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Abstract— Complex contact manipulation tasks can be de-
composed into sequences of motor primitives. Individual prim-
itives often end with a distinct contact state, such as inserting
a screwdriver tip into a screw head or loosening it through
twisting. To achieve robust execution, the robot should be able
to verify that the primitive’s goal has been reached as well as
disambiguate it from erroneous contact states. In this paper, we
introduce and evaluate a framework to autonomously construct
manipulation graphs from manipulation demonstrations. Our
manipulation graphs include sequences of motor primitives for
performing a manipulation task as well as corresponding con-
tact state information. The sensory models for the contact states
allow the robot to verify the goal of each motor primitive as well
as detect erroneous contact changes. The proposed framework
was experimentally evaluated on grasping, unscrewing, and
insertion tasks on a Barrett arm and hand equipped with
two BioTacs. The results of our experiments indicate that the
learned manipulation graphs achieve more robust manipulation
executions by confirming sensory goals as well as discovering
and detecting novel failure modes.

I. INTRODUCTION

Object manipulation tasks can be decomposed into se-
quences of discrete motor primitives. For instance, an as-
sembly task like unscrewing a screw involves inserting the
screwdriver tip into the head of the screw and twisting it.
Each of these motor primitives terminates in a sensory event
that corresponds to a sensorimotor subgoal of the task [1],
e.g., making contact between the screwdriver tip and the
head of the screw, and loosening the screw. In humans,
these distinct sensory events have been characterized by
specific neural responses in cutaneous sensory afferents on
the fingertips [2]. For example, fast- and slow-adapting type
one afferents (FA-I, SA-I) respond strongly to making or
breaking contact as well as normal and tangential forces
between fingertips and hand-held tools. When a tool makes
contacts or slides against an object, the fast-adapting type two
afferents (FA-II) sense the vibrations indicating the contact
changes.

Klingbeil et.al [3] showed humans can perform manip-
ulation tasks requiring complicated contact changes indi-
rectly through tools and they achieve robust manipulation by
spending significant amount of time at a few distinct types
of contact states which often require exploratory strategies
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Fig. 1: Robot needs to learn to disambiguate successful
insertion from failed insertion into a screw.

to disambiguate. It is desirable to equip robots with this
capability. For example, a robot could learn to disambiguate
between a successful insertion into a screw head versus
making contacts with a flat surface, as shown in Fig. 1.

In our previous work [4], we proposed a method to
segment demonstrated manipulation tasks into a sequence
of sensorimotor primitives using unsupervised Bayesian on-
line changepoint detection (BOCPD) [5] with multimodal
haptic signals. In this paper, we expand our previous work
into a manipulation skill acquisition framework by making
the following improvements. First, correspondences of the
segmented motor primitives from multiple demonstrations
are found by clustering the final poses of all the segments
extracted from BOCPD. After clustering these segments,
skill clusters and frequency of transitions between clusters
within demonstrations are used as nodes and edges to build
a skill graph. The robot then performs the task by replaying
a sequence of motor primitives by traversing the skill graph.
A sequence of exploratory movements is performed at the
end of each motor primitive execution. The resulting sensory
signals, i.e. from tactile sensors in this work, are clustered
to identify sensory events corresponding to distinct contact
states, which we refer to as modes. These modes are formed
from successful and failed skill executions. Finally, a unified
manipulation graph is built with both the motor primitives
and the modes, and the learned graph is used by the robot
to verify successful skill executions by detecting contact
state changes and discovering novel failures. The overall
framework is shown in Fig. 2.

The proposed framework was evaluated on three manipu-
lation tasks: a grasping task, an unscrewing task, and a peg
insertion task (0.5mm tolerance). The experiments evaluated
the robot on segmenting demonstrations, clustering segments
from multiple demonstrations, and building manipulation



Fig. 2: Overview of the framework used in this experiment.

graphs as well as discovering novel failure cases.

II. RELATED WORK

Imitation learning methods are an effective approach for
transferring human manipulation skills to robots. These
methods often learn motor primitive libraries that generalize
between different contexts of the task [6, 7, 8]. The motor
primitives are usually trained on presegmented trajectories,
and they tend to terminate after a fixed duration or once they
have reached a predefined pose threshold from their goal.
Kappler et al [9] proposed a framework for using multimodal
signals to switch between primitives. Their approach models
the stereotypical sensor signals as functions of time rather
than monitoring for specific sensory event of the primitive’s
goal and failures. Niekum et. al [10] learn a finite-state
automaton or skill graph that select the next primitive based
on the current state.

Methods for segmenting manipulations into sequences of
primitives [10, 11, 12] usually use proprioceptive signals of
the robot and the locations of the objects to segment the
demonstrations. Konidaris et.al [13] used the returns from a
Reinforcement Learning framework to segment demonstrated
trajectories. Niekum et. al [14] have proposed an approx-
imate online Bayesian changepoint detection method to
segment demonstrations by detecting changes in articulated
motion of objects. The authors also proposed verification
tests to verify skills have been successfully executed before
switching onto subsequent skills. We use low and high
frequency tactile signals, inspired by human sensorimotor
primitives [1], to detect contact events for segmentation as
well as discovering modes corresponding to success and
failure executions. It has been shown that high frequency
tactile signals are particularly important for manipulation
tasks [15, 16]. Recently, Chu et. al [17] have shown the
importance of using multiple sensory modalities, such as
force/torque sensing and vision, to improve skill segmenta-
tion. Other techniques have been proposed for decomposing
tasks into modes based on changes in the state transition
model [18, 19]. Motor primitives are subsequently optimized
for switching between the modes.

In the planning domain, a contact manipulation task can
be treated as a contact motion planning problem by dividing
it into a sequence of contact state transitions which can be
represented as connections in a graph [20]. However, the
graph size grows combinatorially with the number of contact

states. Lee et. al [21] proposed a hierarchical approach to
decrease the search space by planning for three subproblems:
finding sequences of object contact states, finding sequences
of object’s poses, and finding sequences of contact points
for manipulators on the object. Jain et. al [22] proposed to
solve contact manipulation tasks with a hierarchical POMDP
motion planner that develops high-level discrete state plans to
find sequences of local models to visit and a low-level cost-
optimized continuous state belief-space plans. Previous work
in motion planning [23, 24] has also created manipulation
graphs with modes, which represent finite and discrete sub-
manifolds of the full configuration space. In our paper, the
modes are discovered through clustering the sensory signals
after executing a sequence of skills and they correspond to
different types of contact constraints formed at the end of
these skill executions.

In [3], Klingbeil et.al developed a framework to analyze
human control strategies while humans demonstrated com-
plex contact manipulation tasks in a virtual environments
with visual and haptic feedback. Their experiments showed
that humans tend to explicitly control and explore only a
few contact states along the manipulation trajectories due to
physiological delay limits. This work seems to agree with our
assumption that these few states correspond to the subgoals
of the manipulation tasks and a robot should develop sensory
models at these key contact states.

Guarded motions are primitives that terminate when a
sensory condition is fulfilled. These primitives are widely
used in industrial application and prosthetics to avoid exces-
sive force [25, 26]. The termination conditions are usually
manually predefined.

III. APPROACH

We present a framework for autonomously segmenting
manipulations, clustering segments into skill primitives, and
discovering corresponding modes to create a manipulation
graph. The manipulation graph is learned from successful
and failed executions during skill replays, and therefore
also includes failure modes. The success and failure modes
are subsequently learned for each skill primitive to deter-
mine when to switch to the next primitive and to detect
when an error has occurred. We explain the segmentation
of the demonstrations into primitives in Sec. III-B, find-
ing corresponding segments among demonstrations to build
skill graphs and removing oversegmentations in Sec. III-C,



Fig. 3: Experimental setup of demonstrating the grasping task.

Fig. 4: Experimental setup of demonstrating the peg-in-hole task.

discovering unique sensory events associated with contact
state changes at the end of each skill replay in Sec. III-
D, and building manipulation graphs from skill graphs and
the corresponding modes in Sec. III-E. An overview of our
framework is shown in Fig. 2.

A. Demonstration and Multimodal Sensory Signals

The graph generation process is initialized from demon-
strations, as shown in Fig. 2A. Our experimental setup con-
sists of a 7-DOF Barrett WAM arm and a Barrett hand, which
is equipped with two biomimetic tactile sensors (BioTacs)
[27]. We demonstrate manipulation tasks through two types
of demonstrations: kinesthetic demonstrations and teleoper-
ated demonstrations. In the kinesthetic demonstrations, the
human expert demonstrates tasks by directly moving the
robot arm. In the teleoperated demonstration, the human
operates the bi-manual robot by manually moving the robot’s
master arm where the slave arm mimics the movements of
the master arm to manipulate the objects. More details can
be found in Figs. 3–5.

Multimodal haptic signals, including proprioceptive sig-
nals and both low and high frequency tactile signals, are
captured throughout human demonstration. The propriocep-
tive signals are the 6D Cartesian position and orientation of
the robot’s end-effector ypos ∈ R6 derived from the robot’s
forward kinematics. We also recorded the 6D Cartesian pose
of the object in the robot’s surroundings with a Vicon motion
capture system yobj ∈ R6.

The low frequency tactile signals (≤ 100Hz) are measured
from an array of 19 impedance sensing electrodes that detect
sensitive skin deformations. The electrode impedances yE ∈
R19 are sampled at 100Hz. For dynamic tactile sensing, high
frequency vibration signals (10 - 1040Hz) are available from
the hydro-acoustic pressure sensor. These vibration signals
yPAC ∈ R1 are sampled at 2200Hz and often correspond
to transient mechanical events, such as micro-vibrations
between the sensor’s skin and external environment. Detailed
descriptions of the tactile signals can be found in [4].

B. Sensorimotor Primitive Segmentation

To discover primitives that terminate in distinct sensory
events, the robot must segment demonstrations and skill
executions according to the sensory signals. The tactile
signals are particularly important for segmenting sensory
trajectories into primitives with sensory goals [4, 15].

Unlike the relatively smooth proprioceptive signals, dy-
namic tactile sensor signals are highly sensitive to transient
mechanical events. Some of these detected events correspond
to the end of a contact state, at which point a new primitive
should start, but others may be caused by noise. In a peg-
in-hole task, the vibrations from scratching the peg over the
rough surface are irrelevant for the segmentation, but the
vibrations from entering the hole are relevant.

BOCPD [5] is used to segment demonstrated trajectories
into a sequence of primitives, as shown in Fig. 2B. Each
of the primitives ends with a sensory event. Because our
previous work showed the superior segmentation results with
multimodal sensory signals [4], we apply the BOCPD jointly
to the proprioceptive and tactile signals. The number of
segments for each demonstration is automatically determined
by the algorithm.

BOCPD passes through the sensory trajectories and cal-
culates the posterior distribution p(rt|y1:t) over the current
run length rt ∈ Z at time t given the previously observed
data y1:t. rt represents the number of time steps since the
last changepoint was detected. The posterior distribution is
computed by normalizing the joint likelihood P (rt|y1:t) =
P (rt,y1:t)
P (y1:t)

, where the joint likelihood P (rt, y1:t) over the run
length rt and the observed data y1:t is computed online using
a recursive message passing scheme [5]

P (rt, y1:t) =∑
rt−1

P (rt|rt−1)P (yt|rt−1, y
(r)
t ; θm)P (rt−1, y1:t−1) ,

where P (rt|rt−1) is the conditional changepoint prior
over rt given rt−1. The multivariate time series sensory



Fig. 5: Experimental setup of demonstrating the unscrewing
task.

signals are modelled as a joint Student’s t-distribution
P (yt|rt−1,Y1:t; θm), where yt are multimodal sensory
signals described in Sec. III-A and θm are hyperparameters.

C. Segmentation Clustering and Skill Graph Generation

The BOCPD algorithm decomposes the trajectories from
multiple demonstrations into multiple sequences of segments,
but it does not provide correspondences among the segments
of multiple demonstrations. These correspondences are re-
quired to construct a unified skill graph for each task. Rather
than manually define the correspondences, our framework
finds correspondences between segments by clustering the
3D goal positions and 3D orientations represented in Euler
angles of the segments, as shown in Fig. 2C. We assume that
the same skills from multiple demonstrations of the same task
will have similar goal poses, which correspond to the artic-
ular configuration of the robot learned by demonstrations.
The goal poses are extracted from the final poses of these
segments.

The segments are clustered using spectral clustering [28]
[29]. We first compute the similarity of pairs of segments’
final poses (xi and xj) using a squared exponential kernel:

[K]ij = k(xi, xj) = e
−(xi−xj)

2

2σ2

Then, a normalized Laplacian is computed as: L = I −
D−1K, where D is a diagonal matrix with its jth diagonal

element is given by [D]jj =
n∑
i

[K]ij , where n is the total

number of segments. Subsequently, k-means clustering is
performed on a lower-dimensional space of the eigenvectors
of the normalized Laplacian. As shown in Fig. 2C, each
demonstration has a sequence of segments which are labeled
with unique colors based on the assigned clusters.

After the segments’ final poses were clustered, a skill
graph is constructed as shown on the right side of Fig. 2C.
The segments from the same cluster are used to learn a skill
primitive, which corresponds to a node in the skill graph.
After the nodes are formed, we added directed edges if pairs
of skills are demonstrated consecutively. The strength of each
edge indicates the probability of the connected skills being
performed in sequence.

D. Skill Replay with Exploration and Mode Discovery

Given the skill graph of a task, the robot can execute
the task by traversing the skill graph through a sequence
of skill primitives, which are represented as force-position
controllers. The position and force signals at the end of
the segments are used to compute the final desired state
for the controller. The feedback gains for the controllers are

predefined. A detailed overview of the control architecture
can be found in [30].

Due to the nonlinear cable stretch and motor-side encoders
on our robot, our robot has poor accuracy (1.5cm) as well as
significantly different accuracies for different regions inside
the robots workspace. Simply executing a sequence of skills
will tend to result in successful replays if they are executed at
the same pose as the demonstrations but failed replays if they
are executed at different robot poses as the demonstrations.
A sensory model for monitoring the progress of each motor
primitive is therefore essential to achieve robust execution
performance. The sensory model is used to confirm whether
a sensory subgoal of the task has been reached by the end
of each skill.

At the end of each motor primitive, the robot performs a
sequence of exploratory movements, which are 5mm position
deviations, along the three orthogonal directions of the
current pose of the robot’s end-effector, see Fig. 2D. The
goal of these exploratory movements is to collect sensory
signals for observing the distinct types of contact states.

The tactile sensory signals from these exploratory move-
ments are clustered using spectral clustering to identify
distinct modes, as shown in Fig. 2E. The clusters from the
spectral clustering represent distinct types of contact states.
These clusters are used to learn sensory models to confirm
whether the goal of each primitive has been achieved or if
an error has occurred.

E. Manipulation Graph Generation

Given a skill graph and the modes for the manipulation
task discovered from both successful and failed skill ex-
ecutions, a unified manipulation graph can be created for
the robot, as shown in Fig. 2F. The large rectangles in a
manipulation graph correspond to the unique modes discov-
ered by skill replays and exploration. The directed edges
indicate the transition probabilities between the vertices in
the graph. Some skills result in the robot remaining in the
same mode while others result in switching into different
modes, as indicated by the connections within the same mode
or between different modes.

After generating the manipulation graph, the robot can
perform the task through graph traversal by executing a
sequence of skills in the graph. It can also confirm successful
or failed skill executions by clustering the tactile sensory sig-
nals at the end the skill execution against the corresponding
discovered success and failure modes.

IV. EXPERIMENTAL EVALUATIONS

In this section we describe the experiments and results
obtained for evaluating the proposed framework for building
manipulation graphs by segmenting demonstrations into skill
primitives and discovering corresponding modes to verify
successful and failed skill executions.

A. Segmentation

We evaluated the segmentation method in our skill learn-
ing framework on three tasks: a grasping task, an unscrewing



Fig. 6: A: An example of joint BOCPD to segment sensorimotor primitives in the grasping task; B: An example of joint
BOCPD to segment sensorimotor primitives in the unscrewing task; C: An example of joint BOCPD to segment sensorimotor
primitives in the peg insertion task; D: Segments clustering and skill graph for the grasping task; E: Segments clustering
and skill graph for the unscrewing task; F: Segments clustering and skill graph for the peg-in-hole task

task, and a peg insertion task. Because kinesthetic demon-
stration for the grasping task will require direct contact with
the fingertip which will corrupt the tactile sensory signals,
we use the master-slave dual setup to move the fingers to
grasp the object, as shown in Fig. 3. During each grasp
demonstration, the human expert moves the master arm a
sequence of movements while visually observing the slave
arm and a cylinder so that the slave arm reaches on the top
of the object, closes its fingers on it, lifts the object off the
supporting table by about 15 cm and places it back on the
supporting table. Kinesthetic demonstrations were used for
the peg-in-hole and unscrewing tasks as we can hold on to
the wrist above the force torque sensor, as shown in Fig. 4
and Fig. 5. The initial pose of each object is recorded by
Vicon motion capture system.

The results of using BOCPD with the proprioceptive and
tactile data for the grasping task is shown in Fig. 6A.
The ground truth primitive switches, as indicated by the
double vertical dashed lines, were manually labeled only
for the purpose of showing this exemplary segmentation
result. In this example case, six significant sensorimotor
events were labeled, including reaching the object, closing
one finger on the object, forming a pinch grasp on the object,
loading the object off a supporting table, lifting the object
above the targeted pose, and placing the object back on
the supporting table, as shown in Fig. 3. The changepoints
detected by the BOCPD algorithm are indicated by black
crosses. If these changepoints are between the double vertical
dashed lines, we consider the BOCPD algorithm as having
successfully segmented the primitive. If changepoints fall
between two consecutive sensorimotor events, we consider
these changepoints as false positives, such as the changepoint

at 2sec and 4.4sec, indicated by the open blue circle. These
two false positives are caused by the vibrations resulting
from the motors and gears of the robot fingers during
finger closing. They are not considered to be relevant to
this task and are effectively oversegmentations caused by
noisy sensory signals. The false positive changepoints are
manually labelled only for the purpose of showing exemplary
oversegmentation from BOCPD.

For the unscrewing task, there are three significant senso-
rimotor events: reaching the object, inserting the screwdriver
into the head of the screw, and unscrewing the screw, as
shown in Fig. 6B.

For the peg insertion task, we have a peg reaching the
board, making contact with the surface of the board, sliding
into the groove, reaching the corner of the groove, reaching
the top of the hole, and making contact with the bottom of
the hole, as shown in Fig. 6C.

B. Segmentation Clustering and Skill Graph Generation
The segmentation clustering and skill graph generation are

evaluated on the segmented primitives from all three tasks:
grasping, unscrewing and peg insertion. The segmented prim-
itives from 15 trials of grasping demonstrations are clustered
by applying spectral clustering on the goal poses of these
segments, which are highlighted by the colored columns
in Fig. 6A. On the left of Fig. 6D, each row represents
one of the 15 demonstrations, and its segments are colored
based on the assigned cluster. We use the same color coding
to visualize the correspondences between segments from
BOCPD and segments used in segment clustering, as shown
in Fig. 6A and Fig. 6D, respectively. Due to oversegmen-
tation caused by noisy sensory signals, sometimes multiple
segments are assigned into the same cluster. We can keep the



Fig. 7: Similarity matrix heat-map (A, C, E) and spectral
clustering (B, D, F) of tactile signals of the exploratory
movements at the goal of each phase of grasping, unscrewing
and peg-in-hole tasks.

first segment assigned into a cluster and reject the segments
that are subsequently assigned into the same cluster. Thus,
clustering the goal poses of segments allows the robot to not
only find the correspondences among segments from multiple
demonstrations, but also eliminate oversegmentations. After
eliminating these oversegmentation, segments among all 15
demonstrations with the same cluster label are assumed to
represent the same skill primitive, therefore the mean of those
segments’ pose are used to form a node in the skill graph,
shown as colored circles on the right of Fig. 6D. The five
clusters are used to form five nodes in this grasping skill
graph.

As shown on the left of Fig. 6E, the segments from 10
unscrewing demonstrations are clustered into three clusters,
shown in dark blue, green and yellow. Because the first
segments only neighbor with the second segment and the
second segments only neighbor with the third segments, only
two sequential connections are created among these three
nodes, as shown on the right of Fig. 6E.

The segments from 20 trials of the peg insertion demon-
strations are clustered into eight unique clusters, shown as
eight nodes in the Fig. 6F.

Fig. 8: A: failed to insert tool-tip into the screw head; B: after
failed insertion, continue twisting the screwdriver failed to
unscrew the screw; C: failed to slide into the vertical groove
therefore missed the corner

C. Mode Discovery

The grasping task is executed by traversing through those
five skill nodes in the grasping skill graph. Each graph
traversal is sampled based on the connections’ strength
among those nodes. For example, traversals sampled from the
grasping skill graph are 1→ 2→ 3→ 4→ 5, and 1→ 2→
3→ 5→ 4→ 5 with 80% and 7% probabilities, respectively.
The robot performs exploratory movements, which are 5mm
position deviations, along the three-orthogonal directions of
the current pose at the end of each skill. It samples 10
sequences of the five nodes resulting in a total of 50 trials
of explorations. During executions of the skill 3, 4, and 5,
which correspond to the robot forming a pinch grasp on the
object, lifting it above the table and placing it back on the
table, we sample an additional 10 times when failures are
introduced by the experimenter resulting in a total of 30
trials of explorations from failed executions of skill 3-5. In
Fig. 7A, a heatmap shows the similarity matrix of the tactile
sensory signals corresponding to those 80 explorations. The
brighter color in the heatmap represents high similarity. For
example, we can see that the 21-30 diagonal elements and the
31−40 diagonal elements in the similarity matrix have high
similarities, each of which corresponds to the robot forming
a pinch grasp on the object and the object being lifted above
the table, respectively. This is due to a stable grasp has been
formed regardless of if the object is still supported by the
table or if the object is lifted off of the table.

After applying spectral clustering, 80 trial explorations
are clustered into three distinct clusters, shown in cyan,
dark red and orange in the middle of Fig. 7. The dark red
cluster (trials 21-50) in the middle of Fig. 7B represents
that successful executions of skills 3, 4 and 5 are clustered
into the same cluster. This is due to, when the stable grasps
have been formed, the tactile sensory signals are very similar
among these three skills. Trials 51-60 corresponding to failed
executions of skill 3, forming a pinch grasp, are clustered
into a different cluster, as shown in orange, from successful
execution of skill 3, as shown in dark red. Trials 61-70
corresponds to failed executions of skill 4 when the robot
attempts to lift the object. Some of them are clustered into
the same cluster as successful executions of skill 1 when the
robot does not make contact with the object. This is due to



Fig. 9: Grasping Manipulation Graph

the object slipping out of the fingers when the robot tries to
lift the object.

By following the skill graph of the unscrewing task, a
sequence of three skills are executed on the robot including
the robot moving the screwdriver towards the screw, inserting
the tip into the head of the screw, and twisting it. Eight
exploratory movements are applied at the end of each prim-
itive. They are six 5mm translational movements along the
three-orthogonal directions of the robots end-effector and two
rotations (±5◦) along the normal of the robot’s palm. This
process was repeated 10 times. A similarity matrix of these
30 trials of tactile sensory signals corresponding to these
eight exploratory movements is shown in the first 30 diagonal
elements in the similarity matrix on the left of Fig. 7C. Three
clusters are formed for these 30 trials of explorations, shown
in dark red, orange, and green at the diagonal elements of
spectral clustering matrix in Fig. 7D.

The robot subsequently executes these motor primitives
under pose uncertainties introduced by the experimenter.
Although the robot tracks its trajectory depending on the
object pose measured by the Vicon system, the poor accu-
racy as well as significantly different accuracies inside the
robot workspace causes the robot to fail its execution under
pose uncertainties induced by the experimenter. Failures are
detected if the tactile sensory signals at the end of each
primitive failed to be clustered into the same clusters as the
modes formed from successful executions. A common failure
mode is discovered: such as the robot failed to insert the tool-
tip into the screw hole, as shown in Fig. 8A, corresponding
to the cyan cluster in Fig. 7D. This failure mode results in
an additional failure mode, corresponding to the blue cluster
in Fig. 7D, if the robot still twists the screwdriver without a
successful insertion, as shown in Fig. 8B.

As shown in Fig. 7F, six unique modes are discovered from
the exploration movements, trials 1-60, sampled from eight
motor primitives in the peg-in-hole skill graph Fig. 6F. Two
failure modes are also discovered due to failing to slide the
peg into the vertical groove. It remains in the same mode as
making contact with the surface and continues executing the
next motor primitive resulting in a new mode due to sliding
the peg from the flat surface directly into the horizontal
groove instead of sliding into the corner along the vertical
groove as shown on the right of Fig. 8.

Fig. 10: Success and Failure Mode Detection

D. Manipulation Graph Generation with Failure Modes

Once we have a skill graph and discovered the correspond-
ing modes for the grasping task, a manipulation graph can be
formed by combining them. As shown in Fig. 9, starting state
(s0) is in mode 1, and a sequence of actions a1 reaching to
the object and a2 forming a pinch graph on the object result
in states s1 and s2 respectively, which are clustered into the
same mode as s0. Then action a3, closing both fingers on
the object, causes a mode switch as state s31 is in mode
2. Executing action a4 lifts the object off of the table and
action a5 places the object back onto the table but does
not cause any detected mode switches because both states
s41 and sf are still in mode 2, where sf is the final state.
Executing action a3 could also result in failure mode 1 which
is represented as failure state s32 in red in Fig. 9. After
discovering this failure mode, continuing to execute the next
action a4 either stays in the same failure mode or results
in an additional failure mode 2, which is clustered together
with mode 1. This corresponds to the object slipping out of
robot’s fingers when it attempts to lift the object off the table.

We evaluated the built manipulation graphs on the Barrett
robot to perform all three tasks. It performs these three tasks
by doing graph traversal as well as clustering the tactile
sensory signals from these executions against the success
modes and failure modes. The robot executed each task
40 times which included 20 successful executions and 20
failed executions. The failed executions are caused by pose
variations on the objects introduced by experimenter. The
ground truth successes and failures are manually labelled by
the experimenter. By comparing the manual labels against the
predicted clusters, we reported success rates for successful
and failed executions of each of the three tasks in Fig. 10.
The detection success rates are above 90% for all the
discovered success modes as well as failure modes. For these
modes with only 90% detection success rates, such as failing
to unscrew in the unscrewing task and failing to slide the peg
into the groove in the peg-in-hole task, are due to other novel
failure modes that were not present in the training data.



V. CONCLUSIONS AND FUTURE WORK

We presented a framework for segmenting contact-based
manipulation tasks into sequences of motor primitives. The
correspondences among segments from multiple demon-
strations are found by clustering the final poses of these
segments. During skill replays, a sequence of exploratory
movements are performed at the end of each skill to discover
distinct modes that correspond to distinct contact states.
Failure modes could be discovered under environment vari-
ations and uncertainties by clustering sensory events against
successful skill executions. A manipulation graph is built by
using skill graphs as well as discovered modes corresponding
to both successful and failed skill executions.The proposed
framework was successfully evaluated on grasping, unscrew-
ing and peg insertion tasks.

Learning from demonstration allows the robot to initialize
a skill, but the demonstrated skills tend to fail if they
are deviated from the demonstrated trajectory due to en-
vironment uncertainties. By building a manipulation graph
which incorporate both successful modes as well as distinct
failure modes, it enables the robot to discover novel failure
modes, which open the possibility for the robot to acquire
recovery behaviors for each failure from human teachers or
reinforcement learning.
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