
Automatically Generated Curriculum based Reinforcement Learning
for Autonomous Vehicles in Urban Environment

Zhiqian Qiao1, Katharina Muelling2, John M. Dolan2, Praveen Palanisamy3, Priyantha Mudalige3

Abstract— We address the problem of learning autonomous
driving behaviors in urban intersections using deep reinforce-
ment learning (DRL). DRL has become a popular choice for
creating autonomous agents due to its success in various tasks.
However, as the problems tackled become more complex, the
number of training iterations necessary increase drastically.
Curriculum learning has been shown to reduce the required
training time and improve the performance of the agent,
but creating an optimal curriculum often requires human
handcrafting. In this work, we learn a policy for urban
intersection crossing using DRL and introduce a method to
automatically generate the curriculum for the training process
from a candidate set of tasks. We compare the performance
of the automatically generated curriculum (AGC) training to
those of randomly generated sequences and show that AGC can
significantly reduce the training time while achieving similar or
better performance.

I. INTRODUCTION

How to approach and traverse an urban intersection can
be a difficult problem, not only for autonomous vehicles
(AV) but also for human drivers. The main reason for this
high rate of accidents can be found in the abundance of
external factors that the driver needs to pay attention to
when making a decision. Especially at intersections that are
not controlled by a traffic light, the driver has to monitor
all vehicles continuously and to estimate their intentions
and velocities. Designing a reliable planning algorithm that
allows self-driving cars to make safe and efficient decisions
is therefore a difficult task that is hard to manually construct.

Prior distance-based and time-to-collision-based (TTC-
based) algorithms [1] for the intersection traversing problem
always include some tuning parameters to deal with different
scenarios. Tuning these parameters is laborious since the
algorithms are not easily adapted to various environmental
situations. They also require the design of a large number of
distance-based rules to handle different situations.

As machine learning based approaches and especially
deep reinforcement learning (DRL) based approaches have
become very popular, the idea of apply DRL to autonomous
driving scenarios has gained some attention. Recent work on
using deep RL for learning to cross intersections was able
to show that it is able to learn successful policies that are
comparable or even can outperform rule-based systems in
terms of successfully reaching the goal [17]. Unlike rule-
based algorithms, RL can learn to deal with a continuously

1Zhiqian Qiao is a Ph.D. Student with Electrical and Computer Engineer-
ing, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA,
15213. zhiqianq@andrew.cmu.edu

2 The Robotics Institute, Carnegie Mellon University
3 Research & Development, General Motors, Warren, MI, USA 48093

Fig. 1. Two proposed intersection scenarios. Scenario 1 is for intersection
traversing problem and Scenario 2 is for intersection approaching problem.
In the plots, the cyan lines are stop lines of the intersection corresponding
to the red stop signs.

changing environments by trial and error. Unlike supervised
learning, RL does not need a large amount of labeled data
to train a data-based model. Rather than learning a mapping
from input to label, RL enables an autonomous agent to learn
a mapping from environment states to agent actions from its
experience, which is similar to how human learn to drive.

However, most DRL methods still have difficulty with
high-dimensional state space problems such as autonomous
vehicle decision-making in urban environments. The problem
with DRL algorithms such as Deep Q-learning [4] (DQN)
and Deep Deterministic Policy Gradient [5] (DDPG) is
that they need a long training period to get an acceptable
result. As a result, the basic objective of our work is to
apply deep reinforcement learning (DRL) methods to train
an agent that can autonomously learn how to approach
and traverse an urban stop-sign intersection by collecting
information on surrounding vehicles and the road. In this
paper, we propose an algorithm which can generate a cur-
riculum sequence to accelerate the training process for high-
dimensional reinforcement learning problems. The paper’s
main contributions: 1). A novel algorithm, Automatically
Generating Curriculum (AGC), which can help to solve tasks
with high-dimensional state spaces within fewer iterations
of training by using DRL. 2). Applications of AGC-based
DRL that significantly reduces the training time and training
iterations for a complex autonomous driving scenario by only
using the information of other simulated vehicles within the
ego vehicle’s visibility range instead of a god-view which
can get full information near the scenario.

The remainder of this paper is organized as follows: first,

 This paper is a preprint (IEEE “accepted” status). IEEE copyright notice.©2018 IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI:



we give an overview of the related work in Section II. In
Section III, we give a formal introduction to the problem
addressed here and in Section IV, we describe the proposed
algorithm. The experimental results for learning autonomous
driving behavior and discussions about the results can be
found in Section V. Finally, we make conclusions of the work
in Section VI.

II. RELATED WORK

The previous work related to the paper is divided into
two categories: First, papers address the problem of generat-
ing autonomous driving behavior in various environments
[11][6]; second, previous work that focuses on DRL and
algorithms that speed-up the training [8] [9].

A. Algorithms of autonomous driving behavior

1) Rule-based algorithm: Rule-based algorithms [10] [7]
have been a popular choice for generating autonomous
driving behaviors in urban environments. Time-to-collision
(TTC) [12] is a rule-based algorithm which has been nor-
mally applied in intersection scenarios as a baseline algo-
rithm. However, the rule-based algorithm needs much work
from human beings to design various rules in order to deal
with different scenarios in urban environments.

2) Learning-based algorithm: One of the main problems
of rule-based systems is that they have problems anticipating
potentially complex human driving behaviors. Instead of
designing various rules to or set up different time-to-collision
parameters, learning-based methods allows transferring mul-
tiple rules into a mapping function or one neural network.
Brechtel et al. [14] formulated the decision-making problem
under uncertain environments as a POMDP. They trained out
a Bayesian Network representation to deal with a T-shape
intersection merging problem. Sadigh et al. [15] modeled the
interaction between autonomous vehicles and human drivers
in a simulation. They simulated autonomous vehicles to
motivate human drivers’ reactions and acquired reward func-
tions through Inverse Reinforcement Learning (IRL) [16].
[17] dealt with the traversing problem via Deep Q-Networks
combined with a long-term memory component. They trained
a state-action function Q to allow an autonomous vehicle
to traverse intersections with moving traffic. However, they
applied the Krauss stochastic driving model which allow the
simulated vehicles to yield to ego vehicle when the situation
has possible to crash. They also assumed full knowledge of
other vehicles with a god view state space.

B. Methods of reinforcement learning and speed up tech-
nologies

1) Reinforcement learning approaches: Recent rapid ad-
vances in function approximation with neural networks have
shown advantages in handling high-dimensional sensory in-
puts. Deep Q-Networks [4] (DQN) and its variants have
been successfully applied to various fields including Atari
games [18] and Go [19]. However, DQN is restricted to
the discrete action domain, which makes it hard to apply
to autonomous driving. DDPG [5], which was proposed by

Lillicrap et al., adapted the ideas underlying the success of
DQN to the continuous action domain. The algorithm has
shown to produce the great performance for finding optimal
policies and is competitive with other planning algorithms
which need full access to the dynamics of the system.

2) Algorithms for Training Acceleration : For most
learning-based algorithms, a major challenge is the long
training time needed for the learning process. Curriculum
learning [21] was proposed to speed up the learning process
by first training the system on easy tasks and then gradually
increase the complexity of the problems presented to the
learning agent. Most of the work on Curriculum learning
focused on simple scenarios which can be solved by hand-
designed curricula[22]. For more complex tasks, however,
hand-designing curricula is a difficult problem. Florensa et al.
[23] proposed a curriculum generation method for reinforce-
ment learning which trains the robot in reverse sequence:
starting the learning process from an initial position close to
the destination, it gradually increases the distance towards a
random start configuration. However, the results are mainly
based on static scenarios and not on changeable environ-
ments. In contrast, the complexity of autonomous vehicle
problems is based on the different scenarios resulting from
other vehicles’ interactions. Therefore, the reverse curricu-
lum cannot be applied directly in our work. [8] introduced
an approach which can generate a curriculum as a directed
acyclic graph instead and did experiments on the agents
using RL. [9] designed a Teacher-Student Curriculum which
learns a curriculum by supervised learning or reinforcement
learning in order to complete some tasks which cannot be
finished if trained directly without a particular curriculum.

In this work, we take the hardest situation that even
though the simulated vehicles have seen the ego vehicle when
approaching the intersection, they do not slow down to yield
to the ego vehicle. This kind of scenario is more similar
to a normal stop-sign intersection in the real world and is
much more difficult to deal with for ego vehicle. We utilize a
neural network to approximate the policy function and apply
an automatically generated curriculum based reinforcement
learning method to learn the optimal behavior policy and
decrease the training time and training iterations.

III. PROBLEM DEFINITION

This work mainly focuses on the stop-sign intersection
(Fig. 1) that the ego vehicle starts from the stop-sign lane
and simulated vehicles are moving on the lanes without stop-
signs. We propose a curriculum-based deep reinforcement
learning algorithm for autonomous vehicles in urban envi-
ronments. The setup of scenario considered in this work is
a four-way intersection with two-way stop signs (see Fig.
1). In each scenario, the AV (green solid rectangle with
the letter “A”) has to reach a pre-defined destination (green
hollow rectangle with the letter “A”). Vehicles shown as blue
rectangles with the letter “T” (front vehicle or approaching
vehicles according to different scenarios) are target vehicles
within ego vehicle’s visibility range whose information will
be included in the state space. All the simulated vehicles



in the scenario stay in their lanes with constant velocities.
Furthermore, all traffic participants except the AV will not
change their trajectory in response to the AV.

We consider two scenarios in the work. In scenario 1,
which is referred as Intersection Traversing, the AV has
successfully stopped close to the stop line and has to yield to
the target vehicles (blue rectangle with the letter “T”) on the
main road and then traverse the intersection to the other side.
In scenario 2, the AV is approaching the intersection and has
to first stop at the stop line while also avoiding running into
the target vehicle in front of it (blue rectangle with the letter
“T”). We refer to this scenario as Intersection Approaching.

A. Preliminaries

Formally, we model the autonomous intersection crossing
problem as a Markov Decision Process (MDP) which is
defined as a tuple {S,A,R,T,γ}. Here, S denotes a set of
states, A defines the set of available vehicle actions, and
T (st+1,at ,st) is a transition function that maps a state-action
pair (st ,at) to a new state st+1. Specifically, we define the
state space to contain the velocity of the ego vehicle, the
target vehicle velocity (if exists within visibility range of
ego vehicle), the time to collision with the ego vehicle and
road geometry information including the distance to the stop
line dsl , the lower boundary dlb, the mid-point dmp and the
upper boundary dub of the intersection. Vehicle T in scenario
1 and 2 (see Fig. 1) is the target vehicles for each task. The
action space for the first scenario is formulated as a discrete
decision of Observe ∈ [0,1],Wait ∈ [0,1] or Go ∈ [0,1]. For
the second scenario, the action is a continuous value which
describes the acceleration or deceleration of the ego vehicle.
The reward function R defines the immediate rewards for
each state-action pair and γ is a discount factor for the long-
term reward.

B. Reward function

For the proposed problem, the reward function is designed
as follows:
• For the ego vehicle, a positive reward is calculated

according to the percentage of the trip that has been
finished plus a negative constant reward for the penalty
of time in each step: rego = σ1

‖pdes−pego‖2
‖pdes−pinit‖2

−σ2 where σ1

and σ2 are constants and pinit , pdes and pego represent
the initial position, destination and current position of
ego vehicle, respectively.

• For a target vehicle, a negative reward will be added if
the vehicle is too close to the ego vehicle, which may
result in a potential crash in the future step: rtarget =

∑i σ3 max
[
dsa f e− (‖pi

target − pego‖2),0
]
.

• A constant penalty σ4 is imposed if a crash happens
(‖pi

target − pego‖2 = 0) and a constant penalty σ5 for
unfinished of a task in 2000 epochs which is 200
seconds in real world for both Intersection Approaching
and Traverse scenarios. For approaching scenario, an
extra penalty σ6 is imposed for not stopping at the stop
line. Moreover, a positive reward σ7 is added if the ego
vehicle reaches the goal (‖pdes− pego‖2 = 0). Here, σ7

Fig. 2. Flow chart of Deep Reinforcement Learning with Automatically
Generated Curriculum Sequence

is a constant and pi
target is the position of the ith target

vehicle.

IV. METHODOLOGY

We model both the Intersection Traversing and Intersection
Approaching scenario as an MDP. Our goal is to learn a
policy π that maximizes the expected accumulated reward
E[R(st ,at),π]. To learn the optimal policy we use two
established deep reinforcement learning algorithms: Deep Q-
learning [4] and Deep Deterministic Policy Gradient [5].

While both methods have been successfully applied to var-
ious tasks, training directly on a complex task as considered
in this paper can lead to long training times. Instead of train-
ing an agent from scratch, here we suggest using curriculum
learning (CL)[21] by first choosing a relatively easy task to
train on and then gradually increasing the difficulty of the
problem presented to the agent during the learning process.
The main problem with CL is the design of the curriculum,
i.e., generating the sequence of problems that will decrease
the number of training iterations needed to converge. As a
result, we address this problem by proposing an automatic
curriculum generation method for Reinforcement Learning.
A general flowchart showing the training process is shown
in Fig. 2.

A. Automated Curriculum Generation

AGC-based reinforcement learning is curriculum rein-
forcement learning method which involves two levels of
learning: The higher level is responsible for automatically
generating a curriculum according to total rewards of test
samples after the current training iteration with respect to
each task. In the lower-level structure, we apply a traditional
DRL algorithm such as DQN or DDPG to train a policy. The
actions considered can be either discrete or continuous.

Fig. 2 shows the flow chart for AGC-based DQN. The
inner rectangle with a red dashed outline is the DRL (DQN
or DDPG) process and the outer part is the process for
automatically generating the curriculum used for training the
DRL algorithm. In the outer part, the policy of the curriculum
generation is formulated as a k-armed bandit problem [2],
where k is chosen based on the number of tasks. In this
paper, we use an action-value based incremental method for
the AGC-based RL algorithm. We update the V function of
the curriculum generation through Equation 1 according to



Algorithm 1 Automatically Generating Curriculum for DQN
1: procedure AGC-RL
2: Construct an empty replay buffer B
3: for n← 1 to N candidate tasks do
4: Randomly initialize critic network NNn

Qa with weights θ n
Q and

the target critic network NNn
Qa′ with weights θ n

Q′ .
5: for e← 1 to E epochs do
6: rn

e , NNn
Qa , NNn

Qa′ , T Bn = Train(taskn, NNn
Qa , NNn

Qa′ , B) and
add T Bn into B

7: V 0
n = 1

E ∑e rn
e

8: for k← 0 to K training iterations do
9: P(n) = π(cn|V k

n ) =
exp(V k

n )

∑
N
n exp(V k

n )

10: I = sample([1, · · · ,N], prob=[P(1), · · · ,P(N)])
11: if k ≥ 1 and sample([0,1], prob=[P(n),1−P(n)]) is 1 then:
12: Add T Bn into B according to P(n)
13: for e← 1 to E epochs do
14: rI

e, NNn
Q, T Bn = Train(taskI , NNI

Qa , B)

15: for n← 1 to N candidate tasks do
16: V k+1

n = α
1
E ∑e rn

e +(1−α)V k
n

17: for e← 1 to E epochs do
18: Get initial states s0 of taskn

19: for t← 0 to T do
20: Select at = argmaxat Qa(st ,at) and execute at
21: st+1 = T (at ,st), rn

e = rego + rtarget −
σ4I‖pi

target−pego‖2=0 +σ5I‖pdes−pego‖2=0

22: procedure TRAIN(taskn, NNn
Qa , NNn

Qa′ , B)
23: Empty T Bn and get initial states s0 of taskn, rn = 0
24: for t← 0 to T do
25: Select at = π(st) according to ε exploration and execute at to

get new state st+1 = T (st ,at).
26: Get reward rt and rn+= rt
27: Add (st ,at ,rt ,st+1) to the temporary Replay Buffer T Bn and

sample random mini-batch of M transitions (si,ai,ri,si+1) from the
replay buffer B.

28: Minimize critic loss: L = ∑i(yi−Qa(si,ai|θ Q))2 where yi = ri+
γQa′ (si+1,ai+1|θ Q′ ).

29: Update weights: θ Q′ ← τθ Q +(1− τ)θ Q′

[2], in which n ∈ [1,N] is the task id and k specifies training
iteration.

V k+1
n = αrn +(1−α)V k

n (1)

We use the value function Vi to evaluate the difficulty of
each task i. Higher values indicate that this kind of task is
relatively easier to get a better performance than other tasks.
AGC-based RL chooses the task to be trained in the next
iteration via the Boltzmann distribution exploration method:
π(cn|Vn) =

exp(Vn)

∑
N
n exp(Vn)

. An easier task with a higher Vn will
result in a higher probability to be chosen as the curriculum
for the next training iteration.

B. Replay Buffer

DQN [4] and DDPG [5] usually store the last M expe-
riences as tuples of st ,at ,rt ,st+1,at+1 in a replay buffer B.
The original algorithm uses uniform sampling, which gives
equal importance to all the transitions in the replay memory
and may result in an unbalanced memory with more failure
cases than success epochs. Here, the experiences during a
training iteration are added to the Replay Buffer B such that
it represents the probability of the current chosen task I to be
chosen in next training iteration, which is π(cI |V k+1

I ). This
means that after training on one task in one training iteration,

Fig. 3. Intersection traversing problem is divided into six tasks according
to initial position of approaching human vehicles.

if the training result improves the policy and gets better
performance, the experiences during the training iteration
have a higher probability of being added to the replay
buffer. Meanwhile, if the transition is not chosen, it will
be abandoned without storing it in the buffer. As a result,
the buffer only contains transitions which may include more
buffers that can help to train out a better result. The complete
algorithm is shown in Algorithm 1.

V. EXPERIMENTS

We applied the proposed methods to the two scenarios
described in Section III. We modeled both scenarios as
MDP and trained the Q-network with DQN and DDPG
respectively. We trained both scenarios first with the vanilla
DQN and DDPG, i.e., with a random curriculum and then
with the AGC-generated curriculum.

A. Experimental Setup

By modeling the problem as an MDP, we solved the In-
tersection Traversing and Intersection Approaching problems
using Deep Q-learning [4] and Deep Deterministic Policy
Gradient [5], respectively. All the critic network and actor
networks for DQN and DDPG are constituted by two hidden
layers with 600 and 300 nodes. “ReLU” activation function
is used for all hidden layers and “tanh” activation function
is used for the actor output in DDPG. We set up a replay
buffer with a size of 500000.

For every training epoch, a successful case means that
there is no collision between the ego vehicle and other
vehicles and the whole process can be finished within 2000
steps (200 seconds). We use collision rate and steps to finish
as metric to evaluate the tasks.

B. Random Curriculum

We applied the DQN or DDPG algorithm by generating
curricula randomly, which means the probability of each task
to be chosen obeys a discrete uniform distribution. After
training for 250000 iterations, we can get an 80% of success
rate for Traversing scenario and for Approaching scenario,
it takes 7000 to get to a success rate of 60%.



Fig. 4. Probability of being chosen for next iteration of training for the
intersection traversing case

Fig. 5. Success rate of Random Curricula and AGC-based Model for the
intersection traversing case

C. Manually Designed Curriculum

In order to manually design the curriculum, we firstly train
DQN on each task separately. According to different perfor-
mance for each task, we manually design the curriculum, to
begin with the task which achieves higher success rate more
quickly.

D. Automatically Generated Curriculum

For intersection traversing problem, we created a set of
six tasks according to different initial positions of the first
approaching vehicles and for intersection approaching prob-
lem, four tasks are generated according to the initial positions
of the ego vehicle. The initial positions of approaching
simulated vehicles or ego vehicle are randomly generated
for initialization at first epoch and different numbers in the
Fig. 3 is corresponding to different task IDs.

1) Intersection traversing problem: Applying the AGC-
based approach, the probability of each task to be chosen
for the next training iteration varies according to the mean
rewards the task can get during the current training iteration.
Fig. 4 shows the probability density function of each task
to be chosen for the next training iteration for different
tasks according to the AGC-based model for the intersection
traversing case. We see that in the first period (roughly
before the 100th training iteration), the system prefers Task
2 because training Task 1 can reach an acceptable result
easily and Task 2 is relatively simple compared to other tasks.
However, in the later training period, the most difficult tasks,
Task 4 and 5, are preferred over other tasks because they get
the lowest scores when the other scenarios perform well.

Fig. 6. Rewards Value of three methods for the intersection traversing case

Fig. 7. Loss Function of Random Curricula and AGC-based Model for the
intersection traversing case

As a result, we compared the success rate and mean reward
values by using random curriculum and AGC-based DQN
in Fig. 5 and Fig. 6. With the help of the AGC structure,
the system can reduce training time by a factor of six to
reach a similar and more stable performance compared to the
vanilla DQN algorithm. In Fig. 6, we compared AGC with
Random Curriculum and Manually Designed Curriculum
(MDC). Especially for MDC, the system performs well
for some easy-to-handle tasks; however, when the difficulty
increases and the curriculum is not designed well, it may not
achieve the expected result. Random Curriculum can achieve
an acceptable result after a long time of training.

Fig. 7 shows the critic loss of lower-level DQN. It is shown
that if it is trained directly via random curriculum, the system
is not stable, with the training time increase, the system may
have a divergent critic loss. However, the use of AGC helps
the critic loss to gradually decrease and although the chosen
task keeps switching, the critic loss is bounded all the time
and has the tendency to decrease with the increase of training
time.

2) Intersection approaching problem: For the intersection
approaching problem, we created a set of four tasks. Each
task corresponds to a different range of initial positions
for the ego vehicle. The initial distance between the front
vehicle and the AV is randomly generated and is greater
than 10 meters. The front vehicle always stops at the stop



TABLE I
COMPARISON OF THE RESULTS BETWEEN DIFFERENT METHODS WITH THE SAME TRAINING ITERATIONS

Steps Collision Unfinished Not stop Success Mean Reward

Intersection Traverse
TTC 365 2.2% 10.5% N/A 87.3% 22.1

Random Curricula 294 25.6% 16.2% N/A 58.2% 67.3
AGC-based Curricula 206 13.5% 4.4% N/A 82.1% 132.1

Intersection Approaching Random Curricula 183 22.5% 20.7% 15.6 % 41.2% 150.23
AGC-based Curricula 130 0.21% 0.10% 1.0% 98.69% 480.39

Fig. 8. Success rate of Random Curricula and AGC-based Model for the
intersection approaching case

sign first and then speeds up to traverse the intersection.
The initial velocity of the ego vehicle is randomly generated
and is between 8 m/s and 12 m/s and the destination
of the ego vehicle is to stop throughly at the stop line.
Fig. 8 compares the results between Random Curricula and
AGC-based model. It is shown that with the AGC model,
the system may take fewer iterations to achieve the 99.2%
success rate.

E. Discussion

For testing the performance of the different method, we
train the model with same numbers of iterations and then
use the result to testing for 1000 random tasks in both
scenarios. The result of the test with different methods is
shown in Table I. For the intersection traverse scenario, we
use the model after 100000 iterations. As the ego vehicle
begins with the lane which has a stop sign, the TTC method
requests the vehicle to ensure a relatively safe condition
then make a traverse move. By applying TTC method, the
ego vehicle waits for too many steps to yield to other
vehicles which can result in an unfinished fail case. For the
intersection approaching scenario, we use the model after
40000 iterations of training and the AGC-based model can
get a much better performance on the test tasks.

VI. CONCLUSIONS

Deep reinforcement learning is promising for autonomous
vehicle behavior planning problems in which rule-based
algorithms may have difficulty. However, DRL always needs
a long training period for a good result and sometimes cannot
obtain acceptable results. This paper proposes an AGC-
based DRL method which significantly reduces training time
compared to plain DRL for the autonomous vehicle behavior
planning problem at intersections. Our initial results have

focused on simple scenarios. In future work, we aim to
extend the AGC model to more complicated scenarios.

REFERENCES

[1] Dresner, Kurt M., and Peter Stone. ”Sharing the Road: Autonomous
Vehicles Meet Human Drivers.” IJCAI. Vol. 7. 2007.

[2] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

[3] Silver, David, et al. ”Mastering the game of go without human
knowledge.” Nature 550.7676 (2017): 354-359.

[4] Mnih, Volodymyr, et al. Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602 (2013).

[5] Lillicrap, Timothy P., et al. Continuous control with deep reinforce-
ment learning. arXiv preprint arXiv:1509.02971 (2015).

[6] Dong, Chiyu, John M. Dolan, and Bakhtiar Litkouhi. ”Interactive
ramp merging planning in autonomous driving: Multi-Merging leading
PGM (MML-PGM),.” 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC). 2017.

[7] Ramyar, S., et al. ”Fuzzy modeling of drivers’ actions at intersections.”
World Automation Congress (WAC), 2016. IEEE, 2016.

[8] Svetlik, Maxwell, et al. ”Automatic Curriculum Graph Generation for
Reinforcement Learning Agents.” AAAI. 2017.

[9] Matiisen, Tambet, et al. Teacher-Student Curriculum Learning. arXiv
preprint arXiv:1707.00183 (2017).

[10] Baker, Christopher R., and John M. Dolan. ”Traffic interaction in the
urban challenge: Putting boss on its best behavior.” Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE, 2008.

[11] Dong, Chiyu, John M. Dolan, and Bakhtiar Litkouhi. ”Intention esti-
mation for ramp merging control in autonomous driving.” Intelligent
Vehicles Symposium (IV), 2017 IEEE.

[12] Lee, David N. ”A theory of visual control of braking based on
information about time-to-collision.” Perception 5.4 (1976): 437-459.

[13] NGSIM dataset, available from: http://www.ngsim.fhwa.dot.gov/.
[14] Brechtel, Sebastian, Tobias Gindele, and Rdiger Dillmann. Probabilis-

tic decision-making under uncertainty for autonomous driving using
continuous POMDPs. Intelligent Transportation Systems (ITSC), 2014
IEEE 17th International Conference on. IEEE, 2014.

[15] Sadigh, Dorsa, et al. Planning for Autonomous Cars that Leverage
Effects on Human Actions. Robotics: Science and Systems. 2016.

[16] Ng, Andrew Y., and Stuart J. Russell. Algorithms for inverse rein-
forcement learning. Icml. 2000.

[17] Isele, David, Akansel Cosgun, and Kikuo Fujimura. ”Analyzing
Knowledge Transfer in Deep Q-Networks for Autonomously Handling
Multiple Intersections.” arXiv preprint arXiv:1705.01197 (2017).

[18] Mnih, Volodymyr, et al. Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602 (2013).

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484489, 2016.

[20] Kulkarni, Tejas D., et al. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. Advances in
Neural Information Processing Systems. 2016.

[21] Bengio, Yoshua, et al. Curriculum learning. Proceedings of the 26th
annual international conference on machine learning. ACM, 2009.

[22] Bengio, Samy, et al. ”Scheduled sampling for sequence prediction
with recurrent neural networks.” Advances in Neural Information
Processing Systems. 2015.

[23] Florensa, Carlos, et al. Reverse curriculum generation for reinforce-
ment learning. arXiv preprint arXiv:1707.05300 (2017).

[24] Moore, Andrew W., and Christopher G. Atkeson. ”Prioritized sweep-
ing: Reinforcement learning with less data and less time.” Machine
learning 13.1 (1993): 103-130.

View publication statsView publication stats

https://www.researchgate.net/publication/327237430

