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Abstract

We present the first single-network approach for 2D whole-body (body, face, hand,
and foot) pose estimation, capable of detecting an arbitrary number of people from
in-the-wild images. Our method maintains constant real-time performance regardless
of the number of people in the image. This network is trained in a single stage us-
ing multi-task learning and an improved architecture, which account for the inherent
scale difference between body/foot and face/hand keypoints. Our approach consider-
ably improves upon the only known work in whole-body pose estimation (our previous
work, the original OpenPose [1]) in both speed and global accuracy. Unlike the original
OpenPose, our new method does not need to run an additional network for each hand
and face candidate, making it substantially faster for multi-person scenarios. This work
directly results in a reduction of computational complexity for applications that require
2D whole-body information (e.g., re-targeting). In addition, it yields higher accuracy,
especially for occluded, blurry, and low resolution faces and hands. Our code, trained
models, and validation benchmarks will be publicly released as a baseline for future
work in the area.
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Figure 2: We present the first single-network approach for whole-body pose estimation,
with real-time performance that is independent of the number of people in the image.
Our work considerably outperforms the current state-of-the-art (our previous work,
the original OpenPose [1]) in runtime performance, while it also slightly improves its
keypoint accuracy. To avoid confusion, we will denote the original OpenPose as simply
“OpenPose”, and our new work as “Our work”.

1 Introduction

Human keypoint estimation has been an open problem for decades in the research com-
munity. Initially, efforts were focused on facial alignment (i.e., face keypoint detec-
tion) [2, 3, 4, 5, 6, 7]. Gradually, the problem evolved into single and multi-person hu-
man pose estimation in-the-wild, including body and foot keypoints [8, 9, 10, 11, 12].
A more recent and challenging problem has targeted hand keypoint detection [13, 14,
15]. The next logical step is the integration of all of these keypoint detection tasks
within the same algorithm, leading to “whole-body” or “full-body” (body, face, hand,
and foot) pose estimation [16, 1].

There are several applications that can immediately take advantage of whole-body
keypoint detection, such as re-targeting and 3D human keypoint and mesh reconstruc-
tion [17, 18, 19, 20, 21]. In general, almost any method that uses body information
could also benefit from face, hand, and foot detection, such as person re-identification,
tracking, or action recognition [22, 23, 24, 25]. Despite these needs, the only exist-
ing method providing whole-body pose estimation is our previous work, the original
OpenPose [1], which follows a multi-stage approach. It first obtains all body poses
from an input image in a bottom-up fashion [10] and then runs additional face and
hand keypoint detectors [13] for each detected person. As a multi-network approach, it
directly uses the existing body, face, and hand keypoint detection algorithms. However,
it suffers from early commitment: if the body-only detector fails, there is no recourse
to recovery, and it is prone to do so when only a face or a hand are visible in the
image. In addition, its runtime is proportional to the number of people in the image,
making whole-body OpenPose prohibitively costly for multi-person and real-time ap-
plications. A single-stage method, estimating whole-body parts of multiple people in a
single inference, would be more attractive as it would yield a fixed inference runtime,
independent to the number of people in the scene.

Unfortunately, there is an inherent scale difference between body/foot and face/hand
keypoint detection. The former requires a large receptive field to learn the complex in-



teractions across people (contact, occlusion, limb articulation), while the latter requires
high facial and hand resolution. This scale issue has two critical consequences. First,
datasets with full-body annotations in-the-wild do not currently exist. The character-
istics of each set of keypoints result in different kinds of datasets. Body datasets pre-
dominately contain images with multiple people, usually resulting in fairly low facial
and hand resolution, while face and hand datasets mostly contain images with a sin-
gle, cropped face or hand. Secondly, the architecture design of a single-network model
must differ from that of the state-of-the-art keypoint detectors in order to simultane-
ously offer high-resolution and a large receptive field while improving the inference
runtime of multi-network approaches.

To overcome the dataset problem, we resort to multi-task learning (MTL). MTL is
a classic machine learning technique [26, 27, 28] in which related learning tasks are
solved simultaneously, while exploiting commonalities and differences across them.
MTL has been successful in training a combined body-foot keypoint detector [1]. Nev-
ertheless, this approach does not generalize to whole-body estimation because of the
underlying scale problem. The major contributions of this paper are summarized as
follows:

e Novelty: We present a MTL approach which, combined with an updated model
architecture design, is able to train a united model out of various keypoint detec-
tion tasks with different scale properties. This results in the first single-network
approach for whole-body multi-person pose estimation.

e Speed: At test time, our single-network approach provides a constant real-time
inference regardless of the number of people detected, and it is approximately
p times faster than the state-of-the-art (original OpenPose [1]) for images with
p people. In addition, it is trained in a single stage, rather than requiring inde-
pendent network training for each individual task. This reduces the total training
time approximately by half.

e Accuracy: Our new approach also yields higher accuracy than that of the pre-
vious OpenPose, especially for face and hand keypoint detection, generalizing
better to occluded, blurry, and low resolution faces and hands.



2 Related Work

2.1 Face Keypoint Detection

Also known as landmark detection or face alignment. It has a long history in computer
vision, and many approaches have been proposed to tackle it. These approaches can
be divided into two categories: template fitting [2, 29, 4, 6, 30] and regression-based
methods [3, 5, 7]. Template fitting methods build face templates to fit input images,
usually exploiting a cascade of regression functions. Regression methods, on the other
hand, are based on Convolutional Neural Networks (CNNs), usually applying convo-
lutional heatmap regression. They operate in a similar fashion to that of body pose
estimation.

2.2 Body Keypoint Estimation

With the face alignment problem solved, efforts have moved toward single-person pose
estimation. The initial approaches performed inference over both local observations on
body parts and their spatial dependencies, either based on tree-structured graphical
models [8, 31, 32, 33, 34] or non-tree models [12, 35, 36, 37, 38]. The popularity of
CNNs and the release of massive annotated datasets (COCO [39] and MPII [40]) have
resulted in a significant boost of the accuracy of single-person estimation [9, 41, 42, 43,
44, 45, 46, 47], and have enabled multi-person estimation. The latter is traditionally
divided into top-down [11, 48, 49, 50, 51, 52, 53, 54] and bottom-up [10, 55, 56, 57, 58]
approaches.

2.3 Foot Keypoint Estimation

In our previous work, OpenPose [1], we released the first foot dataset, annotated from
a subset of images of the COCO dataset. We also trained the first combined body-
foot keypoint detector, by applying a naive multi-task learning loss technique. Our
new method is an extension of this work, mitigating its limitations and enabling it to
generalize to both large-scale body and foot keypoints as well as the more subtle face
and hand keypoints.

2.4 Hand Keypoint Detection

With the exciting improvements in face and body estimation, recent research is target-
ing hand keypoint detection. However, its manual annotation is extremely challeng-
ing and expensive, due to heavy self-occlusion [13]. As a result, large hand keypoint
datasets in-the-wild do not exist. To alleviate this problem, early work is based on
depth information [59, 60, 61, 14], but is limited to indoor scenarios. Most of the work
in RGB-based hand estimation is focused on 3D estimation [62, 63, 64, 15], primarily
based on fitting complex 3D models with strong priors. In 2D RGB domain, Simon
et al. [13] exploit multi-view bootstrapping to create a hand keypoint dataset and train
a 2D RGB-based hand detector. First, a naive detector is trained on a small subset of



manually labeled annotations. Next, this detector is applied into a 30-camera multi-
view dome structure [65, 19] to obtain new annotations based on 3D reconstruction.
Unfortunately, most of the methods have only demonstrated results in controlled lab
environments.

2.5 Whole-Body Keypoint Detection

OpenPose [1, 10, 13] is the only known work able to provide all body, face, hand, and
foot keypoints in 2D. It operates in a multi-network fashion. First, it detects the body
and foot keypoints based on [10, 46]. Then, it approximates the face and hand bound-
ing boxes based on the body keypoints, and applies a keypoint detection network for
each subsequent face and hand candidate [13]. Recent work is also targeting 3D mesh
reconstruction [19, 66], usually leveraging the lack of 3D datasets with the existing 2D
datasets and detectors, or reconstructing the 3D surface of the human body from denser
2D human annotations [16].

2.6 Multi-Task Learning

To overcome the problems of state-of-the-art whole-body pose estimation, we aim to
apply multi-task learning (MTL) to train a single whole-body estimation model out
of the four different annotation tasks (body, face, hand, and foot detection). MTL
applied to deep learning can be split into soft and hard parameter sharing of hidden
layers. In soft parameter sharing, each task has its own model, but the distance between
the parameters is regularized to encourage them to be similar between models [67,
68]. Hard parameter sharing is the most commonly used MTL approach in computer
vision, applied in many applications, such as facial alignment [28] or surface normal
prediction [27]. Particularly, it has had a critical impact on object detection, where
Fast R-CNN [26] exploits MTL in order to merge all the previously independent object
detection tasks into a single and improved detector. It considerably improved training
and testing speed as well as detection accuracy. Analogously to Fast R-CNN, our work
brings together multiple and, currently, independent keypoint detection tasks into a
unified framework. See [69] for a more detailed survey of multi-task learning literature.

2.7 PAF-based Body Pose Estimation

The network architecture of the initial body keypoint detector used by OpenPose could
have been based on any state-of-the-art body-only keypoint detector technique. In our
case, we built OpenPose upon the Part Affinity Field (PAF) network architecture, based
on the work by Cao et al. [10]. Here, we review the main details of this method. We
refer the reader to [10, 1] for a full description. This approach iteratively predicts Part
Affinity Fields (PAFs), which encode part-to-part association, and detection confidence
maps. Each PAF is defined as a 2D orientation vector that points from one keypoint to
another. The input image I is initially analyzed by a convolutional network (pre-trained
on VGG-19 [70]), generating a set of feature maps F. Next, F is fed into the first stage
¢ of the network ¢, which predicts a set of PAFs L(1). For each subsequent stage
i, the PAFs of the previous stage L(t~1) are concatenated to F and refined to produce



L®. After N stages, we obtain the final set of PAF channels L = LX), Then, F and
L are concatenated and fed into a network p, which predicts the keypoint confidence
maps S.

LO = ¢ (F) (1)

L® — (F, L(H>> L V2<t<N 2
L— L 3)

S =p(F,L) (4)

A L2 loss function is applied at the end of each stage, which compares the estimated
predictions and the groundtruth maps (S*) and fields (L*) for each pixel (p) on each
confidence map (c) and PAF (f) channel:

fL—ZZ s () — LE(p)13) (5)

flp

ZZ ) - 1Se(p) — Si(p)13) (6)

c=1 p

where C and F' are the number of stages for confidence map and PAF prediction, and
W is a binary mask with W (p)=0 when an annotation is missing at a pixel p. Non-
maximum suppression is performed on the confidence maps to obtain a discrete set
of body part candidate locations. Finally, bipartite graph matching [71] is used to
assemble the connections that share the same part detection candidates into full-body
poses for each person in the image.
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Figure 3: Overall pipeline. (a) A RGB image is taken as input. (b/c) Architecture
of the whole-body pose estimation network, consisting of multiple stages predicting
refined PAFs (L) and confidence maps (.5) for body, face, hand and foot. It is trained
end-to-end with a multi-task loss that combines the losses of each individual keypoint
annotation task. Each Conv Layer shown corresponds to the sequence Convolution-
PReLU. (d) At test time, the most refined PAF and confidence map channels are resized
to increase the accuracy. (e) The parsing algorithm uses the PAFs to find all the whole-
body parts belonging to the same person by bipartite matching. (f) The final whole-
body poses are returned for all people in the image.

3 Method

Our system follows a streamlined approach, using a RGB image to generate a set of
whole-body human keypoints for each person detected. This global pipeline is illus-
trated in Fig. 3. The extracted keypoints contain information from the face, torso, arms,
hands, legs, and feet.

3.1 OpenPose: Multi-Network Pose Estimation

A growing number of computer vision and machine learning applications require 2D
human pose estimation as an input for their systems [17, 18, 22, 19, 23, 20, 25]. To
help the research community boost their work, we publicly released OpenPose [1],
the first real-time multi-person system to jointly detect human body, foot, hand, and
facial keypoints (in total 135 keypoints) on single images. Here, we review the details
of this previous work. Available 2D body pose estimation libraries, such as Mask
R-CNN [50] or Alpha-Pose[48], require their users to implement most of the pipeline,
their own frame reader (e.g., video, images, or camera streaming), a display to visualize
the results, output file generation with the results (e.g., JSON or XML files), etc. In
addition, existing facial and body keypoint detectors are not combined, requiring a
different library for each purpose. OpenPose overcome all of these problems. It can
run on different platforms, including Ubuntu, Windows, Mac OSX, and embedded
systems (e.g., Nvidia Tegra TX?2). It also provides support for different hardware, such
as CUDA GPUs, OpenCL GPUs, and CPU-only devices. The user can select an input
between images, video, webcam, and IP camera streaming. He can also select whether
to display the results or save them on disk, enable or disable each detector (body, foot,
face, and hand), enable pixel coordinate normalization, control how many GPUs to use,
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Figure 4: Foot keypoint analysis. (a) Foot keypoint annotations, consisting of big
toes, small toes, and heels. (b) Body-only model example at which right ankle is not
properly estimated. (c) Analogous body-foot model example, the foot information
helped predict the right ankle location.

skip frames for a faster processing, etc.

OpenPose consists of three different blocks: (a) body-foot detection, (b) hand de-
tection [13], and (c) face detection. The core block is the combined body-foot key-
point detector (detailed in Sec. 3.3). It can alternatively use the original body-only
detectors [10] trained on COCO and MPII datasets. Based on the output of the body
detector, facial bounding box proposals can roughly be estimated from some body part
locations, in particular ears, eyes, nose, and neck. Analogously, the hand bounding box
proposals are generated with the arm keypoints. The hand keypoint detector algorithm
is explained in further detail in [13], while the facial keypoint detector has been trained
in the same fashion as that of the hand keypoint detector. The library also includes
3D realtime single-person keypoint detection, able to predict 3D pose estimation out
of multiple synchronized camera views. It performs 3D triangulation with non-linear
Levenberg-Marquardt refinement [72].

The inference time of OpenPose outperforms all state-of-the-art methods, while
preserving high-quality results. Its combined body-foot model is able to run at about 22
FPS in a machine with a Nvidia GTX 1080 Ti while preserving high accuracy. Open-
Pose has already been used by the research community for many vision and robotics
topics, such as person re-identification [25], GAN-based video retargeting of human
faces [17] and bodies [18], Human-Computer Interaction [22], 3D human pose esti-
mation [20], and 3D human mesh model generation [19]. In addition, the OpenCV
library [73] has included OpenPose and our PAF-based network architecture within its
Deep Neural Network (DNN) module.
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Figure 5: Keypoint annotation configuration for the 3 datasets.

3.2 Improved Body Network Architecture

In the original work by Cao et al. [10], both the affinity field and confidence map
branches were refined at each stage. However, in our updated approach, we only refine
over PAF stages, and only predict confidence maps in 1 stage. Hence, the amount of
computation per stage is reduced by half. We empirically observe that refined affinity
field predictions improve the confidence map results, while the opposite does not hold.
Intuitively, if we look at the PAF channel output, the body part locations can be guessed.
However, if we see a bunch of body parts with no other information, we cannot parse
them into different people.

In addition, the network depth is also increased. In the original approach [10], the
network architecture included several 7x7 convolutional layers. In our current model,
the receptive field is preserved while the computation is reduced, by replacing each 7x7
convolutional kernel by 3 consecutive 3x3 kernels. While the number of operations for
the former is 2 x 72 — 1 = 97, it is only 51 for the latter. Additionally, the output of
each one of the 3 convolutional kernels is concatenated, following an approach similar
to DenseNet [74]. The number of non-linearity layers is tripled, and the network can
keep both lower level and higher level features. Batch normalization is required to help
our deeper architecture converge. However, it introduces a slow down of about 20%.
Instead, we replace the ReLU layers by PReLU layers, which help convergence in a
similar way to batch normalization.

3.3 Single-Network Body-Foot Pose Estimation

Existing human pose datasets ([40, 39]) contain limited body part types. The MPII
dataset [40] annotates ankles, knees, hips, shoulders, elbows, wrists, necks, torsos, and
head tops, while COCO [39] also includes some facial keypoints. For both of these
datasets, foot annotations are limited to ankle position only. However, graphics appli-
cations such as avatar retargeting or 3D human shape reconstruction ([21, 19]) require



foot keypoints such as big toe and heel. Without foot keypoint information, these ap-
proaches suffer from problems such as the candy wrapper effect, floor penetration, and
foot skate. To address these issues, a small subset of about 15K human foot instances
has been labeled using the Clickworker annotation platform. The dataset is obtained
out of the over 100K person annotation instances available in the COCO dataset. It is
split up with 14K annotations from the COCO training set and 545 from the valida-
tion set. A total of 6 foot keypoints have been labeled (see Fig. 4a). We consider the
3D coordinate of the foot keypoints rather than the surface position. For instance, for
the exact toe positions, we label the area between the connection of the nail and skin,
and also take depth into consideration by labeling the center of the toe rather than the
surface.

Using our dataset, we train a foot keypoint detection algorithm. A niive foot key-
point detector could have been built by using a body keypoint detector to generate foot
bounding box proposals, and then training a foot detector on top of it. However, this
method suffers from the top-down problems discussed previously. Instead, the same
architecture previously described for body estimation is trained to predict both the body
and foot locations. Fig. 5 shows the keypoint distribution for the three datasets (COCO,
MPII, and COCO+foot). The body-foot model also incorporates an interpolated point
between the hips to allow the connection of both legs even when the upper torso is
occluded or out of the image. We find evidence that foot keypoint detection implicitly
helps the network to more accurately predict some body keypoints, in particular leg
keypoints, such as ankle locations. Fig. 4b shows an example where the body-only
network was not able to predict ankle location. By including foot keypoints during
training, while maintaining the same body annotations, the algorithm can properly pre-
dict the ankle location in Fig. 4c.

3.4 Single-Network Whole-Body Pose Estimation

We want whole-body pose estimation to be accurate but also fast. Training an individ-
ual PAF-based network to predict each individual set of keypoints would achieve the
first goal, but would also be computationally inefficient. Instead, we extend the body-
only PAF framework to whole-body pose estimation, requiring various modifications
of the training approach and network architecture.

Multi-task learning training: We modify the definition of the keypoint confi-
dence maps S as the concatenation of the body (Sg), face (Sr), hand (Sp), and foot
(So) confidence maps. Analogously, the set of PAFs at stage 1, L®, is defined as the
concatenation of the body (Lg)), face (Lgﬁ)), hand (L%)), and foot (Lg)) PAFs. An in-
terconnection between the different annotation tasks must be created in order to allow
the different set of keypoints of the same person to be assembled together. For instance,
we join the body and foot keypoints through the ankle keypoint, which is annotated in
both datasets. Analogously, the wrists connect the body and hand keypoints, while the
eyes relate body and face. The rest of the pipeline (non-maximum suppression over
confidence maps and bipartite matching to assemble full people) is not further modi-
fied. As opposed to having a dedicated network for each keypoint annotation task, all
the keypoints are now defined within the same model architecture. This is an extreme



Figure 6: Different kinds of datasets for each set of keypoints present different proper-
ties (number of people, occlusion, person scale, etc.). We show typical examples from
the hand (left), body (center), and face (right) datasets.

version of hard parameter sharing, in which only the final layer is task-specific.

Dataset-based batch and masking: If we had a whole-body dataset, we could
train a combined model following the body-only training approach. Unfortunately,
each available dataset only contains annotations for a subset of keypoints. To over-
come the lack of a combined dataset, we follow the probability ratio idea of our single-
network body-foot detector [1], which was trained from a body-only and body-foot
datasets. Batches of images are randomly picked from each available dataset, and the
losses for the confidence map and PAF channels associated to non-labeled keypoints
are masked out (i.e., their binary mask 1 is set to 0). The probability ratio p? is de-
fined as the probability of picking the next annotated batch of images from the dataset
d. This probability is distributed across the different datasets depending on the number
of images in each dataset. When applied to keypoints with similar scale properties (e.g.,
body and foot [1]), it results in a robust keypoint detector. However, when applied to
whole-body estimation, face and hand keypoint detection does not converge. Addition-
ally, the accuracy of the body and foot detectors is considerably reduced. Solving the
face and hand convergence problem requires a deeper understanding of the properties
and differences of each set of keypoints.

Dataset-based augmentation: There is an inherent scale difference between body-
foot and face-hand keypoints, which results in different kinds of datasets for each set
of keypoints. Body datasets predominately contain images with multiple people and
low facial and hand resolution; face datasets focus on images with a single person or
cropped face; and hand datasets usually contain images with a single full-body person.
Fig. 6 shows typical examples from each dataset. To solve this problem, different aug-
mentation parameters are applied to each set of keypoints. For instance, the minimum
possible scale augmentation for face datasets is enlarged to expose our model to small
faces, recreating in-the-wild environments. Oppositely, the maximum scale augmen-
tation for hand datasets is expanded so that full-sized hands appear more frequently,
allowing the network to generalize to high resolution hands.

Overfitting: The face and hand detectors finally converge and we can build an
initial whole-body pose detector. However, we observe a large degree of over-fitting in
some validation sets, particularly in the face and lab-recorded datasets. Even though
the initial probability ratio p? is evenly distributed depending on the number of images
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in each dataset, the data complexity of these datasets is lower than the complexity of
the challenging multi-person and in-the-wild datasets. In addition, the range of possible
facial gestures is much smaller than the number of possible body and hand poses. Thus,
the probability ratio of picking a batch from one of the facial and lab-recorded datasets
must be additionally reduced. Empirically, we fine-tune the probability ratios between
datasets so that the validation accuracy of each one converges at the same pace.

High false positive rate: Face, hand, and foot keypoints present a high false pos-
itive rate, producing a “ghosting” effect on their respective confidence map and PAF
channels. Visually, this means that these channels are outputting a non-zero value in ar-
eas of the image that do not contain people. To mitigate this problem, their binary mask
Wi (p) is re-enabled in the COCO dataset for the parts of the image with no people. We
also add an additional dataset consisting of the COCO images with no people.

Further refinement: Face and hand datasets do not necessarily annotate all the
people that appear on each image. We apply Mask R-CNN [50] to mask out the regions
of the image with non-labeled people. In addition, the pixel localization precision of the
face and hand keypoint detectors remains low. To moderately improve it, we reduce the
radius of the Gaussian distribution used to generate the groundtruth of their confidence
map channels.

Shallow whole-body detector: At this point, we can build a working whole-body
pose detector. The inference runtime of this refined detector matches that of running
body-foot OpenPose. However, it continues to suffer from two main issues. On the one
hand, the body and foot accuracy considerably decreases compared to its standalone
analog (i.e., the OpenPose body-foot detector). The complexity of the network output
has increased from predicting 25 to 135 keypoints (and their corresponding PAFs).
The network has to compress about 5 times more information with the same number
of parameters, reducing the accuracy of each individual part. On the other hand, face
and hand detection accuracy appear relatively similar to that of our original multi-stage
approach (OpenPose) in the benchmarks, but the qualitative results show that their pixel
localization precision remains low. We reuse the same network as that used in body-
only pose estimation, which presents low input resolution. Face and hand detection
requires a network with higher resolution to provide results with high pixel localization
precision. This initial detector is defined as “Shallow whole-body” in Sec. 4.

Improved network architecture: To match the accuracy of the body-only detector
and solve the resolution issue of face and hand, the whole-body network architecture
must diverge from that of our original model (OpenPose). It must still maintain a large
receptive field for accurate body detection but also offer high-resolution for precise
face and hand keypoint detection. Additionally, its inference runtime should remain
similar to or improve upon that of its analogous multi-stage whole-body detector. Our
final model architecture, refined for whole-body estimation and shown in Fig. 3, differs
from the original one in the following details:

e The network input resolution is increased to considerably improve face and hand
precision. Unfortunately, this implicitly reduces the effective receptive field (fur-
ther reducing body accuracy).

e The number of convolutional blocks on each PAF stage is increased to recover
the effective receptive field that was previously reduced.
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e The width of each convolutional layer in the last PAF stage is increased to im-
prove the overall accuracy, enabling our model to match the body accuracy of
the standalone body detector.

e The previous solutions considerably increase the overall accuracy of our ap-
proach but also harm the training and testing speed. The number of PAF stages
is reduced to partially overcome this issue, which only results in a moderate
reduction in overall accuracy.

This improved model highly outperforms multi-stage OpenPose in speed, being
approximately px faster for an image with p people in it. Additionally, it also slightly
improves its global accuracy (Sec 4.3, 4.4 and 4.5). This network is denoted as “Deep
whole-body” in Sec. 4.
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4 Evaluation

4.1 Experimental Setup

Datasets: We train and evaluate our method on different benchmarks for each set
of keypoints: (1) COCO keypoint dataset [39] for multi-person body estimation; (2)
OpenPose foot dataset [1], which is a subset of 15K annotations out of the COCO key-
point dataset; (3) OpenPose hand dataset [13], which combines a subset of 1k hand
instances manually annotated from MPII [40] as well as a set of 15k samples auto-
matically annotated on the Dome or Panoptic Studio [75]; (4) our custom face dataset,
consisting of a combination of the CMU Multi-PIE Face [76], Face Recognition Grand
Challenge (FRGC) [77], and i-bug [78] datasets; (5) the Monocular Total Capture
dataset [21], the only available 2D whole-body dataset which has been recorded in
the same Panoptic Studio used for the hand dataset. Following the standard COCO
multi-person metrics, we report mean Average Precision (AP) and mean Average Re-
call (AR) for all sets of keypoints.

Training: All models are trained using 4-GPU servers, with a batch size of 10
images, Adam optimization, and an initial learning rate of 5e-5. We also decrease the
learning rate by a factor of 2 after 200k, 300k, and every additional 60k iterations.
We apply random cropping, rotation (+45°), flipping (50%), and scale (in the range
[1/3,1.5]) augmentation. The scale is modified to [2/3,4.5] and [0.5, 4.0] for Dome
and MPII hand datasets, respectively. The input resolution of the network is set to
480 %480 pixels. Similarly to our original work [1], we maintain VGG-19 as the back-
bone. The probability of picking an image from each dataset is 76.5% for COCO, 5%
for foot and MPII, 0.33% for each face dataset, 0.5% for Dome hand, 5% for MPII
hand, 5% for whole-body data, and 2% for picking an image with no people in it.

Evaluation: We report both single-scale (image resized to a height of 480 pix-
els while maintaining the aspect ratio) and multi-scale results (results averaged from
images resized to a height of 960, 720, 480, and 240 pixels).

4.2 Ablation Experiments

Increasing the network resolution is crucial to enable accurate hand and facial detec-
tion. Nevertheless, it directly results in slower training and testing speeds. We aim
to maximize the accuracy while preserving a reasonable runtime performance. Thus,
we explore multiple models tuned to maintain the same inference runtime. The final
model is selected as the one maximizing the body AP. Table 1 show the results on the
COCO [39] validation set. The most efficient configuration is achieved when increas-
ing the number of convolutional blocks and their width, while reducing the number of
stages in order to preserve the speed.

4.3 Body and Foot Keypoint Detection Accuracy

Once the optimal model has been selected, it is trained for whole-body estimation. Ta-
ble 2 show the accuracy results on the COCO validation set for our 4 different models,
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Model AP AR APs ARs
PAF (1s, 10b, 256w), CM (s, 10b, 256w) 658 | 70.3 | 56.1 61.1
PAF (2s, 8b, 128-288w), CM (1s, 8b, 256w) 66.1 70.5 | 56.7 | 619
PAF (2s, 10b, 128-256w), CM (Is, 10b, 256w) | 66.1 70.7 | 57.0 | 62.0
PAF (3s, 8b, 96-256w), CM (1s, 8b, 192w) 664 | 709 | 569 | 619
PAF (4s, 8b, 96-256w), CM (1s, 8b, 224w) 657 | 70.2 | 563 | 614
PAF (5s, 8b, 64-256w), CM (1s, 5b, 256w) 65.5 | 70.1 56.7 | 61.8

Table 1: Self-comparison on the body COCO validation set. All models have been
tuned to have about the same inference runtime. “APs” and “ARs” refer to the single-
scale results. “PAF” represents the Part Affinity Field network configuration and “CM”
the confidence map configuration. ““s” refers to the number of stages of refinement, “b”
to the number of convolutional blocks per stage, “w” to the number of output channels
(or width) of each convolutional layer. All other settings follow Sec. 4.1.

including our original work in [1]. Our deeper architecture slightly increases the accu-
racy of the original approach when trained for whole-body estimation. It can also be
applied to body-foot estimation, achieving a 1.1% improvement over accuracy com-
pared to that of the original OpenPose. Interestingly, adding face and hand keypoints
to the same model results in a considerable decrease of the body detection accuracy of
about 5% for the shallow model when compared to that of the original OpenPose. In-
tuitively, we are trying to fit nearly six times as many keypoints into the same network.
The original model might not be deep enough to handle the additional complexity in-
troduced for the new keypoints. However, this gap is smaller than 1% for the improved
architecture (deep body-foot vs. deep whole-body). The additional depth helps the
network generalize to a higher number of output keypoints.

Method AP body | AP foot
Body-foot OpenPose (multi-scale) [1] 65.3 779
Shallow whole-body (multi-scale) 60.9 70.2
Deep body-foot (multi-scale) 66.4 76.8
Deep whole-body (multi-scale) 65.6 76.2

Table 2: Accuracy results on the COCO validation set. “Shallow” refers to the network
architecture with the same depth and input resolution as that of our original OpenPose,
while “Deep” refers to our improved architecture. “Body-foot” refers to the network
that simply predicts body and foot keypoints, following the default OpenPose output,
while “Whole-body” refers to our novel single-network model.

4.4 Face Keypoint Detection Accuracy

In order to evaluate the accuracy of face alignment, traditional approaches have used
the Probability of Correct Keypoint (PCK) metric, which checks the probability that
a predicted keypoint is within a distance threshold of its true location. However, it
does not generalize to a multi-person setting. In order to evaluate our work, we reuse
the mean Average Precision (AP) and Recall (AR), following the COCO multi-person
metric. We train our whole-body algorithm with the same facial datasets that we used
for the multi-stage OpenPose model: Multi-PIE [76], FRGC [77], and i-bug [78]. We
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create a custom validation set by selecting a small subset of images from each dataset.
We show the results in Table 3. We can see that both our new method and original
OpenPose greatly over-fit the Multi-PIE and FRGC datasets. These datasets consist of
images annotated in controlled lab environments, and all faces appear frontal and with
no occlusion, similar to the last image in Fig. 2. However, their accuracy is consid-
erably lower in the in-the-wild i-bug dataset, where our approach is about 2% more
accurate.

Method AP frgc | AP MPie | AR ibug
OpenPose (single-scale) [1] 98.3 96.3 52.4
Shallow whole-body (single-scale) 98.4 90.6 50.6
Deep whole-body (single-scale) 98.4 93.2 54.5

Table 3: Accuracy results on our custom CMU Multi-PIE and FRGC validation sets.
All the people in each image are not necessarily labeled on i-bug. Thus, those samples
might be considered erroneous “false positives” and affect the AP results. However,
AR is only affected by the annotated samples, so it is used as the main metric for i-bug.

4.5 Hand Keypoint Detection Accuracy

Analog to face evaluation, we randomly select a small subset of images from each
hand dataset for validation. We denote “Hand Dome” for the subset of [13] recorded
in the Panoptic Studio [75], and “Hand MPII” for the subset manually annotated from
MPII [79] images. We show the results in Table 4. We can see that both our new
method and original OpenPose greatly over-fit the Dome dataset, where usually only
1 person appears in each frame, similar to the first image in Fig. 6. However, the
manually annotated images from MPII seem more challenging for both approaches, as
it represents a truly in-the-wild dataset. In those images, we can see the clear benefits
of our deeper architecture with respect to the original OpenPose and shallow models,
outperforming them by about 5.5% on the Hand MPII dataset.

Method AR Hand Dome | AR Hand MPII
OpenPose (single-scale) [1] 97.0 82.7
Shallow whole-body (single-scale) 94.6 82.4
Deep whole-body (single-scale) 97.8 88.1

Table 4: Accuracy results on our custom Hand Dome and Hand MPII validation sets.
Analog to i-bug, these datasets might contain unlabeled people, so AR is used as the
sole evaluation metric.

4.6 Runtime Comparison

In Fig. 7, we compare the inference runtime between the default whole-body Open-
Pose and our current single-network approach. Our new method is only 10% faster
than original OpenPose for images with a single person. However, the inference time
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Figure 7: Inference time comparison between our original (default whole-body Open-
Pose) and current work (single-network approach). While the single-network inference
time is invariant, multi-stage OpenPose runtime grows linearly with the number of peo-
ple. The multi-stage runtime presents some oscillations because it does not run face
and hand detectors if the nose or wrist keypoints (provided by the body network) of a
person are not found. This is a common case in images with many people or crowded
images. This analysis was performed on a system with a Nvidia 1080 Ti.

of our single-network approach remains constant, while multi-stage OpenPose’s time
is proportional to the number of people detected. To be more precise, it is proportional
to the number of face and hand proposals. This leads to a massive speedup of our
approach when the number of people increases. For images with p people, our new
approach is approximately p times faster than the original OpenPose. For crowded im-
ages, many hands and faces are occluded, slightly reducing this speedup. For instance,
our new approach is about 7 times faster than multi-stage OpenPose for typical images
with 10 people in them.
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5 Conclusion

In this paper, we resort to multi-task learning, combined with an improved model ar-
chitecture, to train the first single-network approach for 2D whole-body estimation.
Analogous to what Fast R-CNN did for object detection, our work brings together
multiple and, currently, independent keypoint detection tasks into a unified framework.
We evaluate our method on multiple keypoint detection benchmarks and compare it to
the state-of-the-art (our previous work, OpenPose), considerably outperforming it in
both training and testing speed as well as slightly improving its accuracy. We qualita-
tively show in Fig. 8a that our face and hand detectors generalize better to in-the-wild
images, benefiting from their indirect exposure to the immense body datasets. Nev-
ertheless, there are still some limitations with our method. First, we observe global
failure cases when a significant part of the target person is occluded or outside of the
image boundaries. Secondly, the accuracy of the face and especially hand keypoint de-
tectors is still limited, recursively failing in the case of severe motion blur, small people,
and extreme gestures. Third, we qualitatively observe that our multi-stage model (orig-
inal OpenPose) outperforms our new approach for face and hand detection when their
poses are simple and no occlusion occurs. Original OpenPose crops the bounding box
proposal of those bounding box candidates, resizes them up, and feeds them into its
dedicated networks. This higher input resolution leads to an increased pixel localiza-
tion precision if the keypoint detection is successful. We will publicly release the code,
trained models, and validation benchmark as a baseline for future work in whole-body
pose estimation.
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6 Appendix: Qualitative Comparison

On this appendix, we provide a qualitative comparison between our method and Open-
Pose [1], performed on a system with 2 Nvidia 1080 Ti. Figures (a) through (j) show
improved results and (k) through (o) recurrent failing cases.

(a) The body information helps our hand de- (b) The finger information implicitly helps
tector properly predict hands when they are wrist and elbow detection.
cropped or wearing gloves.

Our-Work

o

"OurdNork ., : 11,9 fps.

T

TR, o
(c) Much smaller faces and hands are de- (d) More extreme hand poses are detected.
tected more often.
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(e) Blurry and profile faces are detected (f) More extreme profile facial views are
more often. properly detected, as well as blurry hands
with all fingers occluded.

Our. Work Our Work

Openfose OpenPose

(g) Hands where most fingers are occluded (h) Facial datasets mostly contain faces

are detected more often. In addition, the fin-  from Caucasian people. Indirectly exposing
ger information helps wrist detection when  our face detector to the more general COCO
it is occluded by an object (e.g., a watch). dataset results in higher facial accuracy for

people with darker skin tones and in low-
brightness images.
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Our Work

OpenPose

(i) Cropped arms are properly detected (j) Cropped arms are properly detected
(172). (2/2).

Our Workw 13,9 fou
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(1) Failure: Relative simple hand poses fail
fused together more often. more often.
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(n) Failure: The algorithm seems to recur-
sively fail to detect the mouth keypoints
more often.
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