
1 INTRODUCTION 

Precise and robust localization is a significant task for autonomous vehicles in complex scenari-
os. Knowing the accurate position of an autonomous vehicle is necessary for decision making 
and path planning. Global Positioning System (GPS) receivers and Inertial Measurement Unit 
(IMU) were usually applied for localization systems in the past few decades. The position accu-
racy was not guaranteed due to insufficient number of visible satellites or multi-path reflections 
of the signal. Thus, researchers have proposed many map-based vehicle localization algorithms 
to improve the accuracy of vehicle position. 

Gruyer, 2014 used two lateral cameras to detect the road markings and estimated the lateral 
and directional deviations by coupling the images with the map data in an extended Kalman fil-
ter (EKF) framework. Schreiber, 2013 used a stereo camera system to recognize the environ-
mental features of lane markers and curbs. Then, the Iterative Closest Point (ICP) algorithm was 
used to match the pre-built accurate map data with the detected features. The accuracy of lateral 
and longitudinal position was improved. However, the position of the lane markers was detected 
and calculated under the assumptions of fixed vehicle posture and flat road surface. The intrin-
sic and extrinsic parameter sensitivity of camera was analyzed by Tao, 2013 and only the lateral 
position of lane markers was used to locate the vehicle. It is extremely difficult for cameras to 
accurately extract the road features in shadows or poor lighting environments. 

Other than cameras which are sensitive to lights, LIDARs are insensitive to illumination. 
Schlichting, 2014 used an IBEO laser scanner for vehicle localization. The pole-like objects and 
planes were measured and matched to the landmark map using local pattern matching algorithm. 
It is hard to ensure the matching rate because of the sparsity of poles and planes. The curbs de-
tected by LIDAR have been used for localization by Hata, 2014. The localization algorithm is 
performed under the assumption of flat road surface, which is hard to guarantee in most scenari-
os. The lane markers can also be detected by LIDAR sensors based on the difference in reflec-
tivity between the lane marker and the surface of road. Kim, 2015 and Matthaei, 2014 proposed 
a lane-based algorithm to estimate position, and the lateral accuracy was improved. Due to the 
lack of longitudinal information, it was unable to provide accurate longitudinal position. To im-
prove the longitudinal positioning accuracy, a probabilistic grid map was used for localization 
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by Levinson, 2010 and Wolcott, 2014. The online sensor data were directly matched with the 
map by traversing the lateral and longitudinal search space. Nevertheless, the precision of local-
ization algorithm is directly related to the size of grid. The smaller size of grid, the higher com-
putational complexity and larger storage memory. 

In this paper, a real-time localization method is proposed to obtain the accurate lateral posi-
tion, longitudinal position and heading angle of the autonomous vehicle. A 3D-LIDAR sensor is 
used and multi-frame features are generated to match the digital map. The curb features are ex-
tracted through a robust curb detection algorithm. The intensity features are represented as 
probability distributions and an area probability search algorithm is used to match the map. Due 
to the different characteristics of curb feature and intensity feature, the Kalman filter is imple-
mented to fuse the observations of two features. 

2 MAP-BASED LOCALIZATION 

This section introduces the detail of the high-precision map based localization algorithm. First, a 
robust curb detection algorithm is performed on the point cloud of single-frame. Based on the 
vehicle dynamics, the detected curbs are densified by projection former curbs into current vehi-
cle coordinate system. Then, the beam model is applied to reject the outliers and the registration 
between the curb features and high-precision map is performed based on ICP algorithm. The in-
tensity feature is matched to the pre-built intensity digital map. Finally, the Kalman filter is used 
to fuse the two matching results and output the estimated position of vehicle. The flowchart of 
the proposed algorithm is shown in Fig. 1. 

 

 
 
Figure 1. Flowchart of proposed method. 

2.1 Motion Estimation and GPS Correction 

Before applying map matching, the on-board wheel speed, inertial sensor and low-cost GPS are 
fused to obtain a rough position based on Kalman filter. The motion estimation model is defined 
as follows:  
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where W is the process noise. (xk-1, yk-1, ψk-1) are the lateral, longitudinal and heading angle of 
vehicle at time k-1, (∆xk, ∆yk, ∆ψk) is the deviation of lateral, longitudinal and heading angle be-
tween time k-1 and k. The deviation is calculated based on vehicle kinematics model and shown 
as follows: 

 
 

















t

tvy

tvx

kk

kkk

kkk






1

1

sin

cos
 (3) 

where ∆t is the time step. vk and k  are the linear speed and yaw rate of vehicle measured by 



wheel speed sensor and inertial sensor. (xk, gps, yk, gps, ψk, gps) is the output of the Kalman filter. 

2.2 Curb detection 

In this paper, the LIDAR sensor is mounted on top of the autonomous vehicle. The raw data is 
obtained in a 3D polar coordinate. The curbs are detected from their spatial features. The height 
of curbs is uniform in most urban areas and it is often 10 to 15 cm higher than the road surface. 
Furthermore, the elevation changes sharply in the vertical direction. Based on these features, a 
robust approach was proposed by Zhang, 2015 to recognize curbs from a single frame. The de-
tection result is shown in Fig. 2 (a). However, the density of the detected curbs decreases with 
the increase of distance. In this paper multi-frame curbs are transformed into current vehicle co-
ordinate system based on the dynamics of the vehicle. An example of multi-frame curbs is 
shown in Fig. 2 (b). 

 

 
 (a) Single-frame curbs  (b) Multi-frame curbs   (c) Beam models    (d) Extracted curbs 

 
Figure 2. Curb detection procedure. 

2.3 Outlier rejection  

A few outliers exist in the densified multi-frame curbs because of false detection which need to 
be filtered. Beam model proposed by Thrun, 2005 is an approximate physical model of range 
finders and widely used in robotics. It is a sequence of beams with common initial point where 
the range finders are located and evenly spaced with angle resolution δ=2π/n. In this paper, the 
beam model is applied to eliminate the outliers. Several beam models are set at each trajectory 
point of the autonomous vehicle. The beam model is denoted as follows: 
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where ri=(xi, yi) is the ith curb coordinate. Zk means the kth beam area. The coordinate (xini,j, 
yini,j) is the jth launching point of beam model. dk is the index of the curb with the shortest dis-
tance among the curbs ri. Thus, all the dk th curbs are extracted and used at the next step. The 
procedure is shown in Fig. 2 (c) and (d). 

2.4 Curb features Registration 

The registration process intends to estimate the deviation between curbs detected by the auton-
omous vehicle and curbs provided by the digital map. The high-precision map which contains 
curb features is shown in Fig. 3a. The blue dots represent the road boundary. The ICP algorithm 
is a matching algorithm proposed by Besl, 1992. After extracting the contour, the points of the 
contour are denoted by C and the feature points in the map are denoted by M. The purpose of 
the ICP algorithm is to find a transformation T by minimizing the cost function:  
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where dist  denotes the Euclidean distance function. The optimization problem can be solved 
by an iterative approach as follows: 

a) Find the correspondence of each point Ci in M using a k-dimensional tree. 
b) Compute the transformation T of the correspondence based on the singular value decom-

position (Arun, 1987). 
c) Apply the transformation C=TC and calculate the J 
d) Terminate the iteration when the change of J falls below a preset threshold τ. 
The transformation matrix T is obtained after the iteration procedure.  

2.5 Intensity feature matching 

The intensity measurements of LIDAR sensor are also used to enhance the localization. The in-
tensity map is considered as probability distributions over environment which is described in 
Levinson, 2010. The mean and variance of intensity are contained in each cell of the map. The 
advantage of this representation is an increased robustness to dynamic obstacles. In the match-
ing procedure, first, the point cloud is projected into a grid. Then, the mean and variance of in-
tensity of (i, j) cell are calculated and denoted as Sr, (i, j) and Sσ, (i, j). The mean and variance of in-
tensity of (i, j) cell in the digital map are denoted as mr, (i, j) and mσ, (i, j). Thus, the possibility of 
vehicle locating at position (x, y) is computed: 
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where α is a parameter to control the influence of intensity for each cell. Finally, the estimated 
position is calculated by taking the average of P(z|x, y) at all possible positions. The estimated 
position is denoted as (xk, int, yk, int) at time k. 

2.6 Localization 

In the localization process, the computed results of above steps are imported into another Kal-
man filter. The output  gpskgpskgpsk yx ,,, ˆ,ˆ,ˆ   of first Kalman filter is used as the prediction 
states of vehicle. The transformation matrix T and (xk, int, yk, int) is used as the observation. The 
prediction states and observation are fused through the second Kalman filter. The output of the 
second Kalman filter is the final localization result. 

3 EXPERIMENTS 

To evaluate the proposed method, experiments are carried out both offline and online. The high-
precision curb-feature map and intensity-feature grid map are used as priori knowledge. RTK-
GPS data is recorded as the benchmark positions. The intensity-feature grid map is generated 
through calculating the mean and variance of intensity information of each grid. Also, the curb 
detection method is applied to automatically extract the curbs. After that, we modify the map 
points manually to generate the high-precision map. 

 

     
     (a) Curb map              (b) Intensity map 

 
Figure 3. High-precision curb and intensity maps. 



3.1 Offline experiment 

The dataset is recorded by our autonomous vehicle on the campus road in Tongji University. 
The recorded dataset composed of 4260 frames. Our autonomous vehicle is equipped with an 
Oxford Inertial+2 and NovAtel GPS receiver running at 100 Hz. The RTK-GPS provides the 
ground truth for evaluating the accuracy of localization algorithm. We compared our algorithm 
with only using low-cost GPS, low-cost GPS combined with INS, and low-cost GPS with INS 
plus curb features. The simulation is implemented with MATLAB. The waveforms of lateral, 
longitudinal and heading error of localization are shown in Fig. 4 and the statistical results of 
four methods are reported in Table 1. The proposed method has an approximately 70% im-
provement in longitudinal position error due to the fusion of curb feature and intensity feature. 
In addition, the average processing period of the proposed method is around 60 ms, which is ac-
ceptable in autonomous driving. 

 

 
  (a) Lateral position error    (b) Longitudinal position error    (c) Heading angle error 

 
Figure 4. Waveforms of localization error in datasets. 

 
Table 1. Performance index (RMSE). ________________________________________________________________________ 

     Lateral (m)   Longitudinal (m)   Heading (º)   ________________________________________________________________________ 

GPS     2.564     9.969             2.118 
GPS+KF   1.994     2.544       1.503 
Curb-based  0.191     1.623       0.941 
Proposed   0.170     0.443       0.697 ________________________________________________________________________ 

3.2 Online experiment 

After the comparison of four localization methods, the proposed algorithm is implemented with 
C/C++ under Windows-8 Operating System. The online experiment is tested on our autonomous 
vehicle platform. The controller is the ADLINK Industrial Personal Computer (IPC) with 16GB 
of RAM and Intel Core i7-3610QE CPU clocked at 2.3GHz. The online experiment is carried 
out on our campus lasting 3.1 km with average speed 26.9 km/h. The real-time operating win-
dow is shown in Fig. 5.  

 

    
(a)                   (b)                   (c)                   (d) 

 
Figure 5. Real-time experimental results. White dot represents the ground truth from RTK-GPS, red dot 
is the result of proposed method, light blue dot shows the result of curb-based method and orange dot is 
from GPS+INS. 

4 CONCLUSION AND FUTURE WORK 

This paper develops a real-time algorithm to locate an autonomous vehicle using a 3D-LIDAR 
sensor. The curb feature and intensity feature are used to match with high-resolution maps and a 



Kalman filter is utilized to fuse the matching results. Through combining the two different envi-
ronment features, the accuracy of lateral, longitudinal and heading angle of vehicle are im-
proved. Experimental results have shown promising performance in most scenarios. However, 
the proposed algorithm may fail to locate the vehicle accurately when some obstacles block the 
curb. In the future, we will focus on the localization problem in dynamic environments. 
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