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Abstract

Automatic object detection in 3D X-ray Computed Tomography imagery has recently

gained research attention due to its promising applications in aviation baggage screening.

The huge resolution of an individual 3D scan, however, poses formidable computational

challenges when coupled with deep 3D convolutional networks for inference. In this

thesis, we propose the slice-and-fuse strategy — a generic framework to leverage image-

based detection and segmentation in high-resolution 3D volumes. We encode the input

3D volumes into multiple slices along XY, YZ, and XZ directions, exploit 2D CNNs

to generate 2D predictions, and then fuse 2D predictions to 3D estimation. Using

the proposed strategy, we design two 3D object detectors for 3D baggage CT scans.

Retinal-SliceNet uses a unified, single network to detect target objects from the input

3D CT scans. U-SliceNet exploits a two-stage paradigm, first generating proposals

using a voxel labeling network and then refining the proposals by a 3D classification

network. U-SliceNet generates high-quality segmentation masks along with bounding

boxes for target objects. We evaluate the two SliceNets on a large-scale 3D baggage CT

dataset for three tasks: baggage classification, 3D object detection, and 3D semantic

segmentation.

All of the weapons images are from a DETECT 1000 that is not in a deployed system

configuration.



Acknowledgements

First and foremost, I would like to offer my special thanks to my advisor Prof. Aswin

Sankaranarayanan. It is his insight, wisdom, and patience that guided me through my

master study and research. I could not have imagined having a better advisor for my

master’s thesis.

I am very grateful to Prof. Kumar Bhagavatula for his insightful suggestions to this work,

and Prof. Srinivasa Narasimhan and Prof. David Held for serving on my committee.

I really appreciate the valuable suggestions and help from Jen-Hao Chang during the

writing of this thesis.

I would like to give my special thanks to our collaborators at IDSS Corp., Mark Caron,

Omar AlKofahi, Feng Pan, Duy Dao, and James Connelly. And I would like to thank

Hui Zhuo for his help. This work would not be possible without all their support.

Last but far from the least, I would like to thank my parents and grandparents for their

deep love and continous support throughout my life.

This work is supported by DHS S&T under Contract Number HSHQDC-17-C-B0020.

Any opinions, findings, conclusions or recommendations expressed in this thesis do not

reflect the view of DHS S&T or IDSS. All of the weapons images are from a DETECT

1000 that is not in a deployed system configuration.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Related Work 5

2.1 2D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 3D Object Detection in Baggage CT . . . . . . . . . . . . . . . . . . . . . 7

2.4 3D Baggage CT Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Slice-and-fuse Strategy for 3D Object Detection 9

3.1 Slice-and-fuse Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Retinal-SliceNet — A One-stage 3D Object Detector . . . . . . . . . . . . 11

3.3 U-SliceNet — A Two-stage 3D Object Detector . . . . . . . . . . . . . . . 12

4 Experiments 15

4.1 SliceNets for Baggage Classification . . . . . . . . . . . . . . . . . . . . . . 16

4.2 SliceNets for 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . 18

4.3 U-SliceNet for 3D Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 23

Bibliography 24

iii



List of Figures

1.1 Object detection and segmentation on a 3D baggage CT scan. . . . . . . . 1

1.2 3D baggage CT data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Illustration of slice-and-fuse strategy. . . . . . . . . . . . . . . . . . . . . . 3

3.1 Illustration of slice-operation. . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Retinal-SliceNet architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 U-SliceNet Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Results for 3D baggage classification. . . . . . . . . . . . . . . . . . . . . . 17

4.2 Results for 3D semantic segmentation. . . . . . . . . . . . . . . . . . . . . 19

4.3 Qualitative results for object detection and segmentation on Real-scan
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Qualitative results for object detection and segmentation on Multiple-
targets dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



List of Tables

2.1 Subsets description of IDSS 3D baggage CT dataset. . . . . . . . . . . . . 8

4.1 Results for 3D baggage classification. . . . . . . . . . . . . . . . . . . . . . 18

4.2 Results for 3D object detection. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Results for 3D semantic segmentation. . . . . . . . . . . . . . . . . . . . . 19

v



For my family.

vi



Chapter 1

Introduction

(a) Input baggage CT (b) One-stage SliceNet (c) Two-stage SliceNet

Figure 1.1: Object detection and segmentation on a 3D baggage CT scan.
(a) is the input baggage CT volume of resolution 560× 560× 560, (b) shows one-stage
SliceNet detection result, (c) shows two-stage SliceNets object result. The yellow masks

are predicted target region, and the red box is the predicted target bounding box.

With recent advances in speed and reconstruction accuracy, 3-D X-ray Computed To-

mography (3D CT) screening has begun to play a crucial role not only in medical imag-

ing [1, 2], but also in baggage screening for airport security [3–8]. Figure 1.2 shows

four viewpoints of a 3D CT scan of a bag. Compared to other 3D scanning techniques,

CT scanning has many favorable properties: non-intrusive, capable of high-resolution at

sub-millimetre scale, and in full 3D voxel representation that is often occlusion free [9].

This provides numerous unique advantages for highly accurate object detection and

segmentation.

Despite the success in understanding medical CT scans, the performance of object detec-

tion and segmentation on 3D baggage scans are still far from desirable [6, 7]. This can be

attributed to the following three reasons. First, detecting of 3D objects is inherently a

hard problem due to the variability of the shapes. This is unlike medical imaging, where

intra-class variability is far less and objects are generally of the same shape. Second,

baggages are often heavily cluttered with objects such as cell phones, keys, shoes and

1



Introduction 2

(a) Bird-eye-view (b) Side-view (c) Front-view (d) Top-view

Figure 1.2: Different views of a 3D baggage CT scan. The color represents the
density at each voxel. Density increases from blue to red.

etc, many of which have similar shape and density to the target objects. Third, the

size of each baggage CT scan is extremely large, often many hundreds of voxels in each

dimension. For data of such high resolutions, it is difficult to leverage complex deep

neural models while keeping the full 3D resolution due to the limitation of computa-

tional resources. For example, implementing a 50-layer ResNet [10] in 3D could need

500GB for 256× 256× 256 inputs and a mini-batch of 8. Even if we ignore the storage

and memory constraints, the time to train such a deep model would be formidable. If

we largely downsample the input volume in spatial resolution at the first few 3D con-

volutional layers, the small target objects as well as those with thin structures would

be eliminated in the subsequent feature extraction and be missed out in the detection

results. If we use a 3D fully convolutional network, we need to train it with large 3D

reception fields since target objects such as rifles are long in one dimension and placed in

the baggage in random pose. This will again lead to insufficient memory problem. How

to design an object detection algorithm to achieve high detection accuracy, low training

time complexity, and real-time testing speed becomes the key concern.

In this thesis, we propose a novel slice-and-fuse strategy that can reduce the computation

complexity for object detection and segmentation in high-resolution 3D volumes. Slice-

and-fuse works as follows: we first slice the 3D volume into multiple 2D slices; next,

we perform detection and segmentation on individual 2D slices and finally pool the 2D

predictions in 3D space. Specifically, as is shown in Figure 1.3, in the slicing stage we

divide the input volume into multiple 3D slices and project each slice into a 2D image.

We repeat this slicing operation along XY, YZ, XZ directions and obtain three sets of

2D images. In the fusion stage, the three sets of 2D predictions are used to reconstruct

three 3D volumetric predictions, one for each direction. Among the three volumetric

predictions, we select the two most confident predictions for each voxel and fuse them

to obtain the final 3D prediction. This 3D prediction seeds subsequent region proposals

and classification functions.
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Figure 1.3: Slice-and-fuse strategy. In order to achieve real-time object detection
and segmentation on high-resolution volumes, we first encode the input 3D volume into
XY, YZ, XZ slices, apply image-based models on each slice individually, and then pool
2D predictions to 3D space. The proposed strategy can be flexibly incorporated into

one-stage and two-stage object detection and segmentation frameworks.

Our strategy is based on two main observations. First, projecting a whole baggage

CT scan onto a single 2D plane will cause severe occlusion among target objects and

cluttered objects. A simple method to avoid heavy occlusion is to slice a 3D volume

into multiple thin 3D slices and then project each of them into a 2D image. The slicing

method is especially suitable for object detection task since no matter how large the

input volume is, the object detector only focuses on one receptive field at a time. This

gives us the flexibility to divide the whole input into multiple slices and perform object

detection on each one of them. Second, there exist optimal, sub-optimal as well as non-

informative viewpoints when it comes to specific object categories of interest [11]. A

pistol, for example, can be easily recognized if both the barrel and grip panel are shown

in the projection. By taking advantage of this property, we fuse the two most confident

predictions to obtain the final voxel prediction. This not only suppresses the false

prediction generated from the confusing viewpoint but also guarantees the prediction

consistency among different viewpoints.

To verify the effectiveness of the slice-and-fuse strategy, we propose two 3D object detec-

tion networks, which we call SliceNets. They incorporate the proposed strategy into two

state-of-the-art object detection frameworks - one-stage [12–14] and two-stage object

detection [15–19]. Figure 1.1 shows an example result of these two algorithms. Both

algorithms start from slicing the input volumes and projecting slices into 2D images. In

the one-stage object detector that we call Retinal-SliceNet, each slice is used to directly
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predict the locations of bounding boxes and corresponding confidence scores. 3D bound-

ing boxes are obtained by the linear fusion operation, and the final predictions are given

by the two most confident volumetric predictions. In two-stage object detector that we

call U-SliceNet, the slice-and-fuse strategy is applied only to the region proposal stage.

Specifically, each input slice is given to a 2D-UNet [20] architecture to predict pixel-level

labeling, and voxel-level labeling is obtained by the fusion operation. This volumetric

labeling is later used for bounding box proposal, followed by a classification network

and a location regression network. Note that the two-stage object detection algorithms

predict not only the object bounding boxes, but also give accurate voxel-level labeling

of the target objects.

Key contributions. We conduct pioneering research on object detection using high-

resolution 3D baggage CT scans. In particular, this thesis makes the following contri-

butions:

• We propose a slice-and-fuse strategy to boost the speed and accuracy of object

detection and segmentation on high-resolution 3D volumes.

• We design Retinal-SliceNet, a one-stage 3D object detector that directly detects

target objects for input baggage CT scans.

• We design U-SliceNet, a two-stage algorithm that detects target objects and gen-

erates high-quality segmentation masks at the same time for input baggage CT

scans;

• We illustrate the performance of the proposed SliceNets in the task of 3D baggage

classification, 3D object detection, and 3D segmentation.

Limitations. The proposed slice-and-fuse strategy assumes that a 3D object can be

confidently classified by an optimal 2D viewpoint. When it comes to objects that lack

this property, our strategy would fail to detect them. Triangular pyramid, for example,

is hard to be distinguished from square pyramid or triangular prism using a single 2D

projection.

Organization. This thesis is organized as follows. Chapter 2 discusses some of the

key related works in object detection. Chapter 3 introduces the proposed slice-and-fuse

strategy, Retinal-SliceNet and U-SliceNet. Chapter 4 demonstrates the performance of

SliceNets on baggage classification, 3D detection, and 3D segmentation using a large-

scale baggage CT dataset. Finally, we conclude the proposed techniques in Chapter 5.



Chapter 2

Related Work

In this chapter, we discuss some of the key related work in 2D and 3D object detection,

including those used in the context of CT scans.

2.1 2D Object Detection

Current state-of-the-art 2D object detectors can be categorized into one-stage and two-

stage detectors.

One-stage object detection algorithms use a single network to regress the bounding

box locations and class labels for a fixed set of region proposals on the input image.

YOLO [13] divides an input image into S × S grid cells and uses a unified convolu-

tional network to regress bounding boxes, confidence scores, and class probabilities for

each grid cell. The follow-up works YOLO9000 [21] and YOLOv3 [22] further boost

the performance. Despite the extremely fast speed, YOLOs miss small objects due to

the coarse segmentation to the input images. To compensate objects of different scales,

SSD [12] introduces feature pyramids to single-shot object detection, generating anchor

boxes of different aspect ratios and scales for each feature map locations. Recently, Reti-

naNet [14] proposes focal loss to handle the extreme imbalance between the background

and target object bounding boxes and achieves the state-of-art detection performances.

Two-stage object detection algorithms first generate a small set of candidate regions

and refine the class labels as well as locations of the pre-selected regions. The most

representative two-stage object detection algorithm is the R-CNN family [15–17]. Faster

R-CNN is the first to introduce Region Proposal Network (RPN) to filter out a large

number of background candidates and uses a second network to accurately predict class

labels and coordinates for each proposal. Recent two-stage object detection algorithms

5
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follow the same paradigm as Faster-RCNN. To avoid the costly classification applied on

each region proposal, R-FCN [23] extracts position-sensitive feature maps and feed them

to region proposals to directly compute class scores. FPN [18] improves the detection

accuracy by introducing multi-scale feature pyramids into Faster R-CNN. A more recent

work Mask R-CNN [19] extends Faster R-CNN framework to instance segmentation and

achieves the state-of-art performance. They first detect object bounding boxes, and then

crop and segment these regions to get the refined mask.

2.2 3D Object Detection

Convolutional Neural Networks (CNNs) have brought significant progress in 3D object

detection. Many of the previous works convert point cloud into volumetric representation

and generalize CNNs to 3D CNNs for object detection. 3D-FCN [24] exploits a 3D fully

convolutional network to predict class labels and bounding boxes locations directly.

VoxelNet [25] utilizes 3D convolutional layers to encode the input 3D volumes into multi-

channel 2D feature maps and feeds the features to a subsequent detection network.

Vote3Deep [26] exploits the sparsity of 3D volume to accelerate the 3D convolution.

However, these 3D-based algorithms are extremely expensive when applied to detect

objects in high-resolution 3D volumes.

To alleviate the computational complexity of 3D object detection, researchers have made

progress in leveraging image-based object detection by encoding 3D data into 2D images.

VeloFCN [27] projects the 3D point cloud to front-view to obtain a 2D depth map and

then applies a 2D detection network to localize the vehicles. MV3D [28] utilizes the bird-

eye-view for region proposals and fuses the features from front-view, bird-eye-view, and

RGB images to predict object classes and bounding boxes locations. A more recent work

Frustum-PointNet [29] first detects objects on RGB images and extrudes the proposals

into 3D frustums, and then applies 3D segmentation and bounding box regression within

the 3D frustums.

Despite the high efficiency, these image-based algorithms have certain limitations. Firstly,

projecting the whole scene to a certain viewpoint could introduce severe occlusion among

target objects and cluttered object if the scene if very crowded. Secondly, all these al-

gorithms all rely on fixed viewpoint for region proposal (bird-eye-view or RGB images),

which requires the target objects to remain on the ground. When the target objects

pose freely on all three dimensions, this implicit assumption no longer holds.
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2.3 3D Object Detection in Baggage CT

Existing object detection algorithms [6, 7] in 3D baggage CT scans simplify the object

detection problem to a template-based matching problem, where the goal is to deter-

mine whether a template object appears in the testing baggage. [6] proposed a 3D

SIFT descriptor to describe the keypoints in both template and testing volumes, and

then applies a RANSAC driven keypoint match selection to determine whether the tem-

plate is included in the testing volume. [7] further compares the template matching

performance using different keypoint descriptors, including density histogram, density

gradient histogram, RIFT [30], and 3D SIFT [6]. However, template-based matching

method requires the candidate object in the testing baggage to be exactly the same to

the template object, even a small change in shape might cause a mismatch. This could

pose a severe threat to aviation security.

One plausible solution to object detection in 3D baggage CT scans is to apply an accurate

3D classifier in a sliding-window approach. Extensive research has been done to improve

object classification accuracy on 3D baggage CT volumes [4, 5, 8], however, all existing

works exploit hand-crafted features, whose performance is restricted by human priors.

[4] extracts density histogram and density gradient histogram for each keypoint and

encode them with Bag of visual Words. Support vector machine is used for further

classification. The following work [8] improves the classification accuracy by exploiting

random forest as feature encoding method. [5] propose a visual cortex model to extract

3D features, which is similar to a deep neural network, however the kernel of each layer is

hand-crafted. Moreover, even if these classifiers can be incorporated in a sliding-window

approach to detect target objects, the computational complexity could be unaffordable

in practice, due to the expensive computation on each 3D window.

2.4 3D Baggage CT Dataset

Experimental validation of techniques developed in this thesis is performed on a large-

scale 3D baggage CT dataset collected by our collaborators at IDSS corp. The dataset

consists of five subsets with 11,375 baggage in total. A detailed description of subsets

is shown in Table 2.1. True positive baggage scan contains weapons as well as various

cluttered objects, while true negative baggage only contains cluttered stuff. Note that

threats in low-cluttered, high-cluttered, and multiple-targets subsets are artificially in-

serted into each scanned baggage. This results in a very large collection of simulated

true positive bags, where each weapon is labeled voxel-wise. Real-scan subset contains
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a small collection of true positive baggage, where each threat is physically placed in the

bags and scanned together with the cluttered objects.

Features Type #Train #Test

Low
Cluttered

Each baggage is sparsely
filled with cluttered stuff
such as shoes, bottles. A
weapon is synthetically
inserted into each baggage.

Simulated
true positive

2,285 287

High
Cluttered

Each baggage is densely
filled with cluttered stuff
including electric devices
(laptops and cell phones).
One weapon is synthetic-
ally inserted into the bag.

Simulated
true positive

1,934 242

Multiple
Targets

Multiple weapons are
synthetically inserted
into each baggage.

Simulated
true positive

548 69

Real
Scan

Weapons are physically
placed in each baggage
and scanned along with
the clutters.

Scanned
true positive

0 274

Clearbag
Scan

Each baggage contains
only clutters.

Scanned
true negative

2,847 2,889

Total 7,614 3,761

Table 2.1: Subsets description of IDSS 3D baggage CT dataset.



Chapter 3

Slice-and-fuse Strategy

for 3D Object Detection

In this chapter, we introduce the proposed slice-and-fuse strategy, a general framework

for object detection and segmentation in high-resolution 3D volumes, and its applications

in objection detection and segmentation.

3.1 Slice-and-fuse Strategy

The proposed Slice-and-fuse strategy is a generic method for object detection and seg-

mentation in high-resolution dense 3D volumes. We aim to leverage 2D CNNs to acceler-

ate as well as boost the accuracy of 3D object detectors. The key to our strategy are the

two operations: the slice operation that effectively encodes 3D volumes into 2D images,

and the fuse operation that decodes 2D predictions to recover volumetric estimation.

With these two operations, expensive detection and segmentation computation is only

carried out in 2D-space, while only marginal computation is needed to convert between

3D and 2D.

Our method takes in 3D dense volumes of arbitrary size, and output 3D predictions of

the same size as the inputs. In the following paragraphs, we will introduce slice operation

and fuse operation in detail.

Slice volumes into multi-view slices. We generate slices along XY, YZ, and XZ

directions. Each slice is generated by first cropping out an n-voxel-thick subvolume and

then performing max-operator along the n voxels. Specifically, as is shown in Figure 3.1,

to generate an XY slice from a dense 3D volume V ∈ RNx×Ny×Nz , we first crop out a

9
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Figure 3.1: Illustration of slice-operation along z-axis.

sub-volume of size Nx ×Ny × n and then apply max-operator along z-axis to get a 2D

projection of size Nx × Ny. We apply similar operations to YZ and XZ directions. In

all, three sets of slices are generated with respect to the three directions. Each slice is

individually fed to 2D image-based CNNs to obtain 2D predictions.

Fuse multi-view 2D predictions to 3D. To aggregate XY, YZ, and XZ slices

predictions, we first linearly interpolate slices from the same direction to obtain one

volumetric prediction for each direction. Specifically, for XY direction, we linearly in-

terpolate Nz/n XY slices along z-axis to recover a 3D prediction V̂XY ∈ RNX×Ny×Nz .

Similarly we can recover V̂Y Z and V̂XZ for YZ and XZ directions. To fuse the multi-view

3D predictions, we average the two largest predicted values for each voxel.

Compared to other imaged based 3D object detection algorithms, the slice-and-fuse

pipeline offers three advantages for improving detection accuracy. First, cropping out

sub-volumes before projection effectively avoids the heavy occlusion caused by projecting

the whole volume at one time. Second, since we know the location each slice is extracted

from, we retain the depth information. This enables us to accurately estimate full 3D

volumes in the fuse operation. Thirdly, averaging the two maximum predictions in the

fusion stage explicitly check the spatial consistency across multiple views, making the

3D prediction for each voxel more reliable.
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3.2 Retinal-SliceNet — A One-stage 3D Object Detector

Figure 3.2: Retinal-SliceNet architecture. Retinal-SliceNet is a one-stage 3D
object detector. It incorporates RetinaNet [14] into slice-and-fuse framework to directly

predict the location of target objects.

In this section, we present one-stage Retinal-SliceNet, which uses a single network to

regress target objects location in 3D baggage CT. The proposed algorithm adopts Reti-

naNet [14], one of the state-of-the-art one-stage 2D object detection networks, to the

proposed slice-and-fuse strategy. Specifically, an input 3D volume is first sliced into

XY, YZ, and XZ slices, and each 2D slice is given individually to RetainNet to predict

bounding boxes and corresponding confidence scores. Each 2D prediction can be de-

coded into a continuous score map, where the bounding box regions are assigned with

the value of corresponding confidence scores. For example, an input XY image of size

Nx ×Ny will produce a predicted continuous score map of size Nx ×Ny. In all, three

sets of 2D prediction maps can be obtained and fed to the fuse-operation to get a single

3D volumetric estimation of size Nx ×Ny ×Nz. The estimated 3D prediction is further

thresholded to get the final 3D estimation.

RetinaNet [14] takes feature pyramid network [18] as backbone to extract features from

the input image and construct a feature pyramid. For each pyramid level, they attach

two small FCNs to it - a classification subnet that predicts the confidence score of each

object class, and a box regression subnet that regresses the bounding box locations.

The challenge in training RetinaNet [14] for baggage CT slices is the severe imbalance

between the number of voxels that are target objects and that are the cluttered back-

ground. For baggage that contains one target object, in most cases, only one slice out

of more than 15 slices that contains a target. And in a slice, a target object only takes

a small portion of the total image resolution.

To address the extreme class imbalance problem, we adopt focal loss [14] during training,

which is shown to prevent the vast number of easy negative samples to overwhelm the
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detector from training. Focal loss [14] is defined as:

FL(pt) = −αt(1− pt)γ log(pt)

where

pt =

p if y = 1

1− p otherwise

Focal loss adds two modulating factors αt and (1− pt)γ to the cross entropy loss. γ ≥ 0

is the focusing parameter. The larger γ is, the less loss is affected by the well-classified

samples. αt is the balance parameter. Tuning αt according to the ratio of positive and

negative samples can slightly improved the accuracy.

3.3 U-SliceNet — A Two-stage 3D Object Detector

A key component of two-stage object detector is the region proposal network, which

coarsely selects regions that contains target objects and proposes a series of anchor

boxes. The region proposals are further given to an accurate classification network to

refine the class labels.

The proposed U-SliceNet follows the two-stage detector paradigm. In addition to predict

bounding boxes, our SliceNet also regresses an accurate segmentation for the target ob-

jects. The 3D semantic segmentation comes naturally with our region proposal network,

which first predicts accurate voxel-wise labels and then generate anchor boxes. In the

following paragraphs, we will describe the region proposal network (voxel-wise labeling

followed by region proposal) and the classification network in detail.

Voxel-wise labeling network. The voxel-wise labeling network is designed by adapt-

ing a simple 2D-UNet [20] to the proposed slice-and-fuse strategy. The labeling network

takes in a dense 3D volume of size Nx × Ny × Nz and outputs a 3D prediction of the

same size, with each voxel represents the probability of belonging to the target ob-

jects. Specifically, given a 3D baggage CT volume, we first slice it into XY, YZ, and

XZ slices, and feed each slice individually to a 2D-UNet [20]. We use fuse-operation to

aggregate all 2D pixel-wise labeling into 3D voxel-wise prediction. The 3D volumetric

prediction is further thresholded to keep only the most probable regions. The 2D-UNet

has eight fully convolutional layers conv1-conv8, followed by eight deconvolution layers

deconv1-deconv8, with a skip connection connecting each pair of them. In the down-

sampling pathway, each convi (i=1,...,8) layer outputs a feature map with a spatial

resolution of 2i lower than the input image and 32 ∗ 2i feature channels. Each conv



Slice-and-fuse Strategy for 3D Object Detection 13

Figure 3.3: U-SliceNet Architecture. U-SliceNet is a two-stage object detector.
In the first stage, voxel-labeling network estimates a 3D volumetric prediction and
generates proposals at the valid voxels. In the second stage, a 3D classification network

accurately classifies the region proposals.

layer is followed by a LeakyReLu (α = 0.2) activation and a batch normalization. The

bottleneck feature has a resolution of 1× 1. In the upsampling pathway, each deconvi

(i=8,...,1) layer outputs a feature map with a spatial resolution of 2(i−1) lower than the

output image, and the final has the same number of channels as the number of object

classes. Each deconvi (i=8,...,2) layer is followed by an ReLU activation and a batch

normalization layer.

During the training of 2D-UNet, we use both slices containing target objects and clear

slices. Specifically, for the positive baggage, we only select slices containing target

objects; for the negative baggage, we randomly select nine slices from each baggage.

To handle the class imbalance between target objects and the cluttered background, we

use focal loss as training criterion.

Region proposal. We select the anchor points with a spatial interval of m voxels

among the valid voxels. At each anchor point, we propose a set of anchor boxes that

center around the anchor point. To achieve accurate detection, the anchor boxes are

designed to have 5 different scales and 8 different aspect ratios, yielding a maximum

of 155 anchors at each location. The region proposals are then back-projected to input

volumes to crop out corresponding sub-volumes, which are later batch-resized to a unified

resolution of 32× 32× 32 for further classification.
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Proposal classification. We train a fully 3D CNN to reject the region proposals that

only have cluttered background or small overlapping with ground-truth target objects.

The network has three convolutional blocks followed by two fully connected layers. Each

convolutional block is composed of four 3D convolution layers, each followed by an ReLU

activation. conv1 of each block outputs a feature map with spatial resolution 2i lower

than the input 3D feature map and 64 × 2i number of feature channels. And conv2-4

of each block keep the sptial resolution and number of channels the same.
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Experiments

We experiment the proposed SliceNets on IDSS 3D Baggage-CT dataset. We train our

models on the Low-clutter, High-clutter, Multiple-targets and Clearbag datasets, and

test on all five datasets including Real-scan dataset. The detailed training and testing

splits are summarized in Table 2.1. In all, 7,614 bags are used in training.

Training set generation. In order to train image-based component of our SliceNets,

we prepare the 2D training samples in advance. Specifically, for target baggage, we

select at most nine slices from each baggage that contains the target objects. The slices

are selected by first finding the centroid of target objects and generating 3 XY slices, 3

YZ slices, and 3 XZ slices around it. For the clear baggage, we randomly pick nine slices

from each baggage. This results in a training set of 47,835 target slices and 25,624 clear

slices.

Retinal-SliceNet implementation details. The training of Retinal-SliceNet in-

volves only the training of [14]. One Nvidia TITAN Xp GPU is used during training.

The input images are of size 560 × 560. The model is trained with a mini-batch size

of 8 images for 200 epochs. We use a pretrained FPN [18] as backbone network. We

adopt SGD for optimization with a learning rate of 0.0001, a weight decay of 0.0001 and

momentum of 0.9. For the focal loss function, we use γ = 5 and α = 0.25. By applying

the trained RetinaNet in slice-and-fuse strategy, we obtain a 3D continuous prediction.

We further threshold the 3D prediction to keep only regions with high possibility to be

target objects and give a bounding box to each connected regions.

U-SliceNet implementation details. During the training of 2D-UNet [20], each

input image is resized to 256 × 256. We use one GPU with a mini-batch of 16 images.

15
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We adopt Adam optimizer with β1 = 0.5 and β2 = 0.999 and train the network for 200

epochs. The initial learning rate is 0.002 and is updated every 50 epochs according to

lambda update rule. We adopt focal loss as training criterion, with γ = 2 and α = 0.25.

After fusing 2D predictions to 3D estimation, we use a threshold r1 to filter out regions

that have small probabilities to be target objects. Among the kept regions, we select

anchor points using a spatial interval of 15 voxels, and propose a fixed set of 155 anchors

at each location.

We train the 3D classification network on the region proposals generated from training

baggage. At each iteration, the network takes in a mini-batch of 4 bags and randomly

selects 100 negative proposals and all positive proposals for training. The training labels

are determined according to the Intersection-over-Union (IoU) ratios with the ground-

truth bounding box as in [17]. The proposals that have IoU greater than 0.4 are assigned

as positive samples, and those have IoU less than 0.1 are assigned as negative samples.

4 GPUs are used in training. We use a SGD optimizer with learning rate of 0.0001 and

momentum of 0.9 and train for 15 epochs. A focal loss with α = 0.75 and γ = 2 is

used as training criterion. We adopt a hierarchical training strategy. We first pretrain

the network on 1000 randomly selected training samples for 10 epochs to initialize the

large number of weights in the 3D network. Each epoch takes around 20 minutes. And

then we train the model on the whole training dataset for five epochs. Each epoch takes

around 3 hours.

4.1 SliceNets for Baggage Classification

We first show how SliceNets can be used for 3D baggage classification. Baggage that

contains weapons are considered a positive sample, and clear baggage is considered

a negative sample. We first use SliceNets to predict a score for each bag and then

threshold the score to obtain the binary label. For one-stage SliceNet, we consider the

largest predicted value of the 3D prediction as the bag-level score. For U-SliceNet, we

use the largest bounding boxes score as the bag-level score.

We test the baggage classification accuracy of SliceNets on four target datasets and

the clearbag dataset. The ROCs are shown in Figure 4.1. We further summarize the

detection rate and false alarm rate in Table 4.1. The recalls and false alarm rates are

computed by thresholding the predicted bag-level scores. Two-stage SliceNet is more

accurate than one-stage SliceNet in terms of recall and false alarm rate. Note that for

Real-scan dataset, which is not used for training, one-stage SliceNet achieves 95.26%

detection rate at a false alarm rate of 6.95%, while two-stage SliceNet achieves 98.18%



Experiments 17

(a) Low Clutter (b) High Clutter

(c) Multiple Threat (d) Real Scan

Figure 4.1: Results for 3D baggage classification. For Real-scan dataset, one-
stage SliceNet achieves 95.26% detection rate at a false alarm rate of 6.95%, while

two-stage SliceNet achieves 98.18% detection rate at a false alarm rate of 5.08%.

detection rate at a false alarm rate of 5.08%. For simulated datasets, two-stage SliceNet

achieves a 0% false alarm rate for all three datasets, with a detection rate of 96.52%

for the High-clutter dataset, 97.93% for the High-clutter dataset and that of 100% for

the Multiple-targets dataset. The reason that Multi-Targets dataset achieves very high

detection rate is that in terms of baggage classification task, a sample is determined as

positive if at least one weapon is detected. This makes the detection in Multi-Targets

baggage easier.
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Low
Clutter

High
Clutter

Multiple
Targets

Real
Scan

One-stage SliceNet 95.12 97.11 100.00 95.26
Two-stage SliceNet

Recall
(%) 96.52 97.93 100.00 98.18

One-stage SliceNet 0.98 0.98 1.69 6.95
Two-stage SliceNet

False Alarm
Rate (%) 0.00 0.00 0.00 5.08

Table 4.1: Results for 3D baggage classification.

4.2 SliceNets for 3D Object Detection

We evaluate two-stage SliceNet on 3D object detection task. We test the average pre-

cision of the estimated bounding box under three different thresholds. The results are

shown in Table 4.2. We also demonstrate qualitative results in Figure 4.3 and Figure 4.4.

We use Average Precision in 3D (AP3D) as evaluation metrics, together with an Intersec-

tion over Union (IoU) threshold. If the predicted bounding box has an IoU>=threshold

with the ground-truth bounding boxes, we consider the bounding box as correct detec-

tion. Note that our two-stage SliceNet achieves high accuracy with IoU≥0.3, and the

performance drops when IoU threshold increases. This is because we didn’t add bound-

ing box regression to the second-stage. Our network can detect the target object with a

high accuracy, but are not able to predict the accurate positions. This can be improved

by adding bounding box regression in the future work.

Low
Clutter

High
Clutter

Multiple
Targets

Real
Scan

Two-stage-SliceNet
AP3D

(IoU=0.3) 96.11 99.16 100.00 90.51

Two-stage SliceNet
AP3D

(IoU=0.4) 83.04 86.97 95.65 76.28

Two-stage SliceNet
AP3D

(IoU=0.5) 51.59 55.04 71.01 42.70

Table 4.2: Results for 3D object detection.

4.3 U-SliceNet for 3D Segmentation

Lastly, we show that U-SliceNet can be used in 3D semantic segmentation task as well.

We test it on each of the four target dataset. We predict a score between 0 and 1 for

each voxel to indicate the probability of the voxel belongs to a target object. The ground
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(a) Low Clutter (b) High Clutter

(c) Multiple Threat (d) Real Scan

Figure 4.2: Results for 3D semantic segmentation.

truth for each voxel is a binary label for whether being background or targets. Figure 4.2

shows the ROC of evaluating 3D voxel-labeling on each dataset.

By applying a threshold to each voxel prediction, we are able to compute voxel-wise

recall and false alarm rate, as is shown in Table 4.3.

Low
Clutter

High
Clutter

Multiple
Targets

Real
Scan

Recall (%) 93.30 92.12 91.52 95.05
False Alarm Rate (%) 0.11 0.10 0.16 0.13

Table 4.3: Results for 3D semantic segmentation.

Figure 4.3 and Figure 4.4 showcase three qualitative detection and segmentation results

for the Real-scan dataset and Multiple-targets dataset respectively. Each baggage is

projected to top view, side view, and front view. Images in the same row are the
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projections belong to the same baggage. It can be seen that the two-stage SliceNet is

able to generate high quality segmentation masks for objects of different scales and for

multiple instances.

Given a 560 × 560 × 560 input volume, two-stage SliceNet takes an average of 5.09s to

generate a highly accurate segmentation mask using one Nvidia TITAN Xp together

with Intel Xeon CPU E5-2640. We feed each slice to 2D-UNet one at a time to obtain

all 2D predictions for a baggage. We implement the linear interpolation between slices

in parallel using GPU to reconstruct 3D prediction from 2D predictions.



Conclusion 21

Figure 4.3: Qualitative results for object detection and segmentation on
Real-scan dataset. The three images in each row represents the top-view, side-view,
and front-view of a scanned baggage. The original image is shown in gray scale. The red
boxes are predicted bounding boxes, and the yellow region are predicted segmentation

mask. The green boxes are the ground-truth boxes.
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Figure 4.4: Qualitative results for object detection and segmentation on
Multiple-targets dataset. The three images in each row represents the top-view,
side-view, and front-view of the same baggage. The original image is shown in gray
scale. The red boxes are predicted bounding boxes, and the yellow region are predicted

segmentation mask. The green boxes are the ground-truth boxes.
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Conclusion

In this thesis, we present slice-and-fuse strategy, a generic framework for object detec-

tion and segmentation in high-resolution 3D volumes. Our framework encodes input

3D volumes into multiple 2D slices, leverages fast image-based models to produce 2D

detection or segmentation results, and then pools 2D predictions to 3D space to obtain

volumetric predictions.

We demonstrate slice-and-fuse strategy in object detection for 3D baggage CT scans.

We design two algorithms, called SliceNets, that incorporate cutting-edge one-stage and

two-stage detection algorithms into the proposed strategy. Retinal-SliceNet exploits

a single image-based detector [14] to generate 2D predictions and directly fuses the

2D predictions into volumetric predictions. U-SliceNet first leverages 2D-UNet [20] to

predict voxel-wise labeling for the input volume, and then assigns anchor boxes to valid

voxels. A highly-accurate 3D classifier is trained to refine the classification of region

proposals.

We evaluate our SliceNets in baggage classification, object detection on IDSS 3D baggage

CT dataset. We also test U-SliceNet in 3D semantic segmentation. For Real-scan

dataset, Retinal-SliceNet achieves 95.26% detection rate at a false alarm rate of 6.95%,

while U-SliceNet achieves 98.18% detection rate at a false alarm rate of 5.08%. In object

detection task, U-SliceNet reaches more than 90% average precision (with IoU> 0.3) on

all four target datasets. However, the performance drops when higher IoU is required.

This can be improved by designing bounding box regression in the future work. In

semantic segmentation task, the U-SliceNet achieves around ∼ 0.15% false alarm rate

and produces visual compelling results.
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