation, hence
the representations learned by these models fail to capture an interpretable latent
structure of the objects. This issue is even more pronounced when we try to generate
humans, as encapsulating the human anatomy along with all its varying visual
details can be very difficult. Work like [35] uses generative adversarial networks
(GANs) to change human pose in one image to another, however they do so by
conditioning on either a target image or pose. [30] makes use of dense 2D to 3D
correspondences provided by [11] to change the pose of a person in a 2D image,
conditioned on a pose donor. Though all these approaches achieve photo-realistic
results, they limit themselves to the 2D pixel space and need to be conditioned on a
strong signal (target pose or pose donor). In contrast, we are not constrained to the
pixel space but rather infer the complete texture of an articulated 3D model. This
representation can be manipulated (e.g., camera motion, pose change) and rendered
in a meaningful way without a conditioning image, hence allows for physics-based
character animation.

Recent work by [23] proposes a generative model for people in clothing for the
full body, wherein, the authors use a conditional variational autoenconder (cVAE)
to generate people in accurate appearances. However, their approach requires
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annotations for different clothing items. Our method eliminates the need for such
annotations. Further, the aforementioned method is limited to generating a 2D RGB
image, while we infer the complete 3D representation of a human body from a single
image.

2.2 3D Modeling of Human Body

The estimation of human models from a single monocular image has been a long-
standing problem in computer vision. Most early works focus on learning 2D body
pose from a single image. However, deep neural networks have been successfully
used to estimate the 3D pose from a single image as well [28, 36]. Alternatively,
there has also been prior work on creating realistic animated human body from an
RGB image. Most such works have used parameteric mesh models to model the
complex deformations possible in humans [6, 10]. In [26], the authors proposed
Skinned Multi-Person Linear model (SMPL) a generative human body model that is
parameterized using 3D joint angles and a 10 dimensional linear shape subspace.

[3] is one of the first works to look at the problem of inferring 3D human pose
and shape for a SMPL model from a single image. They follow an optimization
based approach that penalizes the error between the projection of 3D model joints
and detected 2D joints. However, such optimization based approaches are often
susceptible to local minima. Very recently, there have been many works [17,31,32,36]
that have used deep neural networks for estimating the parameters of the SMPL
model. These works use novel methods to compensate for the lack of ground truth
3D annotations e.g., the use of factorized adversarial prior in [17], self-supervision
by using differentiable rendering in [36] and using a region based 2D representation
as a prior to estimate the 3D pose and shape in [31]. However, unlike all the above
methods, we not only infer the geometry (pose and shape) of the human body but
also address the highly ambiguous task of inferring the concomitant texture of the
estimated 3D model.

2.3 Texture Generation

Very few works have looked at the problem of inferring texture for human models.
Recently, [1, 2] have looked at the problem of estimating accurate 3D model and
texture of arbitrary people from a monocular video. This video, however, requires a
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moving person in a single T-pose, such that a consensus shape for the human body
is calculated from each frame of the video. This consensus shape is then compared
with the shape at each frame to get the texture map for the person. Although the
above method does obtain excellent results, it requires a monocular video of a
person in a specific T-pose from all different viewpoints, while in contrast we only
require a single monocular image. Moreover, the above optimization techniques are
insufficient to infer the texture from a single image as they cannot reason about the
invisible body parts.

Prior works such as [3, 18, 32, 36] has looked at the problem of inferring 3D
human pose and shape for an SMPL model from a single image. Recent work [38]
also estimates the appropriate vertex deformations of the SMPL model to match
the clothing geometry of the subject in the image by matching the silhouettes of the
deformed mesh with image inputs. However, they do not address the problem of
texture inference and instead manually fit visible texture to the back which is only
applicable when the image contains the frontal view of the subject. [29] introduces
a deep visual hull algorithm that captures the geometric details of the subject in the
given image and also predicts the visual appearance of the person in new poses.
However, in contrast to our approach that predicts a UV texture map, their algorithm
uses a target pose conditioned image-to-image translation network to generate the
person in the target view.

In [18] the authors look at the problem of inferring the shape and texture of
simple object categories, such as birds and cars, from a single image. They assume a
relatively low-dimensional spherical mesh as the mean shape (∼600 vertices) for the
underlying object and match its shape to the object by vertex deformation. Further
they assume that the objects are symmetric and predict the texture for their mesh
using a method referred to as ‘texture flow’. We show in section 5.6.1 that such a flow-
based approach is insufficient to find semantic correspondence between the input
image and the texture for the human model, and fails to assign plausible texture
to each body part. To address these challenges, we instead generate an incomplete
UV texture map for a person from the input image. Further, we don’t assume any
symmetry but introduce a novel multiview curriculum learning approach which
allows our model to hallucinate the parts of human body that are non-visible in the
input image.
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Chapter 3

Geometry Inference

Given an image Ĩ of a person, our goal is to predict a texture map Y of an articulated
human mesh model that captures the visual attributes (, skin tone, clothing, facial
details) of the person from a single image. Figure 4.1 shows a brief outline of our
method. We follow an encoder-decoder framework and first encode the input image
into a latent representation φ, which is then used by two decoders: 1) a geometry
decoder that predicts the shape and pose of our parametrized human mesh model,
and 2) a texture decoder that infers the UV texture map of the mesh model. We then use
a differentiable renderer [20] to render the image of the predicted textured human
model, allowing us to train our network in an end-to-end fashion. We therefore
present a data-driven approach to estimate the complete texture of a 3D human
mesh model in an unsupervised way from just a single image. In the following
sections we describe the details of all the steps involved.

3.1 Human Mesh Model

We use the Skinned Multi-Person Linear (SMPL), a parameterized 3D mesh model
which factors the human body into shape (height, weight and body proportions)
and pose (sit, stand, jump, ). The shape of the model is defined by a vector β ∈ R10

containing the first 10 coefficients of a PCA shape space. The pose parameter θ ∈ R69

consists of the relative 3D rotation of 23 joints in axis-angle representation. The final
triangular mesh of the SMPL model has F = 13776 faces and N = 6890 vertices,
with vertex positions obtained by shaping a template mesh conditioned on θ and
β, transforming bones of the skeleton according to θ, and finally deforming the
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surface via linear blend skinning. In order to enable self-supervision, we also infer
the camera parameters from the input image. Similar to [17], we assume a weak-
perspective camera model with orthographic projection. The camera parameters
consists of the global rotation R in axis-angle representation, 2D translation t ∈ R2

and scale s ∈ R.

We introduce a network which we refer to as the geometry decoder G that takes the
latent representation φ and predicts the parameters of the SMPL model as well as
the camera. Therefore, G decodes the representation φ to predict an 85 dimensional
vector Θ = (θ, β,R, s, t). Similar to [4, 7, 17] we indeed realize that regressing over
the parameters in an iterative error feedback loop (IEF) improves the performance
of the decoder. The training of our geometry decoder is similar to [17] with one major
difference. Our methodology, for now, trains on datasets that have the ground truth
3D joint locations and SMPL parameters available, and hence we do not use the
factorized adversarial prior in [17] for our training.

3.1.1 Geometric Loss

In order to train the geometry decoder and learn the parameters of the 3D model,
we use three different types of losses: (1) 3D mesh parameter loss Lsmpl; (2) 3D joint
location loss L3D ; (3) 2D re-projection loss L2D, which are estimated as follows,

Lsmpl =
∑
i

‖[βi, θi]− [β̃i, θ̃i]‖22 , (3.1)

where (β̃i, θ̃i) are the ground truth shape and pose parameters of the SMPL model
and (βi, θi) are the predicted parameters.

L3D =
∑
i

‖Xi − X̃i‖22 , (3.2)

where X̃i, Xi are the ground truth and predicted 3D joint locations respectively,
which can be calculated from β and θ by first computing their rest positions with the
regression matrix provided by [26] and transforming them with forward kinematics.

L2D =
∑
i

‖xi − x̃i‖22 , (3.3)
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where x̃i are the ground truth 2D keypoint locations and xi are the locations af-
ter orthographic projection of Xi using the predicted camera parameters (R, s, t).
Therefore,

Lgeom = λ1Lsmpl + λ2L3D + λ3L2D . (3.4)
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Chapter 4

Texture Inference
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Figure 4.1: Training architecture. Our model first encodes the input image to a latent
representation. This representation is then shared by geometry decoder and texture
decoder to infer the geometric and visual attributes of the 3D model.

The prime focus of this thesis is to infer the texture of a fully articulated human
mesh model. While previous literature attempts to infer the 3D pose or the 3D SMPL
parameters from a single two-dimensional RGB image, in order to fully enable the use
of these models for tasks such as virtual and augmented reality, data-augmentation
etc, it is imperative that we also infer the visual attributes of a human model. Since
what a person wears, their skin tone and other visual attributes are some of their
most identifiable characteristics.
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The use of a surface based representation for modeling the human body allows
us to use their UV parameterization and apply different textures to the underlying
3D model. Given the UV parameterization, each vertex of the mesh has a unique UV
coordinate in the texture map, and the color sampled at that coordinate is assigned
to the vertex when rendering the mesh. Given this procedure, each vertex of the
SMPL model has a fixed semantic meaning associated with it, e.g., face, torso, legs,
etc. The texture map also has static semantics associated with each UV coordinate.
We therefore pose the task of predicting the texture of the human body model as
predicting the UV texture map of the SMPL model.

Figure 4.2: Figure showing the 3D SMPL model and the corresponding UV space.
Each vertex vi in the 3D mesh model gets mapped to a unique coordinate ui in the
UV space.

4.1 Incomplete Texture Map

As people have very rich and complex visual details associated with them, generating
a texture map from scratch is a difficult task. This is especially true in our setting,
where we only have a single image of the person and many parts of the body are non-
visible or occluded. Even with texture flow [18], i.e., learning a vector field that maps
colors from the input image to the texture map, the learned flow often fails to assign
pixels to the correct body part, which we elaborate upon this in Section 5.6.1. Thus,
we propose to first generate an incomplete texture map Y0 by de-rendering colors from
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the address parts of the person in the image to give the network some initial context.
For each pixel p in Y0, we find the UV face (u1, u2, u3) enclosing p and compute the
corresponding barycentric coordinates (α1, α2, α3). ui is the UV coordinate of vertex
vi in our mesh model. The color of p can be computed by

∑3
i=1 αici, where ci is

the color of each vertex obtained by projecting vi onto the input image using our
predicted camera parameters and sampling color at the 2D coordinate. We note that
in the above process only visible UV faces are considered and pixels belonging to
non-visible faces will not be colored. To determine the visibility of a face, we use
z-buffering to register each pixel in the final rendered image with the face that has
the smallest z value.

4.2 Texture Decoder

With the incomplete texture map Y0, we pose the prediction of the completed UV
texture map Y as an image completion problem. We introduce a texture decoder T
that takes the incomplete texture map and the latent representation φ of the input
image Ĩ , and predicts the complete texture map Y of our humanoid mesh model
inferred by our geometry decoder G. Hence, conditioned on the context provided
by Y0 and φ, the texture decoder T needs to predict the texture of body parts that
are non-visible or occluded. Once we have the completed texture map Y , we use
a differentiable rendererR [20] with the learned camera parameters to render the
final image I . We use the proposed losses during the texture generation to penalize
different forms of variation and ensure that our learned texture is visually plausible.

4.2.1 Reconstruction Loss.

We find the L1 distance between the final rendered image I and the input image Ĩ :

LL1 = ‖I − Ĩ‖1 . (4.1)

4.2.2 Perceptual Similarity Loss

To ensure that the generated image is visually similar to the original ground truth
image, we use the perceptual similarity loss Lpercep. Perceptual loss computes the L1

distance in the image feature space which is provided by deep neural networks [40].
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This helps bring the statistics of the intermediate features of the real image and
the predicted image close to each other and thus allows for visually similar texture
generation,

Lpercep =
N∑
v=1

‖Ck(I)− Ck(Ĩ)‖1 , (4.2)

where Ck is the kth feature extractor of a deep network.

4.2.3 Multiview Curriculum Learning

While above losses encourage the network to learn the texture of the 3D model, they
only provide stimulus for body parts that are visible in the input image. In order
to estimate the complete UV texture map, our network also needs to hallucinate
parts of the body that are either non-visible or occluded. Hence, we require a loss
function that provides appropriate feedback to the network based on the texture
inferred for these non-visible parts. However, such a loss is not straightforward due
to the absence of any ground truth UV-texture and images of the same person in
different poses.

Fortunately, the use of a differentiable renderer allows us to introduce a novel
and widely applicable multiview curriculum learning (MCL) approach. MCL takes
into account the fact that we can synthesize multiple views of the same person
by utilizing multiple renderings, each parameterized by a different camera angle.
MCL gradually increases the difficulty of the task assigned to the texture decoder
in the following way. We first render the image with the predicted frontal camera
view. Every 3000 iterations, we also render the image from two additional views by
rotating the camera by δ degrees in two directions, until we cover a full 360 degrees
perspective. For each iteration, rendered images from different views are sent to a
discriminator network. The discriminator is tasked to differentiate generated images
from the real input image. By doing so we are gradually making the network predict
texture for the entire body without the need for actual multi-view input.

We use the patch-GAN discriminator introduced in [16] with LSGAN [27] objec-
tive during training. The loss function to train the discriminator thus becomes
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L =
1

V

V∑
i=1

1

2
EĨ∼pdata

[
(D(Ĩ))2

]
+

1

2
EIi∼p(Ii)

[
(D(Ii)− 1)2

]
,

(4.3)

where V are the number of views that we consider for that iteration, and Ii is the
image rendered from ith view. The loss that is used to train the texture decoder T is

LMCL =
1

V

V∑
i=1

1

2
EIi∼p(Ii)[(D(Ii))− 1)2] . (4.4)

Therefore, the total loss for the texture decoder is

Ltexture = µ1LL1 + µ2Lperceptual + µ3LMCL, (4.5)

where µi denotes the relative weights of the different losses.
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Chapter 5

Experimental Evaluation

The aim of our experiments is to show that our proposed approach is able to estimate
a well textured articulated 3D mesh model of a person from a single monocular
image. We also aim to show that our model is able to estimate textures for images
which exhibit large variance in both appearance (visual attributes) and pose.

5.1 Datasets.

We evaluate our approach on three very diverse datasets: SURREAL [37]; Hu-
man3.6M [15]; and DeepFashion [25]. SURREAL is a large-scale dataset with realis-
tic looking synthetically generated images of people. Since the SURREAL dataset
contains ground truth UV texture maps, we use it as our initial dataset to compare
our generated UV texture to the ground truth UV texture. To verify that our model
is able to generate plausible textures under large pose-variance, we experiment on
Human3.6M (H36M) dataset. H36M is a large-scale video dataset with annotated
3D human skeletons. H36M contains videos of various subjects performing daily
activities which often results in very complex poses. Finally, to verify that our model
is able to generate textures with large appearance diversity we use the DeepFashion
(In-shop Clothes Retrieval Benchmark) dataset. DeepFashion consists of images of
fashion models with very large visual diversity e.g., different kind of clothing types,
large variance in clothing colors etc. We believe all of the above datasets together
reflect the large visual diversity observed in human images.
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5.2 Training Details

5.2.1 Network Architecture

The input to our network is an RGB image of size 224×224. We use a network similar
to ResNet-18 [12] to encode the input image to the latent variable φ ∈ R300. For the
texture decoder, using a fully-connected layer we first convert the latent representation
φ to a 196 dimensional vector, which we reshape into a 14× 14 2D map. This map
is then channel-wise concatenated with a down-sampled incomplete UV texture
map and follows a cascaded refinement network type architecture [5] which gradually
increases the size of the generated texture from 14×14 to 224×224, hence generating
a complete UV texture map. The geometry decoder consists of 2 fully-connected layers
of size 512 each, and takes as input the latent representation φ and output an 85

dimensional vector containing the parameters for the SMPL as well as the camera.
We pre-train the geometry decoder and fine-tune it while learning the texture decoder
to get improved results. Learning both the texture decoder and geometry decoder from
scratch is a difficult task as initially the geometry network does not predict plausible
parameters for the SMPL model and camera, which results in an incorrect incomplete
UV map, an essential input to our texture decoder.

5.2.2 Hyperparameters

The hyperparameters used for training the geometry decoder are λ1 = 2, λ2 = 1, λ3 = 1,
and for texture decoder the hyperparameters used are µ1 = 1, µ2 = 10, µ3 = 0.1 and
µ4 = 2 (used only while training the Surreal dataset [37]). We train our model using
Adam optimizer [21] with learning rate 3 × 10−4, β1 = 0.5 and β2 = 0.999. We
update the parameters of the multiview discriminator every 5 iterations of updating
texture and geometry decoders. Our code base is in python and will be released after
the review process is over.

5.3 Metrics

We perform separate quantitative analysis for the on the two decoders. Moreover
we provide the complete UV texture and the final rendered textured 3D human
mesh model for the qualitative assessment of the reader. We use the recently pro-
posed perceptual similarity loss [8] between the final rendered image and the input
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image as a metric to quantitatively evaluate our approach. We emphasize here
that although our primary focus is the estimation of texture, estimating the correct
3D pose and shape is a crucial part of our pipeline. For quantitative analysis of
our geometry decoder we show that our model is able to accurately predict the
SMPL model parameters and compare with [31] and [17] in Section 5.5. We provide
the implementation details and the hyper-parameters used in the supplementary
material.

5.4 Qualitative Analysis

Figure 5.1 and Figure 5.2 show the qualitative results for our experiments on the three
datasets. Figure 5.2 shows multiple predictions for each dataset. The image on the
left column is the given ground truth image, while each row represents a textured
human model as predicted by our network, and viewed from different camera
locations. As can be seen, for each dataset our model is able to infer meaningful
texture for body parts that are not visible. Additionally, the geometry decoder is
also able to predict the shape of the human mesh model accurately. Further, the
predicted textures show that our model is able to infer various details in a person’s
visual appearance such as clothing patterns, skin color, etc.

For SURREAL dataset (Figure 5.2 first two rows), the results show that our learned
model is able to predict meaningful texture for body parts that are not visible in the
given image. For example, the network is able to hallucinate the complete face even
though most of the face is not visible. Since the SURREAL dataset has ground truth
UV maps available, we introduce a supervised loss on the generated UV texture
maps which provides the network with a strong human-body based regularization.
This regularization enforces a structural constraint on our model and allows it to
hallucinate the unseen body parts correctly.

Figure 5.2 (middle two rows) shows the predicted results for DeepFastion dataset.
Additionally, Figure 5.1 visualize the input image along with the incomplete texture
created by de-rendering this image and the output texture as inferred by our model.
We would like to note that the DeepFashion dataset has very high variance in clothing
and does not contain any ground truth UV texture maps. Given these constraints,
our network is still able to predict meaningful texture outputs, as can be seen in the
above figure. The reason for this is twofold. First, given the incomplete UV image
our network only has to inpaint the textures that are not visible in the input image.
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Second, our multiview curriculum learning approach enforces appropriate body
priors on the network. This ensures that different views of the same person do not
visually diverge from each other.

Although our proposed approach is able to infer the textures for unseen body
parts in a completely unsupervised manner, we do want to however point out a
common failure case. Instead of perfectly hallucinating parts unseen body parts
such as hairs, ears, , for the face, our network seems to capture similar details from
different views. This is due to the fact that all the training images in our subset
of DeepFashion dataset has the face of a person visible at all time. Thus, during
multiview curriculum training, the discriminator learns this data dependent bias
and forces the hallucination of a face for other side views, and hence has a propensity
to generate multiple faces in the UV texture map. Finally, our visualization shows
that unlike [30, 35] our method doesn’t require a target image to change the view or
the pose of the person, but can generate as many views of a textured model as we
want due to our explicit 3D mesh representation of the human model.

Finally, we verify our proposed approach on the Human3.6M (H36M) dataset.
H36M contains complex and highly-varied poses but little variation in the visual
appearance of the subjects. Similar to DeepFashion, H36M lacks any ground truth UV
texture annotations. Figure 5.2 (bottom two rows) visualizes our model prediction
on H36M. As seen in the above figure, our model is able to correctly synthesize
textures for people in two very different scenarios, , a back-view of the person and a
complex crawling pose. Both of these poses are challenging for the model as a large
part of the body is not visible. However, our network is still able to infer the overall
texture of the person and certain nuances like type of clothing (T-shirt, shorts, ) well.
However, it is not able to reconstruct faces perfectly. We believe this is because faces
are much more complex to reconstruct compared to other body parts, given the large
amount of details they encapsulate. Despite this, without any supervision from
a target pose or a ground truth texture map, our model is able to understand the
texture semantics associated with different clothing types and colors accurately.

To further differentiate our method from 2D pose transfer [30,35] and approaches
not designed for articulated objects [18], we animate our learned textured human
models with control policies learned from motion clips using DeepMimic [33]. These
animations are sketched in Figure 1.1 and are best seen in the video link provided1.

1https://drive.google.com/open?id=1aPNxYS2BEY-sUrmGCYbKcj7JKbBYePx4
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Figure 5.1: Results of our methodology with visualization of the intermediate results.
(a) Input image. (b) Incomplete UV texture map. (c) Completed UV texture map. (d)
Final output rendered using the predicted camera view.
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Figure 5.2: Results for multiple datasets. Input images (left column) followed by
predicted textured models viewed from different angles.
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5.5 Quantitative Results

Method MPJPE
HMR (Trained on H3.6M) 77.6
Neural Body Fitting 59.9
Ours 80.3

Table 5.1: Evaluation of our geometry decoder with mean error per joint position
(MPJPE).

Dataset Ours Texture Flow
Surreal 0.114 0.259
Fashion 0.140 0.316
Human3.6M 0.216 0.412

Table 5.2: Comparison of our method with texture flow [18]

Method LPIPS
Ours 0.140
Ours w/o MCL 0.143
Ours w/o perceptual similarity 0.152
Ours w/o incomplete UV&MCL 0.159

Table 5.3: Ablation Study result

5.5.1 Texture Decoder

We use the Learned Perceptual Similarity metric [40] (version 0.1) for the quantitative
assessment of our texture decoder. The LPIPS metric ranges between 0 to 1, with 0
being the most similar. To avoid any bias from the background, we calculate LPIPS
on the masked input image which was obtained using Mask-RCNN [13]. Table 5.2
shows the LPIPS value of our network compared with the texture flow baseline [18].
As seen above, our method outperforms the baseline on all three datasets.

5.5.2 Geometry Decoder

First we compare our geometric decoder performance to two recent state-of-the-art
works [17] and [31]. Since H36M contains complex poses and also has ground truth
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annotations available, we use it to evaluate our geometry decoder. Table 5.1 shows
results for the mean per joint position error (MPJPE) in mm on the test set (S2, S3,
S4, S10). As can be seen, our model performs reasonably compared with the other
baselines. We would like to reiterate that our main aim is not to out-perform the
above state-of-the-art methods. Hence, we only use direct supervision and avoid
any additional loss such as the factorized adversarial loss [17] or use of semantic
body part segmentation [31].

(a) (b) (c) (d)

Figure 5.3: Results of the ablation study. (a) Input images. (b) Results without condi-
tioning on incomplete UV and multiview curriculum learning. (c) Results without
multiview curriculum learning. (d) Results without using perceptual similarity
metric. (e) Results with our full method.

5.6 Texture Decoder Ablation Study

Table 5.3 and Figure 5.3 analyze and demonstrate the role of all the terms used for the
generation of the textured model. We calculate the LPIPS metric between the original
image and the rendered image using the predicted camera parameters. Figure 5.3
shows that Lperceptual is important to capture the overall structure of UV texture map.
However, the two most important components responsible for generating realistic
textures are: 1) conditioning the texture decoder on incomplete texture map and 2)
using LMCL, , multiview curriculum learning to hallucinate the body parts that are
not visible. As can be seen in Figure 5.3(b), when the images are not conditioned
on the incomplete texture map, they fail to capture the important details of the
person’s visual appearance. Whereas, if there is no multiview curriculum learning,
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the network is completely unable to hallucinate the non-visible body parts of the
person.

(a) (c)(b) (e)(d)

Figure 5.4: Figure comparing our our methodology with [18]. (a) Input images. (b)
Predicted texture maps using texture flow. (c) Rendered images with Texture flow,
(d) Predicted texture maps using our method. (e) Our rendered images.

5.6.1 Comparison with Texture Flow

The closest to our methodology is the work by [18]. As noted in Chapter 2, the
scope of their texture generation is limited as they only generate textures for non-
articulated objects such as birds and cars. [18] uses a flow-based vector field to map
colors from the input image onto the predicted texture map. This is referred to as
‘texture flow’. However, we found such a flow-based technique failed to produce
reliable results. We believe this is because predicting the flow field for the entire
human body is very challenging. Further, such a flow based technique cannot utilize
the semantic correspondence between the input image and the texture map as our
incomplete texture map does.

Another major difference between [18] and our proposed approach is the as-
sumption of symmetric body parts in [18]. The authors in [18] assume symmetric
body parts, which allows them to color the non-visible parts of the given object.
However, such an assumption does not transfer to the human body, e.g. the front
of the head is clearly not symmetric with the back. To alleviate this, we instead
introduce a multiview curriculum learning approach, which forces the network to
generate textures that renders consistent images from different camera positions.
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Figure 5.5: Additional results on Surreal, Human3.6M and Fashion datasets, each
with three rows. The first column is the input image, the second column is the
predicted model from the same viewing angle as the input image, and the other
columns show the model from other viewing angles.
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Chapter 6

Conclusion and Future Direction

We propose an approach towards single-shot inference of the complete texture of
an articulated 3D human mesh model from a single monocular image. Our model
consists of a geometry and a texture decoder, which are responsible for the 3D pose
and shape, and texture inference respectively. To allow our model to hallucinate
the unseen body parts from the input image, we introduce two novel techniques.
First, we condition our texture decoder on an incomplete texture map, which is
obtained via de-rendering the input image. Second, we introduce a curriculum based
multiview learning approach which forces the network to output coherent textures
for the entire human body. To evaluate our proposed approach, we experiment on
multiple datasets. We report both qualitative and quantitative results, and show
that our proposed approach is able to outperform the comparing baselines. Finally,
we also show our textured articulated models are naturally compatible with physics-
based animation, allowing us to make a person come alive from just a single static
image.

While our methodology is able to learn appropriate textures that capture the
visual details of a person, deforming the mesh vertices so that they match the
clothing geometry was not the focus of this thesis. However, we feel that it is
indeed an imperative step towards retrieving realistic 3D human models and an
important direction for future work. Moreover, our methodology can prove to be
extremely useful for tasks such as end-of-tail data augmentation. Given that we
predict a 3D Human Model along with its texture, our methodology can be utilized
to generate images/videos of people in various poses and performing multiple
different actions from different views and perspectives. Such images and videos
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can therefore be utilized to augment existing datasets which can help better train
models for applications like person re-identification, human action recognition, etc.
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