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Abstract
Automatic, robust, and accurate landmarking of dense sets of facial features is a key

component in face-based biometric identification systems. Among other uses, dense
landmarking is used to normalize raw faces for scale perform facial expression anal-
ysis, and is an essential component for generating 3D face models from a single 2D
image. Active shape models (ASMs), which incorporate constrained statistical models
of shape with local texture models of each landmark, have been applied successfully to
this problem as well as landmarking tasks in other domains. Recent work has demon-
strated that Modified Active Shape Models (MASMs), which utilize improved sub-
space models of 2D landmark neighborhoods, generalize better to unseen faces and to
real-world dynamic environments. This superior performance comes with a significant
computational cost, on the order of seconds per image to reach convergence. Com-
pounded with the time required for face detection on high-resolution images, robust
facial landmarking on the CPU is decidedly not realtime even for a well-optimized,
multithreaded C++ implementation. In this paper, we demonstrate realtime MASM fa-
cial landmarking by parallelizing the algorithm on Graphics Processing Units (GPUs)
using the CUDA programming platform. Our GPU-based implementation is designed
for integration into a larger face recognition routine and is able to accept updated model
parameters without recompilation or re-synthesis. Unlike previous GPU-based ASM
implementations, which parallelize the original ASM algorithm utilizing 1D profiles,
we implement the 2D subspace-modeled profile searching of the more robust MASM
technique. We report GPU speedups of 24X over single-threaded CPU implementa-
tions of MASM and approximately 12X over a 8-threaded CPU implementation. By
leveraging this untapped source of computational power, we are able to achieve real-
time frame rates of approximately 20 FPS using a 79-point landmarking scheme. We
discuss parallelizing the facial landmarking fitting process, specific GPU implementa-
tion details, GPU architecture-specific optimizations required to take advantage of the
underlying hardware, and general CUDA programming concepts.
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1 Introduction

1.1 Motivation

Biometrics are physiological characteristics of an individual that allow for the unique
identification and/or authentication of a subject. As a rapidly growing inter-disciplinary
field of Computer Vision, Pattern Recognition and Signal Processing, Biometrics re-
search is primarily concerned with solving practical security problems in the real world:
such as preventing identity theft, the identification of criminals and terrorists, and the
authentication of authorized users in physical and virtual spaces. There are numerous
advantages to using biometrics over more traditional means of identification and au-
thentication such as passwords or physical objects such as keys or hardware tokens.
With biometrics, you are your own password and key – there is nothing to lose or for-
get to bring with you. As we are all imperfect natural objects, the products of random
environmental factors and genetics, there is tremendous variability in the human pop-
ulation; biometrics can be highly resistant to forgery and spoofing. There are many
well-known biometric modalities including fingerprints, iris patterns, retinal vascula-
ture, gait mechanics, voice prints, DNA, and face recognition. Face-based biometrics
have the advantage of being non-intrusive to acquire due to relatively large target area,
and omnipresent due to ubiquitous presence of security cameras. Additionally they can
convey the emotional state of an individual, which can be useful in predicting future
behavior. Some challenges of face recognition are that the face can be relatively easily
altered due to disguise, surgery, accidents, the presence of hair, weight gain or even
just aging. Even state-of-the-art face detection algorithms are very sensitive to changes
in illumination and occlusion. Furthermore, compared to some biometrics such as the
iris, where even genetically identical iris patterns (such as in the case of twins or even
between the left and right eyes of all people) are radically different, human faces are
less discriminative.

1.2 Facial Landmarking

Robust, automatic, facial feature landmarking (labeling prominent features of the face
such as the eyes, lips, nose, mouth, and eyebrows) is highly desirable. Such land-
marks are not merely interest points, but must be consistently defined across subjects
with different craniofacial structure, under various pose configurations and illumina-
tion conditions. There are numerous applications requiring accurate spatial representa-
tions of a person’s face (or any other object for that matter). Robust facial recognition
often utilizes various pose detection and correction schemes which rely on accurate
localization of prominent features. Expression analysis may reveal useful data about a
subject’s current state of mind and potential future behavior. Subfeature extraction also
relies on accurate landmarks. For example, one can conceive of beard and mustache
detectors, and identification schemes restricted to the periocular or nose regions. Addi-
tionally, the performance of texture-based face recognition systems can be boosted by
the incorporation of accurate spatial data directly into the feature space.
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Figure 1: Example of automatically annotated facial image with the dense landmarking scheme
employed in this paper.

1.3 Active Shape Models

Active Shape Models (ASMs) have been successfully used since their introduction in
[9] to effectively model a variety of shapes including faces. An ASM is a type of de-
formable model like active contour models (snakes) [7], which seeks to match a set
of model points to a test image, but is constrained by a learned statistical model of
valid shapes. The ASM fitting algorithm can be thought of as a variant of the Expec-
tation Maximization(EM) method, which iteratively alternates between two steps: (1)
searching for the position around each point’s current location that best matches the
learned texture model expected at that point, and (2) updating and enforcing a global
shape model constraint. This process is repeated at each level of an image pyramid,
traversing from coarse to fine resolution and using the results from the previous level
to initialize the current level. The original ASM implementation by Tim Cootes et
al. [8][9][10] has been extended in [12][13][14][15][16][17] for improved accuracy in
landmarking facial images.

Given the usefulness of ASM-derived landmarks for biometrics applications, and
the fact that ASMs fitting is often but one stage in a much larger integrated tracking
or recognition system, run-time performance is critical. Landmarking multiple faces
rapidly, or processing video streams in real-time often requires execution times that
even modern multi-core CPUs cannot deliver. Although ASM fitting makes use of
multi-resolution pyramidal refinement, and there have been run-time optimization at-
tempts such as using sparse covariance matrices in [16], the more robust modified ASM
technique introduced in [17] is most decidedly not ”real-time”. Fortunately, we are able
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to exploit the parallelism present in the ASM test stage to dramatically speed up this
important task.

Hand Labeled Landmarks

Training

Shape & Profile Models

Testing

Automatic Landmarking

Figure 2: ASM high-level overview.

1.4 Graphics Processing Units
One approach to accelerating compute-intensive tasks is to offload some or all of the
computations to dedicated hardware, such as a custom Application Specific Integrated
Circuit (ASIC) or Field Programmable Gate Array (FPGA) co-processor. FPGAs are
essentially programmable logic devices where virtually any parallel logic function can
be synthesized with a few lines of a Hardware Description Language (HDL), such
as VHDL or Verilog. While the performance of custom hardware is difficult to beat,
FPGAs are often expensive and involve high complexity both in terms of expressing
the problem in an inherently parallel HDL and in interfacing the FPGA with the host,
peripheral storage, and input devices required for an operational system. Additionally,
FPGAs possess reduced flexibility when compared to a pure software implementation.

A lower-cost acceleration alternative, which maintains the high degree of paral-
lelism inherent to FPGAs but avoids many of their pitfalls, is to employ commercial
off-the-shelf graphics processing units (GPUs). Driven by the insatiable market de-
mand for realistic 3D games, the GPU has evolved into a highly parallel, multithreaded,
many-core processor of tremendous power. In terms of peak FLOPS, modern commod-
ity GPUs overshadow CPUs, as shown in (Fig 3). The growth rate of computational
capabilities of GPUs has increased at an average yearly rate (depending on the met-
ric used) of 1.7 (pixels/second) to 2.3 (vertices/second), which is a significant margin
over the average yearly rate of roughly 1.4x for CPU performance [3]. The reason for
this discrepancy is that while improvements in semiconductor fabrication technology
benefit both the CPU and GPU equally, fundamental architectural differences favor the
GPU in terms of peak computational throughput. The CPU dedicates a large portion
of its die space to cache and flow control hardware, such as branch predication and
out-of-order execution – it is optimized for high performance in executing sequential
code, whereas the GPU is optimized for executing highly data-parallel rendering code
and is able to devote more transistors directly to computation [3]. However, there is a
definite trend towards a convergence of the GPU and CPU because CPUs have added
more and more cores, and GPUs have evolved from fixed rendering pipelines to today’s
fully programmable architectures.

Prior to the introduction of Nvidia’s Compute Unified Device Architecture (CUDA)
API, and ATI’s equivalent FireStream in 2006, performing general purpose computa-
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Figure 1-1. Floating-Point Operations per Second and 
Memory Bandwidth for the CPU and GPU 

Figure 3: FLOPS capability comparison of GPUs and CPUs clearly demonstrating dominance
of the GPU [2].

tion on GPUs was challenging work, requiring programmers to express problems in
terms of rendering textures on shader units and other graphics primitives in what is
termed General-Purpose Computation on Graphics Hardware (GPGPU). Despite these
difficulties, problems such as protein folding, stock options pricing, SQL queries, and
MRI reconstruction achieved remarkable performance speedups on the GPU. CUDA is
the hardware and software architecture that enables Nvidia GPUs to execute programs
written with C, C++, Fortran, OpenCL, DirectCompute, and other high level languages
[1]. This abstraction dramatically lowers the barrier to developing GPU-accelerated
applications and has led to an explosion in the field of GPU computation.

1.5 Related Prior Work
In this paper we take a well-optimized C++ implementation of the modified ASM fit-
ting algorithm detailed in [17] and parallelize the profile search on GPUs using the
CUDA programming model. Our GPU-based implementation is designed for integra-
tion into a larger CPU face recognition system and is able to accept updated model pa-
rameters without recompilation or re-synthesis. Unlike the previous GPU-based ASM
implementations in [19][20], which are parallel implementations of the original ASM
algorithm utilizing 1D profiles, we implement the 2D subspace-modeled profiles of the
more robust technique found in [17]. Additionally, although [19] reports an impressive
speedup of 48X over a single-threaded CPU implementation, their GPU implementa-
tion strongly relies on parallelism found in performing ASM fitting on multiple images
simultaneously. While this scenario works in some cases (e.g. batch processing a num-
ber of facial images offline or performing a rolling average of ASM landmarks), for
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live video feeds where each frame must be processed independently as it arrives, this
use case breaks down if the system needs a real-time response (and can not buffer a
huge number of images). While [19] does not cite an execution time or speedup ratio
for a single frame computation, they do provide a bar graph which represents a speedup
factor of approximately 7X for operating on four images simultaneously. The speedup
ratio does not reach 48X until 192 images are operated on simultaneously. Further-
more, while the implementation in [20] is part of a larger tracking system, the paper
offers virtually no details on the method used to parallelize the ASM fitting, and fails
to list any quantitative results in terms of run-time performance, fitting accuracy, or
tracking performance.

2 Active Shape Models

In this section we describe the traditional ASM scheme introduced in [9].

2.1 Training Stage

The training stage of ASM involves learning the two submodels that compose the ASM
model (the profile model and the shape model) at each level of the pyramid. Training
is performed using a set of manually labeled training images.

There is one profile model for each landmark point at each pyramid level. The
profile models are used to determine the closest matching position for each landmark
for the subsequent iteration by template matching. Various template matchers have
been proposed, but traditional ASM uses a 1D fixed-length normalized gradient vector
sampled along the line perpendicular to the shape boundary at the landmark. For each
model point i in each training image j, extract the 1D profile of length np = 2k + 1
centered at point i.

Figure 4: 1D and 2D profile schemes.
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Together, the mean profile vector (averaged over all of the training images) ḡi and
the covariance matrix Sg

i form the profile model for the i-th landmark, at a given
pyramid level. Analogously, 2D profile vectors can be generated for each landmark by
extracting a square (2k+ 1)× (2k+ 1)-sized patch of the image gradient around each
landmark, vectorizing the resulting matrix, and applying a transform as shown in (Eq.
1) for normalization to each element of the profile gj where q is a constant.

g′j = gj/(|gj |+ q) (1)

Figure 5: Image, Gradient, and Sobel Edge Intensity pyramids used for multi-resolution search.
Individual profile models are extracted to represent the neighborhood surrounding each landmark
point at each level of the pyramid.

The shape model specifies allowable landmark arrangements. It is trained by stor-
ing the coordinates of all the landmarks for each image in a shape vector x where
xj = (x1, y1, ...xN , yN )T, and xi and yi are the x and y coordinates of the i-th land-
mark, and N is the number of landmarks used. To compare equivalent points from
different shapes we must first ensure that they are aligned. We seek to apply a similar-
ity transform (translation, rotation, scaling) Tj to each xj so as to minimize the sum
of squared errors between equivalent points over our entire training set. We call this
transform the pose of the shape. This alignment can be performed using Generalized
Procrustes Analysis (GPA) [21]. The effect of performing GPA is to reduce variance
due to pose differences (resulting from either the actual pose of the subject and/or dif-
ferences in camera parameters and post-capture cropping). This can be seen when the
distance vectors between each point in the training dataset and the unaligned mean
shape (Fig. 6(a)), and the aligned shapes and their corresponding mean (Fig. 6(b)) are
plotted. It is important to note that the points around the eyes are the most stable, while
the points along the neckline demonstrate the greatest amount of variance (especially
in the direction parallel to the boundary).

The mean shape x̄ is computed from these aligned shapes and Principal Component
Analysis (PCA) is performed to build the basis matrix Ps.
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Figure 6: Mean shapes of JAFFE dataset before (a) and after (b) Generalized Procrustes Analysis
(GPA).

x̄ =
1

M

M∑
j=1

xj (2)

S =
1

M

M∑
j=1

(xj − x̄) (xj − x̄)
T (3)

Ps is a (N × t) matrix containing the first t eigenvectors of the covariance matrix
S arranged in columns, corresponding to the t largest eigenvalues that model some
fraction (97% in our implementation) of the total training shape variance.

Spk = λkpk (4)
Ps = (p1,p2, ...pt) (5)

Any shape in the training set can be approximated using the mean shape and a linear
combination of eigenvectors of our basis, as shown in (Eq. 6). If we were to include all
the eigenvectors in our basis, we would be able to exactly represent any shape vector
in our training set with 0% reconstruction error.

x̃ = x̄ + Psb (6)
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2.2 Testing Stage
Like with other EM algorithms, the fitting of an ASM is very sensitive to its initializa-
tion values. The testing stage is typically initialized using a fast global face detector
such as the Viola-Jones face detector implemented in OpenCV [22]; however, other
initialization methods may make use of Kalman filter [18] or Mean-Shift based track-
ing [20] when using video sequences of moving faces. Once the face is detected, a
similarity transform is applied to the mean face to generate a start shape that roughly
approximates the test face image. This start shape x−1 initializes the coarsest level
of the multi-resolution profile adjustment. For each iteration, candidate locations are
assessed for each landmark point by constructing profiles from patches surrounding
each candidate location. The candidate location that most closely matches the mean
profile for the landmark learned during training is selected as the new location of the
landmark for the next iteration. The best new location of each landmark point moved
independently, together form a new intermediate shape vector (xI).

x−1Initialize 
shape

Final 
shapeMove points to best 

match in local 
neighborhood

Update pose and 
shape parameters

xI

argmin
b

D(xI, T (x̄+Pb)

x

x3

x0
x1
x2

Figure 7: Test stage steps: (a.) Initialization of start shape using Viola-Jones face detection and
GPA; (b.) Iterative pyramidal refinement of shape from coarse to fine; (c.) Refitting poorly fitting
points to yield final landmarking.

The cost function used in most ASM implementations is the Mahalanobis distance
(D1(gs)) between the candidate profile (gs) and the mean profile (ḡ).

D1(gs) = (gs − ḡ)TSg
−1(gs − ḡ) (7)

After moving all landmarks to their optimum new location, the new intermediate
shape vector (xI) must be constrained to a legal shape. Legal shapes are defined by
the generative linear shape model equation (Eq. 8). Legal shapes can be generated by
varying the projection coefficient vector (b) known as the shape parameters.

xL = x̄ + Psb (8)
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The effect of varying each of the first three shape parameters independently over
a range of ±3σ while the others remain at zero can be seen in (Fig. 8). We seek to
find the best approximation of xI by minimizing (Eq. 9) with the iterative algorithm
given by [9] that produces b and T , where T is a similarity transform that best maps
the model space into the image space (pose parameters).

Figure 8: Effect of changing the first three projection coefficients in the shape equation.

arg min
b,T

D(xI, T (x̄ + Psb)

Algorithm 1 Constrain to legal face shape

Input: xI

Output: T and b
b⇐ 0
while not converged do

xL ⇐ x̄ + Psb
T ⇐ GPA (xL,xI)
y⇐ T−1xI

y⇐ 1
yTx̄y

b⇐ Ps
T (y − x̄)

end while

Once b is determined, its elements are clipped to lie between ±bmax

√
λk where

bmax is generally 3 (i.e., 3 standard deviations) and λk is the k-th eigenvalue corre-
sponding to the eigenvectors retained in Ps. This constrains the shape to be a feasible
one. This process of updating landmark positions is repeated until convergence oc-
curs (no significant movement between subsequent iterations) at each pyramid level, at
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which point the landmark positions are scaled and fed into the next level of the pyramid
as initialization locations. Once convergence occurs at the highest resolution pyramid
level, the algorithm terminates.

3 Nvidia’s CUDA
The CUDA hardware model is built on an array of multithreaded Streaming Multipro-
cessors (SMs), which are each designed to execute hundreds of simultaneous threads.
When a program running on a host CPU executes a CUDA ”kernel”, which is a sec-
tion of device code that executes N times in parallel by N threads on the GPU, the
kernel is launched on the GPU and control immediately returns to the CPU. This asyn-
chronous behavior allows simultaneous work to be performed on both the host and
the device in what is known as heterogeneous programming. A basic CUDA kernel is
given in (Listing 1), which simply adds two vectors together. As you can see, CUDA
syntax is a superset of C, which adds the <<<>>> execution configuration operator.
Within these blocks, a programmer specifies the device configuration that should be
used while executing this block of code on the GPU. Nvidia terms this architecture
SIMT (Single-Instruction, Multiple-Thread), which is similar to the more well-known
SIMD (Single Instruction, Multiple Data) in that a single instruction operates on multi-
ple processing elements; however, the crucial difference is that SIMD vector operations
expose the SIMD width to the software, while SIMT instructions specify the execution
and branching behavior of a single thread [2]. SIMT enables programmers to write
thread-level parallel code for independent, scalar threads, in addition to data-parallel
code for coordinated threads. SIMD architectures require the programmer to coalesce
loads into vectors and manage divergence manually [2]. From a correctness perspec-
tive, threads are free to branch and execute completely independently, facilitating rapid
parallel implementations of many algorithms. However, for maximum performance,
programmers must take care to write code that minimizes divergent branching within
thread warps (group of 32 threads that execute one common instruction at a time) and
properly utilizes the memory hierarchy of the device.

Listing 1: Element-wise vector addition
//kernel definition
__global__ void VecAdd(float * A, float * B, float * C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
//kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);

}

CUDA has three key abstractions that allow for effective and relatively easy de-
velopment compared to traditional GPGPU techniques: a hierarchy of thread groups,
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shared memories, and barrier synchronization.

3.1 Thread Hierarchy

Threads are arranged in a hierarchy of blocks and grids as shown in (Fig. 9). Each
thread executes an instance of a kernel function and has a unique thread ID and program
counter along with registers and private local memory [2]. A thread block is a set of
concurrently executing threads that have shared memory and can synchronize with
barrier primitives. Each thread block has a block ID which provides a unique identifier
within a grid, which is an array of thread blocks [2]. Grids share global device memory
and perform synchronization between successive kernel calls [2]. The threads of a
block execute concurrently on a single SM, and multiple thread blocks can execute
on one multiprocessor. As thread blocks terminate, new blocks are launched on the
vacated multiprocessors [2]. This abstraction allows for automatic scalability of CUDA
code, as one typically allocates threads based on problem size (i.e., in order to perform
an element-wise addition of two vectors of length N, one launches N threads) instead
of targeting a specific hardware implementation. More capable devices, with a greater
number of SMs, are able to process more of the threads concurrently, leading to faster
execution times without necessitating major code revisions.

 Chapter 2: Programming Model 
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2.4 Heterogeneous Programming 

As illustrated by Figure 2-3, the CUDA programming model assumes that the 
CUDA threads execute on a physically separate device that operates as a coprocessor 
to the host running the C program. This is the case, for example, when the kernels 
execute on a GPU and the rest of the C program executes on a CPU. 
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Figure 9: CUDA programming model of threads, blocks, and grids, with corresponding per-
thread private, per-block shared, and per-application global memory spaces [2].
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3.2 Memory Hierarchy
The CUDA memory hierarchy consists of registers, local memory, shared memory,
global memory, the constant cache, and the texture cache. The registers reside on chip
and are integrated into the SMs. They are private to each thread and have the fastest
access times, but they are an extremely limited resource with 32768 32-bit registers
available per SM on current-generation GPUs to be shared amongst all currently ex-
ecuting threads on that SM. Thus, the number of registers a kernel requires limits the
number of simultaneously executing threads. If a kernel requires more registers than
can be provided or they are artificially limited by the programmer at compile time, reg-
ister spillover to local memory can occur. Despite its name, local memory resides in
global memory and is as slow as accessing global memory. Register spillover can have
disastrous effects on the performance of CUDA code and should be avoided. Shared
memory also resides on chip and is limited to 16KB or 48KB per SM on current-
generation devices. It is almost as fast accessing the register file, but like registers and
local memory, is non-persistent between kernel launches. Global memory is persis-
tent between kernel launches and provides the only means of communication between
threads within different blocks and between the device and the host. It is plentiful, with
high-end cards possessing GBs of DRAM, but it is slow (on the order of hundreds of
clock cycles) and uncached with all but the latest generation of GPUs. The constant
cache is read-only from the device, relatively small (16KB), and most effective when all
threads are accessing the same element simultaneously. The texture cache is optimized
for 2D spatial layouts and provides special addressing modes, bilinear interpolation,
and normalization.

Figure 10: CUDA hardware model with global memory, constant cache, texture cache, registers,
and shared memory [2].
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4 Modified Active Shape Models
In this paper we implement a parallel version of the modified ASM (MASM) scheme
specified by [17], which experimentally achieved better performance compared to the
classical Active Shape Model of Cootes et al. and other traditional methods and pro-
vides a robust automatic facial landmark annotation despite expressions, slight pose
variations and in-plane rotations. Specific details which differentiate MASM from clas-
sical ASM are in the next subsections.

4.1 Subspace Profile Models
MASM builds a subspace model of the profile around each landmark point to more ef-
fectively model the variations of appearance than could be achieved with a simple mean
vector (as done with traditional active shape models introduced by Tim Cootes). This
improvement provides superior fitting accuracy [17], particularly when using more
training images, as traditional ASM degrades if more training images are added after
a particular number (in our experiments we noticed above 500 training images, fitting
accuracy degraded for traditional ASMs). This is because the mean landmark becomes
blurry and does not have any discriminative information, whereas our approach builds
a subspace to model how it changes across a large population of faces. Additionally,
the subspace modeling provides a means of determining poorly fit points for additional
correction (i.e., the reconstruction error of the best fit landmark patch can be used as a
fitting cost function) to provide superior fitting accuracy [17].

During the profile training stage, in addition to obtaining the mean profile vector
ḡi and covariance matrix Sg

i for each point i, [17] extracts the ti eigenvectors which
account for a sufficiently large fraction of the total variability.

ti∑
k=0

λk

np∑
k=0

λk

> 97% (10)

Those eigenvectors corresponding to the ti largest eigenvalues are then stored in the
basis matrix (Pg

i). During testing, each sample profile (gs) is extracted, and projected
onto the set of eigenvectors (its own unique subspace) to obtain a vector of projection
coefficients (g′s) as shown in (Eq. 11).

g′s = PT
g (gs − ḡ) (11)

These projection coefficients are then used to obtain a reconstructed profile vector
(gr

s) as shown in (Eq. 12).

gr
s = ḡ + Pgg′s (12)

The reconstruction error is then computed using the Mahalanobis distance between
the reconstructed profile and original sample profile (D2(gs)) as shown in (Eq. 13).
Better candidate points will have lower reconstruction errors, as they are adequately
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represented by the subspace, while poor matches will have high reconstruction errors.
MASM usesD2(gs) as the template matching criteria instead of the traditionalD1(gs).

D2(gs) = (gr
s − gs)

TSg
−1(gr

s − gs) (13)

4.2 Edge Information
The MASM scheme additionally uses Sobel edge intensity information to more accu-
rately fit points along the facial boundary (points 1-15) using (Eq. 14) described in
[13]. This modification is based on the assumption that facial points usually lie along
strong edges. In (Eq. 14) I is the Sobel edge intensity and c is a scalar weight constant
(our implementation, like [17], sets c = 2).

D3(gs) = (c− I)(gr
s − gs)

TSg
−1(gr

s − gs) (14)

4.3 Refitting of Poorly Fitted Points
After convergence of ASM fitting on the final (highest-resolution) level of the pyra-
mid, the cost metric of each point is compared to an empirically determined threshold.
Those points with an error above the threshold are further subject to additional fitting
iterations until their reconstruction error is reduced below the threshold. This boosts
accuracy of individual points and leads to an overall improvement in the fitting.

4.4 Miscellaneous Details
Our implementation duplicates the parameters defined in [17]. We make use of 79
landmark points arranged according to the scheme shown in (Fig. 2) and extract 13×13
2D profiles around each point at each pyramid level. We search for candidate points
in a 5 × 5 2D grid centered at every landmark’s estimated position from the previous
iteration. The improved robustness of MASM over traditional ASMs comes with a
greater computational cost, as execution time on a single core of a modern CPU is
on the order of seconds to converge. Since we make use of fairly large-dimensional
2D profiles, we have a large (169 × 169) covariance matrix and resulting subspace
basis (169× ti) matrices. Computing the reconstructed profile requires 2(t)(np) MAD
operations and calculating the Mahalanobis distance requires n2

p+np MAD operations.
These matrix operations must be performed for each landmark point over all possible
offsets (shifts).

4.5 GPU Implementation
Key to accelerating any algorithm is locating sections where parallelism can be ex-
ploited and properly distributing the workload on a given parallel architecture. The
computational bottleneck in both the serial CPU implementation and in our parallel
GPU implementation, is evaluating each candidate landmark’s distance from its sub-
space model. Even after heavy optimization, this profile-search kernel accounts for
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73% of our CUDA implementation’s runtime (Fig 11). We exploit the inherent inde-
pendence of searching for the best matching location for each landmark’s updated po-
sition to parallelize ASM fitting on the GPU. A naı̈ve work-partitioning scheme would
simply distribute the 79 landmark points between all available multiprocessors, as the
operations on each landmark point are entirely independent in the profile-search step.
This is exactly what is done in our CPU implementation designed for a 4-to-8-core
machine; however, this dramatically under-utilizes the capacity of a device designed to
have 1000’s of threads running.

Additional concurrency is found in the 25 candidate locations that must be tested
around each point; although the matrix operations for each offset are independent,
determining the best candidate location requires synchronization and communication.
This maps very naturally to CUDA’s thread-block hierarchy, where problems are coarsely
divided into independent sub-problems to be solved by blocks independently, while
within a block, threads operate cooperatively. Additionally, by mapping a landmark lo-
cation to a block, all threads within a block share the same profile model. This allows
for reduced memory load requests, as these parameters can be broadcast to all threads
in a block.
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Figure 11: Percentage of total execution time each CUDA kernel or memcpy contributes.

Mapping MASM to 79 blocks of 32 threads (granularity of block size is 32) yield-
ing a total of 2528 threads is still insufficient to hide memory latency and due to high
shared memory requirements and register usage (needed to perform our matrix opera-
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tions entirely within fast shared memory and registers), the number of threads per block
should be >> 32. Fortunately, we can still parallelize the matrix operations. Instead
of each thread performing its matrix multiplications serially, we assign 32 ”worker”
threads for each of the 25 offsets.

4.5.1 Execution Configuration

We initialize our routine by loading all overall parameters and model parameters to
device global memory once, prior to beginning to process any images. Then we launch
our 2D profile search kernel using a grid of thread blocks of size 32 × 25, where
each block is assigned a specific landmark point to update (Fig. 12). Although our
GPU implementations of other sections of the algorithm, such as Sobel filtering and
gaussian pyramid generation, help to minimize data transfers over the PCI-E bus and
are marginally faster than their CPU based counterparts, they contribute very little to
the overall speedups achieved. Constraining each fitted face to a legal shape after
each iteration and checking for convergence remain on the CPU as there is minimal
parallelism to be exploited here.
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Figure 12: Graphical representation of cuMASM thread block and grid layout.

The x-coordinate of the threadIdx corresponds to a ”worker ID” and the y-coordinate
of the threadIdx corresponds to which of the 25 possible 2D shifts our trial profile is
centered at. By assigning an entire block to a particular point, we are able to use the
fast shared memory to hold intermediate results and model parameters and perform
intra-block reductions without performing reads and writes to global memory. This
significantly increases the speed at which we are able to perform ASM fitting, because
like many applications on the GPU, this is memory-bound as opposed to computation-
bound.

4.5.2 Texture Profile Fetching

We take advantage of the spatial locality and significant overlap of the memory access
required to perform the initial subpixel level sampling of the shifted 2D profiles sur-
rounding each landmark point’s initialization point, by employing the texture cache.
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According to the Nvidia profiler, our code achieves a texture cache hit rate of 99.69%.
This is congruent with the fact that we found no performance benefit to cooperatively
loading the 17 × 17 overlapping region (Fig. 13) into shared memory prior to filling
the offset profile vectors. We could optionally take advantage of the texturing hard-
ware’s built-in low-precision bilinear hardware interpolation; however, in practice we
found that performing the high-precision software interpolation did not significantly
slow down an individual iteration and generally reduced the number of iterations re-
quired before convergence was achieved – thereby actually decreasing overall runtime.
The constant cache is used to amortize the cost of accessing model parameters, espe-
cially the large covariance matrices required for computing the Mahalanobis distance
at each of the 79 landmark locations, which at 111kB (169 × 169 matrices of single
precision floats) are too large to completely store in shared memory.

Figure 13: Overlapping 13 × 13 patches at 5 × 5 offset locations 1 pixel apart have significant
redundant memory accesses.

4.5.3 Reduction Primitive

After the shifted trial profiles have been loaded into shared memory, each block of
800 threads must cooperatively evaluate the reconstruction error of each of the 25 pro-
files and determine which shift yields the lowest reconstruction error for each land-
mark point. The three building blocks which are critical for a GPU implementation of
MASM are intra-block reduction, matrix-vector multiplication and Mahalanobis dis-
tance. Reduction is a common parallel primitive in which a commutative binary oper-
ator (ie., sum, product, min, max) is applied to all the elements of a vector to produce
a scalar value. This operation is used to determine which shift within a thread-block
results in the minimum reconstruction distance, as well as being using within the more
complex matrix-vector multiplication and Mahalanobis distance operations. Reduc-
tion in CUDA has been well optimized [6], and we utilize this basic skeleton for our
indexed minimum distance reduction and summation reductions. See (Fig. 14) for
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a graphical representation and a simplified code fragment of non-indexed, minimum
value reduction. CUDA Block ReductionCUDA Block Reduction

0.6 0.7 0.3 0.4 0.8 0.5 0.4 0.9
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threadIDX
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threadIDX

Cooperative reduction performed in block shared 
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0.3 0.2
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p p
memory. Used to find minimal reconstruction 
distance for a given point (all threads in a block 
operate on the same point) as well as for several 
other reductions.

BlockIDX: 0 BlockIDX: N‐1

.

.

.
// h h d i l l di i h d// each thread puts its local distance into shared memory 
s_mem [threadIDX] = distReconstruct;
__syncthreads();

// do reduction in shared mem
for(unsigned int s = (blockSize>>1); s>0; s>>=1) {for(unsigned int s = (blockSize>>1);  s>0; s>>=1) {

if (threadIDX <  s) 
s_mem[threadIDX] = distReconstruct = min(distReconstruct, s_mem[threadIDX + s]);

__syncthreads();
}

//All threads get local copy of the min distance for the entire block (which is the point we are operating on)
min_dist = s_mem[0];
.
.
.

//each thread puts its local distance into shared memory
s_mem [threadID] = dist;
__syncthreads();

//do reduction in shared mem
#pragma unroll
for(unsigned int s=(blockSize>>1); s>0; s>>=1){

if (threadID < s)
s_mem[threadID] = dist = min(dist, s_mem[threadID+s]);

__syncthreads();
}

//All threads get local copy of the min distance for the
//entire block (which is the point we are operating on)
min_dist2 = s_mem[0];

Figure 14: Cooperative reduction performed in block shared memory. Used to find minimal
reconstruction distance for a given point (all threads in a block operate on the same point) as
well as for several other reductions.

4.5.4 Naı̈ve Intra-block Matrix Operators

Nvidia has released a highly optimized BLAS implementation for CUDA known as
cuBLAS; however, it is designed for performing operations on extremely large matri-
ces and only exposes a host interface. Our partitioning scheme makes use of many
relatively small matrix operations which take place in the context of a larger kernel.
Although we could reshape our MASM implementation to make use of the cuBLAS
libraries, it would require wasteful stores to global memory. We require intra-block
operators which can be incorporated within our kernels running on the device. Matrix-
vector multiplication known by its BLAS function name as GEMV, performs the oper-
ation y = αAx + βy, where A is a matrix of size m × n, α and β are both scalars,
and x and y are both vectors of size n × 1. GEMV is used to project and reconstruct
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Figure 15: Graphical representation of naı̈ve intra-block matrix-vector multiplication routine.

(Eq. 11 & 12) each profile. Additionally, since this is performed for each of the pos-
sible shifts, this can be viewed in terms of general matrix multiplications. A graphical
representation of our initial parallel implementation of GEMV is shown in (Fig. 15),
in which the rows of matrix A are partitioned by the 32 ”worker” threads and iterated
across the rows. Each thread maintains a local accumulator, located in the register file,
in which the matrix-vector products for a given ”worker index” are held before being
stored back to shared memory.

Our Mahalanobis distance routine computes y = xTAx, where A is a square
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matrix of size m × m, and x and y are both vectors of size m × 1. A graphical
representation of our initial parallel implementation of this primitive is shown in (Fig.
16). This routine proceeds similarly to our matrix multiplication routine, except that
instead of storing the accumulated sums from each row into the corresponding row of
the output vector residing in shared memory, the sums are multiplied by the value stored
in x at their ”worker idx”. This product is stored in another local accumulator, until a
final summation reduction is performed and a single scalar for each shift remains.
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Figure 16: Graphical representation of naı̈ve intra-block Mahanolobis distance routine.

4.5.5 Improved Intra-block Matrix Operators

Although these matrix operations take place in fast shared memory or the register file,
and the input vectors also reside in shared memory, the L1/L2 cache can offset the
cost of accessing the large matrices stored in global memory only to a limited extent.
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Because each of the 79 landmark locations has individual basis eigenvector and covari-
ance matrices, the cache can quickly become thrashed. This results in long latency in
our many global memory accesses and significantly lowers throughput of our parallel
implementation. Additionally, our access pattern within the matrix is non-optimal, as
we are accessing non-contiguous sections of memory (reading columns in a row-major
matrix). Clearly we must do better than this naı̈ve implementation of such important
primitives. Fortunately, by cooperatively reloading rows of each matrix from global
memory into shared memory, we can greatly reduce the number of global memory load
requests our kernels make, thereby reducing our memory bandwidth requirements, in-
creasing our cache hit rate, and better hiding global memory access latency.

Listing 2: Cooperative intra-block cooperative load routine used within GEMV and Mahalanobis
distance routines
template <typename T,int blockSize, bool nIsPow2> __device__ inline __forceinline__
void loadSmem(T * s_out, const T * g_in, const int tid, const int n)
{

const int gridSize = blockSize<<1;
int i = tid;

while (i < n)
{

s_out[i] = g_in[i];

//Bounds check for non-powers-of 2
if (nIsPow2 || i + blockSize < n)

s_out[i+blockSize] = g_in[i+blockSize];

i += gridSize;
}

}

We also change our memory access pattern to iterate down the rows of the matrix,
and cooperatively partition the columns of the matrix between the ”worker threads”.
Graphical representations of our intra-block cooperative GEMV and Mahalanobis dis-
tance routines are shown in (Fig. 17 and 18).

The net result of these memory optimizations can be clearly seen in the output of the
Nvidia profiler (Fig. 19), which shows that we have reduced our global load requests
by approximately 92.1% by relying on shared memory. Additionally, our code makes
heavy use of templates and loop unrolling to reduce branching and comparisions as
much as possible, while still remaining capable of operating on arbitarily sized images.

4.5.6 Refitting Kernel

The serial implementation of MASM iterates through each of the landmark points se-
quentially and iteratively refines those points with a reconstruction error above the em-
pirically determined threshold until the error is reduced below this cutoff. Our CUDA
implementation of this is identical to our initial profile search kernel executed on the
finest level of the gaussian pyramid. We launch a modified kernel with the same execu-
tion configuration as before. The kernel has the additional task to checking if the cur-
rent reconstruction error for the threadblock is below the threshold; if the threadblock
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Figure 17: Graphical representation of cooperative intra-block matrix-vector multiplication rou-
tine, in which all threads in the block cooperatively load the rows of matrix A sequentially into
shared memory and then individually perform their inner-products. This greatly reduces global
memory bandwidth requirements.

passes this test, the entire block immediately terminates without additional refinement.

5 Experimental Results

The GPU we used was a Nvidia GTX 470 with the CUDA runtime v3.2. The device
has a total of 448 cores organized into 14 streaming multi-processors (SM). We target
our code specifically for the latest Fermi generation of GPUs from Nvidia (Compute
Capability>= 2.0) and make use of nearly all of the available 48KB of shared memory
in our profile search kernel. This was benchmarked against an Intel Core i7 running at
3.2GHz with 4 physical cores (8 SMT cores). Our CPU implementation was developed
in C++ utilizing the OpenCV 2.1 library and multithreaded using OpenMP. The training
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threads in the block cooperatively load the rows of matrix A sequentially into shared memory
and then individually perform their inner-products and keep a local running sum. This greatly
reduces global memory bandwidth requirements.

stage was performed offline using MATLAB code, as only the testing stage is run-time
performance-critical.

5.1 Speed
We evaluated execution time performance by using various face-containing images
taken from the Internet of differing size and differing pose/expressions. Additionally,
we set up a live video demonstration that performs ASM fitting on a web camera or AVI
stream and captured images (of various resolutions) of subjects from our lab perform-
ing work at their desks. This unconstrained dataset provides the variety necessary for
an effective evaluation of MASM runtimes on the CPU and GPU. Runtime for MASM
and ASMs in general is independent of image size; run time is data-dependent because
ASM fitting is an iterative technique that runs until convergence. It depends on the
closeness of the correct landmark positions to the initial locations provided by the face
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Figure 19: Global and shared memory load requests for naı̈ve and cooperative matrix routines.

detector. However, for certain subsystems of our program (namely conversion from
RGB to grayscale, Viola-Jones face-detection, and Sobel edge detection), execution
time is a function of image size.

In (Fig. 20), the runtimes of the major constituent components of our cuMASM
video stream landmarker are represented in an area chart. This figure clearly demon-
strates that performance of cuMASM becomes limited by the performance of the face
detector with large image sizes. Our cuMASM implementation maintains almost con-
stant runtime (very weakly linear), while face detection has O(n) performance. For the
high-resolution images, which contain the detail preferable for accurate landmarking
and a host of other biometrics tasks, OpenCV’s haar-cascade classifier implementation
simply cannot detect faces in realtime.

In (Fig. 21), we plot the run-times of our GPU cuMASM implementation, and
our single-threaded and multi-threaded CPU MASM implementations based on [17]
as a function of image size. We show the raw data points demonstrating the variance
in the execution time due to specific number of iterations required for each image to
converge, as well as the mean execution times. Average execution time for cuMASM
ranges from 37.96 ms (26.33 FPS) for VGA-sized images to 50.83 ms (19.67 FPS) for
2MP images. The full range of average execution times (MASM fitting only) can be
found in (Table 1).

We are able to achieve GPU speedup factors (Speedup =
timecpu
timegpu

) of approxi-
mately 24X over a single-threaded CPU implementation of MASM and speedups of
approximately 12X over a 8-threaded CPU implementation on a quadcore CPU. Mul-
tithreading MASM fitting on the CPU with OpenMP was only able to achieve a 2X
speedup over the single-threaded implementation, despite the 4 physical cores avail-
able. The effect of our optimizations on the final runtime of cuMASM is quite dra-
matic, as shown in (Fig. 23). Reducing global memory access in our matrix operators
facilitated a 2.75X speedup over our naı̈ve implementation (reduced our run time ap-
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Figure 20: cuMASM landmarking major component contributions to execution times.

proximately by 63%) and was critical to achieving realtime performance.

5.1.1 CUDA Haar Cascade Face Detector

The OpenCV Viola-Jones face detector [22] whose execution time is represented in
(Fig. 20) does not even perform a search through the entire scale space of the image;
we restrict it to search for a minimum face size of 300×300. This limits the num-
ber of levels of the multi-resolution pyramid that must be traversed, and those levels
which are eliminated are at the base of the pyramid which contains the most subwin-
dows. While this is a reasonable limitation for our demonstration landmarking system
(as our training images are of size 300 × 300), which assumes there is a single large
face per frame, this is not acceptable in other use cases. For example, there may be a
need to apply MASM to many faces in an image which are smaller than the training
image size (although the lack of detail as one proceeds further down in scale will re-
duce fitting accuracy significantly). Additionally, there are many uses of haar cascades
beyond facial landmarking which require one to traverse the entire scale space of an
image, such as counting all the objects present in an image. Although not the focus
of this paper, we have implemented a GPU haar cascade classifier in CUDA. Although
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Figure 21: cuMASM execution times as a function of image size.

GPU-accelerated implementations of the often cited Viola-Jones object detector [24]
and the de facto OpenCV implementation have been presented before [26, 27, 30, 28],
only [29] releases the source code. Additionally, some of the GPU implementations
are only partial components of the entire algorithm (notably much work has gone into
fast integral image generation on the GPU, despite its relatively small contribution to
overall runtime), and none mentions implementing the extended haar feature set pro-
posed in [25] and implemented by OpenCV. Furthermore, the authors of [29] claim
a very limited speedup of 2X improvement over OpenCV. However, a subsequent in-
dependent survey of vision algorithms on the GPU [31] was unable to duplicate this
claimed performance and found that the code performed more slowly than OpenCV in
nearly every case. Our implementation is compatible with standard OpenCV-trained
haar classifier cascades packaged as XML files and includes support for the tilted fea-
tures that are used in some OpenCV cascades. We achieve a speedup of approximately
8-12X over the single-threaded, standard (Windows x64 binary distribution) OpenCV
2.1 implementation running on a quadcore CPU. When we recompile the OpenCV 2.1
library with support for the Intel TBB and IPP libraries to enable full multicore utiliza-
tion, we are still able to achieve a nearly 3X speedup. This is somewhat disappointing,
but as our efforts to implement our own haar cascade classifier are still at an early stage
of optimization, there is room for improvement. We want to stress that our goal is
to provide a complete face detection and facial landmarking pipeline on the GPU so
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Table 1: Mean execution times for CPU MASM and GPU cuMASM.

Execution Time (ms) GPU Speedup Factor
Pixels MASM (1T) MASM (8T) cuMASM MASM (1T) MASM (8T)

307,200 951.1 433.4 38.0 25.0 11.4
384,000 988.2 492.9 39.3 25.2 12.6
409,920 1024.0 506.3 40.1 25.5 12.6
442,368 982.0 462.7 40.5 24.2 11.4
480,000 981.3 472.5 39.8 24.7 11.9
614,400 1064.2 557.1 41.9 25.4 13.3
786,432 1024.3 512.3 43.2 23.7 11.9
884,736 1045.4 536.7 43.7 23.9 12.3
921,600 1105.1 594.0 45.8 24.1 13.0
983,040 1097.3 578.5 45.1 24.4 12.8

1,024,000 1089.0 562.4 44.8 24.3 12.6
1,049,088 1122.0 608.8 45.7 24.6 13.3
1,093,120 1078.0 564.5 45.4 23.7 12.4
1,228,800 1048.7 536.6 45.2 23.2 11.9
1,296,000 1091.9 577.9 46.2 23.6 12.5
1,382,400 1081.9 554.3 46.2 23.4 12.0
1,470,000 1091.4 524.7 46.9 23.3 11.2
1,764,000 1122.4 594.7 48.0 23.4 12.4
2,073,600 1155.8 631.8 50.8 22.7 12.4

as to leave CPU resources available for use by higher-level applications that may not
be so data-parallel. Even relatively modest speedups relieve the CPU of an enormous
computational burden.

Table 2: Haar cascade face detector execution times of OpenCV2.1 and our GPU implementation

Execution Time (ms) GPU Speedup Factor
Pixels OpenCV(1T) OpenCV(8T) GPU Haar OpenCV(1T) OpenCV(8T)

307,200 313.9 69.2 38.4 8.2 1.8
442,368 481.9 107.0 52.1 9.3 2.1
480,000 516.6 115.7 54.4 9.5 2.1
786,432 1007.3 228.9 80.8 12.5 2.8
884,736 985.9 217.1 84.5 11.7 2.6

1,024,000 1215.5 263.0 94.6 12.8 2.8
1,228,800 1464.1 331.5 123.3 11.9 2.7
1,470,000 1744.2 388.6 142.4 12.2 2.7
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Figure 22: Average speedup factor of cuMASM GPU implementation.

5.2 Correctness

Due to the non-associative nature of floating point arithmetic, there is an expectation
of some degree of error whenever a serial algorithm is parallelized. We evaluate the
correctness of our GPU implementation by running both the serial CPU implementa-
tion and the GPU implementation over the JAFFE (Japanese Female Facial Expres-
sion) database, which contains 213 images of 10 subjects displaying 7 facial expres-
sions. This database was previously used in [17] to evaluate performance as an un-
seen, challenging test set and we have replicated that setup in this paper. We compute
the euclidean distance from each implementation’s automatically annoted landmarks
to hand-labeled ground truth points. The mean fitting errors for each landmark point
averaged over the entire database are shown in (Fig. 26). Although the CPU imple-
mentation has a marginally lower fitting error for the majority of the landmarks, the
root mean squared error (RMSE) over all of the points in the database is actually lower
for the GPU implementation (RMSEgpu = 4.2773 pixels) and RMSEcpu = 4.2828
pixels).
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Figure 23: cuMASM runtimes with different levels of optimization applied.

6 Conclusions

Facial landmarking is an important component of many face-based biometrics systems.
Robustness to pose, expression, and illumination is a difficult task which often neces-
sitates computationally expensive algorithms such as MASM. By leveraging the mas-
sively parallel architecture of GPUs, we are able to convert what once was an offline
algorithm to a real-time-capable one. This is an important achievement for biometrics
applications, which often involve high stakes scenarios where vast amounts of stream-
ing data must be processed as rapidly as possible. In the past, realtime performance on
live video streams and even beyond realtime for rapid batch processing often required
large data-centers. With GPU computing, it is possible to put a 10-TFLOP machine in
a single ATX form factor PC using commodity components. We achieve frame rates
of approximately 20 FPS. Although not discussed here, it is certainly possible to use
multiple GPUs on a single machine or even multiple machines to parallelize this algo-
rithm further. The easiest partitioning scheme for a video stream use case would be to
simply assign each detected face on incoming frames to the next idle GPU.

We also demonstrate that awareness of the underlying GPU architecture is impor-
tant for optimizations which can make a significant difference in final runtime perfor-
mance. By leveraging shared memory, improved memory access patterns, and unrolled
loops we improved our GPU performance by 2.75X over our Naı̈ve GPU implemen-
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Figure 24: Haar cascade classifier face detector execution times as a function of image size.

tation. We achieve a speedup of approximately 12X over a multithreaded CPU im-
plementation. As the fundamental difference in theoretical FLOP capacity between
current CPU and GPU devices is approximately a factor of 20-25, this indicates that
our implementation has some room for additional optimization. Like GPU implemen-
tations of many algorithms, the speed of our implementation is limited by memory
access latency and total available memory bandwidth. Although we make extensive
use of shared memory, as well as the constant and texture caches to minimize global
memory access operations, we remain memory-bound.

Although not addressed in detail in this paper, at larger image sizes, initialization
of MASM becomes problematic. Typically this initialization is performed using a face
detector such as the popular Viola-Jones algorithm implemented in OpenCV; however,
even with multithreading, the CPU-bound OpenCV implementation of face detection
quickly becomes the limiting factor in a real-time landmarking system. Our own im-
plementation of the haar-feature cascade classifier achieves approximately a 12X speed
up over the stock binary distribution of OpenCV 2.1 on a quadcore CPU, and nearly
3X over OpenCV 2.1 recompiled from source using the multithreading TBB library,
and Intel’s proprietary IPP library. Full integration with our GPU-based face detector
and/or a temporal tracking and prediction of future landmark initialization points allow
cuMASM to operate on live video streams of HD video. An example application of
such a system would be a continuous authentication system that is fully integrated on
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Figure 25: Average speedup factor of Haar cascade classifier face detector GPU implementation.

GPU and does not overtax CPU resources. This would allow continuous secure authen-
tication of user via face in secure facilities without affecting the normal applications
being used. This is an ideal application as in many such high-security applications, we
can presume the graphics card is not really being utilized and is therefore available for
use for such an important application.
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Figure 27: Sample images which have been automatically labeled with cuMASM.
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