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Abstract—In this paper, we introduce a concept called Sim-
ulated - BSM that leverages the combination of rich vehic-
ular sensor feed (speed, object proximity, SLAM maps etc.),
and emerging guaranteed low-latency communication protocols
(DSRC, 5G) to enhance efficiency & safety of transport facilities.
The main idea is that an ego-vehicle with local sensor feed
capability creates a basic safety message for any identified
rogue vehicles in its field of view, and broadcasts it to infras-
tructure for implementing efficient and safe control actions.
System architecture details are discussed. The efficacy of S-
BSM framework was successfully demonstrated in the context
of enhancing safe & efficient operations at rural high-speed
signalized intersection.

I. INTRODUCTION

Societal activity is inherently dependent upon transporta-
tion systems and services, for moving people and goods.
Efficient, and safe transport services are critical to societal
productivity and well-being. The objective of Intelligent
Transportation Systems(ITS) is to leverage real-time data and
communications to make transportation safer, more efficient,
and more environmentally sustainable. To achieve these ob-
jectives, both the automobile industry and the government
agencies are proactively adopting new technologies at various
levels (either at individual vehicle or at infrastructure level).

Automakers are constantly adding new features to their
next generation vehicles to enhance the driving experience.
Some of these features include parking assistance, blind-spot
detection, night vision system, among others. These features,
which are commonly known as advanced driver assistance
systems (ADAS) are aimed to detect the environmental
conditions and provide necessary feedback to enhance the
situational awareness of the driver[1]. These systems are
expected to be effective in situation of imminent collisions,
assisting to avoid or mitigate them [2].

On the other hand, government agencies historically ad-
dressed the issues of transportation mobility & safety through
strategic network instrumentation, and optimal system con-
trol. For the most part, fixed point sensors like video cameras,
or loop detectors are used as infrastructure sensors. While
this type of sensing is useful in understanding snap-shot
characterization of average dynamic flows of the network,
the information provided by these sensors isn’t sufficient to
reconstruct the individual trajectories of the vehicle. This

might not be a major concern if the main objective is to
enhance average efficiency of the system, but it might pose
a major safety concerns in certain scenarios. For instance, in
transport facilities like rural high-speed intersections, control
systems do not know when a vehicle will be caught in a
dilemma zone (the region where, at the onset of yellow on
the major road, drivers are in a dilemma about whether to
continue through the intersection or stop). As a consequence,
these facilities, tend to have higher likelihoods of collisions.
In fact, crash statistics suggest that more than half of all
fatalities due to crashes occur in rural intersections [3].

To alleviate some of these safety concerns, in 1999, the
USDOT mandated a low latency, wireless vehicular ad-hoc
network protocol called dedicated short range communica-
tions (DSRC). The basic idea of this connected vehicle
protocol is to alert the drivers to the presence of nearby vehi-
cles (typically every vehicle broadcasts basic safety message
(BSM) to make its presence known to other vehicles). Since
its inception, a number of active safety applications have
been developed [4], [5], [6]. In the recent years, there is an
increasing interest in the transportation research community
to leverage connected vehicle data to improve the efficiency
of signal control. For instance, Guler et al. [7] proposed
an algorithm that incorporates information from Connected
Vehicles to determine the sequence of departures from an
intersection. Dujardin et al. [8] proposed a multi-objective
optimization interactive procedure for adaptive signal control.
Feng et al. [9] proposed an algorithm to optimize the phase
sequence and duration.

While all these efforts are very useful, none of them take
into consideration, the shear complexity of the real-time data
processing to derive useful (or relevant) information; instead,
almost all of them simply assume that the information is
just there. Furthermore, almost all of them assume high
penetration of autonomous vehicles (AVs) as a requirement
for developing any useful new algorithms. As noted earlier,
irrespective of autonomous navigation capabilities, sensors in
today’s vehicles are capable of producing terabytes of useful
information on car’s environment, like speed, object prox-
imity, SLAM maps etc. Furthermore, recent market studies
indicate [10] that by the year 2029, 60% of all vehicles,



or a cumulative 146 million cars, will have DSRC/V2X
capabilities. This combination of rich vehicular sensor data,
in conjunction with guaranteed low-latency communication
protocol like DSRC, and the reality of 5G wireless systems
in the near future, is making it possible to enhance safety
of transport facilities without assuming the presence of any
autonomous vehicles in the traffic stream.

To show the usefulness of these ideas, in this paper, we
introduce a new concept called simulated-BSM (S-BSM). The
main idea is that the ego-vehicles local sensor capability
can create a basic safety message for any identified ”unsafe
vehicle(s) (e.g. high speed)” in it’s field of view, and broad-
cast that information to the infrastructure via a low-latency
wireless ad-hoc networks (DSRC, 5G). The infrastructure in
turn, will make use of this information and takes appropriate
control decisions to ensure the overall safety of the system.
We developed a new system architecture for this proposed
system, and developed software infrastructure to realistically
simulate these ideas. Finally, the concept of S-BSM is applied
in the context of enhancing the safety of rural high-speed
signalized intersections, and its effectiveness (number of
vehicles caught in a dilemma zone) is tested in the simulation.

The rest of the paper is organized as follows: Section II
introduces the concept of simulated-BSM in more detail, Sec-
tion III presents details of simulation architecture, Section IV
provides background information on safety issues pertaining
to the rural high-speed intersections, and the ability of S-
BSM in addressing of concerns, Section V presents details
on simulation experiments, Section VI analysis of the results,
and Section VII provides conclusions and points out future
lines of work.

II. SIMULATED BASIC SAFETY MESSAGE (S-BSM)

The concept of simulated-BSM is very simple. The main
idea is that the ego-vehicles equipped with ADAS systems
create a basic safety message for any identified ”unsafe ve-
hicle(s) (e.g. high speed)” in it’s field of view, and broadcast
that information to the infrastructure via a low-latency wire-
less ad-hoc networks (DSRC, 5G). Data feed from different
onboard sensors can be used in generating S-BSM (e.g.
LiDAR, cameras, and radars). However, in this framework,
we assume that the surrounding vehicles are tracked using
LiDAR sensor for the sole reason that the LiDAR data can be
easily emulated within SUMO microscopic traffic simulator.

A. Localization, Segmentation, and Object Tracking

An ego-vehicle must first understand its current location,
and the location of other vehicles in its field of view for
the purpose of generating S-BSM. Typically, this is done by
scanning different obstacles and landmarks within the local
sensor’s (LiDAR) field of view [11], [12], [13]. In the pro-
posed methodology, the LiDAR is emulated by encapsulating
the distance matrix as a LiDAR data frame, wherein each
element of the matrix is the distance of an object (if it exists)
from the ego-vehicle. To emulate the real-world sensor noise,
each data frame is passed through a sensor noise model to

introduce noise into the data [14]. This data, in turn, is passed
through a fully convoluted neural network (FCNN) [15] to
estimate approximate location, and heading of each vehicle
with respect to the ego-vehicle. As per the results presented
in recent research work [15], the FCNN framework shows lot
of promise from the standpoint of accuracy and its usefulness
in real-time 3D object tracking.

A Kalman filter in employed to track, estimate the speed,
and the location of specific vehicles across multiple frames.
Lastly, since SUMO microscopic simulator represents traffic
networks in two dimensional XY-plane, there are no ele-
vations or depressions in the road network and the height
of each vehicle is the same. These limitations resolve into
modulating the LiDAR sensor model with one beam for
building 2D obstacle maps. This is done by passing each
LiDAR data frame through a simple point-to-point segmenter
that can estimate the approximate location of each vehicle.

Whenever an ego-vehicle identifies a vehicle(s) with ag-
gressive driving behavior (referred to as rogue vehicle),
it generates a S-BSM message using location, speed, and
heading information of the rogue vehicle. The S-BSM, in
turn, is encoded into a DSRC SAE J2735 message format
(which is the message standard for a standard BSM), and
sent over to the infrastructure agent via DSRC and cellular
communication channels. The purpose of sending the same
message over two communication protocols is to ensure the
minimum operational latancies (For example, a message sent
over cellular network might have a lower latency than a
message requiring multiple DSRC hops to reach its desti-
nation). However, to avoid the redundant processing, both
encoded messages have same ID, and the infrastructure agent
processes the message that arrives earliest.

III. SIMULATION ARCHITECTURE

The design framework for microscopic simulation of S-
BSM raises three broad requirements. First, the simulator
should be able to implement microscopic traffic flow charac-
teristics of individual vehicles (e.g., position, velocity, car-
following, and lane changing behavior). Second, the sim-
ulator should be able to simulate the latencies in DSRC
and cellular communication protocol. Third, simulator should
be able to simulate the behavior of ego-vehicles, which
includes generating LiDAR scans, LiDAR data segmentation
with respect to other vehicles, tracking and estimating an
individual vehicle’s location & speed, identify rogue vehicles
in the environment, and finally generating S-BSM and send
it to nearest infrastructure agent via DSRC and cellular
communication protocols for appropriate control action.

While none of the existing microscopic traffic simulators
satisfies all three requirements, it is easy to integrate open
source traffic simulator SUMO with external packages or
modules. The software architecture is detailed in Figure 1.
As can be seen, SUMO can generate a traffic networks, im-
plement traffic rules, and manage and maintain microscopic
traffic flow characteristics. The behavior of traffic objects
inside SUMO can be accessed and manipulated through the
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Fig. 1: Simulation Architecture

TraCI API. Two communication modules (one publisher,
and the other subscriber) are developed to mimic DSRC
& cellular communication networks. Interactions between
ego-vehicles and LiDAR emulator are handled by publisher
module, whereas interactions between ego-vehicles and the
infrastructure are handled by subscriber module. Both pub-
lisher and subscriber modules model communication laten-
cies using uniform distribution. Latency bounds for DSRC
are set to [10ms, 100ms], whereas they are set to [300ms,
600ms] in the case of cellular. Book keeping for object
tracking across multiple LiDAR frames is handled by data
logger module. Lastly, the logic for generating actionable
control decisions to ensure safe operations is handled by
external control logic module.

A. Simulation Flow

Algorithm 1 describes the simulation flow. As can be seen,
SUMO sets up the traffic and vehicular environment and
updates vehicle motion models at each simulation step. A set
of vehicles with aggressive driving behavior is considered for
the purposes of simulating scenarios requiring the generation
of S-BSM. Similarly, a set of vehicles with advanced driver
assistance systems is considered to simulate the ego-vehicles.
The arrival sequence of both rogue vehicles and ego-vehicle
is randomized using uniform distribution. Upon ego-vehicle
generation, two persistent socket connections (one with pub-
lisher, and the other with subscriber) are established for
the purpose of information exchange. For each ego-vehicle,
TraCI simulates a 2D LiDAR view to generates data frames
at 10 Hz. To emulate the real-world sensor noise, each data
frame is passed through a sensor noise model. This data, in
turn, is passed through a simple point segmenter to estimate
approximate location, and heading of each vehicle with
respect to the ego-vehicle. Book keeping for tracking vehicles
across multiple frames is handled by a data logger module. A
Kalman filter in employed to track, estimate the speed, and
the location of specific vehicles across multiple frames. If
ego-vehicle’s object tracking algorithm suggests the presence

Algorithm 1: Simulator Process Flow
δt = 100 millisecond (initialize time step);
t = 0 (initiate simulation time);
Et = set of all ego-vehicles in the system during time t;
ei = ego vehicle ’i’;
N(i,j) = set of vehicles within the field of view ei;
n(i,j) = vehicle within the field of view ei;
r(i,j) = identified rogue vehicle by ei;
p(i,j) = probability of ei tracking nj ;
pl = threshold probability for accepting sensor feed;
T = time when all the vehicles exit the simulation;
Qt = set of S-BSM messages to be processed at t;
while t ≤ T do

t += δt;
if len(Qt) != 0 then

process S-BSM messages;
take appropriate control actions;

end
for ei ∈ Et do

ei sends local sensor feed to LiDAR module;
data passed through sensor noise model;
builds obstacle maps;
add obstacle map to the data logger;
if p(i,j) ≥ pl then

check if nj qualifies as a rogue vehicle;
assign nj = r(i,j);
create S-BSM for r(i,j);
send S-BSM from all ei ∈ Et;

end
end

end

of a rogue vehicle, it generates a S-BSM for the rogue
vehicle. The S-BSM message is encoded into a standard
BSM message type, and sent to infrastructure via subscriber
socket connection. Infrastructure agent, processes the S-BSM
messages in its queue, and assesses operational safety via
external control logic, and communicates actionable control
decisions to SUMO through TraCI.

IV. APPLICATION CONTEXT

High-speed, rural intersections are challenging transport
facilities to instrument and control. These facilities tend to
have higher likelihoods of collisions. In fact, crash statistics
suggest that more than half of all fatalities due to crashes
occur in rural intersections. Hence, they often demand special
attention to ensure safe operation as control systems do not
know when a vehicle will be caught in a dilemma zone. In
principle, dilemma zone is the region where, at the onset
of yellow on the major road, drivers are in a dilemma about
whether to continue through the intersection or stop. Previous
research efforts concluded that the dilemma zone boundaries
are most precisely defined if travel time from the stop line



(as opposed to distance) is used, and those boundaries extend
from about 6 down to 2 seconds away from the stop bar.

Traditionally, agencies install lane-specific speed traps
(pair of magnetic loops separated by a short distance) about
1,000 feet upstream of the stop line. Control logic monitors
both speeds and lengths of the oncoming vehicles, and sends
a user defined fixed long hold (typically about 10 - 12
seconds) on the main street green, whenever it identifies a
vehicle traversing at speed above preset threshold value. This
control strategy proved to improve safety, but at the cost of
significant increased side street delays.

Moreover, ego-vehicles sensor information gives a richer
information on rogue vehicle trajectories than that was given
by fixed-point sensors. Also, there is no need to enforce
a fixed long hold every time a rogue vehicle is detected.
For instance, assume two rogue vehicle v1, v2 require t1, t2
seconds respective to pass through the intersection. Suppose
their is a ’t’ second overlap in their trajectories, the total time
needed for both vehicles to pass through the intersection is
t1 + t2 − t seconds. Our algorithm employs this logic for
computing green time extension when there’s more than one
vehicle in the dilemma zone. So, whenever an ego-vehicle
generates S-BSM for a rogue vehicle, our control algorithm
forecasts trajectory for the rogue vehicle, if it perceives that
the vehicle will be in a dilemma zone at the onset of yellow,
it will extend the green time by an amount equivalent to it’s
expected time form the stop-bar.

V. SIMULATION EXPERIMENTS

To analyze the efficacy of S-BSM in the context of
improving safety of high-speed rural intersection, a number
of experiments were performed with the proposed simulation
framework. Specifically, we considered two intersections
on US-70 (first intersection is at Swiftcreek road, and the
other at Strickland road), which is about 10 miles east of
Raleigh, NC. The volume and signal timing data are obtained
from NCDOT. Proportion of rogue, and ego vehicles in the
mixed traffic stream directly impacts the effectiveness of
the proposed framework. To vary the proportion of rogue
vehicles, We considered the following four basic scenarios:

1) Scenario 1: % rogue vehicles = 5, % EV = [0, 50]
2) Scenario 2: % rogue vehicles = 10, % EV = [0, 50]
3) Scenario 3: % rogue vehicles = 15, % EV = [0, 50]
4) Scenario 4: % rogue vehicles = 20, % EV = [0, 50]
For each of the four scenarios, the percentage of ego-

vehicles on the main drag was varied between [0, 50] in
increments of 10% from one case to the next, while keeping
everything else constant. Therefore, for a given % of rogue
vehicles, there are a total of 6 cases with varying % of ego-
vehicles on the main drag. Through movements of the main
drag have an average flow rate of 500 vehicles per hour across
all scenarios.

For each scenario and % ego-vehicles, To randomize the
arrival patterns of rogue, and ego-vehicles in the mixed traffic
stream, 10 Monte Carlo simulations from different random

seeds were considered. Please notice that S-BSM cannot
be generated in the case with 0% ego-vehicles, and hence
it is considered as the base case. Network instrumentation
(speed traps), and control logic (whenever a rogue vehicle
is detected, hold green for 10-seconds) for the base case are
consistent with details presented in section IV. Simulation
experiments for rest of the cases are conducted using the
S-BSM simulation software package described in section III.

VI. ANALYSIS OF RESULTS

Two performance metrics (one for safety, and the other
for efficiency) are considered for evaluating the simulation
results: 1) % of instances the system successfully resolves
dilemma zone issues; 2) average green duration on main
drag. Simulation output data for a given scenario and case
was further processed to compute the statistics of these
performance metrics. Lastly, S-BSM results are benchmarked
against those obtained in the base case.

A. Dilemma Zone Metric

To evaluate safety, we computed the number of instances in
which the system successfully forecasts a vehicle’s trajectory,
and takes appropriate control decisions to minimize the
likelihood that the subject vehicle is caught in the dilemma
zone. Figure 2 summarizes the descriptive statistics of %
success for the base case. This figure presents standard box
plot for the % success for each scenario; red circles in the
plot represent median % success values, whereas the values
within the box represent the data within the inter-quartile
range.

Fig. 2: Overall % success in resolving dilemma zone (base-
case)

Figure 3 summarizes similar descriptive statistics S-BSM
framework. It contains four subplots (one per scenario):
each subplot presents standard box plot for the % success
for a given % of ego-vehicles in the system. Please note
that these results are generated using a subset of data, in
which, the number of instances a dilemma zone scenario was



resolved in which at least one ego-vehicle was present in the
environment. This analysis directly evaluates ego-vehicle’s
ability to track a rogue vehicle and send pertinent information
to the infrastructure for implementing efficient and safe
control actions. In that sense, this analysis directly assesses
effectiveness of S-BSM framework. While this information
is very useful, it is also important to understand the impact of
ego vehicle penetration in the overall traffic. To answer this
question, we generated similar subplots but based on the total
number of instances a rogue vehicle is caught in the dilemma
zone irrespective of whether an ego-vehicle was present in
the vicinity or not. These results are summarized in Figure
4.

Based on the information presented in the three figures,
following inferences can be drawn:
• S-BSM framework outperformed the base-case in

all four scenarios and for various ego-vehicle pen-
etration levels.

• Whenever an ego-vehicle is present in the vicinity
of a rogue vehicle, the likelihood that dilemma zone
issues will be resolved is between 96 - 98% (see
Figure 3).

• As the ego-vehicle penetration increases, the vari-
ance in % success is reduced (see Figure 4). A more
interesting observation is that beginning at 20% ego
vehicle penetration level, the increased percent of
rogue vehicles in the mixed traffic stream seems to
have no significant impact on the framework’s abil-
ity to successfully handle dilemma zone scenarios.

B. Average Green Duration

Reduction in average green duration is viewed as an
indication that the signal’s performance had improved from
the efficiency standpoint. This in turn, suggests an enhanced
responsiveness to minor street needs. Average green duration
values for both base-case and S-BSM framework are summa-
rized in Table I. As can be seen, S-BSM framework produces
significantly lower average green durations than those pro-
duced by the base-case suggesting S-BSM framework can
be extremely useful in improving safety of rural transport
facilities without compromising for efficiency.

VII. CONCLUSIONS AND FUTURE WORK

Vehicular sensors in today’s vehicles are capable of pro-
ducing terabytes of useful information on car’s environment,
like speed, object proximity, SLAM maps etc. Moreover,
market recent market studies suggest that by the year 2029,
60% of all vehicles, will have DSRC/V2X communication
capabilities. To leverage the combination of this rich vehic-
ular sensor data, and guaranteed low-latency communication
protocol, we proposed simulated-BSM concept to enhance
safety of transport facilities. The main idea is that an ego-
vehicle with local sensor feed capability creates a basic safety
message for any identified rogue vehicles in its field of view,
and broadcasts it to infrastructure for implementing efficient
and safe control actions. We discussed details of the system

architecture. Finally, the concept of S-BSM was applied in
the context of enhancing safe & efficient operations of rural
high-speed signalized intersections. Simulation experiments
were conducted to evaluate the efficacy of the system, and
the results are benchmarked against a conventional control
system. The results conclusively suggest that the S-BSM
framework can be extremely useful in improving safety of
rural transport facilities without compromising for efficiency.

In future, we plan to evaluate the efficacy of S-BSM system
architecture using KITTI dataset [16].
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Fig. 3: % success in resolving dilemma zone when ego-vehicle is present

Average Main Street Green Duration (in seconds)

% Ego Vehicles Scenario - 1 Scenario - 2 Scenario - 3 Scenario - 4
Base Case S-BSM Case Base Case S-BSM Case Base Case S-BSM Case Base Case S-BSM Case

10 57.71 45.0 86.28 47.71 100.57 66.57 110.0 84.28
20 57.71 45.57 86.28 56.42 100.57 74.0 110.0 88.86
30 57.71 43.87 86.28 62.71 100.57 73.14 110.0 92.43
40 57.71 44.34 86.28 64.0 100.57 75.34 110.0 92.71

TABLE I: Average green duration comparison (sec)



Fig. 4: Overall % success in resolving dilemma zone (S-BSM) (whether an ego vehicle present or not)


