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Learning Vehicle Cooperative Lane-changing
Behavior from Observed Trajectories in the NGSIM

Dataset
Shuang Su, Katharina Muelling, John Dolan, Praveen Palanisamy, Priyantha Mudalige

Abstract—Lane-changing intention prediction has long been a
hot topic in autonomous driving scenarios. However, none of the
existing literature has taken both the vehicle’s trajectory history
and neighbor information into consideration when making the
predictions. We propose a socially-aware LSTM algorithm in
real world scenarios to solve this intention prediction problem,
taking advantage of both vehicle past trajectories and their
neighbor’s current states. Simulation results show that these two
components can lead not only to higher accuracy, but also to
lower lane-changing prediction time, which plays an important
role in potentially improving the autonomous vehicle’s overall
performance.
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I. INTRODUCTION

Lane changing has been regarded as one of the major
factors causing traffic accidents [1]. As autonomous vehicles
drive on highways, it is necessary for them to predict
other vehicles’ lane-changing intention to prevent potential
collisions. There has been a lot of work attempting to model
drivers’ lane-changing behaviors, which can be divided into
two types: rule-based algorithms and machine-learning-based
algorithms.

Rule-based algorithms propose a set of rules to model
lane changing. The most representative one is the ’gap
acceptance model’ [2], which assumed that drivers’ lane-
changing maneuvers are based on the lead and lag gaps in
the target lane. The driver tends to make a lane change if
the gap has attained a minimum acceptable value. Although
straightforward and robust in simple scenarios, such methods
need lots of fine-tuning for the corresponding parameters,
which is tedious and time-consuming when many scenarios
must be considered.

Machine-learning-based algorithms create a math model
for the problem: given all of the vehicle-related features as
input, and the vehicle’s lane-changing intention as output,
the methods try to optimize a classification model to obtain
the best prediction results. A large number of classifiers such
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as logistic regression [3], SVM classifiers [4], and Bayesian
network [5] have been adopted to formulate this model.
However, none of them has considered both the vehicle’s
history trajectories and its neighbor information as features,
which is partly due to the limitation of network structures not
allowing those history or neighbor features.

A human-driven vehicle’s lane-changing intention can
be based on various factors, including the vehicle’s own
properties such as heading angle and acceleration, as well as
its relationship to neighboring vehicles, such as its distance
from the front vehicle. Recently, several references have
explored the impact of neighboring traffic on the ego vehicle.
Sadigh et al. proposed an algorithm for the ego vehicle to
actively gather the surrounding cars’ internal information
through various sound-out actions [6]. Although seemingly
attractive, such a strategy could only be adopted in toy
scenarios. It would be unacceptable, for example, for an
autonomous car to aggressively cut into another lane or wait
for ages on highways just to test other vehicles’ reactions.
Recently, Alahi et al. came up with the idea of a social
tensor, which encodes the neighbor agents’ past trajectory
information when predicting ego agent’s future positions
[7]. We use this idea, and bring in the social tensor from
surrounding vehicles when predicting the ego vehicle’s
lane-changing intention.

Long short-term memory is a recurrent network structure
which adopts ’forget gates’ to prevent back-propagated errors
from either exploding or vanishing [8]. It can therefore have
a wide window slot and learn from events that happened
hundreds of steps ago. Due to its ability to handle noisy,
incompressible input sequences, it has been widely applied
in numerous fields including speech processing [9], music
composition [10], handwriting recognition [11], and even
robot behavior planning [12]. We take advantage of this
ability to introduce vehicle history trajectory information into
the lane-change intention prediction process.

To get a full understanding of naturalistic driving behaviors,
a large number of driving and lane-changing trajectories are
required for the learning process, which is why we chose
the NGSIM data set [13] to train and verify our algorithms.
We also adopted a julia-based NGSIM [14] platform to
extract input features for the network and visualize the traffic
scenarios.
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Section II describes the procedures of extracting and pre-
processing data from the NGSIM data set. In section III we
introduce the input features and explain the specific network
structure in detail. We then illustrate and compare our results
with other methods’ outcomes in section IV. Section V then
summarizes the basic contents of our work and proposes
potential future work.

II. DATA EXTRACTION AND PROCESS

The open source Federal Highway Administration’s Next
Generation Simulation (NGSIM) data set [13], which has
been adopted in numerous previous studies [3], [4], [15],
[6], was picked to extract vehicle trajectories and build the
lane-changing prediction model. At 0.1-second intervals,
the data set recorded the location, speed, acceleration, and
headway information for each vehicle on U.S. Highway 101
[16] and the Interstate 80 (I-80) Freeway [17]. Both locations
contain 45 min. of vehicle trajectory data. Highway 101 is
640m long with five main lanes and a sixth auxiliary lane,
while I-80 is about 500m in length, with six main lanes.

We extracted six sequences of vehicle trajectory data, 10
minutes each, from NGSIM. For each sequence, the first 2
minutes were defined as the test set, and the remaining 8
minutes as the training set. Since the data were recorded at
10 frames per second, we could obtain 1200 test time steps
and 4800 training time steps in total.

A vehicle is labeled as ’intend to change lane to the left’,
’intend to do car following’, or ’intend to change lane to
the right’ at each time step. The way we labeled the vehicle
status is as follows.

As depicted in Fig. 1, we first gathered all of the lane-
changing points, i.e., the points where the vehicle crossed the
dashed line dividing the lanes, for each vehicle. If a vehicle
was on a lane-changing point at time step t, we checked its
trajectories in [t-δt, t+δt] (δt=2s), and calculated its heading
orientation θ during that time period. We then marked the
starting point and ending point of this lane-changing trajectory
when θ has reached a bounding value θbound: |θ| = θbound.

Fig. 2 described the way we collected the trajectory pieces.
n consecutive time steps were packed into one trajectory piece
for each vehicle. If the nth time step of a trajectory piece was
a lane-changing time step, then the piece was a lane-changing
piece, otherwise it was labeled as a car-following piece. The
trajectory pieces were collected in a ’shifting’ manner to
make the most use of the data. In this paper, we set n to be
6, 9, and 12 to determine the impact of length of the history
trajectories on the final results.

We could then get around 60,000 lane changing pieces
plus 400,0000 car following pieces in total for training. This
clearly involves a data-imbalance problem, where there are
far more car following pieces than lane-changing pieces

Fig. 1. The start point, lane-changing point, and end point of a lane-changing
trajectory.

Fig. 2. Shifting methods of extracting input features and output lane-changing
intention for one vehicle. n continuous time steps were packed into one
trajectory piece. If the nth time step of a trajectory piece was a lane-changing
time step, then the piece was a lane-changing piece (as depicted in Piece 1
and Piece 2, which was marked as blue), otherwise it was labeled as a car-
following piece (as depicted in Piece 3, which was marked as pink). The first
time step of the collected pieces shifted one step at a time so that we could
make the most use of the data.

for training, which will result in over-fitting in the training
process. To deal with this problem, we randomly selected
the same number of pieces, N , from the lane-changing-left
pool, the car-following pool and the lane-changing-right pool,
mixing them together for the training data set. To make the
most use of the data, N is set to be the number of pieces in
the lane-changing-right pool.

Each vehicle’s lane-changing intention was then predicted
at each time step given its previous 11-time-step history
trajectories and neighbor information in the test set. The
lane-changing prediction time was also calculated after
filtering the results. Specifically, a lane-changing prediction
point is settled if a vehicle is predicted to make a lane change
for 3 continuous time steps, and the lane-changing prediction
time is defined to be the time gap between the lane-changing
point and the lane-changing prediction point, as depicted in
Fig. 3.
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Fig. 3. A lane-changing prediction point is settled if a vehicle is predicted to
make a lane change for 3 continuous time steps. The lane-changing prediction
time is defined to be the time gap between the lane-changing point and the
lane-changing prediction point.

III. METHODOLOGY

A. Input features

The input features for each vehicle at each time step are:
a) the vehicle’s own information

1. vehicle acceleration
2. vehicle steering angle with respect to the road
3. the global lateral vehicle position with respect to the

lane
4. the global longitudinal vehicle position with respect to

the lane

b) the vehicle’s neighbor information (see Fig. 4, ”ego
vehicle” here refers to the vehicle whose lane-changing
intention we are estimating)

1. the existence of left lane(1 if existed, 0 if not)
2. the existence of right lane(1 if existed, 0 if not)
3. the longitudinal distance between ego vehicle and

left-front vehicle
4. the longitudinal distance between ego vehicle and front

vehicle
5. the longitudinal distance between ego vehicle and

right-front vehicle
6. the longitudinal distance between ego vehicle and

left-rear vehicle
7. the longitudinal distance between ego vehicle and rear

Fig. 4. Neighbor information collection. In (a), we first divided the neighbor
space into four parts based on the ego vehicle’s orientation and center position,
and defined the corresponding neighbor vehicles based on their relative
positions to the ego vehicle. We then collected the longitudinal distances
between these neighbor vehicles and the ego vehicle to be the neighbor features
in (b).

Fig. 5. LSTM network structure for lane-changing intention prediction.

vehicle
8. the longitudinal distance between ego vehicle and

right-rear vehicle

B. Network structure
We adopted the LSTM network structure, as depicted in Fig.

5, to deal with this problem. The embedding dimension chosen
for the vehicle’s own features as well as its neighbor features
was 64, and the hidden dimension for the LSTM network was
128. We selected the learning rate to be 0.000125, using soft-
max cross entropy loss as the training loss.

IV. RESULTS

A. Comparison with other network structures
We obtained and compared our results with feedforward

neural network, logistic regression and LSTM without
neighbor feature inputs to show the advantages of adding
history trajectories and social factors.

Table I and Fig. 6 show the classification accuracy rate
calculated by our algorithm, feedforward neural network,
and logistic regression. Social-LSTM, based on the benefits
of history trajectory information, outperforms the other
two methods in all classification types (lane-changing left,
car-following, and lane-changing right) in terms of prediction
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Real Predict Left Following Right
Social-LSTM Left 87.40% 12.34% 0.26%

Following 7.47% 85.33% 7.20%
Right 2.94% 11.22% 85.84%

Feedforward Neural Network Left 84.6% 15.40% 0%
Following 2.61% 83.78% 13.61%

Right 2.44% 12.91% 79.65%
Logistic Regression Left 64.91% 35.03% 0.06%

Following 9.88% 82.87% 7.25%
Right 0.05% 36.30% 63.65%

TABLE I. LANE-CHANGING PREDICTION ACCURACY COMPARISON
AMONG SOCIAL-LSTM, FEEDFORWARD NEURAL NETWORK, AND

LOGISTIC REGRESSION.

Lane-changing Right Car following Lane-changing Left

Classification Type
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Fig. 6. Prediction accuracy comparison for different methods. Social-LSTM
outperforms the other two in all classification types including lane-changing
right, car-following, and lane-changing right.

accuracy.

B. Comparison among different trajectory lengths

We then obtained and compared the predicted accuracy rate
for different trajectory lengths. Specifically, we set the history
trajectory length of the LSTM structure to be 6, 9, and 12,
comparing them against each other. The results are shown in
Table II, and visualized in Fig. 7. The prediction accuracy
increases as the history length grows in all prediction scenarios
(lane-changing left, car following, and lane-changing right).

C. Comparison between with- and without- neighbor scenar-
ios

Table III depicts the lane-changing prediction time
generated by with- and without- neighbor-input-feature LSTM
models, which is defined to be the time gap between the
time at which the model predicts there will be a lane-change
and the time at which the vehicle has actually reached the
lane-changing point. The longer the time gap is, the more
useful the prediction is. It can be seen from Fig. 8 that adding
neighbor features prolongs the lane-changing prediction time
in most cases.

Social-LSTM, History Length=12
Real Predict Left Following Right

Sequence 1 Left 87.69% 11.72% 0.60%
Following 11.80% 84.55% 3.65%

Right 0.00% 12.66% 87.34%
Sequence 2 Left 84.85% 15.00% 0.15%

Following 7.49% 88.71% 3.79%
Right 4.79% 7.56% 87.66%

Sequence 3 Left 98.17% 1.83% 0.00%
Following 14.32% 81.42% 4.26%

Right 13.04% 0.00% 86.96%
Sequence 4 Left 90.76% 8.61% 0.63%

Following 3.94% 81.59% 14.46%
Right 0.58% 12.14% 87.28%

Sequence 5 Left 92.11% 7.89% 0%
Following 2.71% 90.13% 7.16%

Right 7.16% 17.65% 75.19%
(a)

Social-LSTM, History Length=9
Real Predict Left Following Right

Sequence 1 Left 86.94% 12.56% 0.49%
Following 12.87% 83.34% 0.79%

Right 0.00% 14.50% 85.50%
Sequence 2 Left 83.13% 16.80% 0.07%

Following 7.94% 88.01% 4.04%
Right 4.65% 7.82% 87.53%

Sequence 3 Left 98.17% 1.83% 0.00%
Following 14.99% 80.54% 4.48%

Right 14.24% 0.00% 85.76%
Sequence 4 Left 89.82% 9.69% 0.49%

Following 4.41% 80.04% 15.55%
Right 2.69% 11.78% 85.53%

Sequence 5 Left 90.05% 9.95% 0.00%
Following 3.53% 89.60% 6.86%

Right 5.61% 21.08% 73.30%
(b)

Social-LSTM, History Length=6
Real Predict Left Following Right

Sequence 1 Left 84.27% 15.44% 0.29%
Following 23.49% 72.20% 4.31%

Right 3.30% 28.66% 68.04%
Sequence 2 Left 77.21% 20.82% 1.98%

Following 16.80% 78.72% 4.48%
Right 8.55% 13.06% 78.38%

Sequence 3 Left 95.12% 4.88% 0.00%
Following 24.84% 70.33% 4.84%

Right 14.42% 12.50% 73.08%
Sequence 4 Left 78.47% 20.21% 1.32%

Following 8.90% 72.40% 18.70%
Right 2.15% 16.76% 81.09%

Sequence 5 Left 77.78% 22.22% 0.00%
Following 13.92% 81.87% 4.21%

Right 0.00% 30.01% 69.99%
(c)

TABLE II. LANE-CHANGING PREDICTION ACCURACY COMPARISON
AMONG DIFFERENT TRAJECTORY LENGTHS

Lane-changing Left Lane-changing Right
Sequence 1 1.17s/1.08s 1.00s/0.70s
Sequence 2 1.34s/1.31s 1.39s/1.31s
Sequence 3 1.59s/1.58s 1.48s/1.50s
Sequence 4 1.66s/1.50s 1.32s/1.33s
Sequence 5 1.66s/1.55s 0.75s/0.73s

Average 1.44s/1.31s 1.14s/1.03s
TABLE III. LANE-CHANGING PREDICTION TIME COMPARISON
BETWEEN WITH-NEIGHBOR AND WITHOUT-NEIGHBOR SCENARIOS

V. CONCLUSIONS

This paper proposes a LSTM network structure with the
introduction of neighbor vehicles’ features to make lane-
changing intention predictions for each individual vehicle. We
compared our methods with different network structures such



5

Seq1 Seq2 Seq3 Seq4 Seq5
0.75

0.8

0.85

0.9

0.95

1

Lane-changing Left Prediction Accuracy Comparison with History Trajectory Length of 6, 9, and 12

History Trajectory Length: 12

History Trajectory Length: 9

History Trajectory Length: 6

(a)

Seq1 Seq2 Seq3 Seq4 Seq5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Car Following Prediction Accuracy Comparison with History Trajectory Length of 6, 9, and 12

History Trajectory Length: 12

History Trajectory Length: 9

History Trajectory Length: 6

(b)

Seq1 Seq2 Seq3 Seq4 Seq5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Lane-changing Right Prediction Accuracy Comparison with History Trajectory Length of 6, 9, and 12

History Trajectory Length: 12

History Trajectory Length: 6

History Trajectory Length: 9

(c)

Fig. 7. We compared the prediction accuracy for different history trajectory
lengths, the history time step length in the LSTM network structure. For each
test sequence, the prediction accuracy increased as the history trajectory length
grew.

as feed-forward neural network and logistic regression, as well
as with LSTM structures without neighbor features to show
the advantages of adding time and space information. We
also compared the structure among different history trajectory
lengths, and saved their influence on the final prediction
results. Future work will mainly focus on extending the
algorithm into practical scenarios, and seeing if the trained
network can be adopted on a real autonomous-driving car. The
outstanding performance of the LSTM network also suggests
the potential of attempting other recurrent network structures
to further improve the prediction results in traffic scenarios.
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Fig. 8. Prediction time comparison for with- and without- neighbor scenarios.
Both lane-changing left and lane-changing right predictions show a increase,
if not maintained, in prediction time after adding neighbor features.
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