
A Computational Framework for
Norm-Aware Reasoning in Autonomous

Systems
Vigneshram Krishnamoorthy

CMU-RI-TR-19-14

May 2019

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Katia Sycara, Chair

Stephen Smith
Wenhao Luo

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics

Copyright c© 2019 Carnegie Mellon University

Keywords: Normative Reasoning, Markov Decision Process, Knowledge Representation,
Context Modeling, Propositional Logic, Decision Trees

For my parents and grandparents

Abstract
Autonomous agents are increasingly deployed in complex social environments

where they not only have to reason about their domain goals but also about the norms
that can impose constraints on task performance. To accomplish this, robots must be
able to reason not only on how to perform their tasks, but also incorporate societal
values, social norms and legal rules so they can gain human acceptability and trust.
The intelligent trade-offs that these systems must make between domain and norma-
tive constraints is the key to any system being socially responsible and acceptable.
Integrating task planning with norm aware reasoning is a challenging problem due
to the curse of dimensionality associated with product spaces of the domain state
variables and norm-related variables. In this work, we propose a Modular Norma-
tive Markov Decision Process (MNMDP) framework that is shown to have orders
of magnitude increase in performance compared to previous approaches. The MN-
MDP framework applies normative reasoning considering only the norms that are
activated in appropriate contexts, rather than considering the full set of norms, thus
significantly reducing computational complexity.

Since norms are both context-dependent as well as context-sensitive, we must
model context in an expressive, scalable and compact manner in order to find the
activation and deactivation conditions for norms. To this end, we propose a gener-
alizable context modeling approach to understand norm activations in social envi-
ronments combining the expressiveness of propositional logic with the compactness
of decision trees. We show how we can combine our context model with our MN-
MDP framework to support norm understanding as well as norm enforcement for
real systems. We discuss the inferences obtained from the human experiments data
that we conducted confirming the complexity of the relationship between contexts
and norms. We demonstrate the effectiveness of our approach through scenarios in
simulated social environments in which agents using the framework display norm-
aware behavior. We also show the significant computational improvements that we
obtain when using our proposed approach for computationally modeling social in-
teractions.

Acknowledgments
The work was supported by awards NSF IIS-1724222 and AFOSR FA9550-15-

1-0442.

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions . 3

2 Scalable Policy Computation and Execution 4
2.1 Norm Characterization . 4

2.1.1 Norm Modalities . 4
2.1.2 Norm life-cycle . 5
2.1.3 Resolving Norm Conflicts . 5

2.2 Task Planning with Normative Reasoning for Long Term Autonomy 6
2.2.1 Modular Normative MDP . 6
2.2.2 Modular Normative MDP Computation 9

2.3 Experimental Results . 10
2.3.1 Roadway Simulator . 10
2.3.2 Empirical Evaluation . 11

3 Context Representation and Modeling 13
3.1 Modeling Environmental Context to Determine Norm Activations 13

3.1.1 Representing Environmental Context with Propositional Logic 13
3.1.2 Constructing the Context Tree . 14

3.2 Learning Context Trees from human experiments data 16
3.2.1 Efficiently Traversing the Context Tree 17
3.2.2 Decision Tree Illustration . 18
3.2.3 Generalizing to Unseen Context . 19

3.3 Experimental Evaluation . 20
3.3.1 Minecraft . 20
3.3.2 Performance Study . 22

4 Conclusion and Future Work 24
4.1 Conclusion . 24
4.2 Future Work . 24

5 Bibliography 26

vi

List of Figures

2.1 Computation of modular normative MDPs and online action execution. 7
2.2 Trajectories of the agent in different norm constrained environments in a traffic

example . 11
2.3 Comparison of computation time of our MNMDP against the full normative

MDP and comparison of cumulative reward of our MNMDP policy, full nor-
mative MDP policy and domain MDP policy. 11

3.1 A simple example of modeling a scenario into a compact decision tree. In this
example, the yellow boxes are associated with the danger norm; the red box is
associated with the protect owner from harm norm. 15

3.2 Decision Tree hierarchy illustration using the data from our human experiments
with 11 different categorical context features. 18

3.3 Example stove scenario in Malmo. The robot (the male figure with black hair) is
monitoring the kitchen when, suddenly, a fire starts on the stove in the upper left
corner. At the same time, a child (the female figure with blonde hair) enters the
kitchen. The robot determines if it should first put out the fire or move the child
to a safe area, then put out the fire. 21

3.4 Symbolic view showing the output trajectories generated by using our context
tree model for the stove scenario. 21

3.5 Performance comparison between the tabular approach and our proposed context
tree approach. Note that both the X and Y axes are in log-scale. 23

vii

Chapter 1

Introduction

As autonomous systems become more involved in our daily life, their responsibilities have ex-
panded from industry and military to more personal scenarios like childcare, personal assistant
or housekeeping. Instead of only concentrating on the accomplishment of the assignment, au-
tonomous agents have to consider human’s expectation and preference in those tasks for them to
be accepted and trusted. However, constraints in social interactions are usually fuzzy and soft;
thus cannot be explicitly programmed as hand-crafted functions/rules in a unified fashion. One
important factor that informs the appropriateness of actions is the set of norms within a particular
community. Norms, such as prohibitions, permissions, obligations, are the socially agreed upon
guidelines of behavior which are acknowledged by most of the members of a community [3].
With the competence of reasoning about norms, intelligent agents can align their behaviors with
human values to better collaborate and communicate with people in a socially desirable way.
Thus it is critical for the robots to incorporate social norms in their decision-making process in
performing their various tasks.

We are interested in the reasoning of robots engaged in long term autonomy, where they
perform a set of tasks in one or multiple domains and when appropriate, engage in normative
reasoning to ascertain the consequences of their actions so as to determine their best course
of action. There exist few works in the community which aim to tackle this important problem
[9, 14]. However, the existing literature suffers heavily from the curse of dimensionality problem
and are hence infeasible in real systems. We also tackle the more challenging problem of compu-
tational models for reasoning that can be well suited for long-term autonomy applications, where
the set of norms that the agent has to follow and the environments that the agent is deployed in,
change over time.

Currently, there is little research about generalizable representations and models of envi-
ronmental context for modeling social interactions. The social science literature [1] [26] have
reported that norm activation is dependent on environmental and social context. Additionally,
we claim that the determination of priorities among different norms or even between instances
of the same norm depends on the environment where the agent operates. However, the specific
representation of context-dependent norm activation framework in terms of perceiving context,
norm enforcement and policy execution is an open problem which this work addresses in detail.
Since it is impossible to elicit all possible situations and their norms that the robot will operate
under, these systems must be able to learn the mapping between environmental context and norm

1

activations directly from human interaction and also be able to generalize to unseen contexts. On
top of the above factors, our work also focuses on scalability, which is the most crucial factor
with the choice of the context model in terms of deployment in autonomous systems.

A robot operating openly in society is likely to encounter an immense number of situations
that require adherence to differing human norms. If a representation such as an MDP is used
to guide behavior this leads to a computationally infeasible solution in which every norm must
be considered at every step. In this work we propose a novel solution in which smaller MDPs
incorporating only those norms active in particular contexts are indexed and accessed through a
context tree.

1.1 Related Work

BOID [4] and NoA [15, 16] present architectures illustrating the potential for norms to be part
of the agent behavior. Some authors have studied norm-aware planning algorithms [20, 22, 23],
but not from a utilitarian and probabilistic perspective. Further, recent papers [8, 9] propose a
framework similar to another work [21], where Markov Decision Processes (MDPs) are used
to combine the agent’s domain planning with normative constraints and sanctions, but fail to
address the curse of dimensionality problem associated with the large joint state spaces when
combining the domain state variables with the normative variables. [5] provides an MDP for-
mulation for scheduling in randomized traffic patrols in a real domain using a game-theoretic
approach by modeling the trade-off as a bi-objective optimization problem, but only consider a
specific set of interactions between the agents. [28] provide mechanisms for detection and reso-
lution of normative conflicts. A review of approaches for detection and resolution of normative
conflicts is presented in [25]. More recently, a computationally scalable framework, called Mod-
ular Normative Markov Decision Processes (MNMDPs), was proposed for integrating domain
goal and norm reasoning [17].

In order to integrate normative constraints into the domain task planning, there is a need
to model and represent social interactions effectively. However, very few works in the litera-
ture shed light on scalable, practical, and generalizable systems for modeling social interactions
for norm inference. Recent work [26] explores the relationship between environmental con-
text and norms but their formulation doesn’t have any explicit context representation and lacks
generalizability, and feasibility for real systems. [27] represent norms using deontic logic and
learn them under uncertainty from human data but again don’t use any explicit context repre-
sentation for modeling social interactions. In their work, norms are only differentiated based
on location and not other potentially important contextual factors (such as the assigned task of
the agent), context-sensitive norm activation is ignored, and the computational complexity of the
norm-learning algorithm is not scalable. [13] represent normative constraints using Linear Tem-
poral Logic (LTL) and present an approach to determine norm priorities from behavior, which is
limited by restrictive assumptions such as considering that the violation cost for norms is only
conditioned on the duration of the violation. Additionally, their algorithm computes a product
MDP which runs in time exponential to the number of norms, rendering it impractical for real
systems.

2

1.2 Contributions
Scalable Policy Computation and Execution: A core problem in norm learning and enforce-
ment is to be able to compute robust policies for executing the underlying normative behavior.
Norms can be viewed as soft constraints that the agent can violate at the cost of being sanctioned.
For example, the optimal execution of the task of going from point A to point B would be to go
as fast as one’s system can perform. Speed-limits (norm) impose constraints on this ’optimal’
agent task execution. Markov Decision Processes (MDP) are a natural way to model the soft
trade-offs to be reasoned about by the agent such as whether to be norm compliant and possibly
sub-optimal w.r.t the domain task versus executing domain tasks optimally but ignoring norms.
Further, MDPs can be extended to stochastic and partially observable domains as well. However,
modeling the decision making process directly using MDPs is challenging since it suffers from
the curse of dimensionality problem when dealing with large state spaces that come up when we
try to add an increasing number of normative variables into the domain MDP that reasons only
about reaching the goal. Our Modular Normative Decision Process framework [18] which will
be discussed in detail in Chapter 2 provides a modular, scalable way to compute and execute
general normative policies by using the properties of the norms themselves. Its performance
both in terms of memory consumption and runtime is orders of magnitudes better than previous
approaches as will be discussed in Section 2.3.

Context Representation and Modeling: For the MNMDP framework to be successful, it
needs the knowledge of which norms are active at any given time. Norms are often sparse in
the state-space, but finding when they get activated is crucial for successful norm enforcement.
Norms are not only context dependent but are also very context sensitive, making it a challenging
problem to predict norm activations just from the environmental context. For example, given the
same task in the same location, different norms can get activated depending on other factors
such as the characteristic of the people present there (e.g. guest, stranger, owner). Moreover,
in many situations, multiple norms can be active at the same time, with some of them being in
conflict with one another. In order to resolve these norm conflicts, norm priority/importance must
be determined. This calls for a principled way to handle context based activation of a variable
number of norms as well as feasible ways to determine norm priorities. However, modeling
environmental context in a scalable, generalizable fashion and finding a model that can map
it to a set of active norms is an open research problem in the community, which we address
in detail. (1) We employ propositional logic to expressively represent environmental context,
including context with temporal components; (2) We model the set of environmental contexts
in the knowledge base using learnable decision trees, which provides significant computational
benefits and also helps create a hierarchy of relevant context factors; (3) We propose a principled
approach for integrating social norms into task planning by combining our context model with
the Modular Normative Markov decision process (MNMDP) framework [17]; (4) We propose
extensions to support generalization to unseen scenarios using SimRank [11].

3

Chapter 2

Scalable Policy Computation and
Execution

2.1 Norm Characterization

Ethical principles embody societal values and form the basis of social norms and laws. Norms
are complex entities with many different attributes [10]. Norms have modalities [29], namely
obligations, O, permissions F and prohibitions P and they apply to the normative agent, who
is termed the addressee of the norm. Sanctions are imposed on the addressee by the issuing
authority (e.g. the government), if the norm is violated. A beneficiary of a norm is the set of
agents, including the addressee that benefit (or suffer) the consequences of norm compliance or
violation. Norms also have a spatial and temporal extent that could be enforced to a group of
addressee agents. An example of this would be time-constrained special permissions that apply
to specific regions given to agents in case of a regional emergency.

2.1.1 Norm Modalities

Norms create explicit modalities, namely obligations, O, permissions F and prohibitions P for
the normative agent, the robot in our case, who is the addressee of the norm. The norm also has
associated sanctions, e.g. monetary fines or imprisonment, that are imposed on the addressee, if
the norm is violated. Sanctions provide an explicit way of reasoning about the cost of violating
a norm. Another norm component is the issuing authority. A beneficiary of a norm is the set
of agents (including the addressee and including humans) that may receive the consequences
of compliance or violation of a norm. For example, if breaking the speed limit results in an
accident that kills another driver, the other driver is the beneficiary of the norm violation by
the addressee. Norms also have a spatial and temporal extent, and apply to different groups of
agents. For example, a curfew can be imposed to the whole population, or some selected sub
population, within a city. The status of a norm can be activated, violated, deactivated/expired,
and obsolete/revoked. A norm gets activated if its activation conditions fit the current state. An
activated norm influences the state resulting from an action of the agent. A norm is violated
if a conflict between the resulting state of an action and the norm (action-norm conflict) is not

4

resolved while the norm is activated. Additionally a norm has a utility and a priority.

2.1.2 Norm life-cycle
Norms have a life-cycle associated with them while they belong to the knowledge base. The sta-
tus of a norm can be activated, violated, contradicted, deactivated/expired, and obsolete/revoked.
A norm gets activated if its activation conditions fit the current state. Additionally a norm has a
utility and a priority. Let E be the set of all possible well-formed formulae comprising first-order
predicates over terms (constants, variables and the operators ∧, ∨, and ¬). Following conven-
tional notation from the normative and MDP literature, we define a norm as follows:
Definition 1 (Norm Representation) A norm N is represented by a tuple 〈ν,Σ, φn,
φa, φd, σ, δ, π〉 where ν ∈ {O, P , F} denotes the deontic modality and Σ is the set of states
where the norm applies. The normative context φn is the set of states in Σ where ν applies,
depending on the norm modality. For example, in a self-driving car scenario, φn = direction(α,
Highway1, one way north). If the modality is ν = O, the robot is obliged to drive only
in the north direction on Highway1. Conditions φa, φd denote the activation and deactivation
condition respectively, and the sanction σ for violating it, where σ is a tuple 〈β, φs〉 with β :
Σ × A × Σ → R− as the (monetary) penalties, A is the set of actions, and φs ∈ E is the
constraint on actions imposed as a sanction. For example, a moving violation in the traffic
domain may incur a monetary penalty and loss of driver licence that restricts future actions of
the agent. Lastly, δ represents the authority that issued the norm and π ∈ Z+ represents norm
priority describing the relative importance among norms.
Definition 2 (Action-Norm Conflict) An action-norm conflict occurs if an action a ∈ A of the
addressee α contradicts one or more activated norms.
For example, if an action of the robot α is go to bedroom and bedroom privacy norm which
entails robot entry prohibition is activated, the resulting state satisfies location(α, bedroom)
which violates the prohibition.
Definition 3 (Normative Conflict) A normative conflict occurs if two or more activated norms
contradict one another. In other words, a conflict arises when a state is simultaneously prohibited
and permitted/obliged, and its variables have overlapping values.
For example a norm conflict arises when an activated norm obliges the robot to be in the bathroom
while another activated norm prohibits the robot from being in the bathroom. The most common
way of resolving normative conflicts is by defining priorities. We have conducted human exper-
iments [19] to identify relationships between norms and contexts in domestic environments and
determine priorities among these norms. To resolve norm conflict, the highest priority norm is
considered for compliance whereas conflicting lower priority norms get violated.

2.1.3 Resolving Norm Conflicts
There are a variety of ways of resolving action-norm conflicts. Given that the agent is in state st,
it examines the next possible states in the MDP to determine whether a norm activation conflicts
with the agent’s next set of actions and possibly move to a conflict-free state. If no such conflict-
free state can be found, the agent has a number of options: (1) the agent may be able to curtail

5

the conflicting norm [28]. (2) The robot, based on utility calculations, may choose to violate the
norm, and incur sanctions.

To resolve normative conflicts, the most common way, which we also adopt, is to define
priorities 1 over norms so, in case of norm conflict, the highest priority norm is considered for
compliance whereas conflicting lower priority norms get violated as done in [9]. For a given set
of activated norms N , then after the norm deconfliction, we assume the overall penalties over
the states (S) and actions (A) become B : N × S × A× S → R−.

2.2 Task Planning with Normative Reasoning for Long Term
Autonomy

We are interested in designing agents that are norm-autonomous, namely agents that reason as to
whether to violate or comply with norms. We believe that such agents are more realistic in the
context of long-term autonomy, as opposed to agents whose norms are automatically enforced
by hard-wiring them into the agent. In one of the most relevant works using MDPs [9], it is
assumed that the norm set is invariant and determined at design time. Since norms are invariant,
[9] can do the normative reasoning for all states before runtime. Once norm reasoning is done,
the norms are excluded from the framework by encoding only the sanctions from norm violations
in the states. This has two limitations: (a) considering all norms (full normative model) at once
is extremely computationally intensive, and (b) considering norms to be invariant is unrealis-
tic. Our Modular Normative MDP (MNMDP) framework proposed in [17] alleviates these core
problems by (1) allowing for efficient computation of integrated task and normative reasoning
by modularizing the full-normative MDP into much smaller MNMDPs, (2) MNMDP allows for
efficient addition/removal of norms as the robot engages in long term autonomy operation and
human interaction.

2.2.1 Modular Normative MDP
Autonomous agents performing domain tasks in dynamic environments not only must decide the
relative utility of one plan over another, but also be aware of norms and decide whether to comply
with those norms, given the current context. One way to combine MDP and normative reasoning
could be via embedding the whole norm set 2 into the states of the task/domain MDP, as in [8],
[9].
Definition 4 (Markov Decision Process with Norms) An MDP is represented as a tuple M =
〈S,A,R, T, γ,M〉 where S denotes the finite set of states, A denotes the finite set of actions,
R : S × A× S → R is a reward function, T : S × A× S → [0, 1] is a state-transition function,
and γ ∈ [0, 1] is the discount factor. The normative knowledge base M is a set of norms with
representations defined in Definition 1.

1We realize that it is potentially problematic to determine norm priorities since they may depend on context,
culture etc. We plan to design human experiments to determine norm priorities in robot service and traffic domains.
We will also relax the assumption of fixed priorities in the future.

2In the worst case, i.e if all norms are interacting with one another, MNMDP will result in the full normative
MDP.

6

(a) Computation of modular normative MDPs (MNMDPs)

(b) Computation of action at for the state st during execution

Figure 2.1: Computation of modular normative MDPs and online action execution.

The solution for an MDP is the optimal policy π∗ : S → A that selects the best action
for each state so that the expected cumulative discounted reward for all states is maximized.
As the robot accumulates experiences about norms, and as norms and the context of different
norm activation changes over time, the normative MDP leads to a vast number of states as well
as different reward functions incorporating sanctions due to activated norms and possible norm
violations on the states.

We construct a knowledge base for normative models indexed by each of the task domains
of the robot. Each norm has a priority. For each task domain, the approach is depicted in Figure
2.1(a). We construct an MDP only for the agent’s domain tasks, i.e. not including norms in the
states. Let us call this MDP, the domain MDPM0. Each time the agent transitions to a new state
in the domain MDP, we determine whether the set of most promising next states contains a state
where one or more norms may be activated. If there is no such state, the MDP process continues
as usual. If one of the most high reward states contains a norm, say N1, then the agent retrieves

7

from memory a pre-computed modular MDP that consists of the domain MDP but also contains
norm N1 in its state space. Let us call this the Modular Normative MDPM1.

This modular normative MDP is much smaller than one that would contain the whole norm
set. The reasoning procedure now follows the reward structure that includes rewards and sanc-
tions for norm N1 (see next section of how the normative MDP is computed). If some other state
contains the possible activation of a (small set) of norms, say N1,2 = N1 ∪ N2 where N2 is
another activated norm, then the agent retrieves a precomputed MNMDPM1,2 i.e. the Modular
Normative MDP consisting of the domain MDP further modified by norms N1 and N2 in the
state space and follows the reward (and sanctions) dictated by this new modular normative MDP
M1,2.

Once the knowledge base of the modular normative MDPs and their policies has been com-
puted, the robot will start the execution process as shown in Figure 2.1(b). For state st ∈ S at
time t, Nt ⊆ M represents the set of activated norms associated with st. After transitioning to
the current state st from the previous state st−1 with action at−1, the robot with active norms
set Nt will select the best action at according to the optimal policy πt for the corresponding
MNMDPMt, so that the robot can achieve domain-specific goals while satisfying the norma-
tive constraints. If the norm states change because of the dynamic environment, the robot will
choose its new action based on optimal policy for another modular normative MDP that reflects
the changed norm states. In this way, the robot will only consider the normative constraints in
the states where those constraints apply, avoiding the unnecessary incorporation of all possible
norms in its policy.

If one state’s active norm set does not apply to the other, then by Definition 2 and 3 there
is no action-norm conflict nor normative conflict, and hence the robot will simply execute the
actions dictated by the policies of the particular MNMDPs for the respective states. As in the
figure, at state st the optimal action from MNMDP Mt = Mi for norm set Nt leads to the
state st+1, and afterwards, assuming the active norm set changes to Nt+1, then at st+1 the action
from Mt+1 = Mj will navigate back to the state st. With the norm set changing to Nt, the
robot will execute the same sequence of the two actions and get trapped between the two states.
As shown in Figure 2.1(b), in order to identify a loop, the robot checks whether the subsequent
(state, action) pair is same as the current one. If a loop is identified, instead of taking the
actions from the corresponding MNMDPsMi,Mj etc., we take the ’second-best action’ which
is defined as the optimal policy from the pre-computed higher-order MNMDPMi,j,... comprising
of multiple norms that are involved in the states in the loop, namely, Mi,j,... is the MNMDP
encoding the norms N i,j,... = (N i ∪N j ∪ ...). Since this pre-computed MNMDP has an optimal
policy over the whole state sequence (st, st+1, ..., st+i) leading towards the goal, it is guaranteed
that the agent will not fall into this state-action loop again. Likewise, in the future where loops
may occur on other states, the same process can be applied to eliminate the loops.

The MNMDP framework has multiple advantages: First, it avoids computing a huge MDP
that would include the whole norm set. Second, each time a new norm is added/changed or
deleted, as would often be the case in a lifelong autonomous agent, only a much smaller MDP
needs to be re-computed, namely the domain MDP plus the new/changed norm or minus the
obsolete norm and any other norms that the new/changed norm may be mutually active with.
Third, the appropriate MNMDP policy gets retrieved at run time when the agent has determined
which state it finds itself in and which norms are likely to be active in the next set of states.

8

2.2.2 Modular Normative MDP Computation

In this section we describe the calculation for a Modular Normative MDPMi for i ∈ Z+ whose
active norm set is N i ⊆ M with M as the full norm set. We refer to the domain MDP with-
out normative constraint as M0. For state st ∈ S at time t, Nt ⊆ M represents the set of
activated norms associated with st. If Nt ∼ N i (the activated norms are equivalent after action-
norm/normative deconfliction) then as shown in Figure 2.1 the action to take for st is selected
based on the MNMDPMt =Mi. We assume that state transition is stochastic where the prob-
ability distribution over next states T i(st, a, st+1) = P i(st+1|st, a) is known. In each state, state
variables are directly accessible to the agent so the satisfiability of the activation and deactivation
condition of a norm (φia and φid) can be decided in constant time.

Algorithm 1 captures the computation of the different MNMDPs depending on the activation
and deactivation conditions. Note that (1) the function Active() used in Algorithm 1 outputs the
intersection of the domain of the norms given to its input i.e. Domain(N i∩N j∩Nk∩...). and (2)
the function Combine() first deconflicts the input norm set as discussed in Section 2.1.3 based on
norm priorities and outputs the encoded sanctions of the combination for the reduced subset of
norms which are not in conflict. In the MDP, we need to determine the status variables of Nt+1

for every action in A and its resulting states. Each modular normative MDP is much smaller
compared to the full normative MDP that contains the full set of norms since each norm has its
limited domain of states where it applies. Once a state transition is done and the agent is in st,
Nt+1 is considered for the next set of states based on st, actions, and the transition probabilities
of the actions. The norm reasoning process checks whether Nt+1 has action-norm conflicts or
normative conflicts and then invokes the corresponding MNMDPs. The MDP framework can
then compute the optimal policy using any policy optimization algorithms such as value/policy
iteration. Take value iteration algorithm for example, for MNMDPMi it calculates

V i
k+1(st) =

max
a∈Ai

[∑
st+1∈S

P i(st+1|st, a)(Ri(st, a, st+1) + γV i
k (st+1))

]
︸ ︷︷ ︸

Qi
k+1(st,a)

(2.1)

until convergence where k is the iteration number. The reward function Ri(st, a, st+1) implies
the immediate reward from st to st+1 by taking action a ∈ Ai, which considers the original pre-
defined domain-related reward R0(st, a, st+1) as well as the penalty due to sanction in MNMDP
Mi as follows.

Ri(st, a, st+1) = R0(st, a, st+1) + Bi(st, a, st+1, N
i) (2.2)

Equation (2.2) assumes that the domain reward and the norm penalty applies to each state
equally, but a different calculation could be used, with weights determined by domain knowledge
and other criteria, e.g. agent preferences. Imposing a sanction does not alter only the utility
in each of the set of subsequent states but also the set of subsequent states themselves. For
example, if the agent drives extremely recklessly, (and is caught), with immediate arrest and jail
as sanction, a whole new branch in the MDP would result that may involve additional penalties,

9

and norm violations. We do consider these in the modular MDP formulation.
Algorithm 1: Modular Normative MDP Computation

Input :M = 〈S,A,R, T, γ,M〉
Output:M0,Mi,j,k...

M0 = 〈S,A,R, T, γ〉
forall {N i, N j, Nk, ...} in Powerset(M) do

if Active(N i, N j, Nk, ...) 6= ∅ then
N i,j,k ← Combine(N i, N j, Nk, ...)
Ri,j,k,... ← R0 + Bi,j,k,... as in Equation (2.2)
Mi,j,k,...← 〈S,A,RN i,j,k,...

, T, γ〉
end

end
returnM0,Mi,j,k...;

Hence, for a given state st we can compute the best action at from (2.1) as described in
Algorithm 2 and as shown in Figure 2.1(b) where we find the set of activated norms, Nt for the
state st and map it to the corresponding MNMDPMi,j,k,.... Then, we can select the action at for
state st from the pre-computed policy of this MNMDP.

Algorithm 2: Selection of actions
Pre-compute policies πi,j,k,... for eachMi,j,k,... Input : st,M,M0,Mi,j,k...

Output: at
Find N i,j,k,... ∼ Nt where N i,j,k,... ∈ Powerset(M)
Mt =Mi,j,k,...

at ← π∗,i,j,k,...(st)
return at;

2.3 Experimental Results

2.3.1 Roadway Simulator

We illustrate the efficacy of our MNMDP framework on a custom-designed roadway simulator
encapsulating traffic rules such as speed-limits, STOP signs, and lane directions. The videos
for these experiments can be found at this link: http://bit.ly/2GA4HLj. Figure 2.2 shows the
output policies generated by our MNMDP framework for the four different scenarios. Lane
directions to be followed are marked using arrows in the four vertical roadways H1-H4 and the
speed-limit enforced is shown using red font on the highway signs. In the scenario represented
in Figure 3.5(a) where the agent must follow the speed-limit norm on H1 and H3 in addition
to the existing lane norms, the agent follows the speed limits imposed on H3 and slows down.
In Figure 3.5(b), the agent encounters an additional STOP sign norm in addition to the norms
discussed in the previous example. It follows the STOP sign placed in H1 as illustrated by the
blue circle. In Figure 2.2(c), the agent encounters a hospital emergency in addition to the lane
direction rules, speed-limit on all four vertical highways as well as a STOP sign norm on H4.
However, the agent choose to disregard all other norms in favor of reaching the goal as quickly

10

http://bit.ly/2GA4HLj

(a) Direction and Speed-limit
norms

(b) Direction, Speed-limit and
STOP sign norms

(c) Hospital Emergency, Direction,
Speed-limit and STOP sign norms

Figure 2.2: Trajectories of the agent in different norm constrained environments in a traffic example

as possible, since the hospital emergency norm (to save a human life) which conflicts with the
other norms is given a higher priority.

2.3.2 Empirical Evaluation

(a) Log of computation time against number of norms (b) Average Cumulative Discounted reward

Figure 2.3: Comparison of computation time of our MNMDP against the full normative MDP and comparison of
cumulative reward of our MNMDP policy, full normative MDP policy and domain MDP policy.

In order to validate the scalability and efficiency of the proposed MNMDP, we compare the
performance of our work against a fully normative MDP, which reasons about all the norms
together by including all norms in the state space. For these experiments, we construct a domain
MDP M0 with a random transition function T and a sparse, random reward function R. The
number of norms |N | is a parameter that can be varied during evaluation. Each of the norms can
be characterized by a fixed number of norm state and action variables, which are both chosen

11

randomly. These settings are used so that we can mitigate any structural bias introduced by
analyzing a set of hand-crafted examples, as well as to test the limits of our system with an
increasing number of norms.

From Figure 2.3(a), we can see that Kth order interactions take xK time. For the fully nor-
mative MDP, which considers all the norms in the norm set together, this becomes x|N |, making
it exponential in the number of norms. Figure 2.3(b) shows the average cumulative discounted
rewards for the fully-normative MDP policy, our MNMDP policy, and the domain MDP policy.
Note that the domain MDP policy disregards all normative constraints imposed on the system.
We observe the general behavior that the cumulative reward decreases as the number of norms
increases. We also observe that our MNMDP policy is only slightly sub-optimal to the fully-
normative policy, which reasons in a very high-dimensional space, making it intractable for real
systems.

12

Chapter 3

Context Representation and Modeling

3.1 Modeling Environmental Context to Determine Norm Ac-
tivations

To be socially compliant, agents must determine which norms are relevant, or active, in a given
scenario and leverage this information to robustly adapt their behavior. A critical challenge for
creating such socially compliant agents is enabling these agents to use their low-level sensory
observations of the environmental context to identify the appropriate normative behavior. This
environmental context representation and the mapping from context to norms needs to be gen-
eralizable and learnable, especially for long-term autonomy applications where the agent could
encounter novel context factors or changing user preferences. In such cases, the framework must
scale, be robust enough to generalize to novel environmental contexts, and have the capability to
continuously learn and adapt in response to changing user preferences and shifting socio-cultural
norms. In this section, we detail our expressive and generalizable computational framework for
modeling social context by combining logic-based approaches from artificial intelligence with
data-driven, machine learning techniques.

3.1.1 Representing Environmental Context with Propositional Logic
To represent environmental context, we use propositional logic. With this approach, we model
entities in the state, such as the various household objects and attributes, with atomic propositions
and the interactions between the entities with logical connectives (e.g. AND, OR). Chaining
connectives together enables us to build and express complex, intricate context conditions.

Propositional Logic for Determining Normative Constraints

We define our formula ϕ for modeling environmental context over a set of atomic propositions
AP. Our formula has the following syntax:

ϕ ::=Hds|Hd¬s|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|¬ϕ1|ϕ1 · ϕ2|[ϕ1]
a,b|Xϕ1|Fϕ1|�ϕ1|ϕ1Uϕ2

13

where s is either the “true constant” T or an atomic proposition in AP; and ∧, ∨, and ¬ respec-
tively represent the conjunction, disjunction, and negation Boolean operators. The concatenation
operator · specifies that first ϕ1 must be satisfied and then immediately ϕ2 must be satisfied. The
hold operator Hd with d ∈ Z≥0 specifies that s ∈ AP should be repeated for d time units and
the within operator [][a,b] with 0 ≤ a ≤ b bounds the satisfaction of φ to the time window [a, b].
The successor (next) operator Xϕ1 specifies that ϕ1 must hold at the next state, the sometimes
operator Fϕ1 is the eventually operator modeling the case where the condition ϕ1 is eventually
true sometime during the execution, the always operator �ϕ1 specifies that ϕ1 must be true in
all states, and the until operator ϕ1Uϕ2 means ϕ1 until ϕ2. The action operator O represents an
action ϕ2 that is being taken by ϕ1.

We use this logic to express more complex environmental contextual factors for activating or
deactivating norms, such as:
• Context in sequence, which refers to when one contextual variable must occur after another

one. For example, a conversation between a robot’s owner and their guest can be modeled
as follows:
((isOwner()O isTalking()) · (isGuest()O isTalking()))∨ ((isGuest()O isTalking()) · (isOwner()
O isTalking()))
In other words, to be in a conversation, the owner must talk and then the guest must talk,
or vice versa.

• Context within a time window, which refers to when a contextual variable must occur
within a particular window of time according to the time counter for all agents. For exam-
ple, person speaking twice within the time window of [0, 5] can be modeled as follows:
isPerson() O [H2isSpeaking()][0,5]

In other words, the person must speak twice within the first 6 time units according to the
global time counter.

3.1.2 Constructing the Context Tree

In this section, we describe the structure of our knowledge base, which contains mappings be-
tween environmental context and norm activations. A realistic knowledge base for a domestic
service robot will contain a wide range of scenarios, where each scenario is represented by a long
chain of propositional logic to determine the relevant norms for that scenario. Independently
searching through each of these scenarios to determine the relevant norms is highly inefficient.
Therefore, we elect to structure our knowledge base as a tree, where nodes represent some con-
text variable(s) that evaluate to either true or false. Like a decision tree, the most differentiating
factors are placed near the root of the tree.

We depart from the traditional binary decision tree construction by permitting our context
nodes to contain an additional attribute. This attribute corresponds to the set of activated inter-
mediate norms given the evaluation of the evaluation of the parent nodes leading to the current
node. This tree structure helps with representation and addresses two major problems that may
arise in real robotics systems: (1) partially observable environments and (2) time-critical applica-
tions. In partially observable environments, some of the context cannot be evaluated, so by using

14

intermediate norm outputs, the robot can still determine norm activations given the context that it
can observe. In time-critical applications, the agent must make a decision about which norms are
activated without reaching the leaves of the tree, which is enabled by using intermediate norm
outputs. Importantly, note that it is possible to learn these intermediate norm activation outputs
using standard tree-learning algorithms.

Figure 3.1: A simple example of modeling a scenario into a compact decision tree. In this example, the yellow
boxes are associated with the danger norm; the red box is associated with the protect owner from harm norm.

Figure 3.1 illustrates a simple example of modeling a scenario into a compact decision tree.
The root of this tree evaluates whether the hallway is on fire and if this is True, then the robot
checks if the owner is in the hallway. If the owner is present, then the robot checks if the owner
is approaching the fire. If so, then the norm activation of preventing the owner from incurring
harm enables the robot to save the owner from the fire. On the other hand, if the owner is not
approaching the fire or is not present, then the robot focuses on extinguishing the fire. Note that
the intermediate norm output at the owner-in-hallway node is the output of the tree based on all
the previously traversed nodes - in this case, only the root of the tree. In the other branch of the
tree, where the presence of fire evaluates to False, the robot checks for the co-existence of itself
and the owner in the hallway. If this is true, the robot determines that the accommodation norm
is activated; if it is False, then no norm is activated. In this case, the intermediate output does not

15

enforce any norm since no fire was present and the location of the owner is unknown.

Constructing the Nodes of the Tree

As previously mentioned, the nodes of our tree represent some contextual variable(s) that evalu-
ate to either true or false. We use the scenarios from recent work [19] as the input for creating our
tree-structured knowledge base by, first, mapping each of these scenarios to our chained propo-
sitional logic formulae. We split each chained propositional formula based on the occurrence
frequency of each sub-part in the chain throughout the set of contexts in our knowledge base.
We use this co-occurrence as a measure to derive the features of our context tree so that we can
reduce redundancies and hence speed up construction and traversal times. It is intuitive to think
of these re-used features as a systematic way to narrow down the search by differentiating be-
tween the scenarios where they are present/absent. We set a threshold of interaction frequency
ft, which we use to determine whether an interaction should be separated out into its own node.
If an interaction frequency exceeds ft, then it is separated out into its own node. If the current
interaction does not occur frequently in the knowledge base, then it remains chained together, as
its information gain is low. The threshold ft is a hyper-parameter that can be empirically tuned
for a given application. For example, if the formula ”((isOwner() O isTalking()) · (isGuest() O
isTalking()))” (let’s call it owner-guest talking) occurs in a scenario made up of other propo-
sitions chained to the above formula, but co-occurence frequency of the above formula in the
knowledge base is high, then we can split the chained propositional formula at owner-guest talk-
ing not only to promote reuse, but also to help differentiating between all the scenarios with the
same owner-guest talking interaction to the ones that don’t.

3.2 Learning Context Trees from human experiments data
Given a set of scenarios as chained propositional formula, we can split them into a set of in-
teraction nodes as discussed in the previous section. Some of these nodes can be much more
differentiating than the others. Although the norm output depends on each specific context that
the scenario has, there exists an efficient order in which we can check the interaction nodes. For
example, the robot should first check the location to see if it is in the bedroom, kitchen, and hall-
way etc, and then decide which context needs to be examined according to the location. It would
not check the food allergy in bathroom, but would only do that in the living room or the kitchen.
With a increasing number of scenarios in the knowledge base, a hierarchical structure of context
nodes is an intuitive way to model the problem. For a wide variety of general scenarios, we need
to be able to learn the most efficient hierarchical representation of the context nodes, such that
we can search and retrieve the norms associated with our scenario as fast as possible. Hence,
we draw tree learning methods from the machine learning literature that enables us to learn our
context trees directly from user data collected in our human experiments [19].

We base our tree construction algorithm on the CART [2] framework. To help us place the
most differentiating nodes closer to the root node of the tree, we use a multi-variate variant of
the Gini impurity measure [6] as our metric. Hence, as we traverse down the tree, we iteratively
refine our output norm activation by conditioning it on the current context node that is being

16

evaluated. Each of the leaves of this tree contains the final norm activations for the corresponding
paths traversed to reach them.

We use data from human experiments [19] which contain independent priority values for
each norm class, for each scenario. Thus, we pose our tree learning as a multi-variate re-
gression problem similar to [7]. We create a dataset D containing Z scenarios with each sce-
nario characterized by an input vector of m different propositional functions X1, ..., Xm. We
have x(i) = (x

(i)
1 , ..., x

(i)
m) as our features for the ith training instance. Our output vectors for

the d different norm classes are Y1, ..., Yd. The output vector for the ith training instance is
y(i) = (y

(i)
1 , ..., y

(i)
d) with each y(i)l ∈ [1, 7], l ∈ {1, ..., Z}. We redefine the impurity measure for

our multi-variate learning problem by making it the sum of squared error over the multi-variate
response for each node,

L =
Z∑
i=1

d∑
j=1

(y
(i)
j − ȳj) (3.1)

where y(i)j denotes the value of the output variable Yj for the ith instance and ȳj is the mean of
Yj in the node, with each split selected to minimize this sum of squared error. The computational
complexity for constructing this regression tree with m different context features encapsulating
Z different scenarios is O(m Zlog Z). We construct this tree offline before policy execution.

3.2.1 Efficiently Traversing the Context Tree

During policy execution, the robot uses its current observation as input to our context tree to
efficiently find the norms that are to be enforced, so that the norm-sanctioned policies could be
retrieved and executed. Starting from the root, we update the graph edge activation function α
using the current observation of the agent. After that, we evaluate the current context node’s logic
function using α. If the current node P has no implication for the given observation O, then we
use our approach for generalization using the knowledge graph K as explained in Section 3.2.3
to find the most similar substitute with similar semantics and then continue our traversal from
there. Given the structure of our decision tree model, which also stores the intermediate norm
outputs, we incorporate the presence of possible time-constraints and/or partial observability
to output the norm N without reaching the leaf nodes. Once the branch reaches a leaf node,
the search time T is more than a set threshold τ , or the current node P is not observable, we
return the predicted norm priorities given the observed context. These norm priorities ρ are then
used to resolve any conflicts between norms in our norm set. Note that a set of norms conflict
when a state becomes simultaneously prohibited by some norm and permitted/obliged by others.
After resolving norm conflicts, we use a set of priority thresholds ρt to estimate the value of our
norm activation function φa and the deactivation function φd which is modeled as the former’s
complement. Hence, we find the set of activated norms from the predicted priorities. The search
procedure for our context tree is executed at each time step and is O(log n), where n is the total
number of nodes in the context tree.

As explained in Section 3.1.2, we build our context tree C from the given scenarios S. Then,
at each time-step, the agent’s observation is used to search through the context tree to obtain the

17

active norms N , as explained in Section 3.2.1. Then, we use the MNMDP framework to find
the pre-computed MNMDP policy π, which reasons about the set of active norms, and execute
actions from π. We repeat this process until we reach a terminal state in the MDP. We show
the significant computational advantages of using this approach in Section 3.3.2 compared to a
tabular baseline. Note that the knowledge graphK is used to generalize our approach to scenarios
outside our knowledge base, as will be explained further in Section 3.2.3.

3.2.2 Decision Tree Illustration

Figure 3.2: Decision Tree hierarchy illustration using the data from our human experiments with 11 different cate-
gorical context features.

Figure 3.2 shows the top 3 levels of the constructed decision trees using the categorical con-
text features present in our human experiments data. Danger was found to be the most differ-
entiating feature of our decision tree. The agent can then reason about its domain goal in the
case where there is low or no danger. Then if the goal of the agent is to clean, then it takes
into account the number of people present in the environment. For tasks such as personal goal
and people care, it could start looking at relationship of the people present in the environment.
In the presence of danger, the agent then looks at its location where the danger is present. For
private locations inside the house such as bedroom, bathroom etc. it investigates the presence of
an emergency presumably to reason about privacy related norms. For outdoor locations such as
hallway, sidewalk etc., it then looks at the characteristic of the agent such as beggar, pet, elder,
children etc. The tree is complex and continues on refining the scenarios further and further until
it can differentiate them in terms of the norm activations they entail. The leaf nodes of this re-
gression tree contain the output priorities of each of the norms for the given context path, thereby
adapting the precedence of norms depending on the situation.

18

Generating explanations from context trees: By modeling high-level interactions between
objects in the environment in the nodes of the context tree, each node is grounded to concepts
that are easily understood by humans. Hence, our system not only provides the norm activations
for the given context, but also directly generates a decision path from the given raw observations,
which can be used as an explanatory model. When deployed in a real system, we could store the
decisions made by the system in a computationally inexpensive way so that we could retrieve
and analyze the data at a later stage. This data could be very useful for designers, vendors and
investigators.

3.2.3 Generalizing to Unseen Context
Although our approach of combining propositional logic with decision trees makes for an ex-
pressive and efficient framework, it cannot directly generalize to unseen scenarios. One way
to achieve generalization is to traverse down the tree to the node where no further implications
are present and then use its partial norm output. However, this approach can lead to incorrect
inferences of norm activations or deactivations - especially in novel situations.

A better approach is to use similarity metrics to approximate the unknown interaction to some
known interaction in a larger knowledge base. To that end, we construct a k-partite interaction
graph using the same nodes in the context tree and making dense connections between the nodes
based on their co-existence in the scenarios present in our knowledge base. The k different
partitions are determined using a heuristic on the categories present in the node (e.g. agent,
action, location). By using the aforementioned high-level semantic types to partition the data
into a k-partite graph, we restrict the similarity space of a given node to only its neighbours in
the same category. The intuition is that nodes containing highly similar semantic information
will have common connections in the interaction graph. With this approach, when the traversal
procedure encounters a context variable that was previously unseen in a scenario, the knowledge
graph is used to retrieve the most similar context variable. To determine the most similar context
variable, we use the SimRank similarity measure.

Using the SimRank Similarity Measure for Generalization

SimRank is a well-studied, graph-theoretic structural similarity measure applicable in domains
with object-to-object relationships [11]. Objects and relationships are modeled as a directed
graph G = (V,E), where nodes in V represent objects of the domain, and edges in E represent
relationships between objects. For a node v in a graph, the set of in-neighbors and out-neighbors
of v are denoted by I(v) and O(v), respectively. Individual in-neighbors are represented as
Ii(v), for 1 ≤ i ≤ |I(v)|; individual out-neighbors are represented as Oi(v), for 1 ≤ i ≤ |O(v)|.
SimRank computes similarity scores between nodes using the structural context in which they
appear. The similarity s(a, b) ∈ [0, 1] between objects a and b is 1 if a = b, otherwise:

s(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(I + i(a), Ij(b)) (3.2)

where C is a constant between 0 and 1.

19

We decompose the scenarios into the key features, and each scenario contains exactly one
categorical value for each feature. We construct the k-partite graph by assuming the possible
values (aka entities) to be nodes and put a bi-directional edge linking between two nodes if they
both appear in a single scenario. Thus for each scenario, there are k edges constructed, where k
is the number of features. After processing all the scenarios, some pair of nodes might be linked
with more edges than other pairs, which means the entities represented by the two nodes appear
more frequently together than others.

As we know for each scenario, there is only one value that can be taken for each feature.
It means the edges cannot be formed between two nodes from the same feature, and the nodes
from the same feature form groups. As there are k features, we have a k-partite graph. Applying
the SimRank similarity metric in Equation 3.2, we have the similarity metric for each feature
accordingly. The similarity metric explains for each feature, how similar each pair of entities
are. This similarity is based on the intuition that similar nodes are referenced by the nodes that
are also similar. Here we assume if the two entities are linked frequently by similar entities, they
have a high score in similarity. Therefore, when given a new scenario unseen before, it is firstly
checked through the context tree to the point that it cannot find a reference. Then for this feature
that it cannot find a reference, it picks the branch that is the most similar to its entity in this
feature. Finally when it is led to the most similar available scenario, our model outputs the same
norm activations that are associated with the similar scenario obtained in the process.

We illustrate our approach for generalization using the following example. Suppose the robot
has never observed the guest cooking in the kitchen; however, it has observed its owner cooking
in the kitchen. When traversing the context tree, after encountering the location node (kitchen)
and the task node (cooking), it encounters its first previously unseen context variable: the guest.
Using the SimRank similarity metric in Equation 3.2 and the knowledge graph, the most similar
context variable to the guest is determined - in this case, the robot’s owner. The robot’s owner
then replaces the guest in the context tree, evaluates to true, and the search proceeds to the next
context variable or corresponding active norm(s). The active norms for the owner cooking in the
kitchen are then used for the scenario of the guest cooking in the kitchen.

3.3 Experimental Evaluation
In this section, we present our results of the implementation of our model for representing envi-
ronmental context and determining norm activations. First, we deploy our context model coupled
with our MNMDP framework in custom-built simulation environments emulating complex so-
cial norms built on top of Minecraft. This shows the feasibility and effectiveness of our approach
for usage in autonomous agents. Then, we proceed to empirical performance studies aimed at
determining the computational advantages of using our framework.

3.3.1 Minecraft
We use the Project Malmo platform [12] to construct our scenarios and run our experiments.
Project Malmo is a platform built on top of the open-world game Minecraft, where researchers
can define many diverse, complex problems for intelligent agents to solve. Despite the large

20

Figure 3.3: Example stove scenario in Malmo. The robot (the male figure with black hair) is monitoring the kitchen
when, suddenly, a fire starts on the stove in the upper left corner. At the same time, a child (the female figure with
blonde hair) enters the kitchen. The robot determines if it should first put out the fire or move the child to a safe
area, then put out the fire.

number of environments created in Malmo, to our knowledge, no domestic environments cur-
rently exist for the platform. To address this, we created four domestic scenarios for testing our
context-reasoning model (two of which stem from our survey [19]), which we describe in this
section. We use the scenario illustrated in Figure 3.3, as the primary scenario to illustrate our
results.

(a) Child approaching the fire (b) Child away from the fire

Figure 3.4: Symbolic view showing the output trajectories generated by using our context tree model for the stove
scenario.

As illustrated in Figure 3.3, in this scenario the robot is monitoring the kitchen when, sud-
denly, there is a fire on the stove. At the same time, a child enters the kitchen and either ap-
proaches the fire or approaches the window to look outside. As soon as the robot sees the fire,

21

the norm to extinguish the fire is activated. However, when the robot observes the child entering
the kitchen, it must decide between leading the child out of the kitchen and then returning to put
out the fire, or ignoring the child and immediately extinguishing the fire.

In our scenario, if the child is far away from the fire, the robot chooses to first extinguish
the fire; otherwise, it chooses to first redirect the child away from the fire. After the fire is
extinguished, the robot returns to its original location and continues to monitor the kitchen. If
there is no fire, the robot stays still and does nothing even if the child comes in and approaches
the stove. In this scenario, it seems that the two norms of extinguishing the fire and save the child
have conflicts with each other, but indeed the norm of extinguishing the child has been “cached”
when the norm of saving the child has been activated because the latter has the higher priority.
However, when the child has been saved and the corresponding norm has been deactivated, the
robot resumes the norm of extinguishing the fire based on its observation on the continuing
existence of fire. Figure 3.4 shows the behavior trajectories of the robotin the different scenarios
discussed above. The video of the implementation of this scenario can be found here or at
https://vimeo.com/319540509.

Implementation details In order to obtain information about the objects and agents in the
given scene, we tap into Malmo’s symbolic observations. This helps us build the observation
map containing all relevant interaction details required for our model. We also use the chat box
in Malmo, which allows agents to globally communicate messages with each other, to simulate
conversations between agents. We add this chat observation and a time counter for our sequential
tasks to our observation map. We use the scikit-learn framework [24] for our tree learning. In
order to augment the learning process for the scenarios implemented in Malmo, we use the
additional heuristic that the two most differentiating context factors are the robot’s assigned task
and its location. To match the specifications of the scenario, we pre-specify the behavior of other
agents (e.g. human agent walking in the hallway) and objects in the environments.

3.3.2 Performance Study

To the best of our knowledge, our work is the first to provide a framework for context modeling
for norm aware reasoning, and hence there are no existing benchmarks to evaluate our model
against. Hence, we consider a tabular approach with a populated list of scenarios as the baseline
against which we can compare our performance against. Our experimental setup for these exper-
iments involves randomizing chains of propositions together to form our interactions. This way
we construct our set of scenarios and build our context tree as in Section 3.1.2.

Using this experiment, we wish to study the scalability of our approach with increasingly
unbalanced trees. Consider the mean depth of a given context tree to be dµ and the standard
deviation of the tree depth to be dσ. The coefficient of variation ζ = dσ

dµ
, which the ratio between

the standard-deviation and the mean depth of the tree, capturing the degree of imbalance of the
tree for any dµ and dσ. We try various different ζ against the number of scenarios to show
the scalability trends of our approach. Figure 3.5 shows the performance comparison between
our approach and the tabular approach. Since the context trees become increasingly unbalanced
with increasing ζ , the memory and search time increase correspondingly, but still remains close

22

https://vimeo.com/319540509

(a) Memory consumption (b) Average search time

Figure 3.5: Performance comparison between the tabular approach and our proposed context tree approach. Note
that both the X and Y axes are in log-scale.

together compared to the baseline. Therefore, the proposed context tree approach is orders of
magnitude better than the tabular approach, making it suitable for usage in real systems.

23

Chapter 4

Conclusion and Future Work

4.1 Conclusion
In this work, we proposed a scalable, and generalizable approach towards integrated norm-aware
reasoning for autonomous systems. We proposed the MNMDP framework which provides a
generalizable representation for norms and integrates it into the domain planning alleviating the
curse of dimensionality problem encountered by previous approaches. Our MNMDP frame-
work is well-suited for long-term autonomy applications since it needs little re-computation for
any modifications made to the norm set. We illustrated its working using a roadway simula-
tor modeling traffic rules and also showed the computational advantages of using our MNMDP
framework over existing methods. We motivated the need to model the activation function of the
MNMDPs to successfully deploy the MNMDP approach in complex environments. We showed
that our novel approach, which combines propositional logic and decision trees, for modeling
the activation function is expressive, scalable, and interpretable. We illustrated the magnitude of
the performance boost of our context model compared to a baseline with respect to both com-
pute time and memory consumption. Using our context modeling approach, we demonstrated
that we can efficiently identify which MNMDPs to use in various environmental conditions. Ad-
ditionally, we showed that we can resolve normative conflicts using norm priorities, which are
conditioned on the environmental context, rather than on global priorities as in previous work.

4.2 Future Work
As future work, we plan to make extensions to various parts of our approach. For the MNMDP
framework, we aim to extend our approach to support partially observable environments. Addi-
tionally, we plan to learn estimates of the reward and penalty functions for the MNMDPs directly
from user behavior using inverse reinforcement learning. Furthermore, we want to build a more
concrete representation of the human normative reasoning process to improve our human norm
network. To accomplish this goal, we plan to better capture the hierarchical structure and mutual
activation of norms.

For the context modeling component, we plan to make the following extensions. First, we
will extend our knowledge base with more diverse, yet realistic, social scenarios to improve

24

the robustness of our models and enable our generalization approach to achieve better results.
Second, we will extend our context tree to support online learning, which will make it better
suited for long-term autonomy applications. To accomplish this, we will use an active learning
component in which people in the environment can provide the robot with feedback regarding
the appropriateness of its inferred activated norms. This feedback can then be used to create new
connections in the knowledge graph and the context tree. Third, we plan to investigate the use
of concepts from TWTL to extend our logic to support temporal relaxation for satisfying time
constraints.

25

Chapter 5

Bibliography

[1] Henk Aarts and Ap Dijksterhuis. The silence of the library: environment, situational norm,
and social behavior. Journal of personality and social psychology, 84(1):18, 2003. 1

[2] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification
and regression trees. belmont, ca: Wadsworth. International Group, page 432, 1984. 3.2

[3] Geoffrey Brennan, Lina Eriksson, Robert E Goodin, and Nicholas Southwood. Explaining
norms. Oxford University Press, 2013. 1

[4] J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre. Goal generation in the BOID
architecture. Cognitive Science Quarterly, 2(3-4):428–447, 2002. 1.1

[5] Matthew Brown, Sandhya Saisubramanian, Pradeep Varakantham, and Milind Tambe.
Streets: game-theoretic traffic patrolling with exploration and exploitation. In Twenty-Sixth
IAAI Conference, 2014. 1.1

[6] Don Coppersmith, Se June Hong, and Jonathan RM Hosking. Partitioning nominal at-
tributes in decision trees. Data Mining and Knowledge Discovery, 3(2):197–217, 1999.
3.2

[7] Glenn De’Ath. Multivariate regression trees: a new technique for modeling species–
environment relationships. Ecology, 83(4):1105–1117, 2002. 3.2

[8] Moser Silva Fagundes, Sascha Ossowski, Michael Luck, and Simon Miles. Using norma-
tive markov decision processes for evaluating electronic contracts. AI Communications, 25
(1):1–17, 2012. 1.1, 2.2.1

[9] Moser Silva Fagundes, Sascha Ossowski, Jesús Cerquides, and Pablo Noriega. Design and
evaluation of norm-aware agents based on normative markov decision processes. Interna-
tional Journal of Approximate Reasoning, 78:33–61, 2016. 1, 1.1, 2.1.3, 2.2, 2.2.1

[10] Jack P Gibbs. Norms: The problem of definition and classification. American Journal of
Sociology, 70(5):586–594, 1965. 2.1

[11] G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. In Proc. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002. 1.2,
3.2.3

[12] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial

26

intelligence experimentation. In Proc. 25th International Joint Conference on Artificial
Intelligence, 2016. 3.3.1

[13] D. Kasenberg and M. Scheutz. Inverse norm conflict resolution. In Proc. 1st AAAI/ACM
Conference on Artificial Intelligence, Ethics, and Society, 2018. 1.1

[14] Daniel Kasenberg and Matthias Scheutz. Norm conflict resolution in stochastic domains.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 1

[15] Martin J Kollingbaum and Timothy J Norman. Noa-a normative agent architecture. In
International Joint Conference on Artificial Intelligence, pages 1465–1466, 2003. 1.1

[16] Martin J Kollingbaum and Timothy J Norman. Norm adoption in the noa agent architecture.
In Proceedings of the second international joint conference on Autonomous agents and
multiagent systems, pages 1038–1039. ACM, 2003. 1.1

[17] V. Krishnamoorthy, W. Luo, M. Lewis, and K. Sycara. A computational framework for
integrating task planning and norm aware reasoning for social robots. In IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), 2018. 1.1, 1.2,
2.2

[18] Vigneshram Krishnamoorthy, Wenhao Luo, Michael Lewis, and Katia Sycara. A computa-
tional framework for integrating task planning and norm aware reasoning for social robots.
In INternational Conference of Robot and Human Interactive Communication (RO-MAN).
IEEE, 2018. 1.2

[19] H. Li, S. Milani, V. Krishnamoorthy, M. Lewis, and K. Sycara. Perceptions of domestic
robots’ normative behavior across cultures. In Proc. 2nd AAAI/ACM Conference on Artifi-
cial Intelligence, Ethics, and Society, 2019. 2.1.2, 3.1.2, 3.2, 3.3.1

[20] Felipe Meneguzzi, Odinaldo Rodrigues, Nir Oren, Wamberto W Vasconcelos, and Michael
Luck. Bdi reasoning with normative considerations. Engineering Applications of Artificial
Intelligence, 43:127–146, 2015. 1.1

[21] Jean Oh, Felipe Meneguzzi, Katia Sycara, and Timothy J Norman. Prognostic normative
reasoning. Engineering Applications of Artificial Intelligence, 26(2):863–872, 2013. 1.1

[22] Nir Oren, Wamberto Vasconcelos, Felipe Meneguzzi, and Michael Luck. Acting on norm
constrained plans. In International Workshop on Computational Logic in Multi-Agent Sys-
tems, pages 347–363. Springer, 2011. 1.1

[23] Sofia Panagiotidi and Javier Vázquez-Salceda. Norm-aware planning: Semantics and im-
plementation. In IEEE/WIC/ACM International Conferences on Web Intelligence and In-
telligent Agent Technology, pages 33–36, 2011. 1.1

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011. 3.3.1

[25] Jéssica S Santos, Jean O Zahn, Eduardo A Silvestre, Viviane T Silva, and Wamberto W
Vasconcelos. Detection and resolution of normative conflicts in multi-agent systems: a
literature survey. Autonomous agents and multi-agent systems, 31(6), 2017. 1.1

27

[26] V. Sarathy, M. Scheutz, Y. N. Kenett, M. Allaham, J. L. Austerweil, and B. F. Malle. Mental
representations and computational modeling of context-specific human norm systems. In
CogSci, 2017. 1, 1.1

[27] V. Sarathy, M. Scheutz, and B. Malle. Learning behavioral norms in uncertain and changing
contexts. In 8th IEEE International Conference on Cognitive Infocommunications, 2017.
1.1

[28] Wamberto W Vasconcelos, Martin J Kollingbaum, and Timothy J Norman. Normative
conflict resolution in multi-agent systems. Autonomous agents and multi-agent systems, 19
(2):124–152, 2009. 1.1, 2.1.3

[29] Georg Henrik Von Wright. An essay in deontic logic and the general theory of action. 1968.
2.1

28

	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Scalable Policy Computation and Execution
	2.1 Norm Characterization
	2.1.1 Norm Modalities
	2.1.2 Norm life-cycle
	2.1.3 Resolving Norm Conflicts

	2.2 Task Planning with Normative Reasoning for Long Term Autonomy
	2.2.1 Modular Normative MDP
	2.2.2 Modular Normative MDP Computation

	2.3 Experimental Results
	2.3.1 Roadway Simulator
	2.3.2 Empirical Evaluation

	3 Context Representation and Modeling
	3.1 Modeling Environmental Context to Determine Norm Activations
	3.1.1 Representing Environmental Context with Propositional Logic
	3.1.2 Constructing the Context Tree

	3.2 Learning Context Trees from human experiments data
	3.2.1 Efficiently Traversing the Context Tree
	3.2.2 Decision Tree Illustration
	3.2.3 Generalizing to Unseen Context

	3.3 Experimental Evaluation
	3.3.1 Minecraft
	3.3.2 Performance Study

	4 Conclusion and Future Work
	4.1 Conclusion
	4.2 Future Work

	5 Bibliography

