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Abstract. Most manipulation tasks can be decomposed into sequences
of sensorimotor primitives. These primitives often end with character-
istic sensory events, e.g., making or breaking contact, which indicate
when the sensorimotor goal has been reached. In this manner, the robot
can monitor the tactile signals to determine when to switch between
primitives. In this paper, we present a framework for automatically seg-
menting contact-based manipulation tasks into sequences of sensorimotor
primitives using multimodal haptic signals. These signals include both
the robot’s end-effector position as well as the low- and high-frequency
components of its tactile sensors. The resulting segmentation is used to
learn to detect when the robot has reached a sensorimotor goal and it
should therefore switch to the next primitive. The proposed framework
was evaluated on guided peg-in-hole tasks. The experiments show that
the framework can extract the subtasks of the manipulations and the
sensorimotor goals can be accurately detected.

Keywords: multimodal tactile sensing, sensorimotor primitives, primi-
tive segmentation, learning from demonstration

1 Introduction

Manipulation tasks typically involve executing a series of discrete sensorimotor
primitives. For example, humans pick and place objects by grasping, lifting,
transporting, placing, and releasing the objects. These primitives are usually
bound by mechanical events that represent sensorimotor subgoals of the task
[1], e.g., making or breaking contact between either the hand and an object or
a grasped object and another object.

These changes in the contact state result in discrete and distinct sensory
events that are characterized by specific neural signatures in human tactile affer-
ents [2]. For example, when fingers make contact with an object during grasping,
signals from the slow- and fast-adapting type one afferents (SA-I, FA-I) provide
information about the outcome of the grasp. Similarly, the FA-II afferents detect
the contact vibrations during tool use when contact between the grasped object
and another object is made or broken, or when slip occurs. An example of a
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sensory event for a robot is shown in Fig. 1. The tactile signals indicate that
the fingers made contact, and thus reached the goal, earlier than expected. If
this sensory event was completely absent, then it would indicate that the goal
was not achieved. These sensory events thus provide information about if and
when a primitive’s goal has been reached. Given this information, the robot can
determine when to terminate the current primitive and start the next one.

Fig. 1: An illustration of a sensorimotor
event resulting from finger-object con-
tact during grasping.

In this paper, we present a frame-
work for segmenting manipulation
tasks into sensorimotor primitives and
subsequently learning to switch be-
tween these primitives based on tac-
tile events. The segmentation is per-
formed using Bayesian on-line change-
point detection [3] with multimodal
haptic signals. Each changepoint in-
dicates a sensorimotor subgoal of the
task. The haptic time series signals
include the Cartesian position of the
robot’s hand and the low- and high-frequency signals of the tactile sensors [4].

The sensory signals before and after each changepoint are used to learn a
classifier for detecting the sensory event when the primitive is executed. In this
manner, the robot can monitor whether the subgoal has been reached and switch
to the next sensorimotor primitive accordingly. Rather than manually designing
features for representing the haptic signals, the robot uses Spatio-Temporal Hier-
archical Matching Pursuit (ST-HMP) [5] to learn suitable features. The detection
of the sensory events is then achieved using linear support vector machines.

The proposed framework was evaluated using guided peg-in-hole tasks. The
experiments evaluated the segmentation using different sets of sensor modalities,
and the accuracy of the classifiers for switching between sensorimotor primitives.
In a validation experiment, the robot used the learned primitives and switching
behaviours to autonomously perform guided peg-in-hole tasks.

2 Related Work

Learning from demonstration (LfD) methods have emerged as an effective ap-
proach to transfer human manipulation skills to robots. Many of these methods
learn libraries of movement primitives that adapt to the context of the task [6–8].
These primitives are often trained on presegmented data, and they are usually
run for a fixed duration or until they reach a predefined threshold from the goal
state. Kappler et al [9] also proposed a framework for switching between primi-
tives based on multimodal signals. However, their approach is based on modeling
the stereotypical sensor values at every time step of the primitives rather than
detecting the characteristic sensory event of the primitive’s sensorimotor goal.

Previous work has also proposed methods for automatically segmenting ma-
nipulation tasks into sequences of skills [10, 11]. These approaches focus on using
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proprioceptive signals to segment the tasks. By including tactile data, our seg-
mentation approach results in primitives that terminate in sensory events that
can be monitored to determine if contact goals have been reached. Methods have
also been proposed for segmenting tasks into phases based on changes in the dy-
namics [12, 13]. Primitives can then be learned for transitioning between the
segmented phases. Our approach learns primitives directly and does not require
learning explicit models of the task.

A primitive that terminates early depending on sensory conditions is also
known as a guarded motion. Guarded motions have been widely adopted for
industrial robotic manipulators and prosthetic hands to avoid applying exces-
sive force to the external objects [14, 15]. The sensory conditions for switching
between the primitives are usually hand-designed by human experts.

Tactile servoing has also been successfully integrated into direct robot control
to continuously follow distinctive surface features of objects, such as edges [16]
[17]. Our work focuses on switching between primitives based on discrete sensory
events and is thus a complimentary approach to including tactile feedback.

Approximate online Bayesian changepoint detection has been used in com-
bination with articulation models to segment demonstrated manipulation tasks
by detecting changes in the motions of objects [18]. In this work, authors relied
only on the relative pose of two objects/parts to segment manipulation tasks,
and not the force-torque or tactile signals. Given the importance of high fre-
quency tactile signals in manipulation tasks [19, 20], our approach incorporates
these signals into the online Bayesian changepoint detection.

3 Approach

The goal of our work is to autonomously segment manipulations into sensori-
motor primitives and to subsequently learn classifiers for determining when to
switch between the primitives. We introduce the multimodal signals and the sen-
sorimotor primitives used in this work in Sec. 3.1 and 3.2 respectively. We then
explain the segmenting of the demonstrations into primitives in Sec. 3.3, and
learning to detect sensory events for switching between primitives in Sec. 3.4.

3.1 Multimodal Haptic Signals

In our experiments, we use a robot consisting of a 7-DOF Barrett WAM arm
and Barrett hand, whose three fingers are equipped with biomimetic tactile
sensors (BioTacs). This system provides rich multimodal haptic signals, including
proprioceptive signals, and both static and dynamic tactile signals. On our robot,
the proprioceptive signals include the Cartesian position of the robot’s end-
effector ypos ∈ R3 derived from the forward kinematics of the robot manipulator,
as well as the force-torque signals yFT ∈ R6 measured on the robot’s wrist force-
torque sensor.

Static tactile signals are mainly sensitive to constant contacts, such as static
forces applied to an object being grasped. BioTacs [17] consist of a rigid core



4 Switching between Sensorimotor Primitives using Multimodal Signals

housing an array of 19 electrodes surrounded by an elastic skin. The skin is in-
flated with an incompressible and conductive liquid. When the skin is in contact
with an object, the liquid is displaced, and the conductance of the electrodes
changes. The electrode conductance changes yE ∈ R19 are used to measure the
static contact forces at 100Hz.

Dynamic tactile signals are sensitive to transient mechanical events, e.g.,
making and breaking contact between hand-held tools and other objects. Micro-
vibrations in the skin can propagate through the fluid in the BioTac and are de-
tected as high-frequency signals by the hydro-acoustic pressure sensor embedded
in the sensor’s core. These high-frequency 2200Hz vibration signals, yPAC ∈ R22

at 100Hz, are used to detect transient mechanical events.

3.2 Sensorimotor Primitives

A sensorimotor primitive is a parametrized synergy of motion and sensing that
can be used to build task strategies. For example, the motion for inserting a peg
into a hole and the sensory feedback from the peg hitting the hole bottom form
a sensorimotor primitive. This sensorimotor primitive can be sequenced together
with other sensorimotor primitives to perform insertion tasks.

End-effector Position

Static Tactile Event

Dynamic Tactile Event

Sensory Event

Force/Torque

Desired Position 
& Force Values

Tactile Event 
Data

Goal Detection 
Classifier

Position & Force 
Controllers 

Fig. 2: Illustration of our framework of
segmentation of sensorimotor primitives
from demonstrated trajectories.

The sensorimotor primitives used
in this paper consist of a force-
position controller and a sensory goal
detector. The closed-loop controller
defines the behaviour for reaching a
desired state while the goal detector
continuously monitors if the sensory
goal has been reached. The primitives
are segmented such that they each ter-
minate with a sensory event, as shown
in Fig. 2. These sensory events have a
short duration, which is chosen to be
160ms long. This duration is chosen by comparing the goal detector’s success
rates under different durations of sensory events. The signals observed during
the sensory event are used to train the goal detector, as detailed in Sec. 3.4. The
position and force signals 100ms after the sensory event are used to compute the
final desired state for the controller. The feedback gains for the controllers are
predefined. The desired force is incrementally increased by 1N, if the primitive
failed to reach the desired sensory event. The desired position is defined relative
to the starting position of the skill. Thus, if a skill terminates early, the following
primitives’ desired positions are offset accordingly.

3.3 Sensorimotor Primitives Segmentation

Proprioceptive signals are often used to segment action primitives [10, 11]. How-
ever, these signals do not capture task-specific tactile events during motions
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involving contact with the environment. As a result, it is often difficult to verify
if the contact goal of a primitive was achieved in these cases.

In contrast to the relatively smooth proprioceptive signals, the dynamic tac-
tile signals are sensitive to contact events. Some of these events will be relevant
to the task and result in switching between primitives, but others may be irrele-
vant. For example, in a peg-in-hole task, the vibrations from the peg entering the
hole and making contact with the bottom of the hole both relate to task-relevant
contact events. However, the vibrations resulting from scratching the peg over a
rough surface are not considered to be relevant to this task and are effectively
noise.

We use unsupervised Bayesian online changepoint detection (BOCPD) [3] to
segment trajectories into unknown numbers of primitives with discrete sensory
events. We apply this method jointly on both the proprioceptive and the tactile
signals. BOCPD sequentially calculates the posterior distribution over the cur-
rent run length rt ∈ Z at time t, i.e., rt is the number of time steps since the last
changepoint. The posterior distribution p(rt|y1:t), given the previously observed

data y1:t, is computed by normalizing the joint likelihood P (rt|y1:t) = P (rt,y1:t)
P (y1:t)

.

The joint likelihood over the run length and the observed data is computed
online using a recursive message passing scheme [3]

P (rt, y1:t) =
∑
rt−1

P (rt|rt−1)P (yt|rt−1, y
(r)
t ; θm)P (rt−1, y1:t−1) , (1)

where P (rt|rt−1) is the conditional changepoint prior over rt given rt−1, which is
nonzero in only two scenarios: H(rt−1 + 1|θh) when a changepoint occurs rt = 0
or 1 − H(rt−1 + 1|θh) when the run length continues to grow rt = rt−1 + 1.

The function H(τ) is the hazard function H(τ) =
P(g=τ)∑∞
t=τ P(g=τ)

, where P(g) is

a geometric distribution with timescale θh. The hazard function is constant at
H(τ) = 1/θh. The predictive distribution P (yt|rt−1, y1:t; θm) only depends on

the recent data y
(r)
t and the model parameters θm. The parameters θ = {θh, θm}

form the set of hyperparameters for the model.
Similar to Turner et al. [21], we use a joint BOCPD algorithm with multi-

variate time series sensory signals by modelling the signals as a joint Student’s
t-distribution P (yt|rt−1,Y1:t; θm), where yt could be any unimodal or multi-
modal sensory signals mentioned in Sec. 3.1. The joint model, with multimodal
sensory signals, can extract more information from the data as simultaneous
changes in multiple time series is a stronger indication of a changepoint.

3.4 Learning to Detect Sensory Events

After segmenting a demonstrated skill into a sequence of sensorimotor primitives,
the robot should learn to autonomously determine when to switch from one
primitive to the next. We treat this detection process as a classification problem.
We train a classifier using the segmented sensorimotor primitives.

In order to detect different sensory events, we use Spatio-Temporal Hierar-
chical Matching Pursuit (ST-HMP) [5] to learn rich feature representations from
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the time series data of both static and dynamic tactile signals. The ST-HMP
method was built upon the Hierarchical Matching Pursuit (HMP) [22] algorithm,
which is a multilayer sparse coding network that creates feature hierarchies from
raw data. It extends HMP by also extracting features across time series data.The
ST-HMP method has achieved high accuracy in grasp stability assessment and
object recognition using only low-frequency tactile sensory data on several syn-
thetic and real tactile datasets [5]. In this paper, we incorporate signals from
other sensor modalities, including high-frequency tactile data.

Including both spatial and temporal patterns of tactile information is impor-
tant for achieving high classification accuracy. The ST-HMP extracts rich spatial
structures from raw multimodal data without pre-defining discriminative data
characteristics. Given a set of high-dimensional observations, it uses K-SVD [23]
to learn a dictionary and the associated sparse code matrix in an unsupervised
fashion over a large collection of spatial patches sampled from multimodal data.
With the learned dictionary, the ST-HMP computes sparse code features for each
high-dimensional observation in a small neighborhood using orthogonal match-
ing pursuit. Then those sparse code features are max pooled over the spatial and
temporal dimensions at several scales with an increasing size of a receptive field
(cell) to generate robust feature vectors for both spatial and temporal variations.
The final feature describing the whole sensor data sequence is the concatenation
of aggregated sparse codes in each spatio-temporal cell. Algorithm details can
be found in the paper of Madry et al. [5].
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Fig. 3: Schematic of the elec-
trode and pressure sensor ar-
rangement on the BioTac (left).
Tactile data array used for the
ST-HMP features (right).

In order to represent the robot’s haptic
data using HMP features, we need to first ar-
range the tactile signals into 2D tactile data
arrays. The layout of the BioTac sensor’s elec-
trodes is shown in Fig. 3. The Xs on the finger
indicate the reference electrodes, and the 19
BioTac electrodes E1...E19 are measured rela-
tive to these 4 reference electrodes. V 1 and V 2
are two virtual electrodes computed by taking
an average response of the neighboring elec-
trodes V 1 = E[E17, E18, E12, E2, E13, E3]
and V 2 = E[E17, E18, E15, E5, E13, E3].
The high-frequency vibration signals (PAC)
from one pressure sensor on each finger are
separated into 22 virtual channels over time
P1...P22, and the vibration signals from the
three fingers (F1, F2, F3) are concatenated
side by side. Thus, HMP is essentially extract-
ing temporal features from these 22 virtual vi-
bration channels within one finger as well as
learning features to reflect the dependencies
of sensors on multiple fingers.
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In order to structure the data, the 19 electrodes and two virtual electrodes
(V 1 and V 2) on each finger are laid out as a 7× 3 2D data array. The vibration
signals (PAC) on the three fingers are laid out as 22× 3 2D tactile data array,
as shown in Fig. 3. In this manner, three BioTacs create total four 2D tactile
data arrays: three 7× 3 tactile arrays for electrodes and one 22× 3 tactile data
array for vibration signals. We then apply the HMP to each tactile data array
separately and then concatenate feature vectors. HMP learns a dictionary of size
M = 100 with the sparsity level set to K = 4. The spatial pooling is performed
with a 3 level pyramid: the data array is divided into 1 × 1, 2 × 2 and 3 × 3
cell grids, which results in S = (1 + 22 + 32) = 14 spatial cells. The temporal
pyramid consists of 4 max-pooling levels: the sequence is divided into 1, 2, 4,
and 8 parts, which results in T = (1 + 2 + 4 + 8) = 15 temporal cells. To prevent
losing the signs of HMP features due to max-pooling on absolute values, we
save the feature vector with both positive and negative signs. Therefore, the size
of the feature descriptors is doubled. The total number of ST-HMP features is
4× S × T ×M × 2 = 4× 14× 15× 100× 2 = 168000.

Given the ST-HMP tactile features, a Support Vector Machine (SVM) is
then used to classify these features. For rich features provided by sparse coding,
a linear kernel obtains satisfactory results and there is no need to apply more
complex distance measures.

4 Evaluation and Discussion

In this section we describe the experiments and results obtained for evaluating
the proposed sensorimotor primitive segmentation and goal detection framework.

4.1 Sensorimotor Primitives Segmentation for Peg-in-hole tasks

Fig. 4: Experiment setup of the
peg-in-hole manipulation task.

Experimental Setup We evaluated our
method on our robot platform. For the guided
peg-in-hole tasks, we use a 3D printed peg-in-
hole set consisting of holes with 1mm clear-
ance and various geometric features, includ-
ing a curved groove leading into a hole, a
straight groove leading into a hole, and a
squared groove with a hole at one of its cor-
ners. These geometric features of the board
are shown in the inset of Fig. 4. These fea-
tures are designed to create constraints that
guide the robot while performing the peg-in-
hole tasks. Interacting with these geometric
features results in tactile events. The robot
should therefore learn sequences of sensorimo-
tor primitives that reach the individual geo-
metric features, and switch between the prim-
itives accordingly to perform the task. An



8 Switching between Sensorimotor Primitives using Multimodal Signals

adapter was 3D printed to hold the 5.7mm diameter peg, such that it can be
firmly grasped by two BioTacs using a pinch grasp, as shown in Fig. 4.

In the experiment, the robot was taught by a demonstrator to perform the
guided peg-in-hole tasks using kinesthetic teaching. For example, to use the
curved groove, the demonstrator moved the robot’s hand down until the peg
made contact with the surface of the board, slid the peg into the curved groove,
traced the groove with the peg until reaching the opening of the hole, and fi-
nally inserted the peg into the hole. We collected 50 demonstrations with each
geometric feature on the peg board.

We recorded the 3D Cartesian position of the robot’s end-effector from the
robot’s motor encoders using its forward kinematics. We also tracked the 3D
Cartesian position of the board with a Vicon motion capture system. Thus,
we can calculate the relative position of the end-effector and the board (pos). In
order to compare the segmentation performance with different sensor modalities,
we also recorded the signals from the signals from the force/torque sensor at
the wrist (FT), the BioTacs’ electrodes (E), and the BioTacs’ high-frequency
pressure sensor (vib).

The joint predictive distributions over the sensor values were modelled using
Student’s t-distributions with hyper-parameters θm: µpos = 0.02, σpos = 102.5;
µFT = 0, σFT = 1; µE = 0, σE = 1; and µvib = 1000, σvib = 10−2, respectively.
The hazard function’s hyper-parameter was set to θh = 250.

Results The results of using joint BOCPD with the proprioceptive and tactile
data for the curved-groove task is shown in Fig. 5. The ground truth primitive
switches were manually labeled, as indicated in Fig. 5 by double vertical dashed
lines. In this example case, five significant sensorimotor events were labeled, in-
cluding the peg impacting the surface of the board, entering the groove, reaching
the corner of the groove, reaching the top of the hole, and making contact with
the bottom of the hole, as shown in Fig. 4. The changepoints detected by the
BOCPD algorithm are indicated by black crosses. If these changepoints are be-
tween the double vertical dashed lines, we consider the BOCPD algorithm as
having successfully segmented the primitive. If there is no changepoint between
these double vertical dotted lines (red), then BOCPD missed the event, e.g.,
the corner of the curved groove. If changepoints fall between two consecutive
sensorimotor events, we consider these changepoints as false positives, such as
the changepoint at 0.93s and 2.76s shown by circles (blue). The first of these
false positive is caused by the bumpy surface of the peg board. The second false
positive is caused by the peg jamming against the inner surface of the hole.

The joint BOCPD on the multimodal signals performed better than the in-
dependent BOCPD on the unimodal signals. Fig. 6-8 show the segmentation
success rates and false positive rates for each sensorimotor event in the three
guided peg-in-hole tasks, i.e., curved groove, straight groove, and square groove
respectively. The proprioceptive and multimodal tactile signals, including the
electrodes and pressure sensors, usually achieved the highest success rates and
the lowest false positive rates. This result is due to the changepoints of the joint
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Fig. 5: An example of joint BOCPD to segment sensorimotor primitives in a
peg-in-hole task with curved groove.

BOCPD using the effects of both the low- and high-frequency sensory infor-
mation. Thus, the joint model can extract more information from the data as
simultaneous changes in multiple time series is a stronger indication of a senso-
rimotor changepoint.

4.2 Sensorimotor Primitives Goal Detection

Experimental Setup We evaluated the sensorimotor primitive goal detection
method using the changepoints detected by the joint proprioceptive and tac-
tile BOCPD. The goal is to have the robot autonomously detect whether it has
reached the goal of the current sensorimotor primitive. For every changepoint de-
tected by the segmentation method, except the first one, we extracted 16 sensory
data samples (160ms) directly before and after the changepoint. These samples
represent the tactile signals from the goal’s sensory event. We also extracted 16
samples randomly selected between the last changepoint and the current change-
point. These samples correspond to the signal before the goal has been reached.
In this manner, we collected 560 positive (goal detected) and 560 negative (goal
not detected) samples from 35 trials for the evaluation.

In this experiment, we compared the goal detection accuracies using either
HMP or ST-HMP features. The difference between ST-HMP and HMP is that
ST-HMP combines the tactile information from multiple time steps t to create
the features. In contrast, HMP creates features for each time step separately and
then concatenates them. To evaluate the HMP and ST-HMP features for goal
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Fig. 9: Peg-in-hole sensorimotor primi-
tive detection results.

detection, we performed a 5-fold cross-validation on the data set by using 896
samples for training the classifier and the rest for testing.

Results By using all tactile sensor modalities, as shown in Fig. 3, the average
classification accuracies among the different sensorimotor primitives range from
77.5% to 100%. The classification accuracies and the standard deviations for the
different sensorimotor primitives are shown in Fig. 9.

Overall, the ST-HMP achieves higher accuracies and lower standard devia-
tions than the HMP. This is due to ST-HMP pooling over the time steps, which
results in temporal invariances. The results thus show the importance of com-
bining information from multiple time scales when detecting sensory events.

4.3 Robot Performing Peg-in-hole Task

In this experiment, the robot uses the segmented primitives and goal detectors
from the previous experiments to autonomously perform the guided peg-in-hole
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task with the curved groove. The segmentation was performed using the proprio-
ceptive and tactile signals, while the sensory event detection only uses the tactile
data. The position and force signals 100ms after each segmentation are used to
compute the final desired position and contact force for each controller. The de-
sired positions generated by a minimum jerk trajectory generator are tracked by
a velocity-based operational space controller together with an inverse dynamic
law and PD feedback error compensation in joint space [6]. Tracking of desired
contact forces on the arm is achieved with a PI controller on the force/torque
sensor located at the wrist [6].

Fig. 10: Sensorimotor primitive sequence for the curved groove peg-in-hole task.

An example sequence of sensorimotor primitives successfully executing the
peg-in-hole task with a curved groove is shown in Fig. 10. Without the sensory
event detection, we observed two common failure modes: i) the robot misses
the groove (failed transition from 2nd to 3rd picture), and ii) the robot jams
the peg around the groove corner (failed transition from 4th to 5th picture).
The sensory event detection alleviates these issues by detecting when the goal
state was not reached, i.e., the sensory event was not detected, and repeating
the current primitive to reach the goal. The required correction is usually rather
small, and the primitive terminates once the goal has been reached.

5 Conclusions

We presented a framework for segmenting contact-based manipulation tasks us-
ing both proprioceptive and tactile signals. We used the unsupervised online
Bayesian changepoint detection algorithm to automatically segment manipu-
lations into sensorimotor primitives. Classifiers using ST-HMP features, were
trained to detect sensory events for switching between primitives. The proposed
method was successfully evaluated on guided peg-in-hole tasks. The robot could
accurately segment the tasks and detect the sensory events using the proposed
approach.

In the future, we will extend the proposed framework to learn to detect failure
events through autonomous exploration.

Acknowledgments. Research supported by the MPI for Intelligent Systems.
BioTac sensors were provided by SynTouch LLC. Gerald E. Loeb is an equity
partner in SynTouch LLC, manufacturer of the BioTac sensors used in this re-
search. Special thanks to Felix Grimminger for helping design the 3D printed
parts.



12 Switching between Sensorimotor Primitives using Multimodal Signals

References

1. Flanagan, J.R., Bowman, M.C., Johansson, R.S.: Control strategies in object
manipulation tasks. Current opinion in neurobiology 16(6) (2006) 650–659

2. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the finger-
tips in object manipulation tasks. Nat. Rev. Neurosci. 10(5) (2009) 345–359

3. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint
arXiv:0710.3742 (2007)

4. Wettels, N., Santos, V., Johansson, R., Loeb, G.: Biomimetic tactile sensor array.
Advanced Robotics 22(8) (2008) 829–849

5. Madry, M., Bo, L., Kragic, D., Fox, D.: St-hmp: Unsupervised spatio-temporal
feature learning for tactile data. In: ICRA, IEEE (2014) 2262–2269

6. Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards associative skill
memories. In: Humanoids, IEEE (2012) 309–315

7. Chebotar, Y., Kroemer, O., Peters, J.: Learning robot tactile sensing for object
manipulation. In: IROS, IEEE (2014) 3368–3375

8. Manschitz, S., Kober, J., Gienger, M., Peters, J.: Learning movement primitive
attractor goals and sequential skills from kinesthetic demonstrations. Robotics and
Autonomous Systems 74 (2015) 97–107

9. Kappler, D., Pastor, P., Kalakrishnan, M., Manue, W., Schaal, S.: Data-Driven
Online Decision Making for Autonomous Manipulation. Rss (2015)

10. Meier, F., Theodorou, E., Stulp, F., Schaal, S.: Movement segmentation using a
primitive library. In: IROS, IEEE (2011) 3407–3412

11. Niekum, S., Osentoski, S., Konidaris, G.D., Chitta, S., Marthi, B., Barto, A.G.:
Learning grounded finite-state representations from unstructured demonstrations.
IJRR 34(2) (2015) 131–157

12. Kroemer, O., van Hoof, H., Neumann, G., Peters, J.: Learning to predict phases
of manipulation tasks as hidden states. In: ICRA, IEEE (2014) 4009–4014

13. Kulick, J., Otte, S., Toussaint, M.: Active exploration of joint dependency struc-
tures. In: ICRA, IEEE (2015) 2598–2604

14. Deiterding, J., Henrich, D.: Automatic adaptation of sensor-based robots. In:
IROS, IEEE (2007) 1828–1833

15. Matulevich, B., Loeb, G.E., Fishel, J.A.: Utility of contact detection reflexes in
prosthetic hand control. In: IROS, IEEE (2013) 4741–4746
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