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Abstract

We present the first method to capture the 3D total motion of a target person from a
monocular view input. Given an image or a monocular video, our method reconstructs the
motion from body, face, and fingers represented by a 3D deformable mesh model. We use
an efficient representation called 3D Part Orientation Fields (POFs), to encode the 3D ori-
entations of all body parts in the common 2D image space. POFs are predicted by a Fully
Convolutional Network, along with the joint confidence maps. To train our network, we col-
lect a new 3D human motion dataset capturing diverse total body motion of 40 subjects in
a multiview system. We leverage a 3D deformable human model to reconstruct total body
pose from the CNN outputs with the aid of the pose and shape prior in the model. We also
present a texture-based tracking method to obtain temporally coherent motion capture out-
put. We perform thorough quantitative evaluations including comparison with the existing
body-specific and hand-specific methods, and performance analysis on camera viewpoint
and human pose changes. Finally, we demonstrate the results of our total body motion
capture on various challenging in-the-wild videos.
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Chapter 1

Introduction

Human motion capture is essential for many applications including visual effects, robotics,
sports analytics, medical applications, and human social behavior understanding. How-
ever, capturing 3D human motion is often costly, requiring a special motion capture system
with multiple cameras. For example, the most widely used system [2] needs multiple cali-
brated cameras with reflective markers carefully attached to the subjects’ body. The actively-
studied markerless approaches are also based on multi-view systems [19,21, 25, 26, 29] or
depth cameras [7,50]. For this reason, the amount of available 3D motion data is extremely
limited. Capturing 3D human motion from single images or videos can provide a huge
breakthrough for many applications by increasing the accessibility of 3D human motion
data, especially by converting all human-activity videos on the Internet into a large-scale
3D human motion corpus.

Reconstructing 3D human pose or motion from a monocular image or video, however,
is extremely challenging due to the fundamental depth ambiguity. Interestingly, humans
are able to almost effortlessly reason about the 3D human body motion from a single view,
presumably by leveraging strong prior knowledge about feasible 3D human motions. In-
spired by this, several learning-based approaches have been proposed over the last few
years to predict 3D human body motion (pose) from a monocular video (image) [4,9,27,33,
35,36,44,58,60,69,73] using available 2D and 3D human pose datasets [1,5,22,25,28]. Re-
cently, similar approaches have been introduced to predict 3D hand poses from a monocular
view [12,37,74]. However, fundamental difficulty still remains due to the lack of available
in-the-wild 3D body or hand datasets that provide paired images and 3D pose data; thus
most of the previous methods only demonstrate results in controlled lab environments. Im-
portantly, there exists no method that can reconstruct motion from all body parts including
body, hands, and face altogether from a single view, although this is important for fully
understanding human behavior.

In this thesis, we aim to reconstruct the 3D total motions [26] of a human using a monoc-
ular imagery captured in the wild. This ambitious goal requires solving challenging 3D
pose estimation problems for different body parts altogether, which are often considered as
separate research domains. Notably, we apply our method to in-the-wild situations (e.g.,
videos from YouTube), which has rarely been demonstrated in previous work. We use a 3D
representation named Part Orientation Fields (POFs) to efficiently encode the 3D orientation
of a body part in the 2D space. A POF is defined for each body part that connects adjacent
joints in torso, limbs, and fingers, and represents relative 3D orientation of the rigid part re-



Figure 1.1: We present the first method to simultaneously capture the 3D total body motion
of a target person from a monocular view input. For each example, (left) input image and
(right) 3D total body motion capture results overlaid on the input.

gardless of the origin of 3D Cartesian coordinates. POFs are efficiently predicted by a Fully
Convolutional Network (FCN), along with 2D joint confidence maps [15,63,68]. To train our
networks, we collect a new 3D human motion dataset containing diverse body, hands, and
face motions from 40 subjects. Separate CNNs are adopted for body, hand and face, and
their outputs are consolidated together in a unified optimization framework. We leverage
a 3D deformable model that is built for total capture [25] in order to exploit the shape and
motion prior embedded in the model. In our optimization framework, we fit the model to
the CNN measurements at each frame to simultaneously estimate the 3D motion of body,
face, fingers, and feet. Our mesh output also enables us to additionally refine our motion
capture results for better temporal coherency by optimizing the photometric consistency in
the texture space.

This thesis presents the first approach to monocular total motion capture in various chal-
lenging in-the-wild scenarios (e.g., Fig. 1.1). We demonstrate that our single framework
achieves comparable results to existing state-of-the-art 3D body-only or hand-only pose
estimation methods on public benchmarks. Notably, our method is applied to various in-
the-wild videos, which has rarely been demonstrated in either 3D body or hand estimation
area. We also conduct thorough experiments on our newly collected dataset to quantita-
tively evaluate the performance of our method with respect to viewpoint and body pose
changes. The major contributions of this thesis are summarized as follows:

o We present the first method to produce 3D total motion capture results from a monoc-
ular image or video in various challenging in-the-wild scenarios.

e We introduce an optimization framework to fit a deformable human model on 3D
POFs and 2D keypoint measurements for total body pose estimation, showing compa-
rable results to the state-of-the-art methods on both 3D body and 3D hand estimation
benchmarks.

o We present a method to enforce photometric consistency across time to reduce motion
jitters.

e We capture a new 3D human motion dataset with 40 subjects as training and evalua-
tion data for monocular total motion capture.



Chapter 2

Related Work

In this chapter, we review various previous work related to this thesis.

2.1 Single Image 2D Human Pose Estimation

Over the last few years, great progress has been made in detecting 2D human body key-
points from a single image [11, 15, 38, 63, 64, 68] by leveraging large-scale manually anno-
tated datasets [5,28] with deep Convolutional Neural Network (CNN) framework. In par-
ticular, the major breakthrough is boosted by using the fully convolutional architectures
to produce confidence scores for each joint with a heatmap representation [15, 38, 63, 68],
which is known to be more efficient than directly regressing the joint locations with fully
connected layers [64]. A recent work [15] learns the connectivity between pairs of adjacent
joints, called the Part Affinity Fields (PAFs) in the form of 2D heatmaps, to assemble 2D
keypoints for different individuals in the multi-person 2D pose estimation problem.

2.2 Single Image 3D Human Pose Estimation

Early work [4,44] models the 3D human pose space as an over-complete dictionary learned
from a 3D human motion database [1]. More recent approaches rely on deep neural net-
works, which are roughly divided into two-stage methods and direct estimation methods.
The two-stage methods take 2D keypoint estimation as input and focus on lifting 2D human
poses to 3D without considering input image [9,17,20,33,36,39]. These methods ignore rich
information in images that encodes 3D information, such as shading and appearance, and
also suffer from sensitivity to 2D localization error. Direct estimation methods predict 3D
human pose directly from images, in the form of direct coordinate regression [46, 55, 56],
voxel [32,42, 66] or depth map [73]. Similar to ours, a recent work uses 3D orientation
fields [31] as an intermediate representation for the 3D body pose. However, these mod-
els are usually trained on MoCap datasets, with limited ability to generalize to in-the-wild
scenarios.

Due to the above limitations, some methods have been proposed to integrate prior knowl-
edge about human pose for better in-the-wild performance. Some work [41,48,67] proposes
to use ordinal depth as additional supervision for CNN training. Additional loss functions
are introduced in [18,73] to enforce constraints on predicted bone length and joint angles.



Some work [27, 70] uses Generative Adversarial Networks (GAN) to exploit human pose
prior in a data-driven manner.

2.3 Monocular Hand Pose Estimation

Hand pose estimation is often considered as an independent research domain from body
pose estimation. Most of previous work is based on depth image as input [40,49,52,54, 65,
71]. RGB-based methods have been introduced recently, for 2D keypoint estimation [51]
and 3D pose estimation [12,23,74].

2.4 3D Deformable Human Models

3D deformable models are commonly used for markerless body [6,30,43] and face motion
capture [8,13] to restrict the reconstruction output to the shape and motion spaces defined
by the models. Although the outputs are limited by the expressive power of models (e.g.,
some body models cannot express clothing and some face models cannot express wrin-
kles), they greatly simplify the 3D motion capture problem. We can fit the models based on
available measurements by optimizing cost functions with respect to the model parameters.
Recently, a generative 3D model that can express body and hands is introduced by Romero
et al. [47]; the Adam model is introduced by Joo et al. [26] to enable the total body motion
capture (face, body and hands), which we adopt for monocular total capture.

2.5 Photometric Consistency for Human Tracking

Photometric consistency of texture has been used in various previous work to improve the
robustness of body tracking [45] and face tracking [61, 62]. Some work [10, 16] also uses
optical flow to align rendered 3D human models. In this work, we improve temporal co-
herency of our output by a photo-consistency term which significantly reduces jitters. This
is the first time that such technique is applied to monocular body motion tracking to the
best of our knowledge.



Chapter 3

Proposed Method

3.1 Method Overview

Our method takes as input a sequence of images capturing the motion of a single person
from a monocular RGB camera, and outputs the 3D total body motion (including the motion
from body, face, hands, and feet) of the target person in the form of a deformable 3D human
model [26, 30] for each frame. Given an N-frame video sequence, our method produces
the parameters of the 3D human body model, including body motion parameters {6;} ,,
facial expression parameters {o;}¥ |, and global translation parameters {¢;}¥ ;. The body
motion parameters 6 includes hands and foot motions, together with the global rotation of
the body. Our method also estimates shape coefficients ¢ shared among all frames in the
sequence, while 8, o, and t are estimated for each frame respectively. Here, the output
parameters are defined by the 3D deformable human model Adam [26]. However, our
method can be also applied to capture only a subset of total motions (e.g., body motion only
with the SMPL model [30] or hand motion only by separate hand model of Frankenstein
in [26]). We denote a set of all parameters (¢, 0, 0,t) by ¥, and denote the result for the
i-th frame by ¥,.

Input Image I; |Def0rmable Human Modell | Input Image I, 1 | |Model Parameters\:[lit1 |
=»|Joint Confidence Maps S |- itti i
CNN | i | el ity Model Parameters W Ll R S Model Parameters ‘~IllJr
(5. 32) "I Part Orientation Fields L |" (e 32 (e 34

Figure 3.1: An overview of our method. Our method is composed of CNN part, mesh fitting
part, and mesh tracking part.

Our method is divided into 3 stages, as shown in Fig. 3.1. In the first stage, each image
is fed into a Convolutional Neural Network (CNN) obtain the joint confidence maps and
the 3D orientation information of body parts, which we call the 3D Part Orientation Fields
(POFs). In the second stage, we estimate total body pose by fitting a deformable human
mesh model [26] on the image measurements produced by the CNN. We utilize the prior
information embedded in the human body model for better robustness against the noise in
CNN outputs. This stage produces the 3D pose for each frame independently, represented
by parameters of the deformable model {®;} ,. In the third stage, we additionally enforce
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Figure 3.2: An illustration of a Part Orientation Field. The orientation P(m,n) for body part
P (;,.n) is a unit vector from J,,, to J,,. All pixels belong to this part in the POF are assigned
the value of this vector in x, y, z channels.

temporal consistency across frames to reduce motion jitters. We define a cost function to
ensure photometric consistency in the texture domain of mesh model, based on the fitting
outputs of the second stage. This stage produces refined model parameters {¥; }¥ . This
stage is crucial for obtaining realistic body motion capture output.

3.2 Predicting 3D Part Orientation Fields

The 3D Part Orientation Field (POF) encodes the 3D orientation of a body part of an articu-
lated structure (e.g., limbs, torso, and fingers) in 2D image space. The same representation
is used in a very recent literature [31], and we describe the details and notations used in our
framework. We pre-define a human skeleton hierarchy S in the form of a set of ‘(parent,
child)’ pairs!. A rigid body part connecting a 3D parent joint J,, € R3 and a child joint
J, € R3 is denoted by P (1,n), with J;,,, J,, defined in the camera coordinate, if (m,n) € S.

Its 3D orientation P(mm is represented by a unit vector from J,, to J,, in R3:

Jn—Jm

n_tm (3.1)
HJn - Jm”

Pnn) =
For a specific body part P ,, ,,), its Part Orientation Field L, ) € R3*M>w encodes its 3D

orientation P(m,n) as a 3-channel heatmap (in z, y, z directions respectively) in the image

space, where h and w are the size of image. The value of the POF L, , at a pixel x is
defined as,

P ifxeP
L . _ (m,n) (m,n)» 32
(m, )(X) {O otherwise. (32)

ISee Appendix B for our body and hand skeleton definition.



Note that the POF values are non-zero only for the pixels belonging to the current target
part P(,, ,,y and we follow [15] to define the pixels belonging to the part as a rectangle. An
example POF is shown in Fig. 3.2.

3.2.1 Implementation Details

We train a CNN to predict joint confidence maps S and Part Orientation Fields L. The
input image is cropped around the target person to 368 x 368. The bounding box is given
by Openl’ose2 [14,15,51] for testing. We follow [15] for CNN architecture with minimal
change. 3 channels are used to estimate POF instead of 2 channels in [15] for every body
partin S. Ly loss is applied to network prediction on S and L. We also train our network
on images with 2D pose annotations (e.g. COCO). In this situation we only supervise the
network with loss on S. Two networks are trained for body and hands separately.

3.3 Model-Based 3D Pose Estimation

Ideally the joint confidence maps S and POFs L produced by CNN provide sufficient in-
formation to reconstruct a 3D skeletal structure up to scale [31]. In practice, S and L can be
noisy, so we exploit a 3D deformable mesh model to more robustly estimate 3D human pose
with the shape and pose priors embedded in the model. In this section, we first describe our
mesh fitting process for body, and then extend it to hand pose and facial expression for to-
tal body motion capture. We use superscripts B, LH, RH,T and F' to denote functions and
parameters for body, left hand, right hand, toes, and face respectively. We use Adam [26]
which encompasses the expressive power for body, hands and facial expression in a single
model. Other human models (e.g., SMPL [30]) can be also used if the goal is to reconstruct
only part of the total body motion.

3.3.1 Deformable Mesh Model Fitting with POFs

Given 2D joint confidence maps S? predicted by our CNN for body, we obtain 2D keypoint
locations {j2}/ _, by taking channel-wise argmax on SZ. Given {jZ}/ _, and the other
CNN output POFs L?, we compute the 3D orientation of each bone P(Bm,n) by averaging
the values of L along the segment from j2 to jZ as in [15]. We obtain a set of mesh param-
eters 6, ¢, and t that agree with these image measurements by minimizing the following
objective:

FP(0,¢,t) = Fab(0. ¢, 1) + Fiin (0. 6) + 7 (0), (3.3)

where Y}, 75, and FP are different constraints as defined below. The 2D keypoint con-
straint 7}, penalizes the discrepancy between network-predicted 2D keypoints and the pro-
jections of the joints in the human body model:

Fih(0.0.t) = [i5 —T(I5(0,9.1))]7, (3.4)

where JZ (8, ¢, t) is m-th joint of the human model and TI(-) is projection function from 3D
space to image, where we assume a weak perspective camera model. The POF constraint

’https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 3.3: Human model fitting on estimated POFs and joint confidence maps. We extract
2D joint locations from joint confidence maps (left) and then body part orientation from
POFs (middle). Then we optimize a cost function (Eq. 3.3) that minimizes the distance

between TI(J2) and jZ and angle between f’fm,n) and P(Bm,n)'

FB. penalizes the difference between POF prediction and the orientation of body part in
mesh model:

Fiop(0,0) =we Y 1-P{ . -P,.(0.9), (3.5)
(m,n)€eS
where f’f’m’n) is the unit directional vector for the bone P(Bm’n) in the human mesh model,
B

Wy is @ balancing weight for this term, and - is the inner product between vectors. The prior
term F.7 is used to restrict our output to a feasible human pose distribution (especially for
rotation around bones), defined as:

FP(0) =wy |AF (6 — png)?, (3.6)

where A and pg are pose prior learned from CMU Mocap dataset [1], and w is a bal-
ancing weight. We use Levenberg-Marquardt algorithm [3] to optimize Eq. 3.3. The mesh
fitting process is illustrated in Fig. 3.3.

3.3.2 Total Body Capture with Hands, Feet and Face

Given the output of the hand network SL# LLH and S®H LEH  we can additionally fit the

Adam model to estimate the hand pose using similar optimization objectives:
FE0,6,t) = Fap' (0,6.1) + Fiii' (0, ) + F 7 (0). (37)

FLH ig the objective function for left hand and each term is defined similarly to Eq. 3.4, 3.5,
3.6. Similar to previous work on hand tracking [57,59], we use a hand pose prior constraint
FIH, learned from the MANO dataset [47]. The objective function for the right hand F#
is similarly defined.

Once we fit the body and hand parts of the deformable model to the CNN outputs, the
projection of the model on the image is already well aligned to the target person. Then



we can reconstruct other body parts by simply adding more 2D joint constraints using ad-
ditional 2D keypoint measurements. In particular, we include 2D face and foot keypoints
from the OpenPose detector. The additional cost function for toes is defined as:

Z 155 — 0,6,1)°, (3.8)

where {j7 } are 2D tiptoe keypoints on both feet from OpenPose, and {J” } are the 3D joint
location of the mesh model in use. Similarly for face we define:

0,¢,t,0) Z I35 — LI (0, 8,t,0))|2. (3.9)

Note that the facial keypoints J¥ are determined by all the mesh parameters 8, ¢, t, o to-
gether. In addition, we also apply regularization for shape parameters and facial expression
parameters:

R?(¢) = [¢lI*, R7 (o) = ||o||*. (3.10)
Putting them together, the total optimization objective is

F(O,¢.t,0)=F + FLH y FhE
. - 5 o (3.11)
F'+ FF + R® + R°,
where the balancing weights for all the terms are omitted for simplicity. We optimize this
total objective function in multiple stages to avoid local minima. We first fit the torso, then
add limbs, and finally optimize the full objective function including all constraints. This
stage produces 3D total body motion capture results for each frame independently in the
form of Adam model parameters {¥,} ,. For more detail on deformable model fitting,
please refer to Appendix C.

3.4 Enforcing Photo-Consistency in Textures

In the previous stages, we perform per-frame processing, which is vulnerable to motion
jitters. Inspired by previous work on body and face tracking [45,62], we propose to reduce
the jitters using the pixel-level image cues given the initial model fitting results. The core
idea is to enforce photometric consistency in the model textures, extracted by projecting the
fitted mesh models on the input images. Ideally, the textures should be consistent across
frames, but in practice there exist discrepancies due to motion jitters. In order to efficiently
implement this constraint in our optimization framework, we compute optical flows from
projected texture to the target input image. The destination of each flow indicates the ex-
pected location of vertex projection. To describe our method, we define a function 7 which
extracts a texture given an image and a mesh structure:

Ti=T @, M(¥;)), (3.12)

where I, is the input image of the i-th frame M (¥,) is the human model determined by
parameters ¥;. The function 7 extracts a texture map 7T; by projecting the mesh structure
on the image for the visible parts. We ideally expect the texture for (i+1)-th frame 77,1, to
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Figure 3.4: Illustration of our temporal refinement algorithm. The top row shows meshes
projected on input images at previous frame, current target frame, and after refinement. In
zoom-in views, a particular vertex is shown in blue, which is more consistent after applying
our tracking method.

be the same as 7. Instead of directly using this constraint for optimization, we use opti-
cal flow to compute the discrepancy between these textures for easier optimization. More
specifically, we pre-compute the optical flow between the image I, and the rendering
of the mesh model at (i+1)-th frame with the i-th frame’s texture map 7 ;, which we call
‘synthetic image”:

fiy1 = [(R(Miy1,T4), Liv1), (3.13)
where M; 1 = M(¥,1,) is the mesh for the (i+1)-th frame, and R is a rendering function
that renders a mesh with a texture to an image. The function f computes optical flows from
the synthetic image to the input image I,;1. The output flow f;;; : x — x’ maps a 2D
location x to a new location x’ following the optical flow result. Intuitively, the computed
flow mapping f; 1, drives the projection of 3D mesh vertices toward the directions for better
photometric consistency in textures across frames. Based on this flow mapping, we define
the texture consistency term:

Feex (T 1) lev (i+1) —vi,(i + 1) (3.14)

where v} (i + 1) is the projection of the n-th mesh vertex as a function of model parameters
N under optimization. v, (i +1) = f;11 (v, (i + 1)) is the destination of each optical flow,
where v, (i+1) is the projection of n-th mesh vertex of mesh M, 1. Note that v}, (i+1) is pre-
computed and constant during the optimization. This constraint is defined in image space,
and thus it mainly reduces thejitters in z, y directions. Since there is no image clue to reduce
the jitters along z direction, we just enforce a smoothness constraint for z-components of 3D
joint locations:

Fae(0F @ t0) = Y (a7 (i+1) = 35,(0)%, (3.15)

m

where J17(i + 1) is z-coordinate of the m-th joint of the mesh model as a function of pa-
rameters under optimization, and J7Z, (i) is the corresponding value in previous frame as a
fixed constant. Finally, we define a new objective function:

FH () = Frex + Fa- + Fror + FF, (3.16)

10



where the balancing weights are omitted. We minimize this function to obtain the param-
eter of the (i+1)-th frame ¥}, initialized from output of last stage ¥;;. Compared to the
original full objective Eq. 3.11, this new objective function is simpler since it starts from a
good initialization. Most of the 2D joint constraints are replaced by Fi.x, while we found
that the POF term and face keypoint term are still needed to avoid error accumulation. Note
that this optimization is performed recursively—we use the updated parameters of the i-th
frame W} to extract the texture 7; in Eq. 3.12, and update the model parameters at the
(i+1)-th frame from ¥, to ¥/, , with this optimization. Also note that the shape parame-
ters {¢; } should be the same across the sequence, so we take ¢/, | = ¢; and fix it during
optimization. We also fix the facial expression parameters in this stage.

11



Chapter 4

Results

In this chapter, we present thorough quantitative and qualitative evaluation of our method.

4.1 Dataset

Body Pose Dataset: Human3.6M [22] is an indoor marker-based human MoCap dataset, and
currently the most commonly used benchmark for 3D body pose estimation. We quantita-
tively evaluate the body part of our algorithm on it. We follow the standard training-testing
protocol as in [42].

Hand Pose Dataset: Stereo Hand Pose Tracking Benchmark (STB) [72] is a 3D hand pose dataset
consisting of 30K images for training and 6K images for testing. Dexter+Object (D+0O) [53]
is a hand pose dataset captured by an RGB-D camera, providing about 3K testing images
in 6 sequences. Only the locations of finger tips are annotated.

Newly Captured Total Motion Dataset: We use the Panoptic Studio [24,25] to capture a
new dataset for 3D body and hand pose in a markerless way [26]. 40 subjects are captured
when makeing a wide range of motion in body and hand under the guidance of a video for
2.5 minutes. After filtering we obtain about 834K body images and 111K hand images with
corresponding 3D pose data. We split this dataset into training and testing set such that no
subject appears in both. For more details on the dataset, please refer to Appendix A.

4.2 Quantitative Comparison with Previous Work

4.2.1 3D Body Pose Estimation
Comparison on Human3.6M

We compare the performance of our single-frame body pose estimation method with pre-
vious state-of-the-arts. Our network is initialized from the 2D body pose estimation net-
work of OpenPose. We train the network using COCO dataset [28], our new 3D body pose
dataset, and Human3.6M for 165k iterations with a batch size of 4. During testing time, we
fit Adam model [26] onto the network output. Since Human3.6M has a different joint defini-
tion from Adam model, we build a linear regressor to map Adam mesh vertices to 17 joints
in Human3.6M definition using the training set, as in [27]. For evaluation, we follow [42]
to rescale our output to match the size of an average skeleton computed from the training

12



Method MP]JPE

Pavlakos [42] 71.9
Zhou [73] 64.9
Luo [31] 63.7
Martinez [33] 62.9
Fang [20] 60.4
Yang [70] 58.6
Pavlakos [41] 56.2
Dabral [18] 55.5
Sun [56] 49.6
*Kanazawa [27] 88.0
*Mehta [35] 80.5
*Mehta [34] 69.9
*QOurs 58.3
*Ours+ 64.5

Table 4.1: Quantitative comparison with previous work on Human3.6M dataset. The *’
signs indicate methods that show results on in-the-wild videos. The evaluation metric is
Mean Per Joint Position Error (MPJPE) in millimeter. The numbers are taken from original
papers. ‘Ours’ and ‘Ours+’ refer to our results without and with prior respectively.

set. The Mean Per Joint Position Error (MPJPE) after aligning the root joint is reported as
in [42].

The experimental results are shown in Table 4.1. Our method achieves competitive per-
formance; in particular, we show the lowest pose estimation error among all methods that
demonstrate their results on in-the-wild videos (marked with *” in the table). We believe
it important to show results on in-the-wild videos to ensure the generalization beyond this
particular dataset. As an example, our result with pose prior shows higher error compared
to our result without prior, although we find that pose prior helps to maintain good mesh
surface and joint angles in the wild.

Ablation Studies

We investigate the importance of each dataset through ablation studies on Human3.6M. We
compare the result by training networks with: (1) Human3.6M; (2) Human3.6M and our
captured dataset; and (3) Human3.6M, our captured dataset, and COCO. Note that setting
(3) is the one we use for the previous comparison. We follow the same evaluation protocol
and metric as in Table 4.1, with result shown in Table 4.2. First, it is worth noting that with
only Human3.6M as training data, we already achieve the best performance among results
marked with **” in Table 4.1. Second, comparing (2) with (1), our new dataset provides an
improvement despite the difference in background, human appearance and pose distribu-
tion between our dataset and Human3.6M. This verifies the value of our new dataset. Third,
we see a drop in error when we add COCO to the training data, which suggests that our
framework can take advantage of this dataset with only 2D human pose annotation for 3D
pose estimation.
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Training data MPJPE

(1) Human3.6M 65.6
(2) Human3.6M + Ours 60.9
(3) Human3.6M + Ours + COCO 58.3

Table 4.2: Ablation studies on Human3.6M. The evaluation metric is Mean Per Joint Position
Error in millimeter.
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Figure 4.1: Comparison with previous work on 3D hand pose estimation. We plot PCK
curve and show AUC in bracket for each method in legend. Left: results on the STB dataset
[72] in 20mm-50mm; right: results on Dexter+Object dataset [53] in 0-100mm. Results with
depth alignment are marked with *’; the RGB-D based method is marked with ‘+'.

4.2.2 3D Hand Pose Estimation

We evaluate our method on the Stereo Hand Pose Tracking Benchmark (STB) and Dex-
ter+Object (D+0), and compare our result with previous methods. For this experiment we
use the separate hand model of Frankenstein in [26].

STB

Since the STB dataset has a palm joint rather than the wrist joint used in our method, we
convert the palm joint to wrist joint as in [74] to train our CNN. We also learn a linear regres-
sor using the training set of STB dataset. During testing, we regress back the palm joint from
our model fitting output for comparison. For evaluation, we follow the previous work [74]
and compute the error after aligning the position of root joint and global scale with the
ground truth, and report the Area Under Curve (AUC) of the Percentage of Correct Key-
points (PCK) curve in the 20mm-50mm range. The results are shown in the left of Fig. 4.1.
Our performance is on par with the state-of-the-art methods that are designed particularly
for hand pose estimation. We also point out that the performance on this dataset has almost
saturated, because the percentage is already above 90% even at the lowest threshold.
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Figure 4.2: Evaluation result in Panoptic Studio. Top: accuracy vs. view point; bottom:
accuracy vs. pose. The metric is MPJPE in cm. The average MPJPE for all testing samples
is 6.30 cm.

D+O

Following [37] and [23], we report our results using a PCK curve and the corresponding
AUC in the right of Fig. 4.1. Since previous methods are evaluated by estimating the ab-
solute 3D depth of 3D hand joints, we follow them by finding an approximate hand scale
using a single frame in the dataset, and fix the scale during the evaluation. In this case, our
performance (AUC=0.70) is comparable with the previous state-of-the-art [23] (AUC=0.71).
However, since there is fundamental depth-scale ambiguity for single-view pose estimation,
we argue that aligning the root with the ground truth depth is a more reasonable evaluation
setting. In this setting, our method (AUC=0.84) outperforms the previous state-of-the-art
method [37] (AUC=0.70) in the same setting, and even achieves better performance than an
RGB-D based method [53] (AUC=0.81).

4.3 Quantitative Study for View and Pose Changes

Our new 3D pose data contain multi-view images with the diverse body postures. This
allows us to quantitatively study the performance of our method in view changes and body
pose changes. We compare our single view 3D body reconstruction result with the ground
truth. Due to the scale-depth ambiguity of monocular pose estimation, we align the depth of
root joint to the ground truth by scaling our result along the ray directions from the camera
center, and compute the Mean Per Joint Position Error (MPJPE) in centimeter. The average
MPJPE for all testing samples is 6.30 cm. We compute the average errors per each camera
viewpoint, as shown in the top of Fig. 4.2. Each camera viewpoint is represented by azimuth
and elevation with respect to the subjects’ initial body location. We reach two interesting
findings: first, the performance worsens in the camera views with higher elevation due
to the severe self-occlusion and foreshortening; second, the error is larger in back views
compared to the frontal views because limbs are occluded by torso in many poses. At the
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Figure 4.3: The comparison of joint location across time before and after tracking with
ground truth. The horizontal axes show frame numbers (30fps) and the vertical axes show
joint locations in camera coordinate. The target joint here is the left shoulder of the subject.

bottom of Fig. 4.2, we show the performance for varying body poses. We run k-means
algorithm on the ground truth data to find body pose groups (the center poses are shown
in the figure), and compute the error for each cluster. Body poses with more severe self-
occlusion or foreshortening tend to have higher errors.

4.4 The Effect of Mesh Tracking

To demonstrate the effect of our temporal refinement method, we compare the result of
our method before and after this refinement stage using Panoptic Studio data. We plot the
reconstructed left shoulder joint in Fig. 4.3. We find that the result after tracking (in blue)
tends to be more temporally stable than that before tracking (in green), and is often closer
to the ground truth (in red).

4.5 Qualitative Evaluation

We demonstrate our total motion capture results in various videos captured by us or ob-
tained from YouTube in the supplementary videos!. For videos where only the upper body

Ihttp://domedb.perception.cs.cmu.edu/mtc
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of the target person is visible, we assume that the orientation of torso and legs is pointing
vertically downward in Eq. 3.5.
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Chapter 5

Discussion

In this thesis, we present a method to reconstruct 3D total motion of a single person from
an image or a monocular video. We thoroughly evaluate the robustness of our method on
various benchmarks and demonstrate monocular 3D total motion capture results on in-the-
wild videos.

There are some limitations with our method. First, we observe failure cases when a
significant part of the target person is invisible (out of image boundary or occluded by other
objects) due to erroneous network prediction. Second, our hand pose detector fails in the
case of insufficient resolution, severe motion blur or occlusion by objects being manipulated.
Third, we use a simple approach to estimating foot and facial expression that utilizes only
2D keypoint information. More advanced techniques and more image measurements can
be incorporated into our method. Finally, our CNN requires bounding boxes for body and
hands as input, and cannot handle multiple bodies or hands simultaneously. Solving these
problems points to interesting future directions.
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Appendix A

New 3D Human Pose Dataset

In this section, we provide more details of the new 3D human pose dataset that we collect.

A.1 Methodology

We build this dataset in 3 steps:

e We randomly recruit 40 volunteers on campus and capture their motion in a multi-
view system [24,25]. During the capture, all subjects follow the motion in the same
video of around 2.5 minutes recorded in advance.

e We use multi-view 3D reconstruction algorithms [24, 25, 51] to reconstruct 3D body,
hand and face keypoints.

e We run filters on the reconstruction results. We compute the average lengths of all
bones for every subject, and discard a frame if the difference between the length of
any bone in the frame and the average length is above a certain threshold. We further
manually verify the correctness of hand annotations by projecting the skeletons onto
3 camera views and checking the alignment between the projection and images.

A.2 Statistics and Examples
To train our networks, we use our captured 3D body data and hand data, include a total of

834K image-annotation pairs for bodies and 111K pairs for hands. Example data are shown
in Fig. A.1 and our supplementary video.
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Figure A.1: Example images and 3D annotations from our new 3D human pose dataset.
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Appendix B

Network Skeleton Definition

In this section we specify the skeleton hierarchy S we use for our Part Orientation Fields
and joint confidence maps. As shown in Fig. B.1, we predict 18 keypoints for the body and
POFs for 17 body parts, so SB € RI8x368x368 1,B ¢ R51x368x368 - Analogously, we predict
21 joints for each hand and POFs for 20 hand parts, so S“# and S have the dimension
21 x 368 x 368, while LLH and L™ have the dimension 60 x 368 x 368. Note that we train
a CNN only for left hands, and we horizontally flip images of right hands before they are
fed into the network during testing. Some example outputs of our CNN are shown in Fig.
B.2,B.3,B.4, B.5.
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2 RShoulder @ 01 Neck. 5 LShoulder 11 13
70 ® 159
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12¢
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8 RHip ® 11 LHip !
2
¢ ® h
4 RWrist LWrist
WISt RKnee ® 012 LKnee | VS o’
10 RAnkle ® ®13 LAnkle ® 0 Wrist

Figure B.1: Illustration on the skeleton hierarchy S in our POFs and joint confidence maps.
The joints are shown in black, and body parts for POFs are shown in gray with indices
underlined. On the left we show the skeleton used in our body network; on the right we
show the skeleton used in our hand network.
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Figure B.2: Joint confidence maps predicted by our CNN for a body image.
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Figure B.3: Part Orientation Fields predicted by our CNN for a body image. For each body
part we visualize z, y, z channels separately.
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Figure B.4: Joint confidence maps predicted by our CNN for a hand image.
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Figure B.5: Part Orientation Fields predicted by our CNN for a hand image. For each hand
part we visualize z, y, z channels separately.
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Appendix C
Deformable Human Model

C.1 Model Parameters

As explained in the main paper, we use Adam model introduced in [26] for total body mo-
tion capture. The model parameters ¥ include the shape parameters ¢ € R¥¢, where
K4 = 30 is the dimension of shape deformation space, the pose parameters 8§ € R/*3
where the J = 62 is the number of joints in the model!, the global translation parameters
t € R?, and the facial expression parameter o € R*- where K, = 200 is the number of
facial expression bases.

C.2 3D Keypoints Definition

In this section we specify the correspondences between the keypoints predicted by our net-
works and Adam keypoints.

Regressors for the body are directly provided by [26], which define keypoints as linear
combination of mesh vertices. During mesh fitting (Section 5 of the main paper), given cur-
rent mesh M (¥) determined by mesh parameters ¥ = (¢, 0, t, o), we use these regressors
to compute joints {JZ } from the mesh vertices, and further {f’fm,n)} by Eq. 3.1 in the main
paper. {JB} and {f’fmm)} follow the skeleton structure in Fig. B.1. {JZ } and {f’fm’n)} are
used in Eq. 3.4 and 3.5 in the main paper respectively to fit the body pose.

Joo et al. [26] also provides regressors for both hands, so we follow the same setup as
body to define keypoints and hand parts {JZ7} {TEH Y, {P(er m s {f’gﬁ )}, whichare used
in Eq. 3.7 in the main paper to fit hand pose. Note that the wrists appear in both skeletons
of Fig. B.1, so actually J5" = JZ JEH = JB. We only use 2D keypoint constraints from
the body network, i.e., jZ,j? in Eq. 3.4, ignoring the keypoint measurements from hand
network ji# and j&* in Eq. 3.7, since the body network is usually more stable in output.

For Eq. 3.8 in the main paper, we use 2D foot keypoint locations from OpenPose as {j’, },
including big toes, small toes and heels of both feet. On the Adam side, we directly use mesh
vertices as keypoints {J7 } for big toes and small toes on both feet. We use the middle point
between a pair of vertices at the back of each feet as the heel keypoint, as shown in Fig. C.1
(left).

1 The model has 22 body joints and 20 joints for each hand.
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Figure C.1: We plot Adam vertices used as keypoints for mesh fitting in red dots. Left: ver-
tices used to fit both feet (the middle points between the 2 vertices at the back are keypoints);
right: vertices used to fit facial expression.

In order to get facial expression, we also directly fit Adam vertices using the 2D face
keypoints predicted by OpenPose (Eq. 3.9 in the main paper). Note that although OpenPose
provides 70 face keypoints, we only use 41 keypoints on eyes, nose, mouth and eyebrows,
ignoring those on the face contour. The Adam vertices used for fitting are illustrated in Fig.
C.1 (right).
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Appendix D

Implmentation Details

In this chapter, we provide details about the parameters we use in our implementation.
In Eq. 3.5 and 3.6, we use

wpop = 22500, w) = 200.

We have similarly defined weights for left and right hands omitted in Eq. 3.7, for which we
use
wpde = whop = 2500, wy ™ = wl = 10.

p
Weights for Eq. 3.10 (omitted in the main paper) are
w? = 0.01,w” = 100.
In Eq. 3.14, a balancing weight is omitted for which we use

wa, = 0.25.

In Eq. 3.16, Fpor consists of POF terms for body, left hands and right hands, i.e., Fpor =
Fie + FHE 4+ FRIE. We use weights 25, 1, 1 to balance these 3 terms.
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